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Convex Approach to Data-Driven Off-Road
Navigation via Linear Transfer Operators

Joseph Moyalan*”, Yongxin Chen

Abstract—We consider the problem of optimal control design
for navigation on off-road terrain. We use a traversability measure
to characterize the difficulty of navigation on off-road terrain.
The traversability measure captures terrain properties essential
for navigation, such as elevation maps, roughness, slope, and tex-
ture. The terrain with the presence or absence of obstacles be-
comes a particular case of the proposed traversability measure.
We provide a convex formulation to the off-road navigation prob-
lem by lifting the problem to the density space using the linear
Perron-Frobenius (P-F) operator. The convex formulation leads
to an infinite-dimensional optimal navigation problem for control
synthesis. We construct the finite-dimensional approximation of
the optimization problem using data. We use a computational
framework based on the data-driven approximation of the Koop-
man operator. This makes the proposed approach data-driven and
applicable to cases where an explicit system model is unavailable.
Finally, we apply the proposed navigation framework with single
integrator dynamics and Dubin’s car model.

Index Terms—Motion and Path Planning, Optimization and
Optimal Control, Model Learning for Control.

I. INTRODUCTION

AVIGATION problem is one of the most critical research

fields in the robotics community. More recently, the prob-
lem of off-road navigation, driven by robotics applications in
an unstructured environment, has received much attention. The
objective is to drive a robot/vehicle from some initial set to
the desired target set through a terrain where traversability
varies continuously over the entire domain of interest. This is
in contrast to navigation in the presence of obstacles where the
regions with obstacles are prohibited and hence not traversable.
There is extensive literature on navigation in the presence of
obstacles. Navigation function and potential function are used
for navigation in the presence of obstacles [1], [2], [3], [4].
While the potential function could have local minima preventing
the navigation from initial set to the target, the navigation
function is hard to find. The control barrier functions (CBFs)
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are also used for navigation with safety constraints [5]. CBFs
combine ideas from the control Lyapunov function and bar-
rier certificates for invariance to ensure safety. However, find-
ing CBFs suffer from the same challenges as finding control
Lyapunov function and cannot be easily adapted for naviga-
tion in off-road terrain where the definition of safety itself is
nebulous.

The problem of off-road navigation has attracted more interest
recently. In [6], perception is used to determine the terrain
traversability and local control strategy for navigation. Most
of the current literature on this topic has been using sensor
data from LIDAR, cameras, and GPS/IMUs to map the off-road
terrain to generate a traversability map [7], [8], [9], [10]. An
existing algorithm such as A* is used to design traversable paths
in the off-road environment. However, due to the nonconvex
nature of the traversability map and hence the cost, the problem
becomes nonconvex and, therefore, difficult to solve with no
guarantee of global optimality.

One of this paper’s main contributions is providing a convex
formulation to the off-road navigation problem. The convex
formulation is made possible by transforming the problem in
the dual space of densities. The formulation of optimal control
problem in the dual space of densities is proposed in [11],
[12], and its extension to navigation problem in the presence
of deterministic and stochastic obstacles is studied in [13], [14],
[15]. This paper focuses on the off-road navigation problem for a
given traversability map. The terrain traversability map includes
information about the difficulty level in navigating. The terrain’s
traversability measure depends on terrain parameters such as
elevation map, roughness, slope, and texture. Therefore, we have
utilized the normalized elevation map while constructing the
traversability measure.

The convex formulation leads to an infinite-dimensional con-
vex optimization problem for the off-road navigation problem.
First, we use data to construct the finite-dimensional approxima-
tion of the infinite-dimensional convex problem. Then, we use a
computational framework based on the data-driven approxima-
tion of linear Koopman and Perron-Frobenius (P-F) operators for
the finite-dimensional approximation of the infinite-dimensional
convex optimization problem. The second main contribution is
providing a numerically efficient computational algorithm for
the data-driven approximation of the P-F operator, preserving
some natural properties of this operator. Finally, we demonstrate
the application of the developed framework for off-road navi-
gation of vehicle dynamics with the Dubin car model. We also
compare the results obtained using our proposed approach with
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the existing A* algorithm. The study’s main finding is that the
traversability cost associated with A* is more than one computed
using our proposed approach.

