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a b s t r a c t

We present a novel particle filtering framework for the continuous-time dynamical systems with
continuous-time measurements. Our approach is based on the duality between estimation and optimal
control, which allows for reformulating the estimation problem over a fixed time window into an
optimal control problem. The resulting optimal control problem has a cost function that depends on
the measurements, and the closed-loop dynamics under optimal control coincides with the posterior
distribution over the trajectories for the corresponding estimation problem. By recursively solving
these optimal control problems approximately as new measurements become available, we obtain an
optimal control based particle filtering algorithm. Our algorithm uses path integrals to compute the
weights of the particles and is thus termed the path integrals particle filter (PIPF). A distinguishing
feature of the proposed method is that it uses the measurements over a finite-length time window
instead of a single measurement for the estimation at each time step, resembling the batch methods
of filtering, and improving fault tolerance. The efficacy of our algorithm is illustrated with several
numerical examples.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

In systems and control, filtering refers to estimating the true
tate of a dynamical system using raw sensor measurements. It
s a critical component in feedback control and plays an indis-
ensable role in almost all applications related to control. Many
heories and algorithms for filtering have been developed. For in-
tance, the celebrated Kalman filter is for linear dynamics driven
y Gaussian noise. It is optimal in the sense of mean-squared
rror. It also computes the exact posterior distribution of the
tate given the available measurements. For nonlinear systems,
he filtering problem is much more challenging; the posterior
istribution of the state rarely has a simple parametrization. To
ttain the posterior distribution, one needs to solve a stochastic
artial differential equation known as the Kushner–Stratonovich
quation. The methods relying on discretizing the state space and
he Kushner–Stratonovich equation are computationally infeasi-
le for high dimensional problems. There are several algorithms
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hat approximate the posterior distributions with Gaussian dis-
ributions, including the extended Kalman filter (EKF) and the
nscented Kalman filter (UKF). However, the performance of this
ype of methods deteriorates as the posterior distribution drifts
way from the Gaussian family.
One idea that avoids brute force discretization of the state

pace, while still retaining the richness of the posterior distri-
utions, is to represent the distributions with an ensemble of
articles. This type of methods are known as particle filtering.
ver the last decades, many different versions of particle filtering
lgorithms have been proposed (Del Moral, 1997; Guarniero, Jo-
ansen, & Lee, 2017; Pitt & Shephard, 1999; Ruiz & Kappen, 2017;
ärkkä & Sottinen, 2008; Taghvaei, Mehta, & Meyn, 2020). In the

standard setup of particle filtering, the posterior distribution at
the current step is approximated by K weighted particles. These
articles are propagated forward following a proposal density
nd then combined with the next measurement to estimate the
osterior distribution at the next time step. The implementation
f particle filtering is extremely easy if the proposal density
s simple, which makes particle filtering a popular method for
onlinear filtering. Theoretically, it can be shown that as the
umber of particles K goes to infinity, the empirical distribution

of the particles converges to the true posterior distribution at
each time step in some suitable sense (Del Moral, 1997). In
practice, however, due to the potentially large difference between

proposal distributions and posterior distributions, the weights of
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he particles degenerate quickly (Doucet, Briers, & Sénécal, 2006),
hat is, the weights of most of the particles become negligible and
he mass of the particles concentrates only on a few particles,
endering a small effective particle size. A resampling step is
dopted to mitigate the effects of degenerate weights. However,
oth in theory and in practice, the choice of a proper proposal
ensity is critical and most particle filtering algorithms still per-
orm poorly in high-dimensional problems (Bengtsson, Bickel, &
i, 2008; Beskos, Crisan, Jasra, & Whiteley, 2014), largely due to
the particle degeneracy.

In this work, we consider the nonlinear filtering problem for
the continuous-time diffusion dynamics with continuous-time
measurements. We present a new particle filtering method based
on a duality between estimation and optimal control (Kim &
Mehta, 2020; Mitter & Newton, 2003). Building on this duality, we
are able to obtain a superior proposal density by (approximately)
solving an optimal control problem and thus establishing a par-
ticle filtering algorithm with better performance. Moreover, this
duality makes it natural to resample the particles from the past;
this is different from most particles filtering algorithms that only
sample in the present. This extra flexibility of updating samples
in the past provides us the opportunity to correct numerical
errors or errors induced by outlier in the previous filtering steps
and makes the algorithm more robust to mistakes and outlier
measurements. Empirically, we also observe that extending the
sampling to the past, with proper proposals, can significantly
mitigate the particle degeneracy issue.

