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How the brain derives 3D information from inherently ambiguous visual
input remains the fundamental question of human vision. The past two
decades of research have addressed this question as a problem of probabil-
istic inference, the dominant model being maximum-likelihood estimation
(MLE). This model assumes that independent depth-cue modules derive
noisy but statistically accurate estimates of 3D scene parameters that are
combined through a weighted average. Cue weights are adjusted based on
the system representation of each module’s output variability. Here I
demonstrate that the MLE model fails to account for important psychophysi-
cal findings and, importantly, misinterprets the just noticeable difference, a
hallmark measure of stimulus discriminability, to be an estimate of percep-
tual uncertainty. I propose a new theory, termed Intrinsic Constraint,
which postulates that the visual system does not derive the most probable
interpretation of the visual input, but rather, the most stable interpretation
amid variations in viewing conditions. This goal is achieved with the
Vector Sum model, which represents individual cue estimates as com-
ponents of a multi-dimensional vector whose norm determines the
combined output. This model accounts for the psychophysical findings
cited in support of MLE, while predicting existing and new findings that
contradict the MLE model.

This article is part of a discussion meeting issue ‘New approaches to
3D vision’.
1. Introduction
The spatial organization of the visual world in three dimensions is a fundamen-
tal aspect of our conscious perception. The objects we interact with appear to
have a definite and unambiguous 3D structure. This appearance, however,
hides the inherent ambiguity of the retinal stimulation, since there are in prin-
ciple infinite 3D configurations that may have produced the same retinal image
and infinite images that may arise from the same 3D configuration. Take for
instance the picture on figure 1a: it is immediately perceived as a smooth
bump ‘bulging out’ of the image plane. What we see, however, is only one of
infinite structures that may have produced that projection. Selecting only one
of these possible interpretations is therefore a central concern of any theory of
3D vision.

A prominent theory that has dominated the field of vision science for
over two decades addresses this issue as a problem of probabilistic inference.
This theory postulates that among all possible interpretations of an image the
visual system chooses that most probable [1–37]. This theory further assumes
that the visual system is endowed with specialized and independent visual
modules that choose the most probable depth interpretation from individual
depth cues, for example, the texture and shading patterns on figure 1a. Since
these interpretations are only ‘best guesses’ of what is ‘out there’, the outputs

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2021.0458&domain=pdf&date_stamp=2022-12-13
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(a) (c)(b) (d )

Figure 1. Renderings of the same 3D surface with different 3D information: texture and shading (a), only texture (b), only shading (c) and ineffective texture (d ).
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of the depth modules randomly and independently fluctuate
across views of the same distal structure. These fluctuations
are often referred to as estimation noise. Nevertheless,
an important assumption of the theory is that, despite esti-
mation noise, the outputs from these modules (i.e. their
3D estimates) are unbiased. This means that the average
output of the modules (or, more generally, the expected
value) coincides with the ground truth. Probabilistic
theories (e.g. Bayesian theories) of cue integration specify
how unbiased outputs should be combined in a statistically
optimal manner, which results in the reduction of
the estimation noise affecting each individual output.
Specifically, the maximum-likelihood estimation (MLE)
model combines the unbiased outputs of individual modules
through a weighted average, where larger weights are
assigned to less noisy outputs. In addition to the assumption
of unbiased outputs, this model therefore requires that depth
modules provide explicit information about their output
variability [15] (e.g. by encoding the noise distribution with
neural populations).

