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Abstract— This paper, for the first time, compares the be-
haviors of nonlinear versus linear muscle networks in decoding
hidden peripheral synergistic neural patterns during dynamic
functional tasks. In this paper, we report a case study during
which one healthy subject conducts a series of four lower
limb repetitive tasks. Specifically, the paper focuses on tasks
that involve the right knee joint, including walking, sit-to-
stand, stepping, and drop-jump. Twelve muscles were recorded
using the Delsys Trigno system. The linear muscle network
was generated using coherence analysis, and the nonlinear
network was generated using Spearman’s correlation. The
results show that the degree, clustering coefficient, and global
efficiency of the muscle network have the highest value among
tasks in the linear domain for the walking task, while a
low linear synergistic network behavior for the sit-to-stand
is observed. On the other hand, the results show that the
nonlinear functional muscle network decodes high connectivity
(degree) and clustering coefficient and efficiency for the sit-to-
stand when compared with other tasks. We have also developed
a two-dimensional functional connectivity plane composed of
linear and nonlinear features and shown that it can span the
lower-limb dynamic task space. The results of this paper for the
first time highlight the importance of observing both linear and
nonlinear connectivity patterns, especially for complex dynamic
tasks. It should also be noted that through a simultaneous EEG
recording (using BrainVision System), we have shown that,
indeed, cortical activity may indirectly explain highly-connected
nonlinear muscle network for the sit-to-stand task, highlighting
the importance of nonlinear muscle network as a neurophysi-
ological window of observation beyond the periphery.

I. INTRODUCTION

Surface electromyography (SEMG) has been utilized in the
literature to detect various muscle activation and formulate
biomarkers of neuromuscular health or disease progression
[1]. In the literature, classic muscle synergies have been typ-
ically utilized as a low-dimensional activation representation
that suggests how the nervous system may combine a series
of patterns to produce a complex movement [2]. Generalizing
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on this concept and focusing on a full-spectrum pattern of
synergistic information sharing at the periphery, functional
muscle connectivity has attracted a great deal of interest
in the last decade [3], [4], [5], [6], [7] initially for healthy
subjects and recently for patients with neural damages. We
have recently shown that in stroke subjects [7], muscle
networks can robustly detect motor improvement during the
course of rehabilitation when conventional spectrotemporal
features of SEMG fail to provide the needed robustness
and accuracy. Beyond peripheral functionality, the muscle
network decodes the distribution of the descending neural
drive rooted in the central nervous system, which would
result in hidden synergistic patterns during functional tasks.

Despite the benefit, most of the existing literature utilizes
linear spectral coherence analysis to decode functional con-
nectivity [3], [4], [5], [6]. The use of magnitude coherence
for producing muscle networks is motivated by the wide use
of such measures in brain-computer interfaces. However, it
should be highlighted that due to the complex characteristics
of volume conductors for muscle networks, different from
relatively homogenous and small-size volume conductors in
the brain, the synergistic coupling between various muscles
may or may not follow a linear pattern. The authors have
recently and for the first time, proposed the concept of
a nonlinear muscle network using information theory for
upper-limb tasks of stroke subjects [7]. Unlike linear con-
nectivity metrics, such as Pearson’s correlation or coherence,
a nonlinear technique (such as Spearman’s correlation or
mutual information) can detect complex “information syn-
chronization” in the distributed peripheral nervous activities.

Motivated by the above-mentioned note, in this paper, we
investigate the importance of linear versus nonlinear net-
works in detecting the hidden synergistic functional patterns
in network scans. For this, the study includes data from one
healthy subject who conducted a series of functional lower
limb tasks, including walking, repeated sit-to-stand, repeated
stepping, and repeated drop jump. The tasks were chosen
because of their high relevance to daily living, recreational
activity, current rehabilitation research, and clinical settings
[8], [9], [10], [11]. Surface electromyography (SEMG) was
collected from 12 muscles, while in parallel, 64-channel
electroencephalography (EEG) was collected from the brain.
In this paper, we utilize median magnitude coherence from
10Hz to 50Hz to produce the linear muscle network, while
Spearman’s correlation was used to generate the nonlinear
network scans. Spearman’s correlation models monotonic
but nonlinear synchronicity in the activations of muscles



which may not be detected by the coherence analysis. This
paper is specifically interested to understand and uncover the
potential of the nonlinear muscle network generated using
Spearman’s correlation to measure variation in motor control
over four lower-limb dynamic tasks. The collection of EEG
is to evaluate how the cortical activation map relates to the
linear versus nonlinear network behaviors. In order to ana-
lyze network behavior, in this paper, functional integration
and segregation of the network scans are analyzed, which
can evaluate changes in the collective neural drive, and are
quantified using global efficiency (GE), degree, and weighted
clustering coefficient (WCC), respectively (definitions of GE,
degree, and WCC can be found in [12], [13]).