The proposed algorithm is mostly related to those proposed
in Ruiz and Kappen (2017), Doucet et al. (2006), and Balaji (2009).
n Doucet et al. (2006) a block sampling strategy is proposed to
esample particles in the past as in our algorithm. However, they
ocus on an abstract framework for general discrete-time systems.
ow to leverage the structure of the underlying dynamics to
onstruct a proper proposal distribution is not studied. In Ruiz
nd Kappen (2017), an optimal control approach to smooth-
ng is proposed. However, they consider the smoothing problem
ver a fixed-time window. Moreover, though the dynamics they
se is continuous-time diffusion, their measurement model is
iscrete-time. The same setting with continuous-time diffusion
nd discrete-time measurement is used in Balaji (2009). Even
hough the path integral idea is used, the algorithm in Balaji
2009) is grid-based, not particle based. There are also some
ther particle filtering algorithms such as feedback particle fil-
ering (Taghvaei et al., 2020; Yang, Mehta, & Meyn, 2013), par-
icle flow filter (Daum, Huang, & Noushin, 2010), and learning
ased methods (Le, Igl, Rainforth, Jin, & Wood, 2018; Naesseth,

Linderman, Ranganath, & Blei, 2018) that aim to improve the
performance by using a better proposal.

The rest of the paper is structured as follows. In Section 2,
we provide a brief introduction to a stochastic optimal control
problem and present a duality relationship between filtering and
optimal control. We then use this optimal control formulation of
filtering to derive our particle filtering algorithm in Section 3. The
algorithm is illustrated in Section 4 through several numerical
examples. This is followed by concluding remarks in Section 5.

2. Background

In this section we provide the background on the optimal
control and estimation that is necessary to present our proposed
method.
 i

2

2.1. Stochastic optimal control

Consider the stochastic dynamics described by the stochastic
differential equation (SDE)1 (Särkkä & Solin, 2019)

dXt = b(t, Xt )dt + σ (t, Xt )(utdt + dWt ) (1)

where Xt ∈ Rn, ut ∈ Rm denotes the state and control input
respectively, and Wt ∈ Rm represents a standard Wiener process.
The drift b(·, ·) and the input channel matrix σ (·, ·) are assumed
to be Lipschitz continuous and bounded.

In the finite horizon stochastic optimal control problem, Lewis,
Vrabie, and Syrmos (2012) one seeks an optimal feedback control
strategy that minimizes the cost function

J(u) = E
{∫ T

0
l(t, Xt , ut )dt + ΨT (XT )

}
(2)

over a time interval [0, T ]. Here, l and ΨT represent the run-
ning cost and terminal cost respectively. This problem can be
solved via dynamic programming (Bertsekas, 1995; Evans, 1998),
which boils down to solving the Hamilton–Jacobi–Bellman (HJB)
equation (Evans, 1998)

∂Vt

∂t
+ min

u∈Rm
{Lu

t Vt + l(t, x, u)} = 0, VT (·) = ΨT (·), (3)

where Lu
t denotes the generator of the controlled process (1)

defined as (Fleming & Rishel, 1975)

Lu
t f (x) = (b(t, x)+ σ (t, x)u) · ∇f (x)+

1
2
Tr(σσ ′∇2f (x))

for any sufficiently smooth f (·). Here (·)′ denotes transpose and
is with respect to x. The space–time function Vt (x) is known

s the cost-to-go function (Fleming & Rishel, 1975), capturing the
inimum cost J but over the time window [t, T ] conditioned on
t = x. The optimal control strategy is of state feedback form
⋆
t = u⋆(t, Xt ) with

⋆(t, x) = argmin
u∈Rm

{Lu
t Vt (x)+ l(t, x, u)}. (4)

As we will see, the filtering algorithm developed in this work
s closely related to the special case of stochastic control problems
here the running cost is of the form

(t, x, u) = g(t, x)+
1
2
∥u∥2, (5)

where g(t, x) is a running cost depending only on the state x, not
the control. With this running cost, the minimization in (3) can
be solved in closed-form, yielding the optimal policy

u⋆
t = −σ (t, Xt )′∇Vt (Xt ), (6)

and the HJB equation (3) simplifies to

∂Vt

∂t
+ b · ∇Vt + g −

1
2
∇V ′tσσ ′∇Vt +

1
2
Tr(σσ ′∇2Vt ) = 0. (7)

The running cost (5) plays a crucial role in our framework.
The quadratic cost in control u in (5) quantifies the difference
of the controlled and the uncontrolled (ut ≡ 0) process. More
specifically, let Pu denote the measure over the path space Ω =

C([0, T ];Rn) induced by the dynamics (1), and P0 the measure

1 A stochastic control problem may involve a more general form of the dy-
amics where the noise and control enter through different channels. However,
his special form facilitates the path integral formulation and it is sufficient to
epresent the optimal control formulation of the smoothing problem discussed
n Section 2.2.
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ssociated with the uncontrolled process. Here C([0, T ];Rn) de-
notes the space of continuous functions from the interval [0, T ]
to Rn. Then, by the Girsanov theorem (Särkkä & Sottinen, 2008),

dPu

dP0
= exp

{∫ T

0

1
2
∥ut∥

2dt + u′tdWt

}
. (8)

It follows that the Kullback–Leibler divergence between Pu and
P0 is Särkkä and Sottinen (2008)

KL(Pu ∥ P0) :=
∫

Ω

dPu log
dPu

dP0
= E

{∫ T

0

1
2
∥ut∥

2dt
}

, (9)

where the expectation is with respect to the controlled process.
Here we have used the fact that E{u′tdWt} = 0. Thus, the optimal
control problem with running cost (5) can be equivalently written
as

min
Pu

EPu

{∫ T

0
g(t, Xt )dt + ΨT (XT )

}
+ KL(Pu ∥ P0). (10)

Note that the optimization variable becomes Pu instead of the
control policy; the two are equivalent as the control policy fully
determines the measure Pu and vice versa (Thijssen & Kappen,
2015).

