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Elastic deformations (strain) couple to the electronic degrees of freedom in Weyl semimetals as an axial
magnetic field (chiral gauge field), which in turn affects their impurity-dominated diffusive transport. Here
we study the longitudinal magnetoconductance (LMC) in the presence of strain, Weyl cone tilt, and finite
intervalley scattering, taking into account the momentum dependence of the scattering processes (both internode
and intranode), as well as charge conservation. We show that strain-induced chiral gauge field results in “strong
sign reversal” of the LMC, which is characterized by the reversal of orientation of the magnetoconductance
parabola with respect to the magnetic field. On the other hand, external magnetic field results in “strong sign
reversal,” only for sufficiently strong intervalley scattering. When both external and chiral gauge fields are
present, we observe both strong and weak sign reversal, where in the case of weak sign reversal, the rise and
fall of magnetoconductivity depends on the direction of the magnetic field and/or the chiral gauge field, and
is not correlated with the orientation of the LMC parabola. The combination of the two fields is shown to
generate striking features in the LMC phase diagram as a function of various parameters such as tilt, strain, and
intervalley scattering. We also study the effect of strain-induced chiral gauge field on the planar Hall conductance
and highlight its distinct features that can be probed experimentally.
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I. INTRODUCTION

Fermions and the atomic lattice form the building blocks
of condensed matter. While each of them is fundamentally
different from the other, the interplay between the two leads to
remarkable effects. In recent works, massless Dirac fermions,
which have resurged in condensed matter, have been shown
to couple to the elastic deformations of the lattice (strain) as
an axial magnetic field (also known as chiral gauge field).
Prominent examples where such fields can be realized in-
clude graphene [1–3] and three-dimensional Weyl semimetals
[4–6]. For instance, in graphene, the generated field can be
even as large as 300 T, as observed via spectroscopic measure-
ment of the Landau levels [7]. Measurement of strain-induced
chiral magnetic field as well as its implications on electron
transport in three-dimensional Weyl and Dirac semimet-
als materials is of high interest to the condensed matter
community.

The reason why Weyl and Dirac semimetals also have
been fascinating is due to some intriguing properties that are
absent in conventional metals. Some examples include the
anomalous Hall [8,9] and Nernst [10–12] effects, open Fermi
arcs [13], planar Hall and Nernst effects [14,15], and the man-
ifestation of chiral or Adler-Bell-Jackiw anomaly [16–25].
The origin of each of these effects can be traced down to
the nontrivial topology of the Bloch bands. Specifically, the
low-energy band structure of Weyl nodes comprises of pairs
of nondegenerate massless Dirac cones that are topologically
protected by the chirality quantum number (also known as the

Chern number). Without any coupling to an external gauge
field, the charge of a given chirality remains conserved. The
conservation law is, however, broken when Weyl fermions are
coupled to background gauge fields such as electric or mag-
netic fields [16–18]. This breakdown of conservation laws is
known as “chiral anomaly,” rooting its name from the particle
physics literature. The verification of chiral anomaly in Weyl
semimetals is a very active area of investigation in condensed
matter physics.

In a minimal model of Weyl semimetal, Weyl nodes must
be separated in momentum space by a vector b to ensure
topological protection. Alternatively, the vector b can also be
interpreted as an axial gauge field since it couples with an
opposite sign to Weyl nodes of opposite chirality [25–29].
Thus, the spatial variation of b generates an axial magnetic
fieldB5 = ∇×b, which also couples oppositely toWeyl nodes
of opposite chirality. An effective B5 field can emerge from
an inhomogeneous strain profile in Weyl semimetals. In the
presence of an effective chiral gauge field B5, the effective
magnetic field experienced by Weyl fermions at a given node
of chirality χ isB −→ B + χB5, whereB is the external mag-
netic field. Therefore, the conservation laws are also modified
accordingly in the presence of the B5 field. Recent works
have pointed out that even in the absence of an external
magnetic field, the chiral gauge field influences the diffusive
electron transport in Weyl semimetals by modifying its longi-
tudinal magnetoconductance (LMC) [6] as well as the planar
Hall conductance (PHC) [30]. Although true in spirit, the
drawback of these works is that they ignore the momentum
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dependence of scattering when the Weyl fermions scatter
within a node (known as intranode scattering or intraval-
ley scattering) conserving both the total charge and chiral
charge and also when they scatter to the other node (intern-
ode and intervalley scattering), in which case they conserve
only the total charge. Moreover, intervalley scattering, which
is the essence of “true chiral anomaly,” has been neglected
in Ref. [30]. In a recent work [31], some of the co-authors
of this work have pointed out that momentum dependence
of scattering, as well as charge conservation constraint, can
lead to drastic differences in the qualitative conclusions. It is
therefore of immense importance to correctly treat the effect
of strain-induced gauge field on electron transport in Weyl
semimetals, which is the focus of this work.

In this work, we critically examine the effect of strain-
induced chiral gauge field via the Boltzmann formalism
(thus limiting ourselves to only weak perturbative fields)
on two linear response quantities: the longitudinal magne-
toconductance and the planar Hall conductance. We study
these effects in both time-reversal breaking Weyl semimetals
(WSM) (with and without tilt) as well as inversion asym-
metric Weyl semimetals. Earlier it was believed that positive
longitudinal magnetoconductivity must manifest from chiral
anomaly at least in the limit of weak external magnetic field,
but this claim was corrected later on when sufficiently strong
intervalley scattering was shown to switch the sign of longi-
tudinal magnetoconductivity even in the weak-B limit [32].
Typically, by positive (negative) longitudinal magnetoconduc-
tance we mean that [σ (|B|) − σ (B = 0)] > (<) 0, i.e., the
field-dependent conductivity is greater (smaller) than the zero-
field conductivity. Here we show that the presence of B5 field
can also reverse the sign of LMC, but only along a particular
direction of the magnetic field (see Fig. 2). This leads to
an interesting scenario of the LMC being positive along one
direction of the magnetic field and negative when the direction
of the magnetic field is reversed. To counter this ambiguity in
the sign of LMC, we introduce the idea of weak sign reversal
and strong sign reversal, which depends on the orientation and
the vertex of the parabola of magnetoconductivity with respect
to the magnetic field [Eq. (3)]. We show that in the presence of
only strain-induced chiral gauge field (and absence of external
magnetic field), the system shows signatures of strong sign
reversal for all values of intervalley scattering. In the pres-
ence of only the external magnetic field (and the absence of
a chiral gauge field), the system shows strong sign reversal
only at sufficiently large values of scattering. In the presence
of both chiral gauge and externally applied magnetic field,
signatures of both weak and strong sign reversal are observed
and, furthermore, very interesting features emerge in the phase
diagram of LMC as a function of various system parameters
such as the intervalley scattering, tilt, and strain. We point out
that throughout this paper, whenever the external magnetic
field is absent, we discuss weak and strong sign reversal in
the context of the LMC parabola with respect to the chiral
gauge field B5. When the external magnetic field is present
(in either presence or absence of the chiral gauge field), weak
and strong sign reversal is discussed in the context of the LMC
parabola with respect to the external magnetic field B. Tables I
and II provide a succinct summary of the main results for a TR
broken Weyl semimetal. We also extend the idea of weak and

TABLE I. Summary for the type of the change: weak (W), strong
(S), and weak and strong (WS) in the sign for the LMC under
different cases for a TR broken WSM. For B and B5, 0 and 1
indicate the absence and presence of the fields, respectively. For tilt,
−1 indicates the tilt of the Weyl cones are oppositely oriented, +1
indicates orientation in the same direction, and 0 indicates no tilting.
When B = 0, sign change of LMC is with respect to the B5 field,
and whenever B = 1, the sign change is with respect to the B field
irrespective of B5. This table corresponds to the case when α < αc.

Tilt B B5 Sign reversal

0 1 0
0 0 1 S
0 1 1 W

1 1 0
1 0 1 WS
1 1 1 W

−1 1 0 W
−1 0 1 WS
−1 1 1 W

strong sign reversal to the planar Hall conductance as well,
and study the effect of strain-induced gauge field on the same.
Along with other features, we also unravel a very interesting
behavior in the planar Hall conductance due to an interplay
between the chiral gauge field and the external magnetic field.
Specifically, we observe a region in the parameter space where
the planar Hall conductivity increases in magnitude upon in-
creasing the scattering strength, which is counterintuitive.