These fundamental assumptions, however, are proble-
matic. First, the assumption that outputs are unbiased has
been falsified in numerous studies [38–66]. An informal test
can be done by directly observing figure 1. Here the four
pictures are renderings of the same underlying 3D structure
and yet they are all perceived to have a different 3D structure.
For example, the images containing only shading or texture
information look flatter than the image containing both shad-
ing and texture information. Moreover, the surface with
polka-dot texture (figure 1b) looks deeper than the one with
only shading information (figure 1c) and also deeper than
the surface covered with a less effective texture pattern
(figure 1d ). Second, the assumption that module outputs
are noisy also clashes with simple phenomenological obser-
vations. Repeated viewing of any of the three surfaces in
figure 1 does not seem to produce any detectable changes
in their perceived 3D structure. This is also echoed in the
fact that the perceived shape of objects in the real world
appears stable and unambiguous and does not appear to
change over successive viewings. In this paper, I will describe
a new theory of cue integration that does not require any of
the assumptions of the probabilistic inference model of
depth cues and depth-cue integration. First, the new theory
assumes that the output of individual depth modules is line-
arly related to distal 3D properties, but that this linear
relationship is not necessarily accurate. Second, it assumes
that this linear mapping between distal 3D properties and
module outputs is deterministic, since the ‘noise’ intrinsic to
this mapping is negligible and independent of the particular
visual stimulus. The two theories also disagree fundamen-
tally in postulating the source of module output variability.
Probabilistic theories assume that visual modules reverse
the process of image formation by finding all the 3D struc-
tures in the world that may have produced the retinal input
and picking among those the most probable. If a cue is unre-
liable then even small variations of the visual input results in
large variations of the output. Specifically, an ‘unreliable’ cue
is one which provides only a weak signal regarding the 3D
property, therefore eliciting a ‘noisy’ or more variable
response. The model proposed here, in contrast, assumes
linear input–output mappings that are stable, but often inac-
curate, where in most cases individual modules result in an
underestimate of distal properties. According to the new
theory ‘noise’ or variability is not related to the space of poss-
ible 3D interpretations, where ‘weak’ cues accommodate a
larger range of possible 3D interpretations, and are therefore
deemed ‘noisy’. Instead, a weaker cue does not generate a
noisier output, but generates an output with a shallower
linear relationship between distal 3D properties and the
module output. This is because the image measurement
that carries 3D information from that cue delivers a small
readout. For instance, 3D information from texture is given
by the texture gradient, which quantifies the rate of change
of the two-dimensional shape of texture elements on the
image. In figure 1b, the texture gradient is larger than the tex-
ture gradient in figure 1d, hence the texture cue in figure 1b is
stronger than the texture cue in figure 1d. Note, however, that
figure 1d does not look ‘noisier’ than figure 1b, but it defi-
nitely looks shallower. For the new theory the source of a
module output variability is the change of ‘nuisance’ par-
ameters such as the object material properties, the
illumination conditions, the object distance from the observer,
etc., which can in principle cause sizable changes in the cue
strength. In the examples of figure 1, the nuisance variable
affecting the texture cue is the material composition of the
objects and the nuisance variable affecting the shading cue
is the illumination condition. The new theory, name Intrinsic
Constraint (IC) theory, postulates that processing of indepen-
dent depth modules and their combination thereof, is done in
a way to minimize the sensitivity to nuisance parameters
while maximizing the response to changes of distal 3D prop-
erties. The combination of module outputs is achieved by the
Vector Sum model, which combines the output of individual
modules through a vector sum. In contrast with the MLE
model, this vector sum does not weigh the individual
module outputs and, therefore, does not require any estimate
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of variability or strength of individual cues. The Vector Sum
model predicts systematic biases arising from cue combi-
nation since combining cues results in a stronger combined
signal, and, therefore a larger magnitude in the estimate. As
a consequence, combined-cue stimuli always appear deeper
than single-cue stimuli, a phenomenon that can be readily
observed on figure 1 by comparing the texture-shading
stimulus (figure 1a) with the texture-only (figure 1b) and
shading-only (figure 1c) stimuli.

In addition to not requiring an internal estimate of cue
variability, the IC theory and the Vector Sum model have
also a theoretical advantage over probabilistic theories and
the MLE model. Probabilistic theories need to clarify how
the visual system has learnt either through evolution or
during development to associate the visual input to the accu-
rate geometrical description of the viewed objects. In fact, the
brain has no way to access the geometrical structure of the
outside world since all information comes through our inher-
ently ambiguous proximal sense data. The IC theory, instead,
is based on the conjecture that the visual system ‘discovers’
(ontogenetically of phylogenetically) distal properties of
objects from the intrinsic relationships existing among inde-
pendent image cues. In principle, the correlation among
these cues enables the bootstrapping of individual depth
modules so as to produce outputs that are linearly related to
distal properties. This learning process is therefore unsuper-
vised, since it does not require explicit access to the ground
truth. Although the existence of this unsupervised learning
process is a conjecture that needs to be verified through
machine learning algorithms, there is already evidence that
unsupervised learning can be very effective in spontaneously
clustering images according to distal properties such as
reflectance and illumination [67–69]. The Vector Sum model
is also more parsimonious than the MLE model since (i) it
assumes a linear input–output mapping instead of an accu-
rate or veridical mapping, which can account for the biases
observed in depth estimation, and (ii) it does not require an
estimate of the output variability of individual modules.