When the cost is of the form (5), it turns out that the above
nonlinear optimal control problem can be solved in a linear
manner (Doucet et al., 2006; Guarniero et al., 2017; Heng, Bishop,
Deligiannidis, & Doucet, 2017; Reich, 2018; Ruiz & Kappen, 2017;
Särkkä & Sottinen, 2008; Thalmeier, Kappen, Totaro, & Gómez,
2020; Thijssen & Kappen, 2015; Williams, Aldrich, & Theodorou,
2017; Zhang, Wang, Hartmann, Weber, & Schütte, 2014). One way
o see it is through the logarithmic transformation (Fleming &
ishel, 1975) of the HJB equation (7). More specifically, let

(t, x) := exp(−Vt (x)), (11)

hen a straightforward calculation leads to

∂ϕ

∂t
+b ·∇ϕ−gϕ+

1
2
Tr(σσ ′∇2ϕ) = 0, ϕ(T , ·) = exp{−ΨT }. (12)

The associated optimal control strategy is

u⋆
t = σ (t, Xt )′∇ logϕ(t, Xt ). (13)

Note that unlike the HJB (7) which is nonlinear, (12) is a linear
artial differential equation (PDE); it is the Backward Kolmogorov
quation (Särkkä & Solin, 2019) associated with the (uncontrolled
t ≡ 0) process (1) and killing rate g .

.2. Smoothing as stochastic control

Consider a diffusion process with noisy measurements gov-
rned by the SDEs

Xt = b(t, Xt )dt + σ (t, Xt )dWt , X0 ∼ ν0 (14a)

dYt = h(t, Xt )dt + σBdBt , Y0 = 0 (14b)

here the measurement Yt ∈ Rp is corrupted by the standard
iener process Bt ∈ Rp weighted by σB > 0 and the initial

tate X0 follows the prior distribution ν0. The smoothing problem
s a particular type of Bayesian inference problem that aims at
stimating the distribution of Xt for 0 ≤ t ≤ T given the full
istory of measurement {Yt , 0 ≤ t ≤ T }.
It was discovered in Kim and Mehta (2020), Mitter and New-

ton (2003) that the smoothing problem can be reformulated as a
stochastic optimal control problem whose cost function depends
on the measurements. To see this, denote the measure over the
path space Ω induced by the process (14a) by P . This serves as
he prior measure for this Bayesian inference problem. Denote the
3

osterior distribution over Ω by QY . By the Kallianpur–Striebel
ormula (Klebaner, 2005),

dQY

dP
∝ exp

{
−

1
σ 2
B

[∫ T

0
Ytdh+

1
2
∥h∥2dt − YTh(T , XT )

]}
. (15)

The right hand side of (15) is the likelihood of the measure-
ment. The variational form of the smoothing problem seeks a
distribution P̃ on the path space that minimizes

EP̃

{
log

dP̃
dQY

}
= EP̃

{
log

dP̃
dP
− log

dQY

dP

}
(16)

= KL(P̃ ∥ P)− EP̃

{
log

dQY

dP

}
.

Let P̃ be parametrized by the diffusion process X̃t with dynam-
ics

dX̃t = b(t, X̃t )dt + σ (t, X̃t )(utdt + dWt ), X̃0 ∼ π0. (17)

y Girsanov theorem (8),

KL(P̃ ∥P) = E
{∫ T

0

1
2
∥ut∥

2dt
}
+ KL(π0 ∥ ν0). (18)

Note that (18) is slightly different from (9) since in the control
problem Pu and P0 share the same initial distribution while (17)
and (14a) do not. Plugging (15) and (18) into (16) yields an
optimal control formulation (Kim & Mehta, 2020)

min
u,π0

E
{∫ T

0
[
1
2
∥ut∥

2
+

1
2σ 2

B
∥h(t, X̃t )∥2]dt (19)

+
1
σ 2
B
Ytdh(t, X̃t )−

1
σ 2
B
YTh(T , X̃T )

}
+ KL(π0 ∥ ν0)

for the smoothing problem. Apart from an extra term KL(π0 ∥ ν0)
related to the initial distributions, (19) coincides with the optimal
ontrol problem (1)–(2)–(5) if we take

(t, x)dt =
1

2σ 2
B
∥h(t, x)∥2dt +

1
σ 2
B
Ytdh(t, x), (20a)

ΨT (x) = −
1
σ 2
B
YTh(T , x). (20b)

Remark 1. The optimal control formulation (19) relies heavily
on the relation between Kullback–Leibler divergence and the
control energy in (18), which is itself due to the Girsanov the-
orem. Its counterpart in the discrete-time setting is much more
complicated.

3. Path integral particle smoothing and filtering

Building on the control formulation of the smoothing (19), we
propose a new particle filtering algorithm under the name ‘‘path
integral particle filter (PIPF)’’. At each iteration, our algorithm
solves a smoothing problem over a sliding window based on
the duality between smoothing and optimal control presented in
Section 2.2.