This paper is organized as follows. In Sec. II, we introduce
the concept of weak and strong sign reversal using a minimal
model of a TR broken untilted WSM. We also study the
interplay of strain, tilt, and intervalley scattering on LMC
and PHC. In Sec. III we extend our results to a TR broken
tilted Weyl semimetal. In Sec. IV, we present the results for
inversion asymmetric Weyl semimetals. Section V is devoted
to a brief discussion on the inclusion of inhomogeneities in
strain-induced chiral gauge field. We conclude in Sec. VI. All
the calculations are relegated to the Appendix.

TABLE II. Summary for the type of the change: weak (W),
strong (S), and weak and strong (WS) in the sign for the LMC under
different cases for a TR broken WSM. This table corresponds to the
case when α > αc. All abbreviations are same as in Table I.

Tilt B B5 Sign reversal

0 1 0 S
0 0 1 S
0 1 1 WS

1 1 0 S
1 0 1 WS
1 1 1 WS

−1 1 0 WS
−1 0 1 WS
−1 1 1 WS
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FIG. 1. Spatial orientation of electric and magnetic fields. Here
B is the external magnetic field and B5 strain-induced chiral gauge
field, γ and γ5 are their angles measured from the increasing x direc-
tion, i.e., B = B(cos γ , 0, sin γ ) and B5

χ = χB5(cos γ5, 0, sin γ5).
Therefore, B and B5 are constrained to be in the x-z plane. We have
fixed the direction of electric field along increasing z direction.

II. TIME-REVERSAL BROKEN UNTILTED
WEYL SEMIMETALS

We consider a minimal model of a time-reversal symmetry
broken Weyl semimetal, i.e., two linearly dispersing nonde-
generate Weyl cones separated in momentum space. We also
assume that there is no tilting of the Weyl cones in any direc-
tion. The low-energy Hamiltonian is given by

H =
∑

χ

∑
k

χ h̄vFk · σ. (1)

Here χ = ±1 is the chirality of the node, k is the momentum,
vF is the velocity parameter, and σ is the vector of Pauli spin
matrices.

Using the quasiclassical Boltzmann theory, we study trans-
port in Weyl semimetals in the limit of weak electric and
magnetic fields. Since quasiclassical Boltzmann theory is
valid away from the nodal point such that μ2 � h̄v2

FeB, there-
fore, without any loss of generality we will assume that the
chemical potential lies in the conduction band. Throughout
this paper, we fix the direction of the applied external elec-
tric field to be along +ẑ, i.e., E = Eẑ. Further, we rotate
the magnetic field along the xz plane such that it makes an
angle γ with respect to the x̂ axis, i.e., B = B(cos γ , 0, sin γ ).
When γ = π/2, the electric and magnetic fields are parallel to
each other. Similarly, the strain-induced chiral gauge field is
rotated in the xz plane, i.e., B5

χ = χB5(cos γ5, 0, sin γ5). The
geometrical arrangement is presented in Fig. 1. The details of
the Boltzmann calculations are relegated to the Appendix.

A. Longitudinal magnetoconductance in the absence of strain

First, we briefly discuss longitudinal magnetoconductance
in the absence of strain-induced chiral gauge field B5. Since
this has been discussed in many earlier works, we will
not elucidate in a detailed fashion. On application of a
magnetic field parallel to the electric field, the longitudinal
magnetoconductivity obtained in the semiclassical limit is
expressed as

σzz(B) = σ (2)
zz B2 + σ (0)

zz , (2)

where σ (0)
zz is the conductivity in absence of any magnetic

field, while σ (2)
zz is the quadratic coefficient of magnetic

field dependence. In contrast to earlier anticipation that the
quadratic coefficient σ (2)

zz is always positive, it was recently
realized that the coefficient can become negative if the inter-
valley scattering is sufficiently strong [32]. In other words,
large intervalley scattering results in negative longitudinal
magnetoconductivity or reverses its sign. Specifically, this oc-
curs above a critical intervalley scattering strength αc, and the
coefficient σ (2)

zz continuously goes from positive to negative
around αc. The sign of the parameter σ (2)

zz also correlates with
increasing or decreasing longitudinal magnetoconductivity.
We call this as the usual “sign reversal” of LMC, which refers
to the fact that σzz(|B|) − σzz(B = 0) continuously changes
sign from positive to negative.

B. Longitudinal magnetoconductance in the presence of strain

Next, let us examine the behavior in the presence of an
effective chiral gauge field (B5) that may arise in inhomoge-
neous WSMs due to the presence of strain. The chiral gauge
field couples oppositely in opposite valleys; thus, the net mag-
netic field becomes valley dependent, i.e., B → B + χB5. We
first assume that B5 is held parallel to the external magnetic
field B, which in turn is parallel to the electric field. Figure 2
plots the behavior of δσzz(B), which is the change in LMC
due to the magnetic field, i.e., δσzz(B) = σzz(B) − σzz(B = 0).
We find that the increase or decrease of LMC depends on
the direction of the magnetic field, especially close to B = 0.
We find that LMC decreases for positive values of magnetic
field and increases for negative values of magnetic field. Fur-
thermore, when the magnitude of B is increased further away
from zero, LMC increases (decreases) for both negative and
positive values of B when α < αc (α > αc). We contrast this
to the behavior in the absence of strain, where the LMC either
decreases (when α > αc) or increases (when α < αc) irrespec-
tive of the magnitude and the direction of the applied magnetic
field. Hence, it turns out that stating whether the longitudinal
magnetoconductance is only positive or negative for a given
scenario, as often is the case in most of the experimental and
theoretical literature, turns out to be rather ambiguous.

FIG. 2. Change in LMC [δσzz(B)] with respect to the magnetic
field for a minimal model of untilted TR broken WSM [Eq. (2)].
(a) Weak intervalley scattering (α < αc), and (b) strong (and weak)
intervalley scattering (α > αc). As we move from blue to the green
curve in both the plots (in the direction of the arrow), we increase
B5 from zero to 0.2 T. The B5 field is held parallel to the external
magnetic field. The vertex B0 and the corresponding σ (0)

zz are marked
for the green curve in plot (b).
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1. Weak and strong sign reversal

To counter the above ambiguity, first, we generalize the
expression of magnetoconductivity from Eq. (2) to the fol-
lowing:

σzz(B) = σ (2)
zz (B − B0)

2 + σ (0)
zz . (3)

The above definition allows us to shift the vertex of the
parabola (B0) away from the origin, which is essential to
fit the results presented in Fig. 2. Now, in Fig. 2(a), when
the strength of the intervalley scattering α < αc, even though
LMC is negative at low positive magnetic fields, it is in fact
always positive when seen in reference to the vertex B0, i.e.,
LMC is always positive when the change in the magnetic field
and conductivity is seen with respect to the conductivity at
B0, and not with respect to the origin. We call this as weak
sign reversal because the orientation of the parabola remains
intact, only the vertex is shifted from the origin, and also σ (2)

zz
remains positive. Thus, when intervalley scattering is weak,
strain in inhomogeneous WSMs drives the system to the weak
sign-reversed state along a particular direction of the mag-
netic field. In summary, the characteristics defining weak sign
reversal are the following: (i) B0 �= 0, (ii) σ (0)

zz �= σzz(B = 0),
(iii) sign σ (2)

zz > 0.
In Fig. 2(b), when the strength of the intervalley scattering

is greater than the critical value (αc), the orientation of the
parabola is reversed, i.e., LMC decreases when seen with
reference to B0, and σ (2)

zz becomes negative. Due to this reason,
we call this as strong sign reversal. Strong sign reversal is gov-
erned by the following condition: (i) sign σ (2)

zz < 0, without
any restriction to the values of B0 and σ (0)

zz . We then conclude
that signatures of both strong and weak sign reversal would be
(i) B0 �= 0, (ii) σ (0)

zz �= σzz(B = 0), (iii) sign σ (2)
zz < 0.

