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Decoupling intranode and internode scattering in Weyl fermions

G. Sharma®,! Snehasish Nandy,? Karthik V. Raman,® and Sumanta Tewari

4

1School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, India
2Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
3Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
4Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA

® (Received 20 February 2022; revised 23 July 2022; accepted 16 March 2023; published 28 March 2023)

A series of recent papers claimed that intranode scattering alone can contribute to positive longitudinal
magnetoconductance (LMC) due to the chiral anomaly (CA) in Weyl semimetals (WSMs) in the quasiclassical
limit. We revisit the problem of CA-induced LMC in WSMs in the quasiclassical limit and show that intranode
scattering, by itself, does not result in enhancement of LMC. In the limit of zero internode scattering, chiral

charge must remain conserved, which is shown to actually decrease LMC. Only in the presence of a finite
nonzero internode scattering does one obtain a positive LMC due to nonconservation of the chiral charge. Even
weak internode scattering suffices in generating positive LMC since it redistributes charges across both the nodes,
although on a timescale larger than that of the intranode scattering. Our work is fundamental to correctly interpret

the recent experiments on magnetoconductance in Weyl semimetals that claim to have observed chiral anomaly.
Furthermore, our calculations reveal that, in contrast to recent works, in inhomogeneous WSMs strain-induced
axial magnetic field Bs, by itself, leads to negative longitudinal magnetoconductance and a negative planar Hall

conductance.

DOLI: 10.1103/PhysRevB.107.115161

I. INTRODUCTION

Chiral anomaly (CA) finds its genesis in high-energy
physics [1,2], whereby the left/right-handed Weyl fermions
are not conserved in the presence of nonorthogonal elec-
tric and magnetic fields. The anomaly has resurged in Weyl
semimetals (WSMs) and has been of great interest in the
condensed-matter community over the last decade [3-30].
Since Weyl semimetals host Weyl fermions as quasiparti-
cle excitations, chiral anomaly is expected to occur in these
materials in the presence of external electromagnetic fields.
Positive longitudinal magnetoconductance (LMC) [10] and
the planar Hall effect (PHE) [31] are some key signatures to
identify the manifestation of chiral anomaly in Weyl semimet-
als. Some nonelectronic probes of chiral anomaly include
optical processes as well [32-38]. Significant efforts were
recently devoted to capture the behavior of these anomaly
induced conductivities in WSMs [9-23].

The calculation of conductivity via the linear response
formalism [39] inherently assumes a timescale 7, that can be
interpreted as arising from interactions between the system
and the external electric field that inelastically exchange en-
ergy at a rate 1/74. The rate is assumed to be ideally zero,
or in other words, 74 is assumed to be the largest of all
relevant timescales. In the context of weakly disordered Weyl
semimetals, when Landau quantization is relevant at high
magnetic fields, chiral anomaly manifests itself by a positive
contribution to the longitudinal magnetoconductance, i.e., j o
B(E - B), where E and B are the applied electric and magnetic
fields. The current in this case is limited by the internode scat-
tering time (Tineer), Which corresponds to a timescale at which
quasiparticles scatter across the nodes and switch their chiral-
ity. Therefore, chiral charge is not conserved, but the global
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charge remains conserved. For linear response formalism to
work, Tiner must be much less than 74. Unfortunately, this
approach breaks down if one considers intranode scattering
as the only dominant scattering mechanism since, in this case,
the chiral charge must remain conserved along with the global
charge.

In the limit of weak magnetic field, Son and Spivak [10]
highlighted the importance of internode-scattering-induced
positive LMC in WSMs via the semiclassical Boltzmann ap-
proach. Despite this, a series of recent papers suggested that
intranode scattering alone can give rise to positive longitudi-
nal magnetoconductivity via an E - B force term incorporated
in the semiclassical equations of motion [14-21]. It is there-
fore implied that positive LMC manifests in WSMs even in
the limit when Tigter/Tinra — 00 (Where Tiny, 1S the intraval-
ley scattering time). Importantly, these works also made no
distinction between the parameter regimes Tinra <K Ty <K Tinter
and Tipra <K Tiner K Tg. The distinction between the two cases
actually has drastic consequences, as chiral charge is con-
served in the first, but the second indicates global charge
conservation, which happens on a timescale larger than the
intravalley timescale iy, but smaller than 74. The claim
that intranode scattering alone can positively increase LMC,
inherently assumes that Tinr, < Tp < Tiner-