3.1. Path integral particle smoothing

We begin with the smoothing problem to estimate the pos-
terior distribution QY for the system (14) over the time-window
0, T ]. As discussed in Section 2.2, this smoothing problem
mounts to an optimal control problem

minE
{∫ T

[
1
∥ut∥

2
+ g(t, Xt )]dt + ΨT (XT )

}
+ KL(π0 ∥ ν0) (21)
u,π0 0 2
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here g and ΨT are given in (20). The only difference to a
tandard optimal control problem is that the initial distribution
0, apart from the control u, is also an optimization variable.
Since the minimization over u is independent of π0, the opti-

al control strategy remains to be u⋆(t, x) = σ (t, x)′∇ logϕ(t, x)
ith ϕ as in (12). Plugging this optimal control into (21) we arrive

at the optimization over π0,

min
π0

Eπ0 {− logϕ(0, X0)− log ν0(X0)+ logπ0(X0)} . (22)

The optimal solution is

π ⋆
0 (·) ∝ ν0(·)ϕ(0, ·). (23)

Note that π ⋆
0 is exactly the posterior distribution of X0 given the

full observation {Yt , 0 ≤ t ≤ T }. Thus, to sample from the
posterior distributionQY , one can sample K trajectories {Xk

t }
K
k=1 of

the diffusion process (17) for t ∈ [0, T ] under the optimal control
strategy u⋆ with the initial distribution π ⋆

0 , i.e.

dXk
t = b(t, Xk

t )dt + σ (t, Xk
t )(u

⋆(t, Xk
t )dt + dWt ), Xk

0 ∼ π ⋆
0

for k = 1, . . . , K . The empirical distribution formed by these
K trajectories on the path space Ω is an approximation of the
posterior distribution QY . Moreover, for any 0 ≤ t ≤ T , the
empirical distribution

1
K

K∑
k=1

δXk
t

(24)

orms an approximation of the conditional distribution of Xt given
the full observation {Yt , 0 ≤ t ≤ T }.

The above sampling strategy requires the exact posterior dis-
tribution π ⋆

0 of X0 and the exact optimal control strategy u⋆.
his can be made possible by solving the PDE (12) but is still
omputationally demanding for high dimensional problems.
Our strategy to sample from QY is to sample trajectories with
suboptimal initial distribution π0 and a suboptimal control

trategy u, and then weight the trajectories through importance
ampling. More precisely, let P̃ be the measure over the path
pace Ω associated with initial distribution π0 and a suboptimal
ontrol strategy u, and {Xk

t }
K
k=1 be K trajectories independently

ampled from P̃ . By Girsanov theorem, in view of (15),

dQY

dP̃
=

dQY

dP
dP
dP̃
∝

dν0

dπ0
exp[−Su(0, T )] (25)

here Su denotes the path integral defined as

u(t, s) =
∫ s

t
[
1
2
∥uτ∥

2
+

1
2σ 2

B
∥h(τ , Xτ )∥2]dτ +

1
σ 2
B
Yτdh

+u′τdWτ −
1
σ 2
B
Ysh(s, Xs)+

1
σ 2
B
Yth(t, Xt ). (26)

enote the value of Su along the trajectory Xk
t by Sku and define

he weights

k
=

dν0

dπ0
(Xk

0 ) exp[−S
k
u(0, T )]. (27)

t follows from (25) thatQY can be approximated by the empirical
istribution formed by the trajectories {Xk

t }
K
k=1 and with weights

wk
}
K
k=1, that is,

QY
≈

K∑
k=1

ŵkδXk
(·)
, (28)

here

ˆ
k
=

wk∑K k

k=1 w

4

are the normalized weights. Similarly, the posterior distribution
of Xt for any 0 ≤ t ≤ T is approximated by
K

k=1

ŵkδXk
t
. (29)

The effectiveness of the above approximation (28) depends on
he variance of the weights {ŵk

}
K
k=1. The lower the variance is, the

etter the approximation becomes. This variance reduces to zero
hen π0 and u are optimal, that is, π0 = π ⋆

0 , u = u⋆. In gen-
ral, computing the exact optimal solution is too expensive and
ne has to use a suboptimal solution that is easier to compute.
here are many methods that can generate suboptimal controller
or (21), including differential dynamic programming (DDP) (Ja-
obson & Mayne, 1970) and iterative linear quadratic regulator
iLQR) (Li & Todorov, 2004). One can also start from the original
moothing problem for (14) and adopt suboptimal smoothing
ethods such as extended Rauch–Rung–Striebel (ERTS) (Rauch,
ung, & Striebel, 1965). These suboptimal smoothing methods
nduce suboptimal π0 and u for (21).