The rest of the paper is structured as follows. Section II
consists of problem formulation, and we discuss the main results
in Section III. Then, in Section IV, we develop the computational
framework based on the linear operator framework. Finally, we
present the simulation results in Section V, and a conclusion is
in Section VI.

II. PROBLEM FORMULATION FOR OFF-ROAD NAVIGATION

This section defines the traversability map, which will be later
used in the convex formulation of the navigation problem. We
will also motivate the choice of the cost function for off-road
navigation. Let us consider the following dynamical system in
control affine form as

x =f(x) + g(x)u (1)

where x € X C R"andu € U C R"™ are the states and control
input respectively. We assume that f(x), g(x) € C*(X,R"),i.e.
the space of continuously differentiable functions on X. The
dynamical control system is assumed to model the control dy-
namics of the vehicle. The control-affine form is not restrictive,
and this will typically be the case for the robotics and vehicle
dynamics application [16], [17].

Notations: We consider B(x) to be the Borel o-algebra on X
and M (X)) as the vector space of real-valued measures on 5(X).
Let £,(X) and £ (X) be the space of essentially bounded and
integrable functions on X respectively. The notations in bold
and lower case will represent vectors and notations in bold and
upper case will represent matrices. Also, s;(x) is the notation for
the trajectory of feedback system x = f(x) + g(x)k(x) start-
ing from initial condition x at time ¢ € R, where u = k(x) €
CH(X,R™) is the feedback input. Similarly, s_;(x) represents
the closed-loop trajectory as the function of initial condition x
backward in time.

A. Traversability Map

We assume that the traversability description of the terrain is
captured by a nonnegative function b(x) € £ (X). We assume
that the function b(x) captures the information of the elevation
map, terrain roughness, slope, and terrain texture. The construc-
tion of such a map is an active area of interest where onboard
sensors on the vehicles such as vision, LIDAR, and IMU, as
well as drone sensory images, can be used to construct such
maps [18], [19], [20]. We propose the following definition of
traversability measure, which captures the relative degree of
difficulty of traversing unstructured terrain.

Definition I: Let u, € M(X) be the associated traversability
measure, i.e., dup(x) = b(x)dx, where b(x) > 0 is assumed to
be an integrable function and is zero on the final target set, X .
For any set A € B(X), the traversability of the set A is defined
using b(x) as

Trav(A) := /Ab(x)dx =: up(A). 2)
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Trav(A) captures the relative difficulty of traversing through
the region A C X. In particular, if pp(A1) < pp(Az) where
A; € B(X), then the region A is more difficult to traverse
than region A;. It is easy to see that the above definition of
traversability measure also captures the information of binary
obstacles. In particular, if X, is an obstacle set, then we can
describe it using

b(x) = — 1, () 3)

AMX,,
where A(-) is the Lebesgue measure and 1x, is the indicator
function of the set X,,. The main objective of this paper in-
volves determining the control inputs u to navigate the vehicle
dynamics from some initial state X to some final target set X
while keeping the traversability cost below some threshold, say
v, i.e.,

/000 b(x(t))dt <~ 4

where x(t) is the trajectory of the control system (1). In this
paper, we are interested in the asymptotic navigation problem,
where the objective is to find the shortest distance path to
the target and the control cost. In particular, we consider the
following cost function

u

min V(x) = min /OO q(x(t)) + u' Rudt. ®)
" 0

where ¢(x) is the distance function which is zero at the target
set X, and R > 0 is the positive definite matrix. Instead of
minimizing the cost function from every initial condition x as in
(5), our proposed convex formulation relies on minimizing the
following cost function averaged over all states x € X.

min J(uo) =min [V (x)dgix) ©)
u u X

where 1 is the measure capturing the distribution of the initial
state. In particular, for the initial state of the vehicle in set X,
we have measure py supported on set Xy. The form of the
cost function where V' (x) is averaged over the state x € Xg
plays a fundamental role in the convex formulation of optimal
navigation problem in the space of density.