In this Letter, we show that the intranode scattering
alone cannot yield positive LMC in WSMs, as this is in-
consistent with chiral charge conservation. We begin by
first showing that semiclassical calculations of LMC with
a momentum-independent scattering time, as is assumed in
the recent works [14-20], violate chiral charge conserva-
tion. Chiral charge conservation is shown to be consistent
only with a momentum-dependent scattering rate, which, very
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importantly, yields a negative LMC. We therefore show that
internode scattering is necessary to obtain positive LMC in
Weyl semimetals, differently from the recent works. Even
very weak internode scattering drives the system to show pos-
itive LMC, and only sufficiently strong intervalley scattering
beyond a critical strength switches the sign to a negative LMC
[21]. Chiral anomaly is therefore an internode phenomena in
WSMs, even in the weak-B limit where the semiclassical for-
malism is valid, consistent with the Landau-level picture. Our
results are fundamental for proper analysis of recent experi-
mental results that claimed positive LMC to be a signature of
chiral anomaly in the weak-field regime because we rule out
the possibility of pure intravalley-scattering-induced positive
LMC, which is not a true signature of chiral anomaly since it
conserves chiral charge. Our results also have important con-
sequences in the context of inhomogeneous WSMs (IWSMs),
where we show that strain alone leads to a negative longi-
tudinal magnetoconductance and contributes a planar Hall
conductance which is of opposite sign to that of an external
magnetic field. These results, which can be experimentally
verified, are also in contrast to some other recent papers
[40,41].

II. INCONSISTENCIES OF MOMENTUM-INDEPENDENT
SCATTERING TIME

For a single isolated Weyl node Hy = x/hvrk - o, the
steady-state Boltzmann equation takes the following form
[42,43]:

0 e
eDf <—a;i)> (Vf(‘ + EB(Q{E vé)) ‘E=Teon{e}, (D)

where Vl)(( is the semiclassical band velocity, E and B are exter-
nal electric and magnetic fields, respectively, Qf is the Berry
curvature [44], go is the Fermi-Dirac distribution, €y is the
energy, and D = (1 + B - Q' /h)~". Within the relaxation-
time approximation, the collision integral Z . {gx} is simply
sgt
Teanfgi} = ——*, 2
Tic
where 8gf is the deviation from the equilibrium. Particle con-
servation implies that

> sgl=0. 3)
k

In the geometry when E || B || Z, the equation for particle
conservation, Eq. (3), reduces to the following form [43]:

X x 1 Cn(ox . v 1‘3(9)—5“19 _
/r (9)(1)2 + 2B vk)) Vo= @

Here all the quantities in the integrand are evaluated on the
Fermi surface at zero temperature. A simplifying approach
often employed is to assume that the scattering time is inde-
pendent of momentum Kk, i.e., tX(6) = tX [14-20]. However,
it can be easily verified from Eq. (4) that when 7% () is inde-
pendent of 6, the left-hand side (L.H.S.) of the equation does
not reduce to zero. Even if we ignore the contribution due to
the orbital magnetic moment, the integral above still turns out
to be nonzero. For the case with a pair of Weyl nodes with zero

internode scattering, the chiral charge remains conserved and
thus this result still remains valid. A momentum-independent
scattering time is thus inconsistent with particle number con-
servation.

III. LMC FOR ZERO INTERNODE SCATTERING

When internode scattering is zero, it suffices to calculate
the result for a single isolated Weyl node and the contribution
from both the nodes can be summed over. Since we show that
the momentum-independent relaxation time is not valid, we
instead choose the collision integral in Eq. (1) to be

Teon{gn} = D (AL — AL)Wiae(—0g0/dex)eE.  (5)
k!
Here the scattering rate Wy must not be taken to be indepen-
dent of momenta, and without loss of generality, the unknown
function A{ is assumed to be

AY = (R - ). ©®

where b = D [vX + e ' B} - vl o' = >\ Wi, and
£ is the unknown. The roles of the chemical potential and
the orbital magnetic moment are incorporated by (—dgo/d€x)
and a B-dependent energy shift in the dispersion respectively.
In the first Born approximation, and in the simplest case of
point-like disorder, the scattering rate is evaluated to be

2
Wik = 7|U|25(ek —€F)

x [1 4 cosfcos8’ + sin@sin§’ cos(¢p — @], (7)

where U is the strength of the disorder in appropriate units.
We emphasize that the explicit dependence on the direction of
momenta, i.e., the polar and azimuthal angles, which comes
from the chirality of the Weyl fermion wave function, sur-
vives even in the absence of momentum-dependent disorder
strength U. The Boltzmann equation reduces to

£X(0) =/FX (0')7(6)(14 cos @ cos 0 FX(6)—h* (0')]d6,
(®)

where F%(0) = k*(0)(D}) ™' sin0|vi - k|~!. Again, all the
quantities in the integrand above are evaluated on the Fermi
surface. To this end, incorporating particle conservation with
the following ansatz solves the above Boltzmann transport
equation:

AX () = t(0)[a* + b* cos O — h*(0)], )

Finally, the current due to the deviation in equilibrium is
evaluated as

Jr=—e) i7(8g)). (10)
k

and the longitudinal conductivity o,,(B) can be evaluated.
We define §o,,(B) = 0,,(B) — ozoz, where 62 is the zero-field
conductivity. Figure 1(a) plots the evaluated LMC §0,,(B) for
an isolated Weyl node, which turns out to be always nega-
tive and independent of the chirality of the Weyl node. This
result is in contrast to the recent papers concluding that in-
tranode scattering alone can produce positive LMC in WSMs
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FIG. 1. (a) LMC for an isolated Weyl node is always negative
due to chiral charge conservation. (b) A*(8) between 0 and 7 at B =
1T. (c) The corresponding normalized deviation in the distribution
function (proportional to §gf ), which integrates to zero. Here x = 1.

[14-21]. Figure 1(b) plots A*(#), while Fig. 1(c) plots the
normalized distribution function. The distribution function di-
rectly reflects §gj , which integrates to zero, as expected from
particle-number conservation. As a complementary approach,
we also solve this problem using an ansatz-free numerical
solution to the Boltzmann equation and reproduce the same
findings [43]. We also approach this problem in the weak-B
limit of Landau level formalism. In the presence of an external
magnetic field (assumed to be parallel to the z-axis), the en-
ergy levels are quantized and the energy dispersion is given by
€.k, = U sign(n)/2h|n|eB + (hk,)*, where n = 1, £2, ...
(in addition to the chiral zeroth Landau level). The intraband
conductivity is evaluated to be [43]

o= %(Bnc —B), (11)

where the prefactor C is a constant that depends on material
parameters [43] and n, is the number of filled Landau levels.
We show that i, scales linearly with B~! [43] and therefore the
magnetoconductivity due to intraband scattering for a single
Weyl node is always negative.

IV. LMC WITH NONZERO INTERNODE SCATTERING

The collision integral takes the following form:

T i1} = D (A} = AL)WAE (—9g0/de)eE.  (12)
k' x'

where the scattering rate Wk)fj‘, has internode as well as intra-
node scattering, which is evaluated to be
/ 2 /
WA = == U 1’8 (e — €F)
x {1+ xx'[cosB cos® + sin@ sin &’ cos(¢p — ¢')]},
13)

where the disorder parameter UXX allows us to tune
the internode and intranode scattering strengths differently.
Hereafter, we denote the ratio |[UX#X |2/|U*=X'|2 = . The
solution presented before is extended for the case of two nodes
[43] with finite internode scattering. Figure 2(a) plots LMC
for increasing intervalley scattering strength. We find that
LMC for a pair of Weyl nodes of opposite chiralities becomes

(®)

=
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FIG. 2. (a) LMC for a pair of Weyl nodes of opposite chiralities
becomes negative beyond a critical intervalley scattering strength ..
Here « is increased from 0.1 to 1. (b) The normalized deviation in
distribution functions at both the valleys for three different values
of a.

negative beyond a critical intervalley scattering strength «,,
as was also observed in Refs [21,22]. This is attributed to an
orbital magnetic moment that has opposite effect on the Fermi
surfaces of both nodes [21] and renders them dissimilar in the
presence of external magnetic field.

The striking observation here is that, even for weak in-
ternode scattering, LMC is positive, as opposed to the case
of strictly zero internode scattering. The distribution function
obtained here for the case of weak internode scattering is
quite different from the one obtained in Fig. 1 for the case
of zero internode scattering. In the later case the deviation of
the distribution function must integrate out to zero at a single
node, i.e., the chiral charge is conserved. This condition is
relaxed in the presence of weak internode scattering and only
the global charge needs to be conserved.

The Boltzmann transport equation gives the steady-state
solution that is valid in the limit # > max{Tiyer, Tinua}. Hence,
the particles are allowed to scatter and redistribute across
both the nodes on a timescale much less than 74. To highlight
the role of 74, we also incorporate it into the Boltzmann
formalism [43]. We show that when Tiyer 3> 7y, We are
in an effective one-node regime and obtain negative LMC
that are fully consistent with the results of a single-node
obtained in the Letter. These observations summon very
important points: (i) intranode scattering, by itself, does
not yield positive LMC due to chiral charge conservation;
(ii) finite internode scattering is fundamental for observ-
ing positive LMC in the semiclassical low-B limit; (iii)
chiral anomaly induced positive LMC is therefore a pure
internode phenomenon, reconciling the Boltzmann and the
Landau-level picture; and (iv) sufficiently large internode
scattering beyond a critical value o, switches the sign of LMC
from positive to negative. Correspondingly, Ty > Tinger >
7o 1 necessary to observe positive LMC in experiments,
where 7 . is the critical intervalley scattering time below
which LMC becomes negative. Figure 3 summarizes the
conditions.

