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1. Introduction

In systems and control, filtering refers to estimating the true
state of a dynamical system using raw sensor measurements. It
is a critical component in feedback control and plays an indis-
pensable role in almost all applications related to control. Many
theories and algorithms for filtering have been developed. For in-
stance, the celebrated Kalman filter is for linear dynamics driven
by Gaussian noise. It is optimal in the sense of mean-squared
error. It also computes the exact posterior distribution of the
state given the available measurements. For nonlinear systems,
the filtering problem is much more challenging; the posterior
distribution of the state rarely has a simple parametrization. To
attain the posterior distribution, one needs to solve a stochastic
partial differential equation known as the Kushner-Stratonovich
equation. The methods relying on discretizing the state space and
the Kushner-Stratonovich equation are computationally infeasi-
ble for high dimensional problems. There are several algorithms
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that approximate the posterior distributions with Gaussian dis-
tributions, including the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF). However, the performance of this
type of methods deteriorates as the posterior distribution drifts
away from the Gaussian family.

One idea that avoids brute force discretization of the state
space, while still retaining the richness of the posterior distri-
butions, is to represent the distributions with an ensemble of
particles. This type of methods are known as particle filtering.
Over the last decades, many different versions of particle filtering
algorithms have been proposed (Del Moral, 1997; Guarniero, Jo-
hansen, & Lee, 2017; Pitt & Shephard, 1999; Ruiz & Kappen, 2017;
Sarkka & Sottinen, 2008; Taghvaei, Mehta, & Meyn, 2020). In the
standard setup of particle filtering, the posterior distribution at
the current step is approximated by K weighted particles. These
particles are propagated forward following a proposal density
and then combined with the next measurement to estimate the
posterior distribution at the next time step. The implementation
of particle filtering is extremely easy if the proposal density
is simple, which makes particle filtering a popular method for
nonlinear filtering. Theoretically, it can be shown that as the
number of particles K goes to infinity, the empirical distribution
of the particles converges to the true posterior distribution at
each time step in some suitable sense (Del Moral, 1997). In
practice, however, due to the potentially large difference between
proposal distributions and posterior distributions, the weights of
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the particles degenerate quickly (Doucet, Briers, & Sénécal, 2006),
that is, the weights of most of the particles become negligible and
the mass of the particles concentrates only on a few particles,
rendering a small effective particle size. A resampling step is
adopted to mitigate the effects of degenerate weights. However,
both in theory and in practice, the choice of a proper proposal
density is critical and most particle filtering algorithms still per-
form poorly in high-dimensional problems (Bengtsson, Bickel, &
Li, 2008; Beskos, Crisan, Jasra, & Whiteley, 2014), largely due to
the particle degeneracy.

In this work, we consider the nonlinear filtering problem for
the continuous-time diffusion dynamics with continuous-time
measurements. We present a new particle filtering method based
on a duality between estimation and optimal control (Kim &
Mehta, 2020; Mitter & Newton, 2003). Building on this duality, we
are able to obtain a superior proposal density by (approximately)
solving an optimal control problem and thus establishing a par-
ticle filtering algorithm with better performance. Moreover, this
duality makes it natural to resample the particles from the past;
this is different from most particles filtering algorithms that only
sample in the present. This extra flexibility of updating samples
in the past provides us the opportunity to correct numerical
errors or errors induced by outlier in the previous filtering steps
and makes the algorithm more robust to mistakes and outlier
measurements. Empirically, we also observe that extending the
sampling to the past, with proper proposals, can significantly
mitigate the particle degeneracy issue.

The proposed algorithm is mostly related to those proposed
in Ruiz and Kappen (2017), Doucet et al. (2006), and Balaji (2009).
In Doucet et al. (2006) a block sampling strategy is proposed to
resample particles in the past as in our algorithm. However, they
focus on an abstract framework for general discrete-time systems.
How to leverage the structure of the underlying dynamics to
construct a proper proposal distribution is not studied. In Ruiz
and Kappen (2017), an optimal control approach to smooth-
ing is proposed. However, they consider the smoothing problem
over a fixed-time window. Moreover, though the dynamics they
use is continuous-time diffusion, their measurement model is
discrete-time. The same setting with continuous-time diffusion
and discrete-time measurement is used in Balaji (2009). Even
though the path integral idea is used, the algorithm in Balaji
(2009) is grid-based, not particle based. There are also some
other particle filtering algorithms such as feedback particle fil-
tering (Taghvaei et al., 2020; Yang, Mehta, & Meyn, 2013), par-
ticle flow filter (Daum, Huang, & Noushin, 2010), and learning
based methods (Le, Igl, Rainforth, Jin, & Wood, 2018; Naesseth,
Linderman, Ranganath, & Blei, 2018) that aim to improve the
performance by using a better proposal.