Finally, there is a major difference in methodological
assumptions at the heart of the two theories. According to
the probabilistic inference theory and MLE model, variability
in perceptual estimates in psychophysical tasks as measured
by the just noticeable difference (JND) directly reflects the
internal ‘noise’ or reliability of module outputs or cues.
Instead, according to the IC theory and Vector Summation
model (which assume that outputs of depth modules are
not stochastic but deterministic), variability in perceptual esti-
mates is simply a reflection of task-specific demands, such as
memory limitations intrinsic to psychophysical tasks. Instead,
differences in measured JNDs depend simply on the differ-
ences in strength of the linear mapping between distal
property and of single or combined module outputs. Shal-
lower mappings result in higher JNDs while steeper linear
mappings result in lower JNDs. Thus, JNDs do not appear
in the main equation of the Vector Summation model.

In the following sections, I will detail the differences
between the IC theory and Probabilistic Inference theory. In
§2, I first describe the differences between Vector Sum and
theMLEmodels. In §3, Iwill describe an entirely new interpret-
ation of JND compatible with the Vector Sum assumption that
the output of depth modules is not based on a stochastic
process that depends on the stimulus reliability, as assumed
by the MLE. I will then describe a novel methodology to test
the validity of this new interpretation of JND and empirical
evidence that supports it. In §4, I will show new results indicat-
ing that the output of single-cue modules is systematically
biased and provide further empirical evidence that corrobo-
rates the predictions of the Vector Sum model. Finally, in §5, I
will describe results of a classic cue integration experiment
that quantitatively agree with the predictions of the Vector
Sum model and, at the same time, falsify the predictions of
the MLE model.
2. Maximum-likelihood estimation versus Vector
Sum model of depth-cue integration

Probabilistic models provide mathematical methods for
assigning a probability value to each 3D interpretation of an
image based on knowledge about the image formation process
and prior statistical knowledge of the material composition of
objects in the world, their structure and the viewing par-
ameters [15]. As depicted in figure 2a (top left), this
probabilistic mapping between the distal depth values (hori-
zontal axis) and possible perceptual interpretations (vertical
axis) is represented as a probability distribution (solid black).
If we disregard the influence of prior knowledge, this prob-
ability distribution coincides with the likelihood function.
MLE models assume that the most likely 3D structure deter-
mines our perception [15]. In figure 2a (top), this perceptual
solution is the peak of the probability distribution. Note that
this choice is only a ‘best guess’, since it often does not corre-
spond to the ground truth (ZA, indicated in green). However,
if the same depth-from-texture analysis is repeated over a
large number of images of the same 3D surface then the aver-
age estimate will correspond to the ground truth. This is a
fundamental assumption of MLE models: 3D estimates are
unbiased [15]. The extent to which these solutions fluctuate
around the ground truth depends on the reliabilityof the texture
pattern, determined by how sharply peaked the probability
distribution is. Another image pattern carrying 3D information
that can be seen on the rendering of figure 2a is the shading gra-
dient, determined by the smooth luminance change across the
image (figure 2a, bottom left). In the example, the shading gra-
dient is characterized by a wider probability distribution. In
summary, the module outputs are modelled as unbiased esti-
mates with additive noise reflecting their reliability (figure 2a,
equations (A1)). The MLE model combines the individual out-
puts in a statistical optimal fashion in order to minimize the
combined output noise [15]. In the example of figure 2a, com-
bining the texture and shading cues produces a sharper
probability distribution whose peak is on average closer to
the ground truth. Since the two cues are independent, the com-
bined probability distribution is simply the product of the two
individual probability distributions (figure 2a, right). This is
achieved through a weighted average where the weights are
inversely proportional to the variance of the noise of the
single-cue estimates (figure 2b, equations (1) and (2)). The var-
iance of the combined estimate is smaller and can be predicted
from the variance of the single-cue estimates [3] (figure 2b,
equation (3)).

