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An optimal control approach to particle filtering on Lie groups

Bo Yuan, Qinsheng Zhang, and Yongxin Chen

Abstract— We study the filtering problem over a Lie group that
plays an important role in robotics and aerospace applications.
We present a new particle filtering algorithm based on stochas-
tic control. In particular, our algorithm is based on a duality
between smoothing and optimal control. Leveraging this duality,
we reformulate the smoothing problem into an optimal control
problem, and by approximately solving it (using, e.g., iLQR) we
establish a superior proposal for particle smoothing. Combining
it with a suitable designed sliding window mechanism, we obtain
a particle filtering algorithm that suffers less from sample
degeneracy compared with existing methods. The efficacy of
our algorithm is illustrated by a filtering problem over SO(3)
for satellite attitude estimation.

I. INTRODUCTION

The filtering problem to estimate the posterior distribution of
the state of a dynamic system from noisy observations plays
an essential role in applications in control engineering [1],
robotics [2], autonomy [3] etc. For dynamics that has a
Euclidean state space, many algorithms such as the extended
Kalman filter (EKF), the unscented Kalman filter (UKF),
particle filtering, have been proposed for the filtering task.
In many applications in robotics and aerospace, the state
space of the dynamical system is a manifold instead. The
above filtering algorithms cannot directly be extended to the
manifold setting due to the differences between the Euclidean
spaces and general manifolds.

Designing filters directly evolving on manifolds gives better
estimation of posteriors in most cases. For instance, for
the agent’s pose evolving in the three-dimensional space,
the state variable belongs to the special orthogonal group,
a Lie group SO(3). On this manifold, better convergence
results from the Invariant Extended Kalman Filters have
been shown in [4], [5], [6], [7]. However, these filters are
sensitive to the initial state estimation and only locally stable.
Alternatively, Lie Group Variational Filters [8], [9] derived
from the d’Alembert’s Principle are shown to be almost-
globally asymptotically stable.

We present a particle filtering for dynamical systems on
Lie groups [10]. Our algorithm relies on the duality of
filtering and stochastic optimal control, which reformulates
the smoothing problem into an optimal control problem [11],
[12]. If one can find the exact optimal solution for it, then
the resulting filtering algorithm can achieve its theoretical
maximum effectiveness. In practice, the computation of
optimal control problems is demanding, thus we utilize
a suboptimal solution instead [13]. The particles in the
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resulting filtering/smoothing algorithm is generated by sim-
ulating the dynamics under suboptimal control. Path integral
based on the Girsanov theorem [14] and the Kallianpur-
Striebel formula [15] is used to compute the weights of
these particles. This work extends the Path Integral Particle
Filter [16] to the Lie group setting. We show with numerical
experiments that our control-based filtering algorithm with
the suboptimal control signal is more effective than that with
a zero control signal. The latter is effectively the standard
Sequential Importance Resampling.

II. NOTATION AND PRELIMINARIES

In this section, we present the notation and background
knowledge on Lie groups [17] as well as the duality between
smoothing and optimal control.

A. Lie Groups and Lie Algebras

We denote a Lie group by G, a set that is both a group
and a d-dimensional differentiable manifold. Let 7, G be the
tangent space of GG at the element g. The associated Lie
algebra g is defined as 7. G with e being the identity element.

A vector field V' is a smooth mapping by which each element
g € G corresponds to a vector v € T,G. Let L, denote the
left multiplication by g, i.e., for all h € G, Ly(h) = gh. It
can be shown that L, is a diffeomorphism between G and
itself. Due to this diffeomorphism, for each vector a € g,
we can define a vector field V,, that assigns each g € G to
dLg4(a), where dL,(a) is the shorthand notation of (gp)’(0)
with p(t), a curve on G, satisfying p(0) = e and p'(0) = a.
To proceed, we denote the exponential mapping as exp: g —
G. For every a € g, exp(a) = (1), where v(t) € G satisfies
7' (t) = dL)(a) and 7(0) = e. As a local diffeomorphism
between GG and g, the exponential mapping plays a crucial
role in connecting them. In addition, we point out a Lie
algebra g, as a vector space, is homeomorphic to R?. We
denote the corresponding coordinate of a € g by a.