In the rest of the paper, we will assume that 1 is absolutely
continuous with density function hq, i.e.,dd% = ho(x). For ex-
ample if o is supported on initial set then hy(x) = 1x,(x)
i.e., indicator function of set X. The objective is to find the
feedback controller k(x) to minimize the cost function in (6).
Appropriate conditions on the initial measure i are necessary
to ensure the cost function is finite. We make sure that the
density function hg is finite and positive semi-definite on X
and hg € Ll(X) N Cl(X)

Along with minimizing the cost function, it is also of interest
to avoid certain obstacle sets, X, and limit the control authority,
i.e., \u]| < L;. The obstacle avoidance constraints for almost
every trajectory starting from the initial set X are written as

/ 1Ix, (x(t))duo(x) =0, ¥t >0
X
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where x(t) is the solution of system (1) starting from initial
condition x. With the above definition, we can state the problem
statement for optimal off-road navigation using the traversability
map as given below.

Problem 1: (Optimal off-road Navigation Problem) Navigate
almost every system trajectory for (1) starting from the initial
set X to the target set X while avoiding the obstacle set X,
such that cost for traversing is kept below some threshold ()
and the following cost is minimized.

min / /OO (a(x(1)) + u' Ru) dtdpo(x) (7a)
" x Jo
.t. / T, (x())dpo(x) = 0, V>0 (Tb)
X
[ vextddno < 4 (70)
x Jo
luj| <L;, j=1,...m (7d)
x =f(x) + g(x)u, lim x(t) € Xp (7e)

where ¢(x) is the distance from x to the target set X7. So the
objective is to find the shortest path to the target set while keeping
the traversability cost below a certain threshold .

The following section proves that the optimal off-road navi-
gation problem, defined in Problem 1, can be written as a convex
optimization over the density space.

III. CONVEX FORMULATION OF OPTIMAL OFE-ROAD
NAVIGATION

We make the following assumption on the control dynamical
system and the controller for the system (1).

Assumption 1: For the optimal off-road navigation problem,
we assume that the optimal control input is feedback in nature,
i.e., u =k(x) € C}(X), such that the cost function correspond-
ing to this input is finite.

With the above assumption, we can write the feedback control
system in the form

x = f(x) + g(x)k(x) =: F.(x). 8)

Now, we will consider the following definition of almost every-
where (a.e.) stability as introduced in [21].

Definition 2: [Almost everywhere (a.e.) stability] The equi-
librium point or an attractor set of the system (8) represented by
A is said to be a.e. stable w.r.t. measure g € M(X) if

140 {x eX: tlirélo si(x) ¢ A} =0. 9)

This paper’s main results ensure that the feedback control
obtained for the navigation is a.e. stable with respect to the target
set of (8). We next introduce the following definitions of linear
operators [22].

Definition 3 (Koopman Operator): Uy : Lo (X) = Loo(X)
for (8) is given by

[U](x) = p(st(x)), (10

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 6, JUNE 2023

where ¢ is a test function in the lifted function space
L (X) N CY(X). The Koopman generator for (8) is given by

tio A0 _p () V(o) = oo 1)
Definition 4 (Perron-Frobenius Operator): Py : £1(X) —
L1(X) for (8) is given by

[Pop](x) = p(s-+(x)) ‘asal(x)

) (12)

where |.| stands for the determinant and ¢ is a test function. The
P-F generator for (8) is given by

o [P0 = 00

lim . -V (F.(x)p(x)) = Pr,p. (13)

These two operators are dual to each other as
[ Wl )etxiax = [ [PrelGooxiax.

These two operators enjoy positivity and Markov properties used
in the finite-dimension approximation.