Since B0 is shifted from the origin due to infinitesimal
strain even when α > αc, we conclude that sufficiently strong
intervalley scattering along with strain in inhomogeneous
WSMs drives the system to show signatures of both weak and
strong sign reversal, as demonstrated in Fig. 2(b). In general,
the chiral gauge may be oriented away from the z axis and
rotated along the xz plane, and the variation of magnetocon-
ductivity with respect to the angle γ5 (the angle between x
axis and the B5 field) is straightforward to understand. As
γ5 increases from zero to π/2, the contribution due to to the
chiral gauge field increases in a sinusoidal fashion. We do not
explicitly plot this behavior.

We point out that strong sign reversal of LMC results from
including energy shift due to the orbital magnetic moment
(OMM) [31–35]. Importantly, the energy shift results in dis-
similar Fermi surfaces due to the differing signs of the orbital
magnetic moment at both valleys. In Weyl semimetals, chiral
anomaly refers to the nonconservation of chiral charge in the
presence of external gauge fields, i.e., a right-moving electron
scatters to a left-moving state; the conductivity increases with
an increasing magnetic field. The dissimilarity in the Fermi
surfaces due to the OMM energy shift causes a right-moving
state to scatter into a state that is no longer its left-mover
partner state, as required by the chiral anomaly. Furthermore,
increasing intervalley scattering strength results in a greater
probability of mismatch of the Fermi surfaces, eventually
reversing the LMC sign. Weak sign reversal, on the other

FIG. 3. (a) The vertex of the parabola B0, and (b) conductivity
at B0 for a minimal model of untilted TR broken WSM [Eq. (2)].
Around the blue dashed contour (α = αc) we see strong sign reversal.
The parameters B0 and σ (0)

zz show a striking change of sign as we
move across the αc contour.

hand, involves both intravalley and intervalley scattering. It
is qualitatively different from strong sign reversal, and is not
necessarily dependent on the orbital magnetic moment correc-
tion to the energy dispersion.

2. Transition between weak and strong sign-reversed cases

In Fig. 3 we plot the parameters B0 and σ (0)
zz as a function of

the chiral gauge field and intervalley scattering strength. The
transition from “weak” to “strong and weak” sign-reversed
case is characterized by reversal in signs of the relative offset
in conductivity σ (0)

zz , as well as the vertex of the parabola B0,
i.e., B0 � 0 when σ (0)

zz � 0, and vice versa. In contrast, σ (2)
zz

continuously interpolates across zero (not plotted). No dis-
continuity in B0 or σ (0) is observed in the weak sign-reversed
case, i.e., as the strain-induced field is increased from zero for
a constant intervalley scattering, the parameters B0 and σ (0)

zz
vary continuously.

In Fig. 4 we plot the the longitudinal magnetoconductiv-
ity as a function of magnetic field for different values of
intervalley scattering. An increase in intervalley scattering
strength decreases the magnetoconductivity, i.e., |σzz(B, α)| >

|σzz(B, α + ε)|, where ε is the infinitesimal increase in
the scattering strength, which is also expected on physical
grounds. We find this feature remains intact even in the
presence of strain-induced chiral gauge field, as shown in
Fig. 4(b). We particularly highlight this point as this will
be contrasted to the planar Hall conductivity that shows an
anomalous increase in conductivity with increasing interval-
ley scattering strength. In Fig. 4(c) we plot the LMC in the
presence of only chiral gauge magnetic field (i.e., B = 0).
Since, in this case the external magnetic field is zero, positive
(negative) LMC and weak (strong) sign reversal can only
be defined with reference to the B5 field. We find that the
strain-induced chiral gauge field by itself only results in strong
sign-reversed phase irrespective of the intervalley scattering
strength. In Fig. 4(d) we plot LMC as a function of the chiral
gauge field B5, but in the presence of a fixed external magnetic
field. The B5 field results in strong sign-reversed phase and
the additional external magnetic field results in weak sign-
reversed phase as well.

3. Experimental implications

Experimentally, by tuning the applied strain on the mate-
rial, one can realize the weak sign-reversed state; however,
switching to the strong sign-reversed state requires tuning
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FIG. 4. Longitudinal magnetoconductivity for a minimal model of TR broken untilted Weyl semimetal. (a) Increasing intervalley scattering
strength results in strong sign reversal. (b) In addition to this, infinitesimal strain now results in weak sign reversal as well. (c) When plotted
as a function of the gauge field B5, LMC is always strongly sign reversed. (d) In the presence of an external magnetic field, we see signatures
of weak sign reversal as well. In all the plots as we move from blue to the green curve we increase the intervalley scattering strength α from
below αc to above αc.

the intervalley scattering strength. The intervalley scattering
strength depends on the magnitude and the type of the inherent
disorder present in the material and the separation between the
Weyl cones. Tuning the disorder in a material is rather com-
plex; however, the separation between the Weyl cones may be
tuned experimentally in some cases. For instance, in a Dirac
semimetal (which turns into a Weyl semimetal in the pres-
ence of an external magnetic field), the separation between
the Weyl cones is typically a function of the strength of the
applied magnetic field [11,36,37]. Thus, the intervalley scat-
tering strength can be tuned in a Dirac semimetal as a function
of the applied magnetic field, resulting in the realization of the
strong sign-reversed state. By fitting the magnetoconductivity
data in Eq. (3) and extracting the parameters B0, σ (0)

zz , the
phase plots in Fig. 3 can probed experimentally in a Dirac
semimetal.

C. Planar Hall conductivity

Having discussed the longitudinal magnetoconductivity,
here we wish to study the planar Hall conductivity. The de-
pendence of the planar Hall conductivity σxz on the magnetic
field is typically quadratic and we may expand it as [14]

σxz(B) = σ (2)
xz (B − B0)

2 + σ (0)
xz , (4)

where B0 is vertex of the parabola, and σ (2)
xz is the quadratic

coefficient. The planar Hall conductivity depends on the angle
of the applied magnetic field, specifically as sin(2γ ), where γ

is the angle of the magnetic field with respect to the x axis
[14] (see Fig. 1). To disentangle the effect of strain, we first
evaluate the planar Hall conductivity in the absence of an
external magnetic field. In Fig. 5(a) we plot the planar Hall
conductivity σxz(B5) that is evaluated in the absence of exter-
nal magnetic field for several different values of the intervalley
scattering strength. The angular behavior with respect to γ5
also turns out to be sin(2γ5) as the case with the usual planar
Hall conductivity. We also explicitly examine the effect of
intervalley scattering α in Fig. 5(b). Even though the conduc-
tivity is expected to decrease with increasing scattering, the
functional form has still never been explicitly evaluated, espe-
cially when the scattering is momentum dependent. Based on
our numerics, we conclude find that the planar Hall conduc-
tivity induced by the chiral gauge field depends inversely on
the scattering strength, i.e., σxz(B5) ∼ 1/α.

1. Opposing effects of external and chiral magnetic field

Based on the above observations, one may naively con-
clude that the effect of the strain-induced chiral gauge field
and the external magnetic field are precisely the same, as
also concluded in Ref. [30]. We reexamine this conclusion
by comparing and contrasting the behavior of the planar Hall
conductivity when (i) external magnetic field is applied and
the strain-induced field is absent, and (ii) when strain-induced
field is present but external magnetic field is absent. We find
the contribution to the planar Hall conductivity to be different
both in sign and magnitude, which is in contrast to earlier
claims [30]. Specifically, choosing γ = γ5, we find that σxz(B)
when B5 = 0 has the opposite sign and magnitude to the case
σxz(B5) when B = 0. In other words, the effect of strain is to
oppose the planar Hall effect with a different magnitude. Due
to the difference in magnitude, the two effects do not cancel
out each other. This feature has been highlighted in Fig. 6(a).
We attribute this behavior to the inclusion of intervalley scat-
tering, momentum dependence, as well as charge conservation
that have been neglected in earlier works.