In many practical applications, Lie groups are assumed to be
matrix Lie groups. A matrix Lie group is a closed subgroup
of GLL(n), the group consists of all n x n invertible matrices.
In the case of matrix Lie groups, group multiplication
corresponds to matrix multiplication, dL4(a) is the standard
matrix multiplication for g and q, i.e., dL4(a) = ga, and the
exponential mapping is matrix exponential. In what follows,
we adopt exp to represent both the exponential mapping on
Lie groups and matrix exponential, as the exact meaning will
be clear from context. Among these matrix Lie groups, the
special orthogonal group SO(3), also named as 3D rotation
group, is what we particularly care about. Formally, SO(3)
is the group of all 3 x 3 real orthogonal matrices with
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determinant 1. The Lie algebra of SO(3), denoted by so(3),
is all 3 x 3 skew-symmetric matrices.

B. Smoothing and Stochastic Optimal Control on R¢

Recently, the duality between smoothing and opti-
mal control inspires a class of filtering algorithms on
R4 [16], [11], [12], [18]. The connection between the two
areas is established as follows. Consider a continuous dy-
namic system evolving on R? in which the dynamics are
represented by stochastic differential equations

dXt = b(t,Xt)dt+U(t,Xt)th,
d}/t = h(t,Xt)dt+UBdBt, YO =0.

Xo ~ 1y, (la)
(1b)

Here, we denote the state variables by X; € R and the
raw measurements by Y; € R™. The initial distribution of
X, is 9. Moreover, W; and B; are two independent mul-
tidimensional Wiener processes. The task of the smoothing
problem over [0, 7] is to estimate the posterior distribution
of every X, given all the observations {Y;,0 < ¢t < T},
ie., P(X;|Y;,0 <t <T) for every 0 < 7 < T. Consider
another dynamics system with control signal uy,

dXt = b(t, Xt)dt + O'(t, Xt)(utdt + th),

Xo ~mo, (2)

where XE stands for the state variable under control signal
us, and X f~0110ws 7. Note that the control signal relies on
both ¢ and X;. We denote it by u; for brevity.

Denote the probability measure induced by dynamic (1a) and
dynamic (2) by P and P, respectively. We also let Q¥ be
the posterior measure induced by (1). It has been shown that
this smoothing problem can be reformulated to a stochastic
optimal control problem by minimizing the KL divergence
between P and QY [16], [11], [12], [18], i.e.,
. ~ dP
min KL(P|QY) :=Ez(log @). 3)
It is worthwhile to summarize the derivation here, as our
central proof is a generalization of it. The prementioned
objective functions could be decomposed into two terms,
dp dp dQ¥
Ez(log dQ—PY) =Ez(log %) — Ez(log 5} ). (4

Under certain regularity conditions, one can adopt Pathwise
Kallianpur-Striebel formula (See Proposition 1.4.2. in [15])
which gives

QY T S
= — [ |t X)) Pdt
o« exp{ | st %o
T . (%)
_/ _QYt’dh(t,Xt)Jr—QYT’h(T,XT)}.

0 9B 9B

The other term can be dealt with by Girsanov theorem (See
Theorem 8.6.5. in [14]), and one has

T
1 dmo
| glludldi +wdWi +log 0, (6)

1 _— =
ogd .

which infers
- T
KL(P||P) = E / Sllll?dt t + KLmo o). ()
0

It follows the objective function of the derived optimal
control problem is as follows

u,mo

T
. 1 1 ~
min KL (mo || vo) +E {/ [ lell® + 5 e, X)|?ldt
0 9B
r 1 ! v 1 / v
+/ _2}/:‘,dh(t7Xt) - _QYTh(Tv XT) (3)
0 9B 9B

In principle, once the optimal control strategy u; and the
optimal initial distribution 7§ of (8) are found, one can
sample trajectories from dynamics (2), and the empirical
distribution of these particles forms an approximation of the
solution to smoothing problems.

ITI. PATH INTEGRAL PARTICLE FILTERING ON LIE
GROUPS
In this section, we present our main results on an optimal
control inspired approach to particle filtering/smoothing over
Lie groups.
A. Smoothing as Control Problems for Lie Groups

Consider the following dynamics for filtering on Lie groups

dgr = dLg, (&)dt, (%a)
d{tv = b(t, gt, & )dt + ow dWr, (9b)
dY: = h(t, g1, &)dt + opdBy, (9¢)
(90,&) ~ w0, Yo =0. (9d)