The rest of the paper is structured as follows. In Section 2,
we provide a brief introduction to a stochastic optimal control
problem and present a duality relationship between filtering and
optimal control. We then use this optimal control formulation of
filtering to derive our particle filtering algorithm in Section 3. The
algorithm is illustrated in Section 4 through several numerical
examples. This is followed by concluding remarks in Section 5.

2. Background

In this section we provide the background on the optimal
control and estimation that is necessary to present our proposed
method.
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2.1. Stochastic optimal control

Consider the stochastic dynamics described by the stochastic
differential equation (SDE)' (Sirkki & Solin, 2019)

dX[ = b(t, X[)dt + U(t, X[)(U[dt + th) (])

where X; € R",u; € R™ denotes the state and control input
respectively, and W, € R™ represents a standard Wiener process.
The drift b(-, -) and the input channel matrix o (-, -) are assumed
to be Lipschitz continuous and bounded.

In the finite horizon stochastic optimal control problem, Lewis,
Vrabie, and Syrmos (2012) one seeks an optimal feedback control
strategy that minimizes the cost function

T
J(U)ZE{/ l(taxt»ut)dt+l1/T(XT)} (2)
0

over a time interval [0, T]. Here, | and ¥; represent the run-
ning cost and terminal cost respectively. This problem can be
solved via dynamic programming (Bertsekas, 1995; Evans, 1998),
which boils down to solving the Hamilton-Jacobi-Bellman (HJB)
equation (Evans, 1998)

Ve )
— + min{c}'V, + I(t,x, u)} =0, Vr(-) = ¥r(-), (3)
Jat ueRM

where £} denotes the generator of the controlled process (1)
defined as (Fleming & Rishel, 1975)

Lif(x) = (b(t, x) + o (t, x)u) - VF(x) + % Tr(o o' V?f(x))

for any sufficiently smooth f(-). Here (-) denotes transpose and
V is with respect to x. The space-time function V;(x) is known
as the cost-to-go function (Fleming & Rishel, 1975), capturing the
minimum cost J but over the time window [t, T] conditioned on
X: = x. The optimal control strategy is of state feedback form
uy = u*(t, X;) with

u*(t, x) = argmin{£{ Ve(x) + I(t, x, u)}. (4)
ueR™M
As we will see, the filtering algorithm developed in this work
is closely related to the special case of stochastic control problems
where the running cost is of the form

1
I(tvxs u)=g(t,x)+ 5”””2’ (5)

where g(t, x) is a running cost depending only on the state x, not
the control. With this running cost, the minimization in (3) can
be solved in closed-form, yielding the optimal policy

u;y = —o(t, X)) VVi(Xe), (6)
and the HJB equation (3) simplifies to

v, 1 1
aTt +b-VV,+g— Evvgoa/vvt +3 Tr(co'V?V,)=0.  (7)

The running cost (5) plays a crucial role in our framework.
The quadratic cost in control u in (5) quantifies the difference
of the controlled and the uncontrolled (u; = 0) process. More
specifically, let P, denote the measure over the path space 2 =
C([0, T]; R") induced by the dynamics (1), and Py the measure

1 A stochastic control problem may involve a more general form of the dy-
namics where the noise and control enter through different channels. However,
this special form facilitates the path integral formulation and it is sufficient to
represent the optimal control formulation of the smoothing problem discussed
in Section 2.2.
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associated with the uncontrolled process. Here C([0, T]; R") de-
notes the space of continuous functions from the interval [0, T]
to R". Then, by the Girsanov theorem (Sarkkd & Sottinen, 2008),

ar, T 5
=ex —|lue||*dt + u,dW; ¢ . 8
7N Pi/(; 2” ell + u dW; (8)
It follows that the Kullback-Leibler divergence between P, and
Po is Sdrkkd and Sottinen (2008)

anr, 1
KLP, || Po) = [ dPyl =E —luellPdt b, 9
R R A T

where the expectation is with respect to the controlled process.
Here we have used the fact that E{u;dW;} = 0. Thus, the optimal
control problem with running cost (5) can be equivalently written
as

T
u 0

Note that the optimization variable becomes P, instead of the
control policy; the two are equivalent as the control policy fully
determines the measure P, and vice versa (Thijssen & Kappen,
2015).