(14)

A. Obstacle Avoidance Constraints

The first result of this paper allows us to write the obstacle
avoidance constraints (7b) in the integral form.
Lemma 1: For the dynamical system (8), if

/ | / Txe, (s0(x))dpio (x)dt = 0, (15)
0 X

then

/ Ix, (s¢(x))ho(x)dx =0, Vt>0, (16)
X

i.e., the amount of time system trajectories spends in the region
X, starting from the positive measure set of initial condition
corresponding to the initial set, X, with density ho(x) is equal
to zero.

Proof: Proof by contradiction. Assume (16) is not true, i.e.,
there exists some time ¢ for which

/ 1Ix, (st (x))ho(x)dx = / (U1, [(x)ho(x)dx > 0
X X

Then using the continuity property of the Koopman semi-group,
we know there exists a A such that

to+A
/t /X[Uto]lxu]((x))ho(x)dxdt > 0.

We have

to+A
0< /to " /X[Utollxu](x)ho(x)dxdt

< /0 /X[[Uto]lxu](x)ho(x)dxdt =0 (17)

O
Remark 1: Following the results of Lemma 1, we can replace
the obstacle avoidance constraints (7b) as

/ h / T, (s0(x) o (x)dt = 0 (18)
0 X
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Remark 2: In the rest of the paper, we will use the notation
X = X\ NV, where V. is the € neighborhood of the target set.
With no loss of generality, we assume the target set X7 is locally
stable with the domain of attraction containing N\/,.

B. Convex Formulation

The following theorem presents the main result of this paper.

Theorem 1: Under Assumption 1, the optimal off-road navi-
gation problem can be written as the following convex optimiza-
tion problem in terms of optimization variables p € £1(X;) N
Cl(Xl, Rzo) and p S Cl(Xl, R)

p(x) Rp(x) |

ey x (19a)

f:mﬁawm+

PP

s.t. / Ix, (x)p(x)dx =0 (19b)
X1
b(x)p(x)dx < v (19¢)
X1
95 (x)] < Ljp(x) (19d)
V-(fp—f—gf)):ho, a.e.x € Xy (19e)

The solution to the above optimization problem is used to recover
the optimal feedback control input as follows:
p*(x)

K=

where (p*, p*) are the solution of (19).

The proof is provided in the Appendix.

Remark 3: The convex structure of the optimization problem
presented in (19) comes from the fact that the decision variables
p and p enter the cost quadratically and the constraints linearly
and hence led to the infinite-dimensional convex optimization
problem. We discuss the data-driven approach for the finite-
dimensional approximation of the infinite-dimensional problem
in Section IV.

(20)

C. Control Constraints

Other constraints on the state and control input can be written
convexly in terms of the optimization variables p and p. One such
constraint is the curvature constraint. For example, consider a
Dubin’s car model

T1 =uicosl, o =wuysinfg, 0= us.

Aside from the kinematic constraints imposed by nonholonomy,
most often, the additional constraint on the radius of curvature of
the paths of the vehicle must be considered [23]. The curvature
constraints themselves will be a function of the terrain prop-
erties. The curvature constraints close the kinematic model of
Dubin’s car to reality. We can capture the curvature constraints
as follows.

ug| _ 1

] =C (2D
where uo is the angular velocity of Dubin’s car model. The
constraint in (21) ensures that the control design is realistic and
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that the angular velocity of the kinematic model is bounded.
The (21) can be easily added to the optimization problem of
Theorem 1 convexly as follows. Following the general formu-

lation specialized for two input systems, we can write u; = ”—pl

and uy = %2, hence

lus| 1 B B
W2l o 2 L @1ps| = 1] < 0
‘u1| =0 |p2| ‘p1| =

which is linear and hence convex in p; and po.

(22)

IV. COMPUTATIONAL FRAMEWORK

In this section, we utilize Naturally structured dynamic mode
decomposition (NSDMD) [24] and provide a modification ap-
proximation, namely Approximate NSDMD. Then we formulate
our problem with the given computational framework.