Here the velocity variable & € g stands for elements in Lie
algebras, and the rotation variable g; € G means elements
in Lie groups. The output variable Y; € R™ represents raw
observations, and the joint variable (g, &) stands for the
state of the dynamic system. In addition, W; and B; rep-
resent two multidimensional independent Wiener processes
as Section II-B. We also denote the initial distribution of
(g¢,&)) by vp, where 1 is a well-defined distribution defined
G x g. The aim of filtering problem is to approximate the
posterior distribution of (g.,£Y) given the observation up
to 7, i.e., P ((g-,&Y)|Y:,0 <t < 7). Note that the dynamic
(9a) implies that, assuming (go, &o) is fixed, the state variable
{(9+,&Y), 0 < 7 < t} is fully determined by {£Y, 0 <
7 < t}. Hence, loosely speaking, the measure of (g, &) is
the marginal measure of £’. For simplicity, we assume the
parameters of (9) are sufficiently regular so that the solution
to this system exists. Actually, the dynamics driven by (9a)
and (9b) satisfy the Doléans-Dade and Protter’s equations,
and the existence conditions of solutions for this type of
equations have been studied in [19]. For (9¢), we assume h;
is integrable almost surely.

In section II-B, we have shown the smoothing problem on
R? can be reformulated as a stochastic control problem. In



fact, the same framework can be applied on Lie groups. Let
P be the measure of (gz, &) given by (9a) and (9b). Denote
QY to be its posterior distribution. Moreover, we denote the
state of the following It6 process with control signal u; by
(3+,&:) and the associated measure by P.

df]t = dL!?t (gt)dtv (103)
A€y = b(t, gi, & )dt + ow (wdt +dWy),  (10b)
(d0,€0) ~ To- (10c)

The next lemma reveals that the Kullback-Leibler divergence
of P and P of (9) is in the same form as the R? case.

Lemma I Assume the Novikov’s condition holds, i.e.,

Elexp(s fo [|lut||?dt)] < oo, then

- T
KL('P|'P)—E{/ §|ut|2dt} + KL(mo || vp). (A1)
0

Proof: In the standard Gisanov theorem, an elementary
assumption is the dynamic is the state variable is in RY,
which seems to be violated in our problem. However, the &’ -
marginal measure satisfies this assumption and the Novikov’s
condition holds, so one can compute the Kullback—Leibler
divergence of marginals as follows. Let P¢ and P be the &' -
marginals for P and and P, respectively. Then, assuming the
initial values are given we have

dPe
dPe

As the sample path of gjo, 7] is exactly a function of £o 7y,
it follows

1
log —> /O §||ut||2dt+u;th.

Pg +1 d7T0

=log 7p ape S dug

o dpP
&P
T4

dm

2 l 0
= - dt dWy + log —
| gt + waw + 10 2.
which yields the Kullback-Leibler divergence in Lemma 1.
Note that the Novikov’s condition is already satisfied in most

practical applications, so we can assume it is true as most
previous literatures do. [ ]

Lemma 2: Assume h; is an adapted and continuously differ-
entiable process and the condition, fOT | hs||?ds < oo for any
T, holds almost surely. Then we have the Radon—-Nikodym
derivative,

dQY
= exp{ o7 (130 )
0
12)
1 -
0 9B 9B
Proof: In the original derivation of the Pathwise

Kallianpur-Striebel formula (Proposition 1.4.2. in [15]), the
dynamics of state variables are assumed to be an adapted
cadlag process in a Polish space. In our setting, the state
variable (g¢, &) follows an continuous diffusion process in
the Cartesian product space of g; and &;, which does satisfy

the prementioned assumption. One can check the assumption
that fOT |hs||?ds < oo for any T', holds almost surely, is the
main assumption in [15], which yields

dQY T 1 Lo~
Wmexp{ /0 Ellh(t,gt,ét)lﬁdt

T 1 -
+/ _Qh/(ta gta gt)d}/t :
0o 9B

It is easy to verify that with the assumption that h; is adapted
and continuously differentiable, the integral [ h}dY; satisfies
the stochastic integration by parts formula. Therefore, the
Radon—-Nikodym derivative in our case is in the same form
as the one in [15]. |

By plugging (11) and (12) into KL(P|QY) in (3), the
corresponding stochastic optimal control problem becomes

T
- 1 -
in E L(t, g = 2| dt+ (g
min {/ 200,306+ ] e+ mm} )
+ KL(FQ || Vo),
where

1 1
L(t, z,y)dt= == | h(t, z,y)|*dt+ =Y/ dh(t, z,y) (14a)
20% g

1
]

O(z,y) = — (14b)
In [16], the authors point out the optimization problem of this
form can be solved separately. The optimal signal u; depends
only on ¢ and X, thus one can calculate w} initially. It has
been shown that v} can be solved in the similar manner for
RY [20]. After the computation of u}, one can find that the
optimal initial distribution 7§ is the posterior distribution of
(g0,&y) given all the observations {Y;,0 < ¢ < T'} which
resembles the R? setting [16].Thus, if the solution of (13)
exists, the minimum value is 0. For the sake of completeness,
we summarize our previous result in the following theorem.