2. Unusual conductivity

Next, we study the planar Hall conductivity in the presence
of both the external magnetic field and strain-induced chiral
magnetic field. In the presence of an external magnetic field,
the effect of strain is to shift and tilt the conductivity parabola,
thereby resulting in weak sign reversal of the conductivity as
shown in Fig. 6(b). In contrast to the longitudinal magneto-

FIG. 5. Planar Hall conductivity for a minimal model of untilted
TR broken WSM in the absence of any magnetic field. (a) Variation
with respect to the angle γ5. Increasing α reduces the conductivity,
as expected. (b) PHC behaves as the inverse of scattering strength.
Since σxz(B5 = 0) = 0, we have normalized σxz appropriately in both
the plots. In creasing B5 field increases the conductivity.
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FIG. 6. Planar Hall conductivity for a minimal model of untilted
TR broken WSM. (a) PHC as a function of external magnetic field
B and no strain-induced field (B5 = 0) is compared with the inset
where PHC has been plotted as a function of B5 with no external field
(B = 0). The angle γ was chosen to be equal to γ5. Strain opposes
the planar Hall effect albeit with different magnitude. (b) PHC in
the presence of both magnetic field and strain. The chiral gauge field
causes weak sign reversal. The dotted ellipses highlight regions that
show an anomalous behavior with respect to intervalley scattering
strength. The width of lines is reduced for better visibility. In all the
curves, as we go from blue to green, we increase α. All the plots are
appropriately normalized.

conductivity, PHC never shows strong sign reversal even on
increasing the intervalley scattering above the critical value.
However, interestingly, we find that in a certain window of
the magnetic field, increasing intervalley scattering strength
increases the magnitude of the planar Hall conductivity, which
is counterintuitive. We understand this behavior as the result
of the opposing effects of strain-induced PHC and magnetic
field-induced PHC. We better visualize this in Fig. 7, where
we plot the planar Hall conductivity as a function of the
intervalley scattering strength α. First, we notice that in the
absence of B5 field, the Hall conductivity shows some amount
of nonlinearity as a function of 1/α. This is contrasted to
Fig. 5(b) (the case when B = 0, B5 �= 0), where linear behav-
ior was observed for all ranges of α. Second, in the presence of
B5 field, the behavior of σxz with respect to α can be strikingly
different. Due to the weak sign reversal, σxz can switch signs,
which explains the divergences in the plot in Fig. 7(b). Fur-
thermore, we note that when σxz switches sign from positive
to negative, the behavior with respect to α becomes anoma-
lous, i.e., increasing α, increases the magnitude of σxz. This
anomalous behavior with respect to the intervalley scattering
strength is not observed for longitudinal magnetoconductivity.

FIG. 7. Planar Hall conductance for a minimal model of untilted
WSM as a function of intervalley scattering strength. (a) In absence
of B5 field. (b) In presence of B5 field. In all the curves, as we go
from blue to green, we increase B. All the plots are appropriately
normalized.

FIG. 8. Planar Hall conductance for a minimal model of untilted
WSM. (a) As a function of the external B field. As we go from blue to
red curve, we increase B5 from −0.25 to +0.25 T. (b) As a function
of the B5 field. As we go from blue to red curve, we increase B
from 0 to 1 T. All the plots are appropriately normalized. We chose
γ = γ5 = 0.45π , and α = 0.5.

3. Experimental implications

Experimentally, in Dirac semimetals, where varying the
external magnetic field may vary the intervalley scattering
strength, one can may the behavior of σxz as a function of
the intervalley scatteting strength, as shown in Fig. 7. Fur-
thermore, one can also externally tune in the amount of strain
and the magnitude of the external magnetic field that results
in modulation the planar Hall conductivity σxz as shown in
Fig. 8. Importantly, we expect σxz as a function of B to exhibit
weak sign reversal while σxz as a function of B5 to show strong
sign reversal. This behavior can be again traced back to the
opposing effects of magnetic field and strain discussed earlier.

III. TIME-REVERSAL BROKENWSM WITH TILT

Having discussed the physics of strain-induced gauge field
in a minimal untilted model of Weyl fermions, we now discuss
the case when there is a finite tilt in the Weyl cones. The
Hamiltonian is given by

H =
∑

χ

∑
k

χ h̄vF
(
k · σ + tχz kz

)
. (5)

Here tz is the tilting parameter along the z axis. We only focus
on the case when tχz < vF , thus restricting ourselves to type-I
Weyl semimetals.

A. Longitudinal magnetoconductivity

Depending on whether the two cones are tilted along the
same or opposite direction, the behavior of both LMC and
PHC can behave differently. In the absence of strain, if the
cones are tilted in opposite directions, i.e., tχz = −tχ

′
z , a linear

in magnetic field term is added to the overall longitudinal
magnetoconductivity, and the magnetoconductivity parabola
is shifted and tilted along a particular direction. In other
words, we can say that in the absence of external strain, tilting
results in weak sign reversal, although this has never been
explicitly pointed out in earlier works [34,38,39]. When the
intervalley scattering strength is large, tilting the Weyl cones
results in both weak and strong sign reversal.
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FIG. 9. LMC for a tilted TR broken WSM [Eq. (5)] with t1z =
−t (−1)

z . (a) When B5 = 0.1 T. (b) When B5 = −0.1 T. The inset in
both figures is for the case when α = 1.2 > αc, while in the main
figures α = 0.2 < αc. As we move from blue to the green curve in
both the plots, we increase tz/vF from 0 to 0.06. The opposing effects
and adding effects of strain and tilt are highlighted in (a) and (b),
respectively.

1. Oppositely tilted Weyl cones

In the presence of both tilt and strain, we arrive at a very
interesting scenario. Both of these parameters, i.e., tz and B5,
can tilt the LMC parabola either in the same direction or
opposite direction, and this depends on the angle between
the tilt direction and the strain-induced gauge field. In Fig. 9
we plot the longitudinal magnetoconductivity for a tilted TR
broken WSM presented in Eq. (5) when the Weyl cones are
tilted opposite to each other. Depending on the direction of the
strain-induced gauge field B5, the effects of tilting and strain
can either add up or even cancel out. In Fig. 9(a), B5 > 0,
and the strain and tilting effects work in opposite directions,
while in Fig. 9(b), B5 < 0, and the strain and tilting effects
work in the same direction. The tilting of the parabola is
due to the addition of a linear-in-B component in the overall
magnetoconductivity. Their signs may or may not be equal to
each other depending on the relative orientation between tilt
and strain. The plots imply weak sign reversal for α < αc, and
additionally, strong sign reversal for α > αc. In Fig. 10(a) we
plot the quadratic coefficient σ (2)

zz as a function of both tilt and
intervalley scattering strength in the presence of a B5 field. We
note that the presence of the tilt parameter curves the contour
αc separating the two strong sign-reversed regions, i.e., αc =
αc(tz ). This dependence is expected because the presence of
tilt parameter contributes additionally to the dissimilarity of
the Fermi surfaces.

FIG. 10. (a) The quadratic coefficient of the longitudinal mag-
netoconductivity σ (2)

zz for tilted TR broken WSM. (a) t (1)z = −t (−1)
z .

(b) t (1)z = t (−1)
z . Strain-induced chiral magnetic field was fixed to

B5 = 0.1 T in both the cases. The blue contour separates the regions
when σ (2)

zz > 0 and when σ (2)
zz < 0 (strong sign reversal).

FIG. 11. LMC for a tilted TR broken WSM when the tilts are
oriented in the same direction. Both weak and strong sign reversal
is observed irrespective of the intervalley scattering strength. The
legends are same in both the plots.

2. Weyl cones tilted in the same direction

In the absence of strain it is known that when the nodes
are oriented along the same direction (t1z = t−1

z ), the lin-
ear component of the longitudinal magnetoconductivity does
not survive as the contributions from both nodes cancel out
[34,38,39]. Hence, as expected, only strong sign reversal is
observed as a function of intervalley scattering strength. Now,
in the presence of only strain-induced field, such cancellation
does not occur and one observes weak sign reversal as a
function of the tilt parameter. Furthermore, in the presence
of B5 field and absence of external magnetic field, we ob-
serve both strong and weak sign reversal. To illustrate this,
in Fig. 11 we plot LMC for a tilted TR broken WSMwhen the
tilts are oriented in the same direction. When both magnetic
field and strain-induced chiral magnetic field are present, the
combination of two can give rise to interesting features. In
Fig. 10(b) we plot the quadratic coefficient σ (2)

zz as a function
of both tilt and intervalley scattering strength in the presence
of a B5 field. The αc(tz ) curve separating the two sign-reversed
phases is different depending on the fact whether the Weyl
cones are oriented opposite to each other or oriented along the
same direction.