When the cost is of the form (5), it turns out that the above
nonlinear optimal control problem can be solved in a linear
manner (Doucet et al., 2006; Guarniero et al., 2017; Heng, Bishop,
Deligiannidis, & Doucet, 2017; Reich, 2018; Ruiz & Kappen, 2017;
Sarkkd & Sottinen, 2008; Thalmeier, Kappen, Totaro, & Gémez,
2020; Thijssen & Kappen, 2015; Williams, Aldrich, & Theodorou,
2017; Zhang, Wang, Hartmann, Weber, & Schiitte, 2014). One way
to see it is through the logarithmic transformation (Fleming &
Rishel, 1975) of the HJB equation (7). More specifically, let

o(t, x) = exp(—Vi(x)), (11)
then a straightforward calculation leads to

ad 1

S +b-Vo—gg+3 Toa V) = 0. ¢(T. ) = exp(—¥4). (12)
The associated optimal control strategy is

up = o(t, X,) Vlogg(t. X,). (13)

Note that unlike the HJB (7) which is nonlinear, (12) is a linear
partial differential equation (PDE); it is the Backward Kolmogorov
equation (Sarkkd & Solin, 2019) associated with the (uncontrolled
u; = 0) process (1) and killing rate g.

2.2. Smoothing as stochastic control

Consider a diffusion process with noisy measurements gov-
erned by the SDEs
dX[ = b(t, X[)dt + O'(t, Xt)th,
dY[ = h(t,Xt)dt + UBdB[, Y(] =0

Xo ~ vo (14&)

(14b)

where the measurement Y; € RP is corrupted by the standard
Wiener process B, € RP weighted by oy > 0 and the initial
state Xy follows the prior distribution vg. The smoothing problem
is a particular type of Bayesian inference problem that aims at
estimating the distribution of X; for 0 < t < T given the full
history of measurement {Y;, 0 <t <T}.

It was discovered in Kim and Mehta (2020), Mitter and New-
ton (2003) that the smoothing problem can be reformulated as a
stochastic optimal control problem whose cost function depends
on the measurements. To see this, denote the measure over the
path space £2 induced by the process (14a) by P. This serves as
the prior measure for this Bayesian inference problem. Denote the
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posterior distribution over £2 by QY. By the Kallianpur-Striebel
formula (Klebaner, 2005),

doY¥ 177 1,5
a< —— || Yidn+ =n)?de — vin(r x|V, (15
i con| = | [ van+ Jmeac—vir x|} s

The right hand side of (15) is the likelihood of the measure-
ment. The variational form of the smoothing problem seeks a
distribution P on the path space that minimizes

dp dp do'
Ez {logdgy} =Ep {logdp—logdp} (16)

- do¥
= KL —Ez{log— .
(P I P) P { 0g ap }

Let P be parametrized by the diffusion process X, with dynam-
ics
dX; = b(t, X,)dt + o (t, X, )(u.dt + dW;), Xo ~ mo. (17)

By Girsanov theorem (8),

T
KL(P|P)=E {f ;||ut||2dt} =+ KL(7ro || vo). (18)
0

Note that (18) is slightly different from (9) since in the control
problem P, and Py share the same initial distribution while (17)
and (14a) do not. Plugging (15) and (18) into (16) yields an
optimal control formulation (Kim & Mehta, 2020)

) T 1 1 -
min E /[—uu[nz+—2||h(t,x[)||2]dr (19)
u,mo 0o 2 20y

1 ~ 1 ~
+— Yedh(t, X;) - —zwh(r,xr)} +KL(mo || vo)
Op Op
for the smoothing problem. Apart from an extra term KL(rg || vo)
related to the initial distributions, (19) coincides with the optimal
control problem (1)-(2)-(5) if we take

1 1
gt x)dt = —— [|h(t, X)||*dt + — Yedh(t, x), (20a)
20y oy
1
Wr(x) = —— Yrh(T, ). (20b)
Op

Remark 1. The optimal control formulation (19) relies heavily
on the relation between Kullback-Leibler divergence and the
control energy in (18), which is itself due to the Girsanov the-
orem. Its counterpart in the discrete-time setting is much more
complicated.

3. Path integral particle smoothing and filtering

Building on the control formulation of the smoothing (19), we
propose a new particle filtering algorithm under the name “path
integral particle filter (PIPF)”. At each iteration, our algorithm
solves a smoothing problem over a sliding window based on
the duality between smoothing and optimal control presented in
Section 2.2.