Theorem 3: Assume a solution to (13) exists. and the con-
ditions of Lemma 1 and Lemma 2 hold. For the dynamic
system modeled by (9) and (10), denote the related optimal
solution to (13) by u; and wj. Then the posterior measure
QY is equal to the measure of dynamics P driven by uy and
5.

Proof: The form of the corresponding stochastic opti-
mal control problem follows from Lemma 1 and Lemma
2. Since the dynamics P driven by uj and 7] satisfy
KL(P||QY) = 0, one can recover the posterior measure
QY through sampling from P. [ |

B. Algorithms for Smoothing and Filtering Problems

It is worthwhile to point out that the computation cost of
uy and 77 is demanding. Therefore, we adopt importance
sampling with suboptimal solutions. The procedure is es-
sentially the same with the one in [16], as, in Lemma 1,
we already show Gisanonv theorem is aJ)phcable in this
case. Consider K trajectories {gF, (¢f)"} generated by



suboptimal conditions and denote the value of .S, (0,T") over
the kth trajectory by S¥(0, T'). Then the posterior distribution
of (g¢, &) is approximated by Zszl wké(qk (€)Y where

d
Foc (b (65) Vexpl-SEQ, T, (s)
0
and s 1
5ut9) = [ [£00. &0+ Jurl?) ar
: (16)

+/ ul dW, + ®(gr, Er).
t

In what follows, we divide [0,T] as 0 = ¢y < t1 < t2 <
... <ty = T where for the integer i, t; —t;_1 = At, a fixed
time horizon. If At is sufficiently small, then the discretiza-
tion of (9a) can be written with the exponential mapping.
We also apply the one-step Euler-Maruyama approximation
to (9b), which yields the following discrete simulation step,

9i+1 = Gi eXp(At@) (1721)

Here, go and & are sampled from g, and €; follows the
standard Gaussian distribution. Note that we replace ¢; by ¢
for the ease of presentation. For the observation model, using
the same approach, we have

Yit1 =Y + h(i, 95, &) At + oV ALY,

with ¢; ~ N(0,I) being a Gaussian random variable.

(18)

Next, consider the discrete version of trajectory cost (15) as
follows,

pa | 1 -
S.0.1) = X |3luil? + 5ol 1P At
5 : ®
P > %h(i,gi,gi)/(yiﬂ — V) + ujVAte;,

where the first equation follows from integration by parts.

The control-based particle smoothing algorithm on Lie
groups is shown in Algorithm 1. The key difference of
smoothing and filtering is that filtering refers to a length-
varying time window while smoothing corresponds to a
fixed time window. A naive but computationally-expensive
implementation for filtering problem is to recursively run
Algorithm 1 over the increasing time interval. Specifically,
for every time point 7, run the smoothing algorithm over
[0,7] and simulate particles {g¥, ¢*}X | to approximate
P ((g9r,&)|Y2,0 <t < 7). To reduce the computational de-
mand, we combine the sliding window mechanism proposed
in [16] to improve the efficiency of filters.

The essential component of sliding window algorithm is to
involve a sliding window parameter H. For the j-th time
point, if j < H, then simply run Algorithm 1 over the
window [to,t;]. Otherwise, solve the smoothing problem

Algorithm 1 Control-based Particle Smoothing on Lie
Groups

Input: b, 0w, h,op : Model formulation and parameters

Vo . Initial distribution
N: Total number of time points
K': Total number of particles
Output: {¢*, ¢*}, {w*}: Smoothing results
L,® < Formulate the corresponding optimal control
problem by (14) and (13)
u; and 7wy <— Find the suboptimal solutions of (13)
for k< 1,---, K do
{gk, &k} « Sample the kth trajectory at time point i
following the dynamic (10) with suboptimal conditions
us and g
{wk} < Compute the weights of trajectories by (15)
end for

over [t;_g,t;] where the initial distribution of ¢;_pr, vy, ;.
is recursively updated by the following formulas. Assume

Vi gy A Y wEXE (20)

k=1

then X
Vi, g~y 0EXE Q1)

Here thj,H represents the kth particle at ¢;_ g sampled by
the smoothing algorithm over [t;_g_1,t;_1], and w’; is the
normalized weights of wy exp[—SE(t;_p_1,t;_m)], where
exp[—SE(ty,t2)] stands for the trajectory cost over [t1, t2]. In
the standard particle filtering, a resampling step is performed
to reduce weight degeneracy [21]. Therefore, we utilize the
resampling step as in [16], which leads to Algorithm 2, the
following control-based filtering algorithm on Lie groups for
the case j > H.