To summarize, our path integral particle smoothing method
onsists of a proposal initial distribution π0 and a proposal feed-
ack u. They should be designed such that the distribution on
he path space induced by π0 and u is an approximation of
he posterior distribution QY . A better proposal gives a better
stimation with lower variance. In our experiments, we found
LQR to be an effective proposal for u. A natural proposal for π0 is
0. Once the proposal is chosen, we can sample trajectories from
he controlled diffusion process (17) under the proposal control
strategy u with the proposal initial distribution π0. The posterior
distribution QY is then approximated by (28) whose weights are
computed using the path integral (26).

3.2. Path integral particle filtering

We next move to the filtering problem. We are interested in
the problem of approximating the posterior distribution of Xt
conditioned on the past observations {Yτ , 0 ≤ τ ≤ t}. More
precisely, let Yt = σ (Yτ : 0 ≤ τ ≤ t) denote the σ -field generated
by the observation up to the time t . Then the objective of the
filtering is to approximate P(Xt ∈ · | Yt ).

The path integral particle smoothing algorithm proposed in
Section 3.1 is suitable for smoothing problem over a fixed time
window [0, T ]. To use this method for the filtering problem
where new measurements keep coming in, one naive strategy
is to carry out the smoothing task over the time window [0, t].
However, this requires recursively implementing the smoothing
algorithm over a larger and larger time window. As t increases,
the computational complexity of the smoothing problem grows
and will eventually become computationally infeasible.

We propose to use a sliding window implementation of the
smoothing algorithm to solve the filtering problem. More specif-
ically, consider the smoothing problem over the time window
[t − H, t] of size H > 0. It is equivalent to the optimal control
problem

min
u,πt−H

E
{∫ t

t−H
[
1
2
∥uτ∥

2
+ g(τ , Xτ )]dτ + Ψt (Xt )

}
(30)

+ KL(πt−H ∥ νt−H ),

here g is as in (20a) and

t (x) = −
1
σ 2
B
Yth(t, x). (31)

The prior distribution νt−H for this smoothing problem is the pos-
terior distribution P(Xt−H ∈ · | Yt−H ). Since νt−H already accounts
for all the observations {Y , 0 ≤ τ ≤ t − H}, the solution to
τ
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he smoothing problem (30), in fact, induces the exact posterior
istribution over the trajectories {Xτ , t−H ≤ τ ≤ t}, conditioned
n the full history of observations {Yτ , 0 ≤ τ ≤ t}. Thus, by
unning the smoothing algorithm presented in Section 3.1 over
a fixed-size time window [t − H, t], we can obtain the posterior
distribution of P(Xt | Yt ).

To implement the path integral particle smoothing algorithm
over the time window [t − H, t], one needs to evaluate dνt−H/
dπt−H as in (27). However, in the proposed path integral particle
filtering method, the distribution νt−H does not have a closed-
form expression and is represented by a collection of weighted
particles as

νt−H ≈

K∑
k=1

w̃k
t−HδXk

t−H
. (32)

Thus, a natural way to sample trajectories over the time interval
[t−H, t] is to initialize them with {Xk

t−H}
K
k=1 and then follow the

closed-loop dynamics (17) under a suboptimal control policy u.
With this strategy, the proposal initial distribution πt−H satisfies
dνt−H

dπt−H
(Xk

t−H ) ∝ w̃k
t−H . (33)

Let {Xk
(·)}

K
k=1 be the K generated trajectories and Sku(t−H, t) be

he value of (26) of the trajectory Xk
(·) over the time interval [t −

H, t]. Then, by (25), the posterior distribution over the trajectory
space conditioned on the past observations {Yτ , 0 ≤ τ ≤ t} is
approximated by
K∑

k=1

ŵkXk
(·) (34)

with {ŵk
}
K
k=1 being the normalized version of the weights

w̃k
t−H exp[−Sku(t − H, t)]. (35)

To see the rationale of (35), assume that νt−H in (30) is ob-
tained using the path integral particle smoothing algorithm over
the time interval with proposal initial distribution ν0. Following
the arguments in Section 3.1, by (27), we obtain

w̃k
t−H ∝ exp[−Sku(0, t − H)]

where Sku(0, t−H) is evaluated over some sampled trajectory over
the time interval [0, t − H]. Combining it with (35) we conclude
that

ŵk
∝ exp[−Sku(0, t − H)] exp[−Sku(t − H, t)] = exp[−Sku(0, t)]

where Sku(0, t) is evaluated over the concatenated trajectory of
Xk

τ , 0 ≤ τ ≤ t−H and Xk
τ , t−H ≤ τ ≤ t . This is the same as (27) in

the smoothing problem when π0 = ν0. Instead of resampling the
whole trajectory starting from the very beginning, in the sliding
window filtering, all the past weights are recorded in the particle
representation of νt−H and are combined with the measurement
over [t − H, t] to estimate the posterior distribution.

3.3. Algorithm and implementation

In this section we provide implementation details of the path
integral particle filtering algorithm. Let 0 = t0 < t1 < t2 < · · ·
be a sequence of time discretization points. It can be a constant
stepsize discretization, i.e., tj+1 − tj = ∆t , or any other more
flexible discretization scheme. With a slight abuse of notation,
let H denote the number of the discretization points included in
the sliding time window employed in the path integral particle
filtering algorithm.