The Vector Sum model, in contrast, assumes a linear map-
ping between distal 3D properties and the output of
individual modules (figure 2d, left). This assumption is
based on the conjecture that the developing visual system
may learn statistical co-occurrences among independent
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Figure 2. (a) The MLE model maps 3D properties (horizontal axes) to estimated properties (vertical axes) with probability distributions (solid black). Individual
distributions are associated with independent cues in an image (left), which in this example are texture (top) and shading (bottom). The probability distribution of
the combined estimate is sharper than those of individual estimates (right). Although the distributions associated with a particular visual input are peaked at values
different from the ground truth zA, they are on average accurate. (b) For linear MLE models, the combined likelihood function is the product of the individual
likelihood functions (left) and can be obtained through a weighted average of single-cue estimates, where the weights are inversely proportional to the standard
deviation of the noise affecting each cue (equations (1) and (2)). The result is a less noisy combined estimate (equation (3)). (c) For MLE models, the JND obtained
in discrimination tasks is a proxy measure of the standard deviation of the likelihood function (left, equation (4)). JNDs can therefore be used to predict the s.d. of
the combined estimate (equation (5)). (d ) The Vector Sum model maps distal 3D properties to 3D estimates with a deterministic mapping. Assuming a linear
function, the slope of this function is not unitary, as for MLE models, but depends on the strength of individual cues. In this example, texture (top left) is stronger
than shading (bottom left). The strength of the combined-cue (right) is always larger than that of the single-cues. (e) For the Vector Sum model, individual cue
estimates are the components of a multi-dimensional vector (left). The combined estimate is therefore the vector sum of the individual estimates (equations (6) and
(7)) and its strength (slope) is also the vector sum of the individual strengths (equation (8)). ( f ) For the Vector Sum model, the noise in a discrimination task is
related to memory encoding and retrieval and it is independent of the particular stimulus. The JND measures the change in the distal depth producing a change in
perceived depth sufficient to overcome this noise (left). The JND is therefore inversely related to the strength of the stimulus (equation (9)). This explains why the
JND for combined stimuli is smaller than the JND of single-cue stimuli, since the strength of combined stimuli is always larger (equation (10)). This prediction is
formally identical to that of the linear MLE models (equation (5)).
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image patterns and attribute these co-occurrences to external
causes encoded as latent variables (e.g. a depth map). Since
this learning process does not correlate image cues with the
ground truth, the linear mapping is in general not accurate
(i.e. the slope is not 1) and, instead, depends on the ‘quality’
of the visual input. Consider for instance in figure 3, the two
images of the same 3D bump arising from objects of different
material compositions. Whereas the image on the left is
immediately perceived as a protruding surface, the image
on the right appears almost flat because it displays a much
weaker texture gradient. This degraded input will yield a
shallow linear function. I term the slope of this function cue
strength. In the example of figure 3, the strength of the texture
cue is therefore the slope kT of the observed mapping between
the ground truth z and the texture output ẑT . Therefore, kT is
much smaller for the image on the right of figure 3 than for
the image on the left. What is evident from this example is
that the magnitude of the output of single-cue modules
depends both on distal depth and the cue strength. In turn,
cue strengths depend on nuisance scene parameters such as
the material composition of objects, ambient illumination,
observer’s motion, etc. A desirable cue combination rule is
therefore one that maximizes the sensitivity to distal 3D prop-
erties while at the same time minimizing the influence of
nuisance scene parameters. This can be achieved by consider-
ing the individual depth estimates as scalar components of a
multi-dimensional vector, where the length of the vector cor-
responds to the combined-cue depth (and the orientation is
ignored). Consider figure 4 for the particular case of texture
and shading information. For illustration purposes suppose
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that in the stimulus on the left, texture and shading have
the same strength. This means that the output of the
texture module (ẑT) and the output of the shading module
(ẑS) are the same (figure 4a). In the stimulus in the
centre, the strength of texture is much larger than the strength
of shading. In the stimulus on the right, the strength of
shading is much larger than the strength of texture. It can
be shown mathematically that if the axes of this multi-
dimensional space of cue estimates are scaled to take into
account the natural variability of the scene parameters
associated with each individual cue, then the length of the
multi-dimensional vector will be maximally sensitive to
changes in distal depth values and minimally sensitive to
variations of the strength of image cues (see Appendix A
for the mathematical proof).