IV. EXPERIMENTS

To demonstrate the efficacy of our algorithm, we consider
the following position and velocity estimation problem of a
3D rigid body whose state variable is the tangent bundle of
SO(3). To begin with, the system dynamics are given by

dgr = ge&edt (22a)
déy =M1 (ME) x & + Houy)dt + M~ 'HodW; (22b)
(90, €0) ~ mo (22¢)

In the above dynamics, the variable g; € SO(3) represents
the rotation matrix, and the column vector £’ € R3 is the
body-fixed velocity. We also denote the control signal by
uz € R3. Note that for SO(3), dLg, (&) can be simplified to
matrix multiplication of g; and &;. The parameter Ml € R3*3
is the inertia tensor, and H € R3*3 represents the control
torques. In addition o is used to modulate the magnitudes
of the control signal and noise signal. Here the symbol x



Algorithm 2 Control-based Particle filtering on Lie Groups

Input: b,0w,h,oB,v0, N, K
j: Current time point
H: The Length of the sliding window
4: Threshold of performing resampling
S wy Xf.,+ Prior information at the previous step
Output: {X*} {w"}: Filtering results {w}, X}}: Prior
information for the next sliding window
L,® < Formulate the corresponding optimal control
problem by (14) and (13) over [t;—u, t;]
for k< 1,---, K do
X* « Sample the kth trajectory by (17) over [t;_rr, ;]
initialized by thj T
exp[—SF¥(tj_m,t;)] < Compute the weight of kth
trajectory by (15) over [tj_p,1;].
w" o wy exp=S} (tj—,t;)]
X;f = XﬁHH
{wp} o {wk exp[=SE(t;—m,tj—mi1)l}
end for
Calculate the effective ratio y of the collection of weights
‘{wk}?:} by v = m
if v < 4 then
Sample {X}} from
multinomial({ X}, {wk} exp[—SE(t;_r41,t5)])
{wp} o< expl S (tj— 1, ;)]
end if

stands for the cross product in the three-dimensional vector
space. For 50(3), we define V : g — R3 by
\%

0 —I3 X9 I
I3 0 —I1 = | T2
—x2 T 0 T3

The deterministic version of the prementioned forward dy-
namics was initially proposed in [22] and was later adopted
in [13] as an underlying dynamics in optimal control.

For the observation model, we assume the sensors have
access to both rotation matrix and the velocity. The rotation
matrix ¢; is measured by the accelerometer whose output is
—g;ry, where 74 is a unit vector aligned with the gravity.
Similarly, we also measure g, with the magnetometer which
gives g;r, with r, being a unit vector aligned with the
magnetic field (See [23] for more discussion of the two
sensors). In summary, our observation model is

dY; = h(t, g¢,&)dt + opdBy,

where h’(tagtagt) = (_gérgvgérbvgz/) S Rg'

To define an initial distribution 7y that is easy to sample
from, we first generate a sample  ~ N(0,Ygxg). Then
let the first three components (x1,x2,x3)" be & and go is
given by exp ([x4, x5, 26]"). This approach is consistent with
defining the randomness on SO(3) by latent variables in a
vector space and then mapping them to SO(3) via suitable

(23)

PF-ZERO with H=1
PF-ZERO with H=5
PF-ZERO with H=10 0.8

PF-iLQR with H=1
PF-LQR with H=5
PF-iLQR with H=10

PF-ZERO with H=20
PF-ZERO with H=40

PF-iLQR with H=20
PF-iLQR with H=40

effective ratios
effective ratios

e | NV Lo
0 50 100 150 200 0 50 100 150 200
time steps time steps

(a) PF-ZERO with varying H (b) PF-iLQR with varying H

Fig. 1: Comparison of Effective Ratios

mappings [24]. In this way, the joint distribution of (go, &)
is well-defined.