The proposed particle filtering algorithm is divided into two
stages. For t , j ≤ H , the total number of time steps is less than
j

5

the window size. Therefore, we use the path integral particle
smoothing over the time interval [0, tj] to estimate the posterior
distribution P(Xtj |Ytj ). When j > H , we adopt the path integral
particle filtering over the time interval [tj−H , tj].

In the sliding window stage over [tj−H , tj], the choice of the
particle representation for the prior distribution νtj−H =

P(Xtj−H |Ytj−H ) is crucial. We use the trajectories generated in the
previous step over the time interval [tj−H−1, tj−1] with appro-
priate weights to obtain an estimate of νtj−H . The locations of
the particles, that are generated in this way, account for the
measurements up to the time tj−1 and thus match the posterior
distribution P(Xtj−H |Ytj ), which is the ideal proposal initial dis-
tribution (Doucet et al., 2006), better. More explicitly, the prior
distribution νtj−H is updated recursively as follows. Let the particle
representation of the prior distribution νtj−H−1 at the previous
step be

νtj−H−1 ≈

K∑
k=1

w̃k
tj−H−1X

k
tj−H−1 , (36)

and Sku be the values of (26) evaluated over the sampled trajecto-
ries over the time window [tj−H−1, tj−1]. Then,

νtj−H ≈

K∑
k=1

w̃k
tj−H−1 exp[−S

k
u(tj−H−1, tj−H )]X

k
tj−H . (37)

In the above, to simplify the notation, the normalization for the
weights is not displayed explicitly. We remark that even through
the trajectories are generated based on the measurements over
the time interval [tj−H−1, tj−1], the weights of νtj−H in (37) use
only the information, encoded in exp[−Sku(tj−H−1, tj−H )], over the
interval [tj−H−1, tj−H ].

The effective size of the samples decreases much slower for
PIPF compared to the standard SIR filter as time grows. Yet, a
resampling step is needed after a long time horizon when the
effective size is too small. For the resampling, we start with the
samples in (37). We resample them based on the weights

w̃k
tj−H−1 exp[−S

k
u(tj−H−1, tj−1)], (38)

obtaining new samples X̂k
tj−H . These samples follow approximately

the distribution P(Xtj−H |Ytj−1 ). With these new samples, the prior
distribution νtj−H in (37) is approximated by

νtj−H ≈

K∑
k=1

exp[Sku(tj−H , tj−1)]X̂k
tj−H . (39)

This is obtained from combining (37), the resampling weights in
(38), and the fact that

Su(t, s) = Su(t, τ )+ Su(τ , s), t < τ < s (40)

which itself follows from (26).
Once the particle representation

∑K
k=1 w̃k

tj−HX
k
tj−H of νtj−H is

available, one can start from it and apply the path integral particle
smoothing over the time window [tj−H , tj]. This leads to the
particle filtering algorithm

P(Xtj |Ytj ) ≈
K∑

k=1

w̃k
tj−H exp[−Sku(tj−H , tj)]Xk

tj . (41)

The overall structure of the proposed algorithm is illustrated
in Fig. 1. The complete path integral particle filtering algorithm
is presented in Algorithm 1 and a subroutine of it over a given
time window is provided in Algorithm 2. The prior distribution
at each step is represented by the weighted particles {Xk

p , w̃
k
}.

Here p stands for the prior. The filtering results P(Xtj |Ytj ) at the
k k
current step are represented by weighted particles {X , ŵ }.
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Fig. 1. Pipeline diagram of PIPF.

Algorithm 1 Path Integral Particle Filtering (PIPF)

Input: L: Total Number of time steps
{Xk

p }: Samples from prior distribution ν0

{w̃k
}: Weight of samples, uniform

H: Length of sliding windows
for j← 1, · · · , L do
j-th time interval← [max(0, tj−H ), tj]
{Xk
}, {ŵk

}, {Xk
p }, {w̃

k
} ← Algorithm 2 for j-th time interval

end for

Algorithm 2 One Step of PIPF

Input: b, σ , σB: System model
g, Ψ : Cost model as in (20)
γthres: threshold for resampling
[ti, tj]: sliding window
K : Number of samples
{Xk

p }, {w̃
k
ti}: Samples and weights of the previous step

Output: {Xk
}, {ŵk

}: Filtering results
{Xk

p }, {w̃
k
ti+1}: Samples and weight for the current step

for k← 1, · · · , K do
Sampling k-th trajectory Xk

(·) initialized by Xk
p

Evaluate the value of Sku over the trajectory Xk
(·)

Filtering samples: Xk
= Xk

tj
Filtering weight: ŵk

∝ w̃k
ti exp[−S

k
u(ti, tj)]

# Prior information for usage in next sliding window
Prior sample: Xk

p = Xk
ti+1

Prior weight: w̃k
ti+1 ∝ w̃k

ti exp[−S
k
u(ti, ti+1)]

end for
# Check resampling
Effective ratio: γ = 1

K
∑K

k=1(ŵ
k)2

if γ < γthres then
{Xk

p } ∼ multinomial({Xk
p }, {w̃

k
ti exp[−S

k
u(ti, tj)])}

{w̃k
ti+1} ∝ exp[Sku(ti+1, tj)]

end

The performance of the PIPF algorithm depends on the length
of the sliding window and the choice of proposal suboptimal

ontrol u. When H = 1 and u ≡ 0, our algorithm reduces
o the standard sequential importance resampling (SIR) algo-
ithm (Doucet et al., 2006) as explained further in the following
emark.
6