3.1. Path integral particle smoothing
We begin with the smoothing problem to estimate the pos-
terior distribution QY for the system (14) over the time-window

[0, T]. As discussed in Section 2.2, this smoothing problem
amounts to an optimal control problem

T 1
Ilpif)llE{/ [5llurll2 + g(t, X)ldt + U'T(Xr)} +KL(mo || vo) (21)
S TT 0
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where g and ¥r are given in (20). The only difference to a
standard optimal control problem is that the initial distribution
7o, apart from the control u, is also an optimization variable.

Since the minimization over u is independent of g, the opti-
mal control strategy remains to be u*(t, x) = o (t, x)'Vlog ¢(t, x)
with ¢ as in (12). Plugging this optimal control into (21) we arrive
at the optimization over my,

n}r(i)n Ey, {—1og (0, Xo) — log vo(Xo) + log mo(Xo)} . (22)

The optimal solution is

75(+) o o(+)e(0, ). (23)

Note that 7} is exactly the posterior distribution of X, given the
full observation {Y;, 0 < t < T}. Thus, to sample from the
posterior distribution @Y, one can sample K trajectories {X" _q of
the diffusion process (17) for t € [0, T] under the optimal control
strategy u* with the initial distribution 77, i.e.

dX{ = b(t, X )dt + o (¢, X )u*(t, X)dt + dW;), X§ ~ 7§

for k = 1,...,K. The empirical distribution formed by these
K trajectories on the path space £2 is an approximation of the
posterior distribution QY. Moreover, for any 0 < t < T, the
empirical distribution

K

1

Lt 2
k=1

forms an approximation of the conditional distribution of X, given
the full observation {Y;, 0 <t < T}.

The above sampling strategy requires the exact posterior dis-
tribution 7; of X, and the exact optimal control strategy u*.
This can be made possible by solving the PDE (12) but is still
computationally demanding for high dimensional problems.

Our strategy to sample from QY is to sample trajectories with
a suboptimal initial distribution 7y and a suboptimal control
strategy u, and then weight the trajectories through importance
sampling. More precisely, let 7 be the measure over the path
space 2 associated with initial distribution 77y and a suboptimal
control strategy u, and {X}}X_, be K trajectories independently
sampled from P. By Girsanov theorem in view of (15),
do¥  do¥dp dy

0 = dp ap & dny SPSOT) (29)

where S, denotes the path integral defined as

1
Sult,s) = /[—||uf||+ (e, X + - Y,dh

B

+u dW, — *Ysh(s Xs)+ Yeh(t, X;). (26)
U

B B

Denote the value of S, along the trajectory Xt" by SL’f and define
the weights

d

wk = dﬂ(x(’;)exp[—s{j(o, T). (27)
o

It follows from (25) that ©Y can be approximated by the empirical

distribution formed by the trajectories {X*}X_, and with weights
{wkyk_ | that is,

K
DI (28)
k=1

where
k

Zklw

A k

Automatica 151 (2023) 110894

are the normalized weights. Similarly, the posterior distribution
of X; for any 0 <t < T is approximated by

K
~
Z w ‘SX{" (29)

The effectiveness of the above approximation (28) depends on
the variance of the weights {ﬁ)k}’,f=1. The lower the variance is, the
better the approximation becomes. This variance reduces to zero
when my and u are optimal, that is, 7y = n§,u = u*. In gen-
eral, computing the exact optimal solution is too expensive and
one has to use a suboptimal solution that is easier to compute.
There are many methods that can generate suboptimal controller
for (21), including differential dynamic programming (DDP) (Ja-
cobson & Mayne, 1970) and iterative linear quadratic regulator
(iLQR) (Li & Todorov, 2004). One can also start from the original
smoothing problem for (14) and adopt suboptimal smoothing
methods such as extended Rauch-Rung-Striebel (ERTS) (Rauch,
Tung, & Striebel, 1965). These suboptimal smoothing methods
induce suboptimal 7 and u for (21).

To summarize, our path integral particle smoothing method
consists of a proposal initial distribution 7y and a proposal feed-
back u. They should be designed such that the distribution on
the path space induced by mg and u is an approximation of
the posterior distribution QY. A better proposal gives a better
estimation with lower variance. In our experiments, we found
iLQR to be an effective proposal for u. A natural proposal for g is
vo. Once the proposal is chosen, we can sample trajectories from
the controlled diffusion process (17) under the proposal control
strategy u with the proposal initial distribution 7. The posterior
distribution @ is then approximated by (28) whose weights are
computed using the path integral (26).

3.2. Path integral particle filtering

We next move to the filtering problem. We are interested in
the problem of approximating the posterior distribution of X;
conditioned on the past observations {Y;,0 < t < t}. More
precisely, let Yy = o(Y; : 0 < 7 < t) denote the o-field generated
by the observation up to the time t. Then the objective of the
filtering is to approximate P(X; € - | ;).