A. Data-Driven Approximation: Approximate NSDMD

The NSDMD algorithm introduced in [24] incorporates the
natural properties of the linear operators, namely the positiv-
ity and the Markov properties. However, using the NSDMD
algorithm is computationally expensive. Also, executing the
NSDMD algorithm to find the P-F operator involves convex
optimization with linear constraints and does not admit an
analytical solution. Our proposed transfer operator theoretical
framework for the control design relies on these operators’
positivity and Markov properties. In our proposed modification
of the NSDMD algorithm, we gain numerical efficiency at the
expense of preserving these properties approximately. We call
this modified algorithm “Approximate NSDMD (A-NSDMD),”
and it can be solved analytically as it is a least square problem,
as shown below. For the continuous-time dynamical system (1),
consider snapshots of the data set obtained as time-series data
from single or multiple trajectories.

X:[X17X27" Y:[Y17Y27-~-7YQ]7 (23)

where x; € X and y; € X such that y; = sa;(x;). In our pro-
posed data-driven computation, we obtain the pair of two consec-
utive snapshots using the system with no control input (s% , (x;))
and with the step input (sh,(x;)). Let ® = [¢)1,...,9p]" be
the set of basis functions. We obtain the finite-dimensional
approximation of the Koopman operator (U) through EDMD
as the result of the following least square problem.

.,XQ],

1 1
G=-TX)TX), A= -TX)T(Y), (25
Q Q
with U, G, A € RP*P || . || stands for Frobenius norm. The
analytical solution of the above least square problem is
U =G'A. (26)

The EDMD algorithms provide convergence results with respect
to the number of data points and basis functions [25], [26].
In this paper, we work with Gaussian Radial Basis Functions
(RBF), which are the positive basis. The positivity constraints
utilized in NSDMD are avoided in the A-NSDMD based on
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TABLE I
P-F OPERATOR COMPUTATIONAL TIME READINGS

#RBF  NSDMD  Approximate NSDMD
500 18.7 sec 10.2 sec
1000 99.88 sec 53.86 sec
1500 400.2 sec 162.97 sec

the approximated positivity of the Koopman operator when
RBFs are used. This means that all the negative elements of
the Koopman matrix obtained are le-6 or lower. Under the
assumption that the basis functions are positive, the A-NSDMD
obtains U from U using row normalization, i.e., the entries of
the matrix U are obtained as:
-1 [Uly
-5 O @7
where [U];; is the (,j)th entry of the matrix U. The above
modification helps us to avoid Markov constraints. As a result,
the A-NSDMD is just a least square problem with an analytical
solution as given by (26). We obtain the P-F matrix as P=U".
The generator of the P-F operator is obtained as
P-I

where I is the identity matrix. Note that we did not strictly en-
force the positivity property on the linear operators in the above
construction. However, the numerical evidence suggests that the
entries of the matrix U obtained using the EDMD algorithm
with a positive basis function are predominantly positive. Table I
compares the computation time of calculating the P-F operator
for different numbers of RBFs utilized in lifting the dynamics.
This provides empirical proof of the computational efficiency of
A-NSDMD over NSDMD.

(28)

B. Approximation of Optimization Problem

This section discusses finite-dimensional approximation of
the infinite-dimensional optimal navigation problem (19a)-
(19¢). We use the approximation of the generator for the vector
field f and g. The generator approximation of the two vector
fields is given as follows

Pf ~ ].\/.[07 Pg ~ Ml. (29)