To recap, the Vector Sum model represents single-cue
estimates ẑi ¼ kiz as the components of a multi-dimensional
vector (figure 2e). The magnitude of this vector ẑC is the
combined estimate described by the Vector Sum equation:

ẑC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ẑ1)

2 þ (ẑ2)
2 þ . . . (ẑn)

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k1z)

2 þ (k2z)
2 þ . . . (knz)

2
q

:

In summary, the MLE model and Vector Sum models
describe different mechanisms of 3D processing based on fun-
damentally different assumptions about how the visual
system deals with the ambiguity of the visual input.

The MLEmodel assumes that the goal of the visual system
is to provide a 3D interpretation of the visual input that is as
close as possible to the ground truth. Independent modules
output the most likely interpretation from single cues.
Repeated viewing of a series of equally reliable stimuli will
cause the output to ‘jump around’ the ground truth. Since on
average the output coincides with the ground truth (i.e. it is
unbiased), theMLEmodel combines cues in order to minimize
the variability of the combined output.

The Vector Summodel strives for the most stable interpret-
ation of the visual input amid variations of viewing conditions.
Single cues deliver a 3D output that is linearly related to the
distal property. This linear function depends on the cue
strength. For instance, a cue that is referred to as ‘unreliable’
or ‘noisy’ in the MLE model is instead, according to the
Vector Summation Model, one that yields a shallow slope of
the linear function. In contrast with the MLE model, the
input–output mapping is deterministic, only affected by negli-
gible noise that is stimulus-independent Therefore, repeated
viewing of stimuli with the same strength will yield a nearly
constant output (negligible noise). The output only changes
when the stimulus itself changes, for example for a given
distal 3D structure in response to changes in viewing-depen-
dent nuisance parameters (viewpoint, lighting, material
pattern, etc.). The goal of the Vector Sum rule of cue combi-
nation is to minimize the influence of the nuisance
parameters on the 3D derivation process.

In the following sections, I will describe in detail how
these different assumptions about the mechanisms of 3D pro-
cessing can be tested and provide converging empirical
evidence confirming the predictions of the Vector Sum
model.
3. What is the source of perceptual variability
according to maximum-likelihood estimation
and Vector Sum models? Interpretation of
just noticeable differences

(a) Maximum-likelihood estimation model and Vector
Sum model interpretation of just noticeable
difference

The most important empirical tests of the MLE model
have used discrimination thresholds to measure the variability
of depth judgements. These thresholds, termed JNDs,
are usually measured with a 2 Alternative Forced
Choice (2AFC) task where a standard stimulus, which is kept
fixed throughout the experiment, is being compared to a
comparison stimulus that the experimenter varies either
through a staircase procedure or through a range of constant
stimuli. The discrimination threshold is the minimum
difference in depth magnitude between the comparison and
standard yielding a reliable discrimination (e.g. 84% correct
discriminations). After I summarize the interpretation of JND
according to the MLE model, I will describe an alternative
interpretation compatible with the assumptions of the Vector
Sum model.

The MLE model derives from the input the most likely 3D
interpretation that varies across repeated views of similar
inputs to an extent that depends on the stimuli reliability. An
important prediction of this model is, therefore, that the varia-
bility of the MLE interpretation causes the variability of depth
judgements. To illustrate, consider the plaster texture in
figure 5a. The likelihood function associated with this pattern
is expected to be wide since there are many possible 3D sur-
faces that are likely to have produced that pattern [13,23].
Due to this ambiguity of the plaster texture, slightly different
texture patterns will yield likelihood functions that have differ-
ent peaks (figure 5b). Therefore, the MLE output of modules
will vary considerably across trials and, consequently, also
the predicted perceptual judgements (figure 5c). If the likeli-
hood distribution is Gaussian, then the distribution of depth
judgements will also be Gaussian with the same variance
and centred at the true depth value (figure 5d ). If the same



depth from texture

de
pt

h 
fr

om
 sh

ad
in

g

de
pt

h 
fr

om
 sh

ad
in

g

de
pt

h 
fr

om
 sh

ad
in

g

depth from texture depth from texture

zTˆ

zS
ˆ

kT = kS kT >> kS kT << kS

zSˆ

zSˆ

zTˆ zTˆ

(c)(b)(a)