The path integral particle smoothing algorithm proposed in
Section 3.1 is suitable for smoothing problem over a fixed time
window [0, T]. To use this method for the filtering problem
where new measurements keep coming in, one naive strategy
is to carry out the smoothing task over the time window [0, t].
However, this requires recursively implementing the smoothing
algorithm over a larger and larger time window. As ¢t increases,
the computational complexity of the smoothing problem grows
and will eventually become computationally infeasible.

We propose to use a sliding window implementation of the
smoothing algorithm to solve the filtering problem. More specif-
ically, consider the smoothing problem over the time window
[t — H, t] of size H > 0. It is equivalent to the optimal control
problem

t
min E{ / (5 eI + 8, X e + wt(x[)} (30)
t—H

U,me—H
+ KL(me—p || ve—n),

where g is as in (20a) and

1
lI’[(X) = —izyth(t, X). (3])
Op
The prior distribution v;_p for this smoothing problem is the pos-
terior distribution P(X;_y € - | Ys_p). Since v;_y already accounts
for all the observations {Y;,0 < t < t — H}, the solution to
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the smoothing problem (30), in fact, induces the exact posterior
distribution over the trajectories {X;,t —H < 7t < t}, conditioned
on the full history of observations {Y;,0 < t < t}. Thus, by
running the smoothing algorithm presented in Section 3.1 over
a fixed-size time window [t — H, t], we can obtain the posterior
distribution of P(X; | )).

To implement the path integral particle smoothing algorithm
over the time window [t — H, t], one needs to evaluate dv;_p/
dm:_p as in (27). However, in the proposed path integral particle
filtering method, the distribution v,_p does not have a closed-
form expression and is represented by a collection of weighted
particles as

K
Vi_H ~ Z ibi{_HSXl‘,H . (32)

Thus, a natural way to sample trajectories over the time interval
[t —H, t]is to initialize them with {X* ,,}¥_, and then follow the
closed-loop dynamics (17) under a suboptimal control policy u.
With this strategy, the proposal initial distribution m;_y satisfies

dv,_
PEH XK L) ok, (33)

dmi_y

Let {X/)}i_, be the K generated trajectories and S(t —H, t) be
the value of (26) of the trajectory X" over the time interval [t —
H, t]. Then, by (25), the posterior dlstrlbutlon over the trajectory
space conditioned on the past observations {Y;,0 < 7 < t}is
approximated by

K
P (34)
k=1

with {ﬁ)"}’ﬁ being the normalized version of the weights

Wk, exp[—SK(t —H, t)]. (35)

To see the rationale of (35), assume that v,_y in (30) is ob-
tained using the path integral particle smoothing algorithm over
the time interval with proposal initial distribution vg. Following
the arguments in Section 3.1, by (27), we obtain

Wy o exp[—=S(0, t — H)]

where SL‘(O, t—H) is evaluated over some sampled trajectory over
the time interval [0, t — H]. Combining it with (35) we conclude
that

k

@ oc exp[—S¥(0, t — H)lexp[—SK(t — H, t)] = exp[—S¥(0, t)]

where S{,‘(O, t) is evaluated over the concatenated trajectory of
Xk 0 <t <t—HandX¥ t—H < t < t.This is the same as (27) in
the smoothing problem when 7y = vg. Instead of resampling the
whole trajectory starting from the very beginning, in the sliding
window filtering, all the past weights are recorded in the particle
representation of v,_y and are combined with the measurement
over [t — H, t] to estimate the posterior distribution.

3.3. Algorithm and implementation

In this section we provide implementation details of the path
integral particle filtering algorithm. Let 0 =t < t; <t < ---
be a sequence of time discretization points. It can be a constant
stepsize discretization, i.e., i1 — tj = At, or any other more
flexible discretization scheme. With a slight abuse of notation,
let H denote the number of the discretization points included in
the sliding time window employed in the path integral particle
filtering algorithm.

The proposed particle filtering algorithm is divided into two
stages. For ;,j < H, the total number of time steps is less than
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the window size. Therefore, we use the path integral particle
smoothing over the time interval [0, t;] to estimate the posterior
distribution P(X;;|)y;). When j > H, we adopt the path integral
particle filtering over the time interval [tj_, j].