3. Striking phase plots

Striking features are observed for the parameters B0 (the
vertex of the parabola) as well as σ (0)

zz . We demonstrate this
in Fig. 12. We fix strain-induced gauge field to be around
B5 = 0.1 T. Let us first focus on the case when the Weyl
cones are oriented opposite to each other. When α < αc, the
sign of B0 changes continuously from negative to positive as
tz is varied from negative to positive. On the other hand, when
α > αc, the sign of B0 changes from positive to negative as tz
is varied from negative to positive. The effects of strain and tilt
and strain can either add up or cancel out and the combination
can tilt the parabola overall to the left or to the right resulting
in weak sign reversal. This is demonstrated in the color plot
in Fig. 12(a). When α > αc, the sign of B0 changes discon-
tinuously (feature of strong sign reversal). Now, since weak
sign reversal does not change the sign of σ (0), we do not see a
sign change in σ (0) as one varies the tilt for a given value of α.
The sign change in σ (0) only occurs as a result of strong sign
reversal [Fig. 12(b)]. Now, when the cones are oriented along
the same direction, the linear component arising from the tilt
is canceled out and hence we do not observe any change in B0
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FIG. 12. LMC parameters for tilted TR broken WSMs. The center of the parabola B0 (a) and σ (0) as a function of the tilt parameter and
intervalley scattering strength, in the presence of a fixed value of chiral gauge magnetic field B5 = 0.1T . The tilts are oriented opposite to each
other in plots (a) and (b). The plots (c) and (d) are for the case when the Weyl cone tilts are oriented in the same direction.

or σ (0) by varying the tilt. The only change occurs at α = αc

due to strong sign reversal. This is highlighted in Figs. 12(c)
and 12(d).

B. Planar Hall effect

Next we discuss the strain-induced planar Hall effect for
tilted TR broken Weyl semimetals. When the cones are ori-
ented along the opposite directions we observe a ∼ sin 2γ5
behavior and the effect of the tilt is only quantitative, and
so is the effect of varying intervalley scattering strength. On
the other hand, when the cones are oriented along the same
direction, the behavior changes to ∼ sin γ5. Changing the tilt
parameter can switch the sign of the planar Hall conductance
as well. We demonstrate these features in Fig. 13. Varying
the intervalley scattering strength only changes the overall
magnitude (not explicitly plotted).

Finally, we discuss the behavior of conductivity on chang-
ing the intervalley scattering strength α. In Fig. 14, we plot
the change in the magnitude of the planar Hall conductivity
[|σxz(α)| − |σxz(α + ε)|] for an infinitesimal increase in the
scattering strength (by a small amount ε). In both cases, i.e.,
when theWeyl cones tilted in opposite direction, and when the
Weyl cones are tilted in the same direction, we find regions
in the B5 − tz space where anomalous behavior of the Hall
conductivity is observed, i.e., the magnitude of conductivity
increases on increasing the intervalley scattering strength. We
have already seen this behavior for untilted WSM as well
(Fig. 7), and here we calculate its dependence on the tilting of

FIG. 13. (a) The planar Hall conductance in TR broken tilted
WSM as a function of the angle γ5 when (a) the cones are tilted
along opposite direction, and (b) cones are oriented along the same
direction. The legends are the same in both the plots. Both plots are
appropriately normalized such that the yellow curve is identical in
both the figures as expected.

the Weyl cones. Before closing this section, we point out that
in experiments where strain can be applied and manipulated
on the inhomogeneous samples can test the above predictions.

IV. INVERSION ASYMMETRIC WEYL SEMIMETALS

Having discussed the effect of strain in time-reversal
broken WSMs we now move on to the case of inversion
asymmetric WSMs. To this end, we will restrict our attention
to the following minimal model for an inversion asymmetric
WSM that consists of four nodes as dictated by symmetry
considerations:

H =
4∑

n=1

(
χnh̄vFk · σ + h̄vFt

n
z kzσ0

)
. (6)

The system consists of four Weyl nodes located at the points
K = (±k0, 0,±k0) in the Brillouin zone. In Eq. (6), χn is
the chirality, and we are also introducing the parameter
t nz , that represents the tilting of the Weyl cone. The Weyl
cones are assumed to be tilted only along the z direction.
Specifically, (1, tz ) = (χ1, t (1)z ) = (−χ2, t (2)z ) = (χ3,−t (3)z ) =
(−χ4,−t (4)z ), such that inversion symmetry is broken. The tilt
parameter tz is considered to be less than unity. Figure 15(a)
plots the schematic diagram of this prototype inversion asym-
metric Weyl semimetal. Specifically, we must consider four
intranode scattering channels (node n ⇐⇒ n) and four in-
ternode scattering channels (node n ⇐⇒ [n + 1]mod 4). The

FIG. 14. Change in the magnitude of the planar Hall conductivity
[|σxz(α)| − |σxz(α + ε)|] for a tilted TR brokenWSM [Eq. (5)] on in-
finitesimally increasing in the scattering strength (by ε). (a) TheWeyl
cones are tilted in opposite direction. (b) The Weyl cones are tilted in
the same direction. In the region enclosed within blue contours, we
find anomalous behavior of conductivity with the scattering strength,
i.e., the magnitude of the conductivity increases on the increase of
scattering strength. We choose α = 0.5 and ε = 0.01.
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FIG. 15. (a) Schematic of Weyl nodes in a prototype model of an inversion asymmetric Weyl semimetal. Here χ is the chirality, tz is the
tilt, and αi j are scattering rates from node i to node j. (b) LMC as a function of magnetic field when the intervalley scattering rates are less
than the critical value. (c) LMC as a function of magnetic field when the intervalley scattering rates are above the critical value. The legends in
(b) and (c) are identical. (d) σ (2)

zz for a fixed value of α12 = 0.19. Plots (b), (c), and (d) are in the absence of strain, i.e., B5 = 0.

dimensionless scattering strength between node m and node
n is denoted as αmn. For simplicity, we ignore the scattering
between nodes (4 ⇐⇒ 2) and nodes (1 ⇐⇒ 3) since they
involve a large momentum transfer compared to others. The
four internode scatterings can be divided into two categories:
(i) scattering between Weyl cones of opposite chirality and
opposite tilt orientation (1 ⇐⇒ 2) and (3 ⇐⇒ 4), and (ii)
scattering between Weyl cones of opposite chirality and same
tilt orientation (1 ⇐⇒ 4) and (2 ⇐⇒ 3). Since both these
categories result in different behaviors, it is of interest to see
the interplay between the two.

A. LMC in the absence of strain

We first examine the behavior of longitudinal magnetocon-
ductivity in the absence of any strain. Earlier, we examined
that for a system of only two tilted cones (of opposite chi-
rality), weak sign reversal is possible only if the cones are
oriented opposite to each other. However, in the current case,
weak sign reversal generated by internode scattering channel
(1⇐⇒ 2) is exactly canceled by scattering channel (4⇐⇒ 3).
Second, the scatterings (1 ⇐⇒ 4) and (2 ⇐⇒ 3) do not cause
weak sign reversal as they involve Weyl cones with the same
tilt. Therefore, in the absence of B5 field, weak sign rever-
sal is not observed for the case of an inversion asymmetric
WSM. In Fig. 15 we plot longitudinal magnetoconductivity
for the inversion asymmetric Weyl semimetal [Eq. (6)] in the
absence of strain-induced chiral gauge field B5. As discussed,
we do not observe any signature of weak sign reversal, and
there is only strong sign reversal when α12 and/or α14 are
large enough. Increasing tilt does not qualitatively change the
behavior and increasing the magnitude of the tilt in either

direction is only seen to increase the magnitude of magne-
toconductivity.