The generator approximation of Py starts with obtaining open-
loop time series data {x}} = {x,x{,...,x{,} by substituting
u = 0in (1). Similarly, the approximation of Pg, is obtained by
getting {x} } = {x,x{,...,x(} from substituting u = u; in
(1) where u; is a column vector consisting of all zeros except at

pos1t10n where the element value is 1. Then we calculate the
matrices U° and U? by utilizing (24)-(27). The P-F matrix is

then obtained as P = U°T and P? = U'T. Then we calculate
M, and M; as follows:
PO—1 pi 1
~ M ~ T
Pe A7 0, Prig; AL (30)
and Pg, = Pryg, — Pr =: M; 3D
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Approximate NSDMD algorithm outlined in Section IV-A is
used to approximate with W(x) = [11(x), ¥2(X), ..., ¥p(x)]"
as the basis functions. Let p(x) = [p1(%),...,pm(x)]" and
W = [W1,...,W,,] . Now let us express the following terms

as combinations of basis functions
ho =¥ 'm, p= L ARYS pj = \Ilij. (32)

Assuming R is the identity matrix, we perform the following
finite-dimensional approximation

| p(x) p(x)
inf qx)p(x) + —————= | dx
nt [ oot + 200
~ min D{v + WTDzE (33a)
WwW;,Vv v
where Dy = [y ¢ (x)dx, Dy = [y P(x)¥'(x)dx

and division is assumed element-wise.

Similarly, we can write
/ Ix, (x)p(x)dx ~ [/ 1x, (x)lIlT(x)dx} v=div
X1 Xl
(34)

[ bx)ptopis~ [

where dy := fX1 Ix,(x)®"dx and dg := fX X)W dx.

Assumption 2: We consider all the basis functlons to be
positive and linearly independent.

Remark 4: The Gaussian Radial Basis Functions (RBF) is
used in this paper for the simulation results i.e., 1y (x) =
exp(— w) where c, is the center of the k' Gaussian RBF.

Therefore the ONP in Theorem 1 can be written as

b(x)\IlT(x)dx] v =dav (35)

X1

. w
min D;v +w ' Dy—
W,V \%
s.t. — Mgv — ZMJ'WJ' =m
J
div=0, dov<vw, |w;|<L;v

V. SIMULATION RESULTS

The centers of the RBF used in the simulation results are
chosen to be uniformly distributed in the state space at a distance
of d. The RBF’s standard deviation (o) is selected as 0.5 d. We
perform all the simulations using MATLAB R2021b on a Dell
computer with 64 GB Random Access Memory (RAM) and an
Intel(R) i7-10700 K processor (3.80 GHz). In this paper, we use
the data to do the linear approximation of the single integrator
dynamics and Dubin’s car model. The CVX toolbox is used
for solving an optimization problem. The computational time to
obtain the proposed algorithm’s feedback control ranges from
5-15 minutes.

Example 1: Consider the single integrator dynamics

T1=wuy, T2 = U (36)

The initial and terminal sets are labeled as X7, X0 and X7
These sets are described as follows.
e XE£{xeR?:-3<7,<3, -3<12,<3}
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TABLE II
COMPARISON BETWEEN A* AND P-F APPROACH

Traversability Starting Target Traversability Cost
map point point A* P-F approach
ba(x) Fig. 2 (4.53.2)set A (0.7,0.5) 8.24 6.1
(1.742) set B (0.7,0.5) 9.34 4.3

as the simulation platform for the comparison. The A* algo-
rithm [31] is a search-based algorithm for path planning which
uses heuristic functions for selective search in the workspace.
The cost function of A* algorithm consists of two terms: g(x),
the actual cost, and /(x), the heuristic cost. Here, g(x) represents
the transition cost from the initial state to the current state,
whereas h(x) represents the cost to go from the current state
to the target state. When A* is implemented with a grid map,
then g(x) would represent the grid values. For our comparison
purposes, we selected g(x) to be equal to the traversability map
b(x) and h(x) to be equal to the Euclidean distance between
the current state and target state. The trajectory comparison
between A* algorithm and the P-F approach is shown in Fig. (2).
Here,y = 10 for the P-F-based approach. Table II contains the
traversability cost of trajectories obtained from A* algorithm
and the P-F approach. The traversability cost is calculated by
summing the traversability values, b(x(¢)), along the trajectories
generated by the A* and P-F based approach.

‘We observe that our propsoed approach performs better than
the A* algorithm as it leads to lower cost of traversability.