T¢ >>7'-cinter >Tinter ('Ve) T¢ >>Tinter >Tcinter (+VC)

(-ve)

Tinter >Tg > Tina (-V€) Tintra >T¢p>> Tinter

FIG. 3. Conditions to observe positive or negative LMC.
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FIG. 4. (a) Strain-induced LMC for a pair of Weyl nodes of
opposite chiralities is always negative. Here « is increased from 0.1
to 1. (b) The normalized deviation in distribution functions at both
the valleys for three different values of «. Bs field is chosen parallel
to E.

V. INHOMOGENEOUS WSMS

We now show that our results have very important conse-
quences in the characterization of Weyl systems with naturally
occurring inhomogeneities. An axial magnetic field Bs that
couples to Weyl fermions of opposite chirality with an op-
posite sign can be realized by an inhomogeneous strain or
magnetization profile in IWSMs [40,45,46]. Interestingly, it
was pointed out that strain alone can result in a positive
contribution to LMC even in the absence of external magnetic
field (B = 0) [40]. In striking contrast, again, we discover
that this result is incorrect and strain alone does not yield
positive LMC, but rather decreases conductance, as plotted
in Fig. 4(a). A detailed analysis of strain-induced LMC is
presented in Ref. [43]. In the absence of strain, the switching
of LMC from positive to negative is attributed to the effect of
orbital magnetic moment, but here, ignoring that the OMM
contribution does not affect our result qualitatively. This is
because, unlike the previous case, strain-induced OMM af-
fects both the nodes equally and thus the Fermi surfaces retain
their similarity. We extend the formalism to the case of an
inversion-asymmetric WSM. We choose a prototype model
of a system with four Weyl nodes located at the points K =
(£m /2,0, £m/2) in the Brillouin zone. The minimal model
is given by

4
H=>"xuhvrk -0, (14)

n=1

where y, is the chirality of each Weyl node, and specif-
ically, we choose x; = —x2 = x3 = —x4 = —1 such that
time-reversal symmetry is respected [see Fig. 5(a)]. We con-
sider four possible internode scatterings as shown in the
figure and scattering between diagonal nodes is neglected.
Furthermore, we choose «'2 = o3* and 2 = «'*. The behav-
ior of LMC without strain is plotted in Fig. 5(b). Sufficiently
large internode scattering (!> and/or «'#) yields negative
LMC. In the presence of only strain-induced field Bs, we never
get a positive contribution to LMC as shown in Fig. 5(c).

VI. PLANAR HALL EFFECT IN IWSMs

To evaluate the planar Hall conductivity, the magnetic
field is made noncollinear with the electric field direction.
We rotate the magnetic field along the x-z plane that breaks
the azimuthal symmetry [43]. Focusing on the strain-induced

(@ & (b) 1
p % SR E— =1
el 0.4 +
agzg 4 kz -
2020 g = 03
x=-1 x=1 3
(034 0.2
B only strain 0.1
o2 ;i % '1 58,
0.1 -1
0.1 0.2 03 04
0.1 0.2012043 0.4 a12

FIG. 5. (a) Minimal model of inversion asymmetric WSM with
four nodes. Chirality of a node is indicated by x and internode
scattering from node i to j (and vice versa) is denoted by a/. The
sign of LMC as a function of internode scattering without strain
is plotted in (b) and with only strain in (c). Strain, alone does not
increase LMC.

planar Hall effect, we find that, contrary to previous reports
[41], the strain-induced contribution is not only opposite to
that of the regular planar Hall effect, but also is different in
magnitude. In Fig. 6 we explicitly show that, for the same
orientation of the B and the Bs field, the magnitude and the
sign of planar Hall conductance are different from each other.
Strain thus has a planar Hall conductance of opposite sign to
that due to an external magnetic field.

VII. FINAL WORDS

Reconciling with the Landau-level picture, we show that
chiral anomaly induced positive LMC is indeed an internode
phenomenon, even in the weak-B semiclassical limit. Our
results have remarkable implications in the context of Weyl
semimetals, and are fundamental to a proper analysis of re-
cent experiments. A positive LMC obtained in experiments in
the weak-B limit must imply the manifestation of true chiral
anomaly and excludes the possibility of intravalley scattering
that conserves chiral charge.
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FIG. 6. (a) Planar Hall conductivity as a function of magnetic
field in the absence of strain and (b) as a function of the axial
magnetic field Bs in the absence of external magnetic field. The angle
of the magnetic field in (a) and axial field (b) are chosen to be the
same.
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