In the sliding window stage over [tj_p, t;], the choice of the
particle representation for the prior distribution Vi =
P(X[H, |ytij) is crucial. We use the trajectories generated in the
previous step over the time interval [tj_y_1, tji_1] with appro-
priate weights to obtain an estimate of Ve_y- The locations of
the particles, that are generated in this way, account for the
measurements up to the time t;_; and thus match the posterior
distribution P(X;,_,,1%;), which is the ideal proposal initial dis-
tribution (Doucet et al., 2006), better. More explicitly, the prior
distribution vy,_,, is updated recursively as follows. Let the particle
representatlon of the prior distribution Vi, at the previous
step be

K

~ ~k k
-~ waj—H 1ij H-1’ (36)

k=1

Vi p

and Slf be the values of (26) evaluated over the sampled trajecto-
ries over the time window [tj_y_1, tj_1]. Then,

K
Vg A Y expl=Si(t o, GoIXE (37)
k=1

In the above, to simplify the notation, the normalization for the
weights is not displayed explicitly. We remark that even through
the trajectories are generated based on the measurements over
the time interval [tji_y_1, tj_1], the weights of Ve_y in (37) use
only the information, encoded in exp[—S,’j(l}_H_l, ti_y)], over the
interval [ti_g_1, tji_g].

The effective size of the samples decreases much slower for
PIPF compared to the standard SIR filter as time grows. Yet, a
resampling step is needed after a long time horizon when the
effective size is too small. For the resampling, we start with the
samples in (37). We resample them based on the weights
¢ expl—SK(ti—n—1, tj—1)], (38)

ﬁ)t—H—l

obtaining new samples X k _,- These samples follow approximately
the distribution PXe;, |yt . ). With these new samples, the prior
distribution vy, i H in (37) 1s approximated by

K

Vo y Y expISi(tin, toIXE . (39)
k=1

This is obtained from combining (37), the resampling weights in

(38), and the fact that

Su(t,s) =Su(t, t)+ Su(t,s), t<t<S (40)

which itself follows from (26).

Once the particle representation Y j_ L WE_ X, of vy, s
available, one can start from it and apply the path mtegral particle
smoothing over the time window [tj_y, t;]. This leads to the

particle filtering algorithm
K
~ Y if, expl=Sy(t-n, §)IXE. (41)

k=1

P(X;1Vy)

The overall structure of the proposed algorithm is illustrated
in Fig. 1. The complete path integral particle filtering algorithm
is presented in Algorithm 1 and a subroutine of it over a given
time window is provided in Algorithm 2. The prior distribution
at each step is represented by the weighted particles {XI’,‘, Wk},
Here p stands for the prior. The filtering results P(X[jly[j) at the
current step are represented by weighted particles {X*, w*}.
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Fig. 1. Pipeline diagram of PIPF.

Algorithm 1 Path Integral Particle Filtering (PIPF)

Input: L: Total Number of time steps
{X}j}: Samples from prior distribution vg
{w*}: Weight of samples, uniform
H: Length of sliding windows
forj < 1,---,Ldo
j-th time interval < [max(0, tj_y), t;]
XK}, ("}, {X5}, (0"} < Algorithm 2 for j-th time interval
end for

Algorithm 2 One Step of PIPF

Input: b, o, op: System model

g, ¥: Cost model as in (20)

Vihres: threshold for resampling

[t;, t]: sliding window

K: Number of samples

{X5}, {iwf }: Samples and weights of the previous step

Output: {X*}, {*}: Filtering results

X5}, {ﬁ)fiﬂ }: Samples and weight for the current step

fork < 1,--- K do
Sampling k-th trajectory X, initialized by X
Evaluate the value of Sfj over the trajectory X(’f)
Filtering samples: X* = th;-

Filtering weight: @* o g exp[—S(t;, t))]
Prior sample: X = X |

Prior weight: ﬁ)i‘iﬂ oc iy, exp[—Sk(ti, tis1)]
end for

1

Effective ratio: y = S R
k=1

if Y < VYthres then
{X5} ~ multinomial({X}}, {w exp[—S}(t, t;)])}
{E,,} o explSk(tis1, )]

end

The performance of the PIPF algorithm depends on the length
H of the sliding window and the choice of proposal suboptimal
control u. When H = 1 and u = 0, our algorithm reduces
to the standard sequential importance resampling (SIR) algo-
rithm (Doucet et al., 2006) as explained further in the following
remark.
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Remark 2. Without any control, i.e., u = 0, the algorithm resem-
bles a sliding window version of the SIR particle filter. Indeed,
when u = 0, the location of the particles Xt" is only governed by
the open-loop dynamics (14a) similar to the SIR particle filter. By
(26), the weights of the particles wf o' exp[—S(’)‘(O, t)] where

b1 1
sk, 1) =/ — Ilh(z, XO)[*dr + — Y dh(t, X¥)
20, lef
0 B B
1
— —Yh(t, X}).
Op
This is precisely the log-likelihood of the observation signal over
the time interval [0, t]. With a time discretization of the integral
0=ty <t <--- <tj =t, the weights can be expressed as
multiplication of the likelihoods ]_H:] p(Y[j |Xt’J‘,), which is similar
to how SIR particle filter updates the weights.