It should be noted that in this paper, we focus on the
knee joint, and the central tasks (among four tested tasks)
are sit-to-stand and walking. This choice of sit-to-stand is
supported by previous works, which have shown such a task
is a useful test of the health of the lower extremity [14],
[15] when knee extension plays an important role [16], [17].
Due to the essential nature of these tasks in everyday life,
metrics relating to sit-to-stand and walking are analyzed in
clinical settings [18], [19], [20] and hence results from this
work could inform rehabilitation programs.

The rest of this paper is organized as follows. In Section
II, the implemented method is explained. Results and discus-
sions are provided in Section III. And concluding remarks
are provided in Section IV.

II. METHODS

A. Experimental Procedure

One asymptomatic subject performed four lower limb
dynamic tasks while wireless surface electromyography
(sEMG) and 64-channel electroencephalography (EEG) were
recorded. The subject performed the following tasks: (i)
bilateral walking for 3 minutes, (ii) bilateral sit-to-stand
for 45s, (iii) repetitions of unilateral step-up for 3 minutes,
and (iv) ten repetitions of unilateral drop and jump. The
bilateral tasks (walking and sit-to-stand) were conducted at
a natural pace, and the unilateral tasks were performed on
the right side. The sEMG signals from twelve sensors were
recorded using the wireless Trigno sSEMG system (Delsys
Inc., Natick, MA), with a sampling frequency of 2148 Hz
and an embedded 10 Hz high-pass filter.

Twelve bipolar Trigno Avanti sensors were utilized on
both sides for (i) Gastrocnemius (GA), (ii) Tibialis Anterior
(TA), (iii) Semitendinosus (ST), (iv) Rectus Femoris (RF),
(v) Gluteus Maximus (GX) and (vi) Gluteus Medius (GD).
The skin was wiped vigorously before placing the sensors.

sEMG sensors were oriented in line with the direction
of the muscles. The knee joint angle on the right side was
simultaneously monitored with a goniometer. EEG signals
were wirelessly recorded from 64 electrodes assembled on
an active-electrode cap (ActiCap, Brain Products GmbH,
Germany) using a 10-10 system. Signals were processed
using MATLAB R2020b (MathWorks Inc., Natick, MA) after
the recording.
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Fig. 1. Study Overview: a. One asymptomatic subject performed four lower
limb dynamic tasks while wireless surface electromyography (sSEMG) and
64-channel electroencephalography (EEG) were recorded. b. SEMG sensors
were placed bilaterally on the following muscles: (i) Gastrocnemius (GA),
(ii) Tibialis Anterior (TA), (iii) Semitendinosus (ST), (iv) Rectus Femoris
(RF), (v) Gluteus Maximus (GX) and (vi) Gluteus Medius (GD). Muscle
networks (in this figure nonlinear muscle network is shown) and the corre-
sponding adjacency matrices were constructed for each task using Spearman
correlation (more details later in the paper). c. Cortical activations were
quantified across the 64-channel. Pre-frontal and motor cortex activations
appeared highest for sit-to-stand and drop-jump, respectively.

B. Data Processing

A zero-phase high-pass filter was applied to the EEG
signals at 0.1 Hz. A zero-phase low-pass filter was applied
to both the EMG and EEG signals at 50 Hz, such that the
resultant SEMG and EEG signals were in the 10-50 and 0.1-
50 Hz ranges, respectively. Outlier channels were rejected if
they exceeded a threshold value of kurtosis, and spherical
interpolation was performed to replace the rejected channel
data [21], [22]. Independent component analysis was used to
remove artifacts from the EEG. The independent components
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Fig. 2. Twelve-muscle linear and nonlinear muscle networks were compared for the bilateral tasks (sit-to-stand and walking). The linear muscle network
calculated using coherence appears to have higher connectivity trends for walking compared to sit-to-stand. On the other hand, the nonlinear muscle network
calculated using Spearman’s power correlation showed trends of higher connectivity for sit-to-stand.