B. LMC in the presence of strain and absence
of external magnetic field

Next, we study the behavior in the absence of an external
magnetic field but in the presence of strain-induced gauge
field B5. First, similar to the case with TR broken Weyl
semimetals, we find that strain-induced chiral magnetic field
B5 always results in a negative LMC coefficient σ (2)

zz . This
results in contradiction to earlier claims that find an increase
in longitudinal magnetoconductivity with strain [28,30]. The
reason can be traced out to the noninclusion of interval-
ley scattering, momentum-dependent scattering, and charge
conservation, all of which are included in this work (see the
Appendix). Furthermore, we find that strain, by itself, results
in strong sign reversal, while tilting, additionally, results in
weak sign reversal. In Fig. 16(a) we plot LMC as a function of
strain-induced magnetic field B5, which clearly demonstrates
these features. As before, we fit the magnetoconductivity via
the following expression:

σzz(B5) = σ (2)
zz (B − B50)

2 + σzz(B50), (7)

where the slope of the conductivity σ (2)
zz is always found to

be negative irrespective of the value of tilt, strain, intervalley
scattering strengths across either nodes. The center of the
parabola (B50) directly correlates with the tilt parameter tz.
Depending on the sign of tz, B50 can be either positive or neg-
ative. The parameter B50 is also found to have dependence on
the scattering strength, but this dependence is relatively weak
compared to the dependence on tz. In Figs. 16(b)–16(d), we
plot the parameters σ (2)

zz , B50, and σzz(B50) as a function of α14,

FIG. 16. LMC for inversion asymmetric Weyl semimetal in the presence of strain-induced chiral magnetic field (B5) and absence of
magnetic field. (a) A finite tilt can result in weak sign reversal. The plot is for a fixed value of α12 = 0.4, but the qualitative behavior is
independent of scattering strength. (b), (c), and (d) plot the parameters σ (2)

zz , B50, and σ (B50) as a function of parameters α14 and tz. We fixed
α12 = 0.19.
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FIG. 17. The parameters B0 (a) and σ (0) (b) for inversion
asymmetric Weyl semimetals [Eq. (6)] in the presence of both strain-
induced field and external magnetic field. We have fixed α12 = 0.3,
B5 = 0.1 T. Weak sign reversal is not observed and strong sign-
reversal occurs at α14 = α14c(tz ).

and tz, keeping α12 fixed, and B = 0. No sharp discontinuities
are observed in the parameters since the system is already in
strong sign-reversed state.

C. LMC in the presence of both strain and external
magnetic field

In inversion asymmetric inhomogeneous Weyl semimetals,
interesting effects can occur as a result of the interplay be-
tween the strain-induced chiral gauge field, external magnetic
field, and the tilt parameter, as demonstrated in Fig. 17. We
examine LMC as a function of external magnetic field for a
fixed value of chiral gauge field, and use Eq. (3) to evaluate
the fit parameters B0, σ (2)

zz , and σ (0)
zz . We do not find a signa-

ture weak sign reversal, and only strong sign reversal occurs
when the intervalley scattering α14 > α14c, where α14c now is
a function of tilt parameter. Around α = α14c(tz ) we find a
sharp change in the sign of the parameters B0 and σ (0)

zz that
corresponds to a continuous change of sign in σ (2)

zz as well.

D. Experimental implications

It is worthwhile pointing out that by identifying the pa-
rameters B0 and σ (0)

zz from the experimentally measured
conductivity, their signs may help identify the dominant
scattering mechanisms in the system, i.e., either internode
or intranode scattering, and also provide us insight about
the strain in the samples as well as the tilting if the Weyl
cones. Experimentally, one may also study LMC in inversion

asymmetric Weyl semimetals by tuning the amount of strain
in the system. Therefore, it is of interest to study the effect of
varying strain on LMC. In Fig. 18(a) we plot δσzz = σzz(B) −
σzz(B = 0) simultaneously varying the intervalley scattering
strength α14 as well as the strain-induced chiral gauge field
B5. We see signatures of both weak and strong sign reversal.
Increasing α beyond αc results in strong sign reversal, while
change in the tilt parameter results in weak sign reversal.
We fix the value of α12, and evaluate the fit parameters of
σzz(B) from Eq. (3). Figure 18(b) plots σ (2)

zz as a function of
B5 and α14. The contour α14c where σ (2)

zz switches sign shows
a dependence on B5 as well. Therefore, the contour αc is in
general a function of both tz and B5. Figures 18(c) and 18(d)
plot the parameters B0 and σ (0)

zz obtained from Eq. (3), both of
which display very interesting behavior as a result of varying
B5 and α14. In Fig. 18(c), when α < αc(B5), the sign of B0

changes from negative to positive as B5 changes sign from
negative to positive. When α > αc(B5), the change of sign is
from positive to negative. At α = αc(B5), there is strong sign
reversal resulting in sharp contrasting features on the both
sides of αc(B5). On the other hand, in Fig. 18(d), σ (0)

zz does
not change sign as B5 changes sign, but like B0, it displays
striking behavior around αc(B5) due to strong sign reversal.

E. Planar Hall effect

Before closing this section, we also comment on the pla-
nar Hall effect in inversion asymmetric Weyl semimetals.
Figure 19(a) plots the planar Hall conductivity σxz as a func-
tion of the angle γ5 in the absence of an external magnetic
field and presence of strain-induced gauge field B5. The PHC
behaves as ∼ sin(2γ5) as in Fig. 13(a). The contribution from
the two time-reversed and opposite tilt Weyl node pairs adds
up, while the contribution from two time-reversed and same
tilt Weyl node pairs cancels out, and that is why we do not
get a ∼ sin(γ5) trend as in Fig. 13(b). In Figure 19(b), we
plot the change in the magnitude of the planar Hall conduc-
tivity upon infinitesimally increasing the intervalley strength
α14. We again notice a region in the B5 − tz space where the
variation of conductivity is anomalous, i.e., increasing inter-
valley scattering increases the magnitude of the conductivity.
A similar plot is observed when we instead fix α14 and vary
α12, therefore, we do not explicitly plot this here.

FIG. 18. (a) LMC for inversion asymmetric Weyl semimetal. As we move from the blue to the green curve, we simultaneously increase
B5 as well as α14. Both weak and strong sign-reversal are exhibited. The plots (b), (c), and (d) plot the parameters δσ (2)

zz , B0, and σ (0) for fixed
α12 and tz �= 0. The blue contour in plot (b) separates the phases where σ (2)

zz changes sign. Again, we see signatures of both weak and strong
sign-reversal. The tilt parameter is fixed to tz/vF = −0.1.
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FIG. 19. Planar Hall conductance for inversion asymmetric Weyl
semimetal. (a) PHC as a function of γ5, when B = 0 and B5 �= 0.
(b) The change in the magnitude of the planar Hall conductivity
on increasing α14 infinitesimally. In the region between the blue
contours, we observe anomalous increase in conductivity. Here we
fix, B = 1 T, α12 = 0.4, α14 = 0.5, and ε = 0.01.

V. EFFECT OF INHOMOGENEOUS B5 FIELD

So far we have assumed that the system is under a strain
profile that gives a constant pseudomagnetic field, i.e., the Bχ

5
field is position independent. A spatially modulating chiral
magnetic field would stem from an appropriate modulation
of the valley-dependent vector potential in momentum space
Aχ . We anticipate that the effect of including the higher-order
terms in the Fourier expansion could result in the following
effects: (i) averaging of the behavior when the sample size
is larger than regions where B5 might be considered homo-
geneous, (ii) the low-energy Weyl Hamiltonian may acquire
additional higher-order terms that may result in very inter-
esting effects. We reserve the problem of finding Boltzmann
solutions to an inhomogeneous magnetic field for the future.
Keeping only the leading-order term in the Fourier series ex-
pansion ofAχ about k = 0, we end up with the conclusion that
the original Hamiltonian now has an additional term that is
linear in k. Here, we content ourselves with incorporating this
effect into the modulation of the Fermi velocity [40–42], such
that vF −→ vF + χδvF , where δ is a dimensionless parameter
that incorporates the change in Fermi velocity. To this end,
we study the effect of inhomogeneous strain-induced chiral
gauge field B5 on TR broken untitled WSM and inversion
asymmetric Weyl semimetal.