4. Numerical examples

In this section we present several numerical examples to
demonstrate the efficacy of the proposed path integral particle
filtering algorithm. In the first example, we test the proposed
algorithm in the linear Gaussian setting. In the second example,
we consider a nonlinear filtering example where the optimal
filter solution can be obtained in closed form. These examples are
used to show that PIPF is able to approximate this optimal filter
solution well.

4.1. Linear filtering examples
We first consider the following one-dimensional state space
model
dX[ = —I{Xtdt + th, Xg ~ N(mo, Po)
dyt = Xtdt + O'BdBt,

where k¥ > 0. The model corresponds to an Ornstein-Uhlenbeck
process, whose measurements are corrupted with Gaussian noise.
The posterior distribution is Gaussian, that is, P(X;|);) = N
(m¢, Py) with

P
dm; = —km.dt + *t(dYt — medt),

OB
dp; eP P3+]
— = —2kP — — .
dt ! OB

Three filtering algorithms are employed for this problem: (i) the
SIR particle filter; (ii) the path integral particle filter with zero
controller (PIPF-zero) u = O0; (iii) the path integral particle
filter with linear quadratic regulator controller (PIPF-LQR). LQR is
designed based on the cost function given in (20). The simulations
are executed for L = 600 times-steps with step-size At = 0.01.
Both PIPF-zero and PIPF-LQR employ a sliding window size H =
20. All three algorithms use K = 500 particles.

It is well known the resampling procedure helps to mitigate
the particle degeneracy issue (Doucet et al., 2006). We benchmark
the performance of the algorithms in terms of the mean squared
errors (m.s.e.) between the exact mean (covariance) and the
estimated mean (covariance), with and without the resampling
step. The results are depicted in Figs. 2 and 3 respectively. It
is observed that the PIPF with the LQR controller outperforms
the PIPF without control and the SIR by a large margin when
the resampling step is not used. This advantage becomes less
significant but still exists when the resampling is used. In the ex-
periments, each algorithm is repeated for 50 trials with different
random seeds. The solid curves represent the average of 50 trials
and the shaded regions represent the corresponding 1x standard
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Fig. 2. Performance comparison w/ resampling. PIPF-LQR outperforms both
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Fig. 3. Performance comparison w/o resampling. PIPF-LQR outperforms both
PIPF-zero and SIR by a large margin.
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Fig. 4. Left: Comparison of the effective ratio. The level of particle degeneracy is
much lower in PIPF-LQR, compared with SIR and PIPF-zero. Right: Performance
comparison with different stepsize At. Small At can improve accuracy and make
the PIPF-LQR less sensitive to the window size H.

deviation. The effective size of the particles can be measured by
the ratio y = 1/(K Zle(ﬁ)")z). This is depicted in Fig. 4 (left)
in the absence of resampling. From these results we can clearly
see the advantage of the path integral particle filter. Compared
with SIR, the introduction of the sliding window in PIPF-zero,
which only requires negligible memory footprint, can help reduce
the bias of the estimation. The significant improvement of PIPF-
LQR owes to the high effective ratio and high-quality particles
controlled by the optimal control policy.

To investigate the influence of the size H of the sliding win-
dow, we test the PIPF algorithm (with LQR proposal) with dif-
ferent H values. The performance in terms of m.s.e. (of means)
with resampling and effective ratio without resampling is de-
picted in Fig. 5. We notice that increasing H improves the filter
performance while very large H may deteriorate the results. The
latter could be due to the accumulation of the time discretization
error as our algorithm is designed for continuous-time models. To
illustrate this point, we carry out an experiment with different
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Fig. 6. Robustness of PIPF against observation perturbation. PIPF-LQR is less
sensitive to perturbations in the observation model.

stepsizes. As shown in Fig. 4 (right), with a smaller stepsize
At = 0.001, the performance of both SIR and PIPF-LQR improves.
Moreover, with this stepsize, the performance of PIPF-LQR with
H = 20, 50 is almost the same. This is in contrast to the case with
larger stepsize At = 0.01 where a longer sliding window H = 50
is accompanied with a larger error. All simulation parameters,
other than H, are kept the same in this comparison.