(d ) (e) ( f )

Figure 4. (a–c) The same 3D structure as in figure 3 rendered with different combinations of texture and shading information. (d–f ) The vector sum of individual
cue estimates changes among the three viewing conditions, but this change is smaller than the relative change of each single-cue estimate.

(a) (b) (c) (d)

distribution of perceived depth3D estimate

trial
z

pe
rc

ei
ve

d 
de

pt
h

P
(z
�t)�

ZA

ZA

Z

ẑ
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experiment is repeated with the cheetah-texture pattern
(figure 3a), then the MLE model predicts a much smaller
variation in depth judgements, since the cheetah texture is
more reliable and therefore characterized by a much sharper
likelihood. Since the distribution of depth judgements is
assumed to be unbiased, in a discrimination task, the JND
will coincide with the discriminable separation between the
means of the two distributions being compared (figure 2c
left, equation (4)).

By contrast, for the Vector Sum model, the input–output
mapping of visual modules is deterministic. Consequently, an
observer is expected to perceive the same depth magnitude
from a sequence of equivalent stimuli (e.g. repeated viewing
of the plaster stimulus). Most importantly, whatever negligible
amount of neural noise may affect the output, it is independent
of the 3D information contained in the input. In other words, a
sequence of cheetah-texture stimuli will produce the same
output variability as a sequence of plaster-texture stimuli.
This basic assumption of the Vector Summodel requires a rad-
ical re-interpretation of JNDs from that of the MLEmodel. The
Vector Summodel assumes that the source of noise that deter-
mines the JND is entirely task-related. For instance, in a 2AFC
task, the observer must store in memory the perceived depth
magnitude of the stimulus in the first interval and then retrieve
this information to compare it with the perceived depthmagni-
tude of the second stimulus.We can assume that this process of
memory storage and retrieval introduces noise to the perceived
depth estimate of the first stimulus, a sort of memory ‘smear-
ing’ with s.d. sM. Therefore, the difference of perceived
depth between the two stimuli ðDẑÞ must be large enough to
overcome this task-related memory noise ðDẑ ¼ sMÞ. As just
mentioned above, what is fundamental here is that according
to the Vector Sum model this difference is independent of the
type of stimuli being discriminated. For instance, a cheetah tex-
ture and a plaster texture must bring about the same perceived
depth difference Dẑ for a reliable discrimination. However,
since the JND is defined in terms of distal depth values, the
change in simulated depth of the cheetah-texture stimulus
ð JNDcheetahÞ producing a perceived depth difference Dẑ ¼ sM

depends on its strength (kcheetah): Dẑ ¼ kcheetahJNDcheetah.
In the same way, Dẑ ¼ kplasterJNDplaster. Therefore, the two
stimuli yield the same perceived depth difference Dẑ if
JNDcheetah , JNDplaster since kcheetah . kplaster. An important
consequence of this interpretation of JND is that it is
inversely proportional to the strength of a stimulus (figure 2f,
equation (9)).

In summary, the interpretations of JND according to
the MLE and Vector Sum models are profoundly different
since they assume different sources of noise affecting the
JND. Nevertheless, in specific experimental conditions
they make the same predictions. For instance, both models
predict that discriminating cheetah-texture stimuli yields a
smaller JND than discriminating plaster-texture stimuli.
This is because, on the one hand, the MLE model assumes



0.5

S C

0.5

comparsion depth

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

10 20 30 40 50 60 700

comparsion depth comparsion depth

P
(z

C
>

z S)
P

(z
C

>
z S)

P
(z

C
>

z S)

physical depth

JNDT1

JNDT2es
tim

at
ed

 d
ep

th
es

tim
at

ed
 d

ep
th T1 comparison

T2 comparison

T1

T1 T2

T1 T1

T2 T1

T1 T2

T2 T2

T1

zT1 zT2

physical depth
zT1 zT2

zC

zC

zT2 = zT1
T2

T2

K1

K2

�N

�N

zT2 zT1

(a) (b)