A. TR broken untilted WSM under inhomogeneous strain

In Fig. 20 we plot the LMC as a function of B in presence
of inhomogeneous B5 field. We observe that inhomogeneity

causes deviations from the quadratic dependence of LMC on
the magnetic field and also can lead to nonmonotonic behav-
ior. We also have studied the effect of inhomogeneous B5 field
on LMC for the following cases: (i) B5 = 0 and B �= 0, (ii)
B5 �= 0 and B = 0. In case (i), we find that the LMC becomes
positive at large enough δ for all values of α. In case (ii), no
sign reversal is observed but inhomogeneity in B5 shifts the
focus of the parabola. We do not explicitly plot this behavior.
We conclude that weak inhomogeneity in the strain-induced
chiral gauge field results primarily in quantitative changes
while moderate amount of inhomogeneity may result in non-
monotonic behavior of LMC.

B. Inversion asymmetric tilted WSM
under inhomogeneous strain

We consider the four-node minimal model of inversion
asymmetric tilted WSM as described in Eq. (6). To study
the effect of inhomogeneity in the strain-induced chiral mag-
netic field B5, we modify the Fermi velocity at each valley
as described in the case of TR broken untilted WSMs. In
Figs. 21(a)–21(d) we have plotted the change in LMC, i.e.,
δσzz(B) vs B for different values of δ. As in the case of
homogeneous B5 field, we are able fit the magnetoconduc-
tivity via σzz(B5) = σ (2)

zz (B − B50)2 + σzz(B50). As described
earlier, due to the nonzero B5 field the LMC parabola has a
different vertex and shows “weak sign reversal.” The effect
of the inhomogeneity is to shift the vertex and focus of the
LMC parabola. We also have studied the LMC as a function
of the B5 field in the absence of an external magnetic field
at different values of tilt tz. We find that weak sign reversal
is intact up to δ = 0.20. We do not plot this explicitly. We
conclude that weak inhomogeneity in the chiral gauge field
does not result in qualitative changes of the results.

VI. CONCLUSIONS

The sign of longitudinal magnetoconductivity in Weyl
semimetals due to chiral anomaly has been a subject of intense
research [31–34,38,39,43–50]. Almost unanimously, the sign
of longitudinal magnetoconductivity has been agreed upon to
be positive, at least within the limit of weak magnetic fields.
However, various factors, such as tilting of the Weyl cones,
strain, and inhomogeneities in the material, qualitatively af-
fect the LMC in Weyl semimetals. The interplay between

FIG. 20. LMC vs B for minimal model of TR broken untilted WSM for an inhomogeneous B5 field for different values of δ. By changing
the δ we can tune the Fermi velocity at each valley. In all the plots, as we go from blue to green curve, we increase the strength of the intervalley
scattering α. We have also fixed the chiral magnetic field B5 = 0.25 T. Here δ is a dimensionless parameter accounting for the change in the
Fermi velocity due to the presence of inhomogeneous B5 field.
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FIG. 21. LMC for inversion asymmetric tilted WSM for inhomogeneous strain-induced chiral magnetic field (B5). As we move from
blue to green curve we vary the value of B5 from −0.05 to 0.05 T. In all the plots we have fixed the value of α12 = 0.30, α14 = 0.31, and
tz/vF = −0.1. The chirality of all four nodes is chosen in such a way that the inversion symmetry is broken. Here v

(i)
F −→ v

(i)
F + δχ (i)v

(i)
F ,

χ (i) = (−1)i with i = 1, 2, 3, 4 and δ > 0. Here δ is a dimensionless parameter accounting for the change in the Fermi velocity due to the
presence of inhomogeneous B5 field.

various parameters, such as intervalley scattering, tilt, strain-
induced chiral gauge field, and the external magnetic field,
leads to many striking features in both the longitudinal mag-
netoconductance and the planar Hall conductance of Weyl
semimetals, which has been the focus of this work.

In this work, we first show the conventional method of
assigning a sign to magnetoconductivity, i.e., comparing the
magnitude of conductivity for field B with B ± ε (ε being
arbitrary), leads to ambiguities when the system is subjected
to strain. Specifically, the sign of magnetoconductivity could
depend on the direction of the magnetic field. Thus, there
is a necessity to define weak sign reversal and strong sign
reversal, both of which are qualitatively different and result
in qualitatively different responses. Weak sign reversal, in
general, leads to smooth changes in the fit parameters of the
conductivity, while strong sign reversal leads to very sharp
changes. Weak sign reversal is specifically characterized by a
change in the vertex and the axis of the parabola of conduc-
tivity with respect to the magnetic field. In contrast, strong
sign reversal is characterized by an opposite orientation, i.e.,
the direction in which the parabola opens is reversed. The
qualitative difference between strong and weak sign reversal
stems from the fact that unlike weak sign reversal, strong sign
reversal (with respect to an external magnetic field) depends
on the strength of intervalley scattering. Tables I and II high-
light the differences as well.

Broadly speaking, (i) when strain-induced chiral gauge
field is absent and external magnetic field is present, strong
intervalley scattering results in strong sign reversal; (ii) when
chiral gauge field is present and magnetic field is absent, the
system, by default, shows strong sign-reversed state for both
weak and strong intervalley scattering; (iii) when both chiral
gauge and external magnetic field are present, there is both
weak and strong sign reversal. The latter is also experimen-
tally the most relevant scenario, and we show that it leads to
very striking phase plots that can be explored experimentally
in current and upcoming experiments in Weyl semimetals.
In practice, the parameters could be evaluated by fitting the
conductivity from the experiments, which could give us in-
sight into the system’s strain, tilt, and dominant scattering
mechanism.

We have also studied the effect of strain on the planar Hall
conductance. Another striking feature of anomalous variation
of the planar Hall conductivity is also unraveled due to the

rich interplay between the chiral gauge and external magnetic
field, where the magnitude of conductivity can increase with
increasing scattering strength. Last, we also briefly comment
that the presence of weak inhomogeneities in the chiral gauge
field only quantitatively affects the results. In this paper, we
have restricted ourselves to the case where k = 0 term in the
Fourier series expansion of Aχ dominates over the others. We
anticipate that the effect of including the higher-order terms in
the Fourier expansion could result in the following effects: (i)
averaging of the behavior when the sample size is larger than
regions where B5 might be considered homogeneous, (ii) the
low-energy Weyl Hamiltonian may acquire additional higher-
order terms that may result in very interesting effects. A full-
fledged Boltzmann analysis for inhomogeneous fields remains
an important study reserved for the future.
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APPENDIX: BOLTZMANN FORMALISM
FORMAGNETOTRANSPORT

Using the quasiclassical Boltzmann theory, we study trans-
port in Weyl semimetals in the limit of weak electric and
magnetic fields. Since quasiclassical Boltzmann theory is
valid away from the nodal point such that μ2 � h̄v2

FeB,
therefore, without any loss of generality we will assume that
the chemical potential lies in the conduction band. The phe-
nomenological Boltzmann equation for the nonequilibrium
distribution function f χ

k can be expressed as [51]

(
∂

∂t
+ ṙχ · ∇r + k̇χ · ∇k

)
f χ

k = Icoll
[
f χ

k

]
, (A1)

where the collision term on the right-hand side of the equa-
tion incorporates the effects of scattering due to impurities.
In the presence of electric (E) and magnetic (B) fields, the
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semiclassical dynamics of the Bloch electrons is [22]

ṙχ = Dχ

[
e

h̄

(
E×�χ + e

h̄
(vχ · �χ )B + vχ

k

)]
,

ṗχ = −eDχ

(
E + vχ

k×B + e

h̄
(E · B)�χ

)
, (A2)

where vχ

k is the band velocity, �χ = −χk/2k3 is the Berry
curvature, and Dχ = (1 + eB · �χ/h̄)−1. The self-rotation of
Bloch wave packet also gives rise to an orbital magnetic
moment (OMM) [35] mχ

k . In the presence of magnetic field,
the OMM shifts the energy dispersion as ε

χ

k → ε
χ

k − mχ

k · B.
Interestingly, the Berry curvature and the orbital magnetic
moment turn out to be independent of the tilting of the Weyl
cones.