We also conduct experiments to test the robustness of PIPF
with the LQR controller when the observation model is not accu-
rate. We consider the case where the observation model suffers
from consistent biases and extra random noise. To make the
comparison fair, we first increase K for SIR and PIPF-zero such
that they match the performance of PIPF-LQR when the perfect
observation model is available. We then perturb the observa-
tion model by an extra randomly generated shift and additional
Gaussian noise with intensity 0.20p occasionally. The results are
depicted in Fig. 6.2 Though PIPF with LQR controller uses less
particles, it is still less sensitive to the perturbation of observation
models, compared with PIPF-zero and SIR.

To study the effects of problem dimension on the filtering per-
formance, we consider the multi-dimensional state space model

dX; = AX.dt + dW;, Xo ~ N(mg, Po)
dY; = CX.dt + odB;,

where A € R™", C € RP*" represent the dynamics matrix and
output matrix respectively. In our experiments, A, C are randomly
generated for each dimension size n and are then fixed. In Fig. 7
we display the performance of PIPF-LQR and SIR for different n in
terms of m.s.e (of means) and effective ratio without resampling.
Clearly, PIPF-LQR scales better than SIR as n increases.

2 We disturb observation at t = 100, 200, 300, 400, 500. In the plots we use
savgol_filter smooth curves for better visualization.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy-signal-savgol-filter
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Fig. 7. Performance comparison for different n. PIPF-LQR demonstrates better
scalability to high dimensional problems.

4.2. Nonlinear filtering example

We next evaluate our PIPF algorithm on the Benes filter prob-
lem (Taghvaei et al., 2020)

dX, = pow tanh( =X )dt + owdW,,  Xo = xo,
ow
dY, = (X, + hihy)dt + dBy,

where Xg is a given constant, and the constants u, ow, hq, hy €
R are the model parameters. Regardless of being a nonlinear
filtering problem, its posterior distribution admits the analytical
expression

wN(a; — by, 0[2) + (1 — aw¢)N(a; + by, Utz), (42)
where
hy + xo
= ow ¥, tanh(h t)+ ————F—— —hy,
a; = ow¥; tanh(hjowt) + cosh(hy Jowt 2
b = & tanh(howt), o2 = 2% tanh(hyowt).
h] hl
5 t sinh(hyows)
V' = | —————dYs,
o sinh(hyowt)
1

1+ exp{ 2 coth(hyowt)}

In the experiments, we use the model parameters © = 1, h; =
1,h, = 0,0 = 1,%x = —5.0. The simulation is carried out
for L = 6000 time steps with step-size At = 0.001. All the
algorithms use K = 2000 particles. We compare the performance
of our PIPF algorithm and SIR. Since the dynamics are nonlinear,
we use a suboptimal control policy, iterative linear quadratic
regulator for PIPF. iLQR (Li & Todorov, 2004) approximates the
nonlinear dynamics by linearizing it around a nominal trajectory
and the cost by a quadratic function, yielding a LQR problem.
The iLQR algorithm then solves the resulting LQR problem. The
nominal trajectory is calculated by minimizing control cost equa-
tion (21) locally under a noise-free version of the dynamics (1).
In PIPF-iLQR, the linearization for iLQR is done at the beginning
of each sliding window.

The results are displayed in Figs. 8-9. The sliding window size
for PIPF-iLQR and PIPF-zero is set to be H = 10. Fig. 8 displays
the estimated posterior distributions of the state at several time
points when resampling is used. These distributions are approxi-
mated using the KDE density estimator (Davis, Lii, & Politis, 2011)
with bandwidth 0.2. In Fig. 9, we show the m.s.e. of the means
with resampling and the effective ratio without resampling. From
the experiments we see that even though the optimality of the
controller is not promised, PIPF-iLQR still outperforms the other
algorithms.
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Fig. 8. Estimated posterior distribution vs ground truth.
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Fig. 9. Performance comparison between PIPF and SIR. PIPF-iLQR outperforms
PIPF-zero and SIR in terms of m.s.e. and effective ratio.

5. Conclusion

In this paper, building on the duality between optimal esti-
mation and optimal control theory, we developed a novel parti-
cle filtering algorithm. This algorithm has several distinguishing
features compared with standard particle filtering algorithms,
including a high effective sample size and the ability to update
samples in the past to improve robustness. Our algorithm can also
be combined with the most of the existing filtering algorithms
such as the EKF and UKF to improve their performance. In the
future, we plan to extend our approach to solve filtering problems
involving diffusion processes with jumps.
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