VI. CONCLUSION

The problem of navigation on off-road terrain is considered.
We use traversability measures to describe the relative degree
of difficulty of navigation. A convex formulation for the opti-
mal navigation problem is constructed using the traversability
information of the terrain. The convex formulation leads to an
infinite-dimensional convex optimization problem for naviga-
tion. Furthermore, we utilize the data-driven approximation of
the linear P-F operator for the finite-dimensional approximation
of the optimization problem. Finally, simulation results are
showcased to show the validity of the proposed method. Future
research efforts will incorporate the framework’s uncertainty
arising from vehicle dynamics and vehicle-terrain interaction.

VII. APPENDIX

Proof: Weusethe factthat dpsg = ho(x)dx, and the definition
of the Koopman operator to write the cost function (7a) as

J = / / h (U (g +k"RK)] (x) dtho(x)dx
X1 J0O

_ /X 1 /0 " (g + KTRK) (s:(x)) dtho(x)dx

Performing change of variable y = s;(x) or x = s_4(y) and
using the definition of P-F operator, we can write the above as

J = / / N (¢ + k"RK) (x) [P{ho] dtdx
X1 J0
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= /x (¢ + k'RKk) p(x)dx (38)

where

plx) = [ Pl (39)
Since the cost function is assumed to be finite (Assumption 1),
the p(x) is well-defined for a.e. x and is an integrable function.
The function [IP;h¢](x) is a uniformly continuous function of
time which can be inferred from the definition of the P-F operator
and the assumption made on function hg. Hence using Barbalat
Lemma [32, pg. 269] we have

lim [Pyho] (x) = 0, (40)

for a.e. x. Furthermore, since the P-F operator is a positive
operator and hy(x) > 0, we have p(x) > 0. Hence (38) can be
written as
p(x) 'Rp(x)
Tm) = [ (ax)pto) + 2L T
X, p(x)
where p(x) := p(x)k(x). This shows that we can write the cost
function in (7) in the form (19). We next discuss the constraints.
Following the results of Lemma 1, we know that (15) implies
(16). Hence, the (7b) are implied by

/oOC /x Ix, (s¢(x))dpo(x)dt =0

Again performing change of variables y = s;(x) and using the
definition of P-F operator, (42) can be written as

/ 1Ix, (x)p(x)dx =0
JX,

ydx (41

(42)

with p(x) as defined in (39). Similarly, it follows that (7c) can
be written as

/x b(x)p(x)dx < 7.

The control constraints |u;| < L, forj = 1,...,m can be writ-
ten as |p;(x)| < L;p(x) follows from the fact that u = k(x) =
p(x)/p(x) and p(x) is positive. We next show that the p(x) as
defined in (39) satisfies the constraints (19e). Substituting (39)
in the constraint of (19¢), we obtain

V(E@w&D=AmV«E@MWM&Wﬁ

o0

= [ =GPl = ~[Puhol )| = halo), 3

In deriving (43) we have used the infinitesimal generator prop-
erty of P-F operator (13) and the fact that lim;_, . [P:ho](x) = 0
following (40). Next, we show that the target set X is a.e. stable
w.r.t measure (o supported on the initial set X(. Consider the
set Sy

Sp={x € Xy :s(x) € Xy, for some ¢t > (}

andlet S = ﬂ;il S¢. The set .S contains points, some of whose
limit points lie in X, and for almost every stability of the target
set, we need to show that 10(.S) = 0. From the construction
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of the set S, it follows that s;(.S) = S, where s.(.5) = {s:(x) :
x € S}.

() = [ tsGmxix = [ 1ssix)(x)ix

= / 1g(x)[Prho](x)dx (44)
X1

where we have use the fact that x € S iff s;(x) € S. Since
the above is true for all ¢ > 0, we obtain using dominated
convergence theorem

po(S) = lim [ [Piho](x)dx = / lim [P ho)(x)dx =0

t—o0 S S t—00
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