(c) (d)

(i)

(ii)

(iii)

Figure 6. (a) Two texture stimuli of different strengths (T1 and T2, (i)). For the Vector Sum model, the JND measured in a discrimination task only depends on the
strength of the comparison stimulus. If the comparison is the strong stimulus (T1, (ii)) then the JND, equal to the distal depth difference necessary to overcome the
task-related noise (sN), will be smaller than the JND obtained when the comparison stimulus is the weak stimulus (T2, (iii)). (b) Psychometric functions predicted
by the Bayesian model (the curves are for illustrative purposes only and not based on actual data). In the legend S indicates the standard stimulus and C the
comparison stimulus. The slope of the psychometric functions depends on both the comparison and standard stimuli. (c) Psychometric functions predicted by the
Vector Sum model. The slope of the psychometric functions only depends on the comparison stimulus. (d ) Empirical data [70].
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that cheetah-texture stimuli produce a less variable output
than plaster-texture stimuli whereas, on the other hand,
the Vector Sum model assumes that the strength of
cheetah-texture stimuli is larger than the strength of plaster-
texture stimuli. In the next sections, I will describe a novel
methodology that allows us to discriminate between the
two models.
(b) Just noticeable difference according to the
maximum-likelihood estimation and Vector Sum
models: empirical evidence with single cues

Fundamental to the following discussion is how the two
models interpret the role played by the standard stimulus,
which is kept fixed during a discrimination task, and the
comparison stimulus, which is varied through a staircase pro-
cedure or the constant stimulimethod. I will now show that the
two models predict the same JNDs only in experimental
conditions where the standard and comparison stimuli
contain the same cue or set of cues (e.g. discriminating two
cheetah-texture stimuli). When 3D information composing
the standard and comparison differs (e.g. discriminating a
cheetah-texture stimulus from a plaster-texture stimulus) the
predictions of the two models diverge. Figure 6a(i) shows a
stimulus T1 that is more informative than a stimulus T2. In
what follows I will describe the predictions of the two
models for a discrimination task in all possible conditions
where each of the stimuli T1 and T2 are either assigned to be
the fixed standard or the variable comparison. In particular, I
will formulate the specific predictions for the point of subjec-
tive equality (PSE) and slope of the psychometric function,
which relates the depth of the comparison stimulus to the
proportion of responses where the comparison is perceived
to be deeper than the standard.

Figure 6b shows the predictions of the MLE model for all
possible combinations of standard and comparison stimuli.
The first prediction is that all the psychometric curves have
identical PSEs since the MLE model predicts that the per-
ceived depth of the two texture stimuli is the same when
the distal depth is the same (figure 6b, PSEs: zT1 ¼ zT2).
Second, the slope of the psychometric function should
depend on the reliability of both the fixed standard and the
varying comparison. This is because the depth estimates of
both the standard and comparison stimuli are subject to
estimation noise. As discussed in §3(a), these are described
by probability distributions centred at the simulated depth
values with s.d. reflecting the stimuli reliabilities. In the
example of figure 6, the texture stimulus T1 is more reliable
(i.e. less noisy) than the texture stimulus T2. Judging above
chance which stimulus is deeper requires a depth difference
between the simulated depth of the two stimuli that separates
the means of these probability distributions by an amount
overcoming the pooled variance (i.e. the sum of squares
of the two variances). For instance, if a reliable comparison
is being discriminated from a reliable standard then this
difference will be smaller than when it is compared to an
unreliable standard. Therefore, in the first case, the slope of
the resulting psychometric function will be larger than in
the second case. In summary, according to the MLE model,
we should expect (i) the steepest slope when standard
and comparison have both high reliability (figure 6d, solid
black); (ii) intermediate slopes when standard and compari-
son have different reliabilities (figure 6d, dashed black and
solid grey); and (iii) the shallowest slope when both standard
and comparison are unreliable (figure 6d, dashed grey).
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For the Vector Sum model, the strength of the texture
stimulus T1 is larger than the strength of the texture stimulus
T2. According to the Vector Sum model (i) 3D estimates from
both standard and comparison stimuli are deterministic, that
is, they do not vary across trials, and (ii) depth discrimination
is achieved when the perceived depth of the comparison
stimulus differs from the perceived depth of the standard
stimulus by an amount that overcomes the task-related
noise sM. The Vector Sum model therefore predicts that the
comparison stimulus is what determines the JND. Consider
figure 6a(ii) where T1 is the comparison stimulus and T2 is
the fixed standard. First, note that a perceptual match (hori-
zontal dashed line) is achieved when the simulated depth
values of the two stimuli are different (zT1 and zT2 in the
figure), because they have different cue strengths. Second,
for a measurable discrimination, the simulated depth of T1