Remark 2. Without any control, i.e., u = 0, the algorithm resem-
bles a sliding window version of the SIR particle filter. Indeed,
when u = 0, the location of the particles Xk

t is only governed by
the open-loop dynamics (14a) similar to the SIR particle filter. By
(26), the weights of the particles wk

t ∝ exp[−Sk0(0, t)] where

Sk0(0, t) =
∫ t

0

1
2σ 2

B
∥h(τ , Xk

τ )∥
2dτ +

1
σ 2
B
Yτdh(τ , Xk

τ )

−
1
σ 2
B
Yth(t, Xk

t ).

This is precisely the log-likelihood of the observation signal over
the time interval [0, t]. With a time discretization of the integral
0 = t0 < t1 < · · · < tJ = t , the weights can be expressed as
ultiplication of the likelihoods

∏J
j=1 p(Ytj |X

k
tj ), which is similar

o how SIR particle filter updates the weights.

. Numerical examples

In this section we present several numerical examples to
emonstrate the efficacy of the proposed path integral particle
iltering algorithm. In the first example, we test the proposed
lgorithm in the linear Gaussian setting. In the second example,
e consider a nonlinear filtering example where the optimal

ilter solution can be obtained in closed form. These examples are
sed to show that PIPF is able to approximate this optimal filter
olution well.

.1. Linear filtering examples

We first consider the following one-dimensional state space
odel

Xt = −κXtdt + dWt , X0 ∼ N(m0, P0)
dYt = Xtdt + σBdBt ,

where κ > 0. The model corresponds to an Ornstein–Uhlenbeck
process, whose measurements are corrupted with Gaussian noise.
The posterior distribution is Gaussian, that is, P(Xt |Yt ) = N
mt , Pt ) with

mt = −κmtdt +
Pt
σB

(dYt −mtdt),

dPt
dt
= −2κPt −

P2
t

σB
+ 1.

Three filtering algorithms are employed for this problem: (i) the
SIR particle filter; (ii) the path integral particle filter with zero
controller (PIPF-zero) u ≡ 0; (iii) the path integral particle
filter with linear quadratic regulator controller (PIPF-LQR). LQR is
designed based on the cost function given in (20). The simulations
are executed for L = 600 times-steps with step-size ∆t = 0.01.
Both PIPF-zero and PIPF-LQR employ a sliding window size H =
0. All three algorithms use K = 500 particles.
It is well known the resampling procedure helps to mitigate

the particle degeneracy issue (Doucet et al., 2006). We benchmark
the performance of the algorithms in terms of the mean squared
errors (m.s.e.) between the exact mean (covariance) and the
estimated mean (covariance), with and without the resampling
step. The results are depicted in Figs. 2 and 3 respectively. It
is observed that the PIPF with the LQR controller outperforms
the PIPF without control and the SIR by a large margin when
the resampling step is not used. This advantage becomes less
significant but still exists when the resampling is used. In the ex-
periments, each algorithm is repeated for 50 trials with different
random seeds. The solid curves represent the average of 50 trials
and the shaded regions represent the corresponding 1× standard
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Fig. 2. Performance comparison w/ resampling. PIPF-LQR outperforms both
IPF-zero and SIR.

Fig. 3. Performance comparison w/o resampling. PIPF-LQR outperforms both
PIPF-zero and SIR by a large margin.

Fig. 4. Left: Comparison of the effective ratio. The level of particle degeneracy is
much lower in PIPF-LQR, compared with SIR and PIPF-zero. Right: Performance
comparison with different stepsize ∆t . Small ∆t can improve accuracy and make
he PIPF-LQR less sensitive to the window size H .

eviation. The effective size of the particles can be measured by
he ratio γ = 1/(K

∑K
k=1(ŵ

k)2). This is depicted in Fig. 4 (left)
n the absence of resampling. From these results we can clearly
ee the advantage of the path integral particle filter. Compared
ith SIR, the introduction of the sliding window in PIPF-zero,
hich only requires negligible memory footprint, can help reduce
he bias of the estimation. The significant improvement of PIPF-
QR owes to the high effective ratio and high-quality particles
ontrolled by the optimal control policy.
To investigate the influence of the size H of the sliding win-

ow, we test the PIPF algorithm (with LQR proposal) with dif-
erent H values. The performance in terms of m.s.e. (of means)
ith resampling and effective ratio without resampling is de-
icted in Fig. 5. We notice that increasing H improves the filter
erformance while very large H may deteriorate the results. The
atter could be due to the accumulation of the time discretization
rror as our algorithm is designed for continuous-time models. To
llustrate this point, we carry out an experiment with different
7

Fig. 5. Performance comparison for different H .