linear nonlinear

Fig. 3. Six-muscle linear and nonlinear muscle networks were compared for
the unilateral tasks (stepping and drop-jump). Both the linear and nonlinear
muscle networks appeared to show higher connectivity for drop-jump.

were ranked by likelihood of being true brain signals with the
ICLabel algorithm, and the top 50% most likely components
were maintained [23]. The tasks were divided into epochs
for calculating the intermuscular connectivity and cortical
activity. The peaks of the right knee extension angle were
recorded on the goniometer and delineated the epochs for
walking, sit-to-stand, and unilateral stepping. The start and
end time of the i"" epoch were the respective times at which
the i"" and (i+1)"" peaks occurred. The peaks of the moving
average (n = 1000 samples) of rectified activation for the
GD R were used to epoch the drop-jump task. The start and
end of the time of the i/" epoch were identified as when
the moving average increased beyond and decreased below
10% of the i"" peak. The SEMG and EEG signals were
synchronized, and identical epoch times divided the tasks for
analyzing cortical activity and intermuscular connectivity.

C. Linear and nonlinear Muscle Networks

Linear and nonlinear muscle networks were constructed
for each epoch of the dynamic tasks. Each node in the net-
work represents a muscle, and the connection between nodes
represents the synchrony between muscles. Intermuscular
connectivity was computed with (i) magnitude squared co-
herence C,, and (ii) Spearman power correlation p,,, which
quantified linear and nonlinear synchrony, respectively.

To construct the linear muscle networks, Cy, between two
signals x(¢) and y(r) was computed as:

_ B’
ny - pry (1)

where Py, and P,y are the power spectral densities (PSDs) and
P, is the cross power spectral density (CPSD) [neck paper].
To compute the coherence, Welch’s overlapped averaged
periodogram method [24] was utilized with a Hamming
window of 512 samples (238 ms) and 50% overlap. The
median coherence component in the 20-50 Hz was selected
for each sensor pair. Using this median coherence value, an
adjacency matrix that represents the linear muscle network
was constructed for each epoch.

In order to construct the nonlinear muscle networks, Py,
between two signals x(¢) and y(¢f) was calculated. The
power time series were obtained by computing x?(t),y?(z).
Subsequently, each power time series with n samples was
transformed with a rank operation such that the values
ascended from 1 to n. After rank transforming x*(¢) to p,(t)
and y*(t) to py(t), pxy is computed according to:

X (ee(0) = P (py(1) — By)
VI (px(0) = px)? Lo (py (1) — By)?

The magnitude |p,,| was computed between each muscle pair
across the epoch duration. Hence, the monotonic negative
correlation between x%(¢) and y*(f) of —pyy is viewed as
possessing equivalent non-parametric connectivity to the
monotonic positive correlation of p,,. Using |ps|, an ad-
jacency matrix that represents the nonlinear muscle network
was constructed for each epoch.

With respect to linear and nonlinear methods, the me-
dian adjacency matrix across epochs was used to quantify
the intermuscular connectivity during the task. The twelve-
muscle and the right-sided six-muscle adjacency matrices
were considered for the bilateral and unilateral tasks, re-
spectively (Figs. 1b, 2, 3). The degree, mean degree, mean
weighted clustering coefficient, and global efficiency values
of the linear and nonlinear muscle networks were quantified
based on the respective adjacency matrices (Figs. 4, 5).
The t-test was used to test the null hypothesis at the 0.05
significance level. The Bonferroni correction was applied
to correct for multiple comparisons. The two-dimensional
functional connectivity subspace was constructed using C,
and |py| on the horizontal and vertical axes, respectively

Pxy (@)
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Fig. 4. Linear muscle networks show walking while nonlinear muscle networks show sit-to-stand as having the highest functional integration out of the
four tasks. Graph theory metrics (mean degree, mean WCC, and global efficiency) quantified the muscle networks’ functional integration and segregation.
Drop-jump showed the second-highest functional integration for both linear and nonlinear methods.
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Fig. 5. The node degree was higher for walking in the linear vs. nonlinear
network comparison (t-test: p < 0.001). Meanwhile, the degree was higher
for sit-to-stand when comparing linear and nonlinear networks (t-test: p <
0.001).

(Fig. 6). Each element of the adjacency matrices during a

particular task is represented by a dot within the scatter plot.