We assume the suboptimal initial distribution vy is always
the given one in the prior dynamics. As the control signal wu;
is the function of the current state x;, it is sufficient to solve
our original optimal control problem (13) by considering the
following deterministic and discrete version,

| 1 1
i — i3 + = uills — =-hL(Yig — Y5) /At
min Y g Il + llull = 2o bi(Yiws ~ Y0/

git1 = gi exp(At&;),

Yoo = €Y+ MTUMEY x € + Hou,)At

+ M Ho v Ate;.

(24)

Here, our ground truth data Y; is generated by simulation. In
the following experiments, we set M = diag([1,1.11, 1.3]),
H=1I50=1,0p =0.1, At =0.005, N = 200, K = 100,
¥ =0.1,7,=1[0,0,1, 7, = [1/v/2,0,1//2], .

The method we adopt to solve this optimal control problem
is based on Differential Dynamic Programming over Lie
groups (LDDP) proposed in [13]. As our framework does not
require the exact optimal control signal, we only utilize the
linear approximation of the transition function in this paper,
which is the iterative linear quadratic regulator (iLQR). We
denote this algorithm by PF-iLQR that means the suboptimal
solution of (24) is given by iLQR. As for the baseline
algorithm, the suboptimal control signal is set as zero control,
which we denote by PF-ZERO. Note that if H = 1, then
PF-ZERO reduces to the standard Sequential Importance
Resampling (SIR) algorithm (See Remark 1 in [16]). We
measure the quality of the two algorithms with two criteria:
the effective ratio and the error with respect to the simulated
ground truth data.

The comparison for the effective ratio is depicted in Figure
1. Clearly, PF-iILQR significantly outperforms PF-ZERO, as
the suboptimal signal generated by iLQR would control the
evolution of particles to approximate the posterior distri-
bution. We also compare the effects of different H and
observe increasing the value of H would in general improve
the effective ratios of PF-iLQR. However, very large H
may deteriorate the performance. In Table I, PF-iLQR with



H = 200 that represents using all available data shows
slightly worse results than PF-iILQR with H = 40. Similar
result has also been observed in [16]. For PF-ZERO, we
observe its performance is nearly irrelevant with H.

In addition to the effective ratios, we also test the errors with
respect to the simulated data. For the Lie algebra, so(3),
we compare the mean squared errors. While for SO(3), we
follow the procedure used in [10], which means computing
the rotation angle error d9 € [0,180°] by the quaternion
representation of rotations. More specifically, Let ¢* be
the unit quaternion of ground-true rotation and ¢ be the
weighted average of quaternions. Then §y = 2 arccos(|6¢°|)
where dq° is the first component of (7)~! x ¢*. In each
trial, the error is averaged over time, and we repeat each
algorithm for 20 trials when H is larger than 1. The number
of repeated trials is 50 for H = 1 to reduce the impact
of randomness. For completeness, we also compare their
performance with resampling steps in Table II. Indeed, the
improvement with resampling steps is not as significant
as the case w/o resampling, as PF-ZERO executes more
resampling steps than PF-iLQR. It is worth noting that even
in this case, PF-iLQR outperforms PF-ZERO.

TABLE I: Comparison of Errors w/o resampling

MSE of s0(3) | Errors of SO(3)
PF-ZERO with H=1 0.5182 9.0206
PF-ZERO with H=20 0.5230 8.4491
PF-iLQR with H=1 0.4710 8.8710
PF-iLQR with H=5 0.3835 74118
PF-iILQR with H=10 0.3210 6.9799
PF-iILQR with H=20 0.2918 6.4658
PF-iILQR with H=40 0.2606 6.3510
PF-iLQR with H=200 0.2548 6.3976

TABLE II: Comparison of Errors with resampling

MSE of s0(3) | Errors of SO(3)
PF-ZERO with H=1 0.2934 7.3829
PF-ZERO with H=20 0.2801 7.0383
PF-iLQR with H=1 0.2924 7.6737
PF-iLQR with H=5 0.2721 6.4915
PF-iILQR with H=10 0.2799 6.5156
PF-iILQR with H=20 0.2648 6.3164
PF-iILQR with H=40 0.2544 6.3311
PF-iILQR with H=200 0.2533 6.4026

V. CONCLUSIONS

In this paper, we generalized the duality between smoothing
and optimal control to Lie groups, and building on this
duality we developed a particle filtering algorithm for dy-
namical systems over Lie groups. Our algorithm uses iLQR
on Lie groups to approximately solve the dual optimal con-
trol problem. The resulting PF-iLQR algorithm significantly
improves the effective ratios and thus the overall performance
of particle filtering algorithms.
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