Fig. 6. Robustness of PIPF against observation perturbation. PIPF-LQR is less
sensitive to perturbations in the observation model.

stepsizes. As shown in Fig. 4 (right), with a smaller stepsize
∆t = 0.001, the performance of both SIR and PIPF-LQR improves.
Moreover, with this stepsize, the performance of PIPF-LQR with
H = 20, 50 is almost the same. This is in contrast to the case with
larger stepsize ∆t = 0.01 where a longer sliding window H = 50
is accompanied with a larger error. All simulation parameters,
other than H , are kept the same in this comparison.

We also conduct experiments to test the robustness of PIPF
with the LQR controller when the observation model is not accu-
rate. We consider the case where the observation model suffers
from consistent biases and extra random noise. To make the
comparison fair, we first increase K for SIR and PIPF-zero such
that they match the performance of PIPF-LQR when the perfect
observation model is available. We then perturb the observa-
tion model by an extra randomly generated shift and additional
Gaussian noise with intensity 0.2σB occasionally. The results are
depicted in Fig. 6.2 Though PIPF with LQR controller uses less
particles, it is still less sensitive to the perturbation of observation
models, compared with PIPF-zero and SIR.

To study the effects of problem dimension on the filtering per-
formance, we consider the multi-dimensional state space model

dXt = AXtdt + dWt , X0 ∼ N(m0, P0)
dYt = CXtdt + σBdBt ,

where A ∈ Rn×n, C ∈ Rp×n represent the dynamics matrix and
output matrix respectively. In our experiments, A, C are randomly
generated for each dimension size n and are then fixed. In Fig. 7
we display the performance of PIPF-LQR and SIR for different n in
terms of m.s.e (of means) and effective ratio without resampling.
Clearly, PIPF-LQR scales better than SIR as n increases.

2 We disturb observation at t = 100, 200, 300, 400, 500. In the plots we use
savgol_filter smooth curves for better visualization.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy-signal-savgol-filter
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Fig. 7. Performance comparison for different n. PIPF-LQR demonstrates better
calability to high dimensional problems.

.2. Nonlinear filtering example

We next evaluate our PIPF algorithm on the Benes filter prob-
em (Taghvaei et al., 2020)

Xt = µσW tanh(
µ

σW
Xt )dt + σWdWt , X0 = x0,

dYt = (h1Xt + h1h2)dt + dBt ,

where x0 is a given constant, and the constants µ, σW , h1, h2 ∈

R are the model parameters. Regardless of being a nonlinear
filtering problem, its posterior distribution admits the analytical
expression

ωtN(at − bt , σ 2
t )+ (1− ωt )N(at + bt , σ 2

t ), (42)

here

at = σWΨt tanh(h1σW t)+
h2 + x0

cosh(h1)σW t
− h2,

bt =
µ

h1
tanh(h1σW t), σ 2

t =
σW

h1
tanh(h1σW t),

Ψ 2
t =

∫ t

0

sinh(h1σW s)
sinh(h1σW t)

dYs,

ωt =
1

1+ exp{ 2atbt
σW

coth(h1σW t)}
.

In the experiments, we use the model parameters µ = 1, h1 =

, h2 = 0, σW = 1, x0 = −5.0. The simulation is carried out
or L = 6000 time steps with step-size ∆t = 0.001. All the
lgorithms use K = 2000 particles. We compare the performance
f our PIPF algorithm and SIR. Since the dynamics are nonlinear,
e use a suboptimal control policy, iterative linear quadratic
egulator for PIPF. iLQR (Li & Todorov, 2004) approximates the
onlinear dynamics by linearizing it around a nominal trajectory
nd the cost by a quadratic function, yielding a LQR problem.
he iLQR algorithm then solves the resulting LQR problem. The
ominal trajectory is calculated by minimizing control cost equa-
ion (21) locally under a noise-free version of the dynamics (1).
n PIPF-iLQR, the linearization for iLQR is done at the beginning
f each sliding window.
The results are displayed in Figs. 8–9. The sliding window size

or PIPF-iLQR and PIPF-zero is set to be H = 10. Fig. 8 displays
the estimated posterior distributions of the state at several time
points when resampling is used. These distributions are approxi-
mated using the KDE density estimator (Davis, Lii, & Politis, 2011)
with bandwidth 0.2. In Fig. 9, we show the m.s.e. of the means
with resampling and the effective ratio without resampling. From
the experiments we see that even though the optimality of the
controller is not promised, PIPF-iLQR still outperforms the other
algorithms.
8

Fig. 8. Estimated posterior distribution vs ground truth.

Fig. 9. Performance comparison between PIPF and SIR. PIPF-iLQR outperforms
PIPF-zero and SIR in terms of m.s.e. and effective ratio.

5. Conclusion

In this paper, building on the duality between optimal esti-
mation and optimal control theory, we developed a novel parti-
cle filtering algorithm. This algorithm has several distinguishing
features compared with standard particle filtering algorithms,
including a high effective sample size and the ability to update
samples in the past to improve robustness. Our algorithm can also
be combined with the most of the existing filtering algorithms
such as the EKF and UKF to improve their performance. In the
future, we plan to extend our approach to solve filtering problems
involving diffusion processes with jumps.
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