The collision integral must take into account scattering
between the two Weyl nodes (internode, χ ⇐⇒ χ ′), as well
as scattering within a Weyl node (intranode, χ ⇐⇒ χ ), and
thus Icoll[ f χ

k ] can be expressed as

Icoll
[
f χ

k

] =
∑
χ ′

∑
k′

W χχ ′
k,k′

(
f χ ′
k′ − f χ

k

)
, (A3)

where the scattering rateW χχ ′
k,k′ is given by [51]

W χχ ′
k,k′ = 2π

h̄

n

V
∣∣〈ψχ ′

k′
∣∣Uχχ ′

kk′
∣∣ψχ

k

〉∣∣2δ(εχ ′
k′ − εF

)
. (A4)

In the above expression n is the impurity concentration, V is
the system volume, |ψχ

k 〉 is the Weyl spinor wave function
(which is obtained by diagonalizing the low-energy Weyl
Hamiltonian given in the main text), Uχχ ′

kk′ is the scattering
potential, and εF is the Fermi energy. The scattering potential
profile Uχχ ′

kk′ is determined by the nature of impurities. Here
we restrict ourselves to only nonmagnetic pointlike impurity,
but distinguish between intervalley and intravalley scattering.
This can be controlled independently in our formalism. Thus,
the scattering matrix is momentum independent but has a
dependence on the chirality, i.e.,Uχχ ′

kk′ = Uχχ ′
I.

The distribution function is assumed to take the form f χ

k =
f χ

0 + gχ

k , where f χ

0 is the equilibrium Fermi-Dirac distribu-
tion function and gχ

k indicates the deviation from equilibrium.
In the steady state, the Boltzmann equation [Eq. (A1)] takes
the form [(

∂ f χ

0

∂ε
χ

k

)
E ·

(
vχ

k + eB
h̄

(
�χ · vχ

k

))]

= − 1

eDχ

∑
χ ′

∑
k′

W χχ ′
kk′

(
gχ

k′ − gχ

k

)
. (A5)

The deviation gχ

k is assumed to be linearly proportional to the
applied electric field

gχ

k = e

(
−∂ f χ

0

∂ε
χ

k

)
E · �

χ

k . (A6)

We fix the direction of the applied external electric field
to be along +ẑ, i.e., E = Eẑ. Therefore, only �

χz
k ≡ �

χ

k is
relevant. Further, we rotate the magnetic field along the xz
plane such that it makes an angle γ with respect to the x̂ axis,
i.e., B = B(cos γ , 0, sin γ ). When γ = π/2, the electric and

magnetic fields are parallel to each other. Similarly, the strain-
induced chiral gauge field is rotated in the xz plane, i.e.,B5

χ =
χB5(cos γ5, 0, sin γ5). When γ5 �= π/2, the electric and gauge
field are noncollinear and this geometry will be useful in
analyzing the strain-induced planar Hall effect. Thus, the net
magnetic field at each valley becomes Bχ −→ B + χB5.

Keeping terms only up to linear order in the electric field,
Eq. (A5) takes the form

Dχ

[
v

χz
k + eB

h̄
sin γ

(
�χ · vχ

k

)] =
∑

η

∑
k′

W ηχ

kk′
(
�

η

k′ − �
χ

k

)
.

(A7)

In order to solve the above equation, we first define the valley
scattering rate as

1

τ
χ

k

= V
∑

η

∫
d3k′

(2π )3
(
Dη

k′
)−1

W ηχ

kk′ . (A8)

Due to the tilting of the Weyl cones the azimuthal symmetry
is destroyed even when the electric and magnetic fields are
parallel to each other, and therefore all the integrations are
performed over both θ and φ. The radial integration is simpli-
fied due to the delta function in Eq. (A4).

Substituting the scattering rate from Eq. (A4) in the above
equation, we have

1

τ
χ

k

= VN
8π2h̄

∑
η

|Uχη|2
∫∫∫

(k′)2 sin θ ′Gχη(θ, φ, θ ′, φ′)δ

×(
ε

η

k′ − εF
)(
Dη

k′
)−1

dk′dθ ′dφ′, (A9)

where N now indicates the total number of impuri-
ties, and Gχη(θ, φ, θ ′, φ′) = {1 + χη[cos θ cos θ ′ + sin θ sin
θ ′ cos(φ − φ′)]} is the Weyl chirality factor defined by the
overlap of the wavefunctions. The Fermi wave-vector contour
kχ is evaluated by equating the energy expression with the
Fermi energy. The three-dimensional integral in Eq. (A9) is
reduced to just integration in φ′ and θ ′. The scattering time τ

χ

k
depends on the chemical potential (μ), and is a function of the
angular variables θ and φ:

1

τ
χ
μ (θ, φ)

= V
∑

η

∫∫
βχη(k′)3∣∣vη

k′ · k′η∣∣ sin θ ′Gχη
(
Dη

k′
)−1

dθ ′dφ′,

(A10)

where βχη = N |Uχη|2/4π2h̄2. The Boltzmann equation
[Eq. (A7)] assumes the form

hχ
μ(θ, φ) + �χ

μ(θ, φ)

τ
χ
μ (θ, φ)

= V
∑

η

∫∫
βχη(k′)3∣∣vη

k′ · k′η∣∣ sin θ ′Gχη
(
Dη

k′
)−1

�η
μ(θ

′, φ′)dθ ′dφ′.

(A11)

We make the following ansatz for �χ
μ(θ, φ):

�χ
μ(θ, φ) = (

λχ − hχ
μ(θ, φ

) + aχ cos θ

+ bχ sin θ cosφ + cχ sin θ sin φ)τχ
μ (θ, φ),

(A12)
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where we solve for the eight unknowns (λ±1, a±1, b±1, c±1).
The left-hand side in Eq. (A11) simplifies to λχ + aχ cos θ +
bχ sin θ cosφ + cχ sin θ sin φ. The right-hand side of
Eq. (A11) simplifies to

V
∑

η

βχη

∫∫
f η(θ ′, φ′)Gχη

[
λη − hη

μ(θ
′, φ′) + aη cos θ ′

+ bη sin θ ′ cosφ′ + cη sin θ ′ sin φ′]dθ ′dφ′, (A13)

where the function

f η(θ ′, φ′) = (k′)3∣∣vη

k′ · k′η∣∣ sin θ ′(Dη

k′
)−1

τχ
μ (θ

′, φ′). (A14)

The above equations, when written explicitly, take the form of
seven simultaneous equations to be solved for eight variables.
The final constraint comes from the particle-number conser-
vation ∑

χ

∑
k

gχ

k = 0. (A15)

Equations (A12)–(A15) are solved together with Eq. (A10),
simultaneously for the eight unknowns (λ±1, a±1, b±1, c±1).
Due to the complicated nature of the equations, all the two-
dimensional integrals with trespect to {θ ′, φ′} and the solution
of the simultaneous equations are performed numerically.

For the inversion asymmetric WSM with four Weyl nodes,
the distribution function at each node can be represented by
f mk . Generalizing the formalism presented above, the collision
integral must take into account scattering between multiple
Weyl cones. Thus, Icoll[ f mk ] can be expressed as

Icoll
[
f mk

] =
∑
p

∑
k′

Wmp
k,k′

(
f pk′ − f mk

)
, (A16)

where p runs over all the nodes, and scattering rate Wmp
k,k′ is

given by

Wmp
k,k′ = 2π

h̄

n

V
∣∣〈ψ p

k′
∣∣Ump

kk′
∣∣ψm

k

〉∣∣2δ(ε p
k′ − εF

)
. (A17)

The scattering potential profile Ump
kk′ can be chosen such that

scattering between the nodes (internode) as well as within
each node (intranode) is considered. Proceeding as before, we
define τm

k as

1

τm
μ (θ, φ)

= V
∑
p

∫∫
βmp(k′)3∣∣vp
k′ · k′p∣∣ sin θ ′Gmp

(
Dp

k′
)−1

dθ ′dφ′,

(A18)

and the Boltzmann equation becomes

hmμ (θ, φ) + �m
μ (θ, φ)

τm
μ (θ, φ)

= V
∑
p

∫∫
βmp(k′)3∣∣vp
k′ · k′p∣∣ sin θ ′Gmp

(
Dp

k′
)−1

�p
μ(θ

′, φ′)dθ ′dφ′.

(A19)

Making the ansatz �m
μ (θ, φ) = [λm − hmμ (θ, φ) + am cos θ +

bm sin θ cosφ + cm sin θ sin φ]τm
μ (θ, φ), and using the con-

straint for particle-number conservation, the Boltzmann
equation is reduced to a system of 16 equations to be solved
for 16 unknowns.
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