D. Cortical Activity

Cortical activity was quantified for each EEG channel as
the root mean square (RMS) across the epoch. The median
across epochs was used to construct the cortical activity heat
maps (Fig. 1c). The motor cortex activations for each task
were quantified with two metrics, (i) RMS and (ii) maximum
absolute value max(abs) (Fig. 7). Each metric was computed
for a 5 x5 grid (indicated by a dashed rectangle on each
mini-map) of electrodes centered at the Cz electrode, and
the bar represents the median across the grid.

III. RESULTS

Fig. 2 represents the functional muscle network for bilat-
eral tasks decoded using both linear and nonlinear connectiv-
ity methods. Fig. 3 represents the small unilateral network for
stepping and drop-jump tasks. The small network excludes
cross-sagittal connectivity. The results highlight that muscle
network scans of the lower limb encode different synergistic
patterns when comparing the tasks.

The most important observation from the results is that
linear and nonlinear muscle networks showed opposing pat-
terns of functional integration for the bilateral tasks (Figs. 2,

a. bilateral task subspace b. unilateral task subspace
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Fig. 6. The two-dimensional connectivity subspace was constructed using
coherence on the horizontal axis and Spearman correlation on the vertical
axis. Each dot in the scatter plot represents an element of the corresponding
adjacency matrix. The 2-D bilateral task subspace could separate walking
and sit-to-stand for nearly all of the network edges.

4, 5, 6) while agreeing on the unilateral tasks. In this regard,
it should be noted that the linear, coherence-based network
showed a stronger and more efficient (considering the global
efficiency) network and higher clustering coefficient for the
walking task (degree, t-fest: p < 0.001, Fig. 5). However, the
nonlinear network showed increased functional integration
(higher mean degree, higher clustering coefficient, and higher
efficiency) for the sit-to-stand task (degree, t-fest: p < 0.001,
Fig. 5). On the other hand, linear and nonlinear muscle
networks agree on inherent patterns of functional integration
for the unilateral tasks (Fig. 3, 4).

This observation highlights the importance of both linear
and nonlinear decoding of neural information sharing in
the peripheral nervous system. In other words, the results
suggest that when functional muscle networks are used as
a biomarker of neuromusculoskeletal health/recovery, both
linear and nonlinear measures should be studied concurrently
to observe both linear and nonlinear synergistic patterns
(which can be very different).

Capitalizing on this observation, in Fig. 6, a two-
dimensional functional network plane is proposed that in-
cludes both linear and nonlinear features. Each node in this
plane represents a connectivity edge. As can be seen, the
two-dimensional plane spans the considered task space, and
the tasks form representative clusters in this 2D space. The
bilateral clusters are readily separable in the 2D space.



motor cortex activations by task

I walking
I sit-to-stand
I stepping
I drop-jump

max(abs) (uVv)

Fig. 7. The motor cortex activations for each task were quantified with two
metrics, (i) RMS and (ii) max(abs). Each metric was computed for a 5 x 5
grid of electrodes centered at the Cz electrode, and the bar represents the
median across the grid. The motor cortex activation during the sit-to-stand
task was higher than for walking, as was the case for the nonlinear muscle
network.

As mentioned before, in this work, we also collect 64-
channel EEG data to observe if and how the muscle network
behavior follows cortical involvement during the targetted
functional tasks. The results can be seen in Fig 7. It should
be noted that the higher nonlinear connectivity during the
sit-to-stand task, when compared with the walking task,
corresponds to the higher cortical activation (when com-
paring sit-to-stand with walking, Fig. 1c). This observation
suggests that changes in the nonlinear connectivity mapping
may better represent alterations in cortical activation during
functional tasks, and this again highlights the importance
of considering nonlinear measures of connectivity when
evaluating information segregation and integration at the
peripheral nervous system level.

IV. CONCLUSION

In this paper, we compared linear versus nonlinear mus-
cle networks for the dynamic lower-limb task. The results
suggest that the two types of network scans would uncover
different types of synergistic information sharing at the pe-
riphery. We proposed a two-dimensional connectivity plane
composed of linear and nonlinear features and showed that
it could span lower limb task space. Studying the concurrent
EEG, it is shown that the activation map at the § band may
explain differences between the two core tasks, i.e., walking
versus sit-to-stand. The study was limited by the number of
subjects. The future line of research includes data collection
and statistical analysis of the observed phenomena in this
case study.
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