(comparison) must increase from the pedestal value zT1 by
an amount yielding a perceived depth difference equal to
the standard deviation of the task-related noise sM. This
amount is the JND (JNDT1

, figure 6a(ii), black horizontal
bar on the x-axis), which we saw is inversely proportional
to the cue strength (figure 1f, equation (9)). If the comparison
is the weaker stimulus (i.e. texture T2) then the JND will be
larger (JNDT2

on figure 6a(iii)). In figure 4c, I show the pre-
dicted psychometric functions based on the IC model
hypothesis that the JND only depends on the cue strength k
of the comparison stimulus. When the comparison is the
strong-cue stimulus, we expect steep and identical
psychometric functions when both (a) the standard is a
strong-cue stimulus (solid black) and (b) the standard is
a weak-cue stimulus (dashed black). Similarly, when the com-
parison is the weak-cue stimulus, we expect shallow and
identical psychometric functions for both a strong (solid
grey) and a weak (dashed grey) standard. The results of a
recent study shown in figure 6d confirm the predictions of
the Vector Sum model and clearly disagree with those of
the MLE model [70].
(c) Just noticeable difference according to the
maximum-likelihood estimation and Vector Sum
models: empirical evidence with multiple cues

The MLE model and Vector Sum model predict different out-
comes of cue integration with regard to the variance of the
combined output. The MLE model predicts that combining
cues yields a reduction of the variance of the combined
output (figure 2b, equation (3)) [3]. This prediction has been
tested extensively in depth-discrimination experiments
where standards and comparisons are the same stimulus
type: either single-cue stimuli or combined-cue stimuli.

Using a similar experimental paradigm to the one illus-
trated above, I will extend the predictions of the MLE model
to a discrimination task where single-cue or combined-cue
stimuli are either assigned to be the fixed standard or the vari-
able comparison. Figure 7a shows the psychometric curves
predicted by the MLE model. First, since the MLE model
assumes accurate outputs in all conditions, the PSE of the psy-
chometric curves is predicted to be the same for all
combinations of standard and comparison stimuli (figure 7a,
PSEs: z2cues ¼ z1cue). Second, as for the case of single-cue stimuli
described in §3(b), the slope of the psychometric function
depends on both the reliability of standard and comparison.
We therefore expect: (i) the steepest slope when standard
and comparison are both (the more reliable) double-cue
stimuli (figure 7a, solid black); (ii) intermediate slopes when
standard and comparison are different (figure 7a, dashed
black and solid grey); and (iii) the shallowest slope when
both standard and comparison are both (the less reliable)
single-cue stimuli (figure 7a, dashed grey).
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For the Vector Sum model, combining cues increases the
depth-cue strength (figure 2e, equation (8)). Since the JND
only depends on the cue strength, we expect steeper psycho-
metric curves for combined-cue comparisons (figure 7b, black
curves) and shallower psychometric curves for single-cue com-
parisons (figure 7b, grey curves). In both cases, the slope does
not depend on the standard stimulus. We also expect that
when the cue strengths of comparison and standard stimuli
are different, the PSEs are also different, since depth estimates
of combined-cue stimuli are predicted to be larger than those
of single-cue stimuli because the strength of combined cues is
larger (figure 2e, equations (6) and (7)). Therefore, the simulated
depth z2cues of combined stimuli must be smaller than the simu-
lated depth z1cue of single-cue stimuli to obtain a perceptual
match (figure 7b). In a recent experiment, I tested these predic-
tions with disparity and texture cues. The single-cue stimuli
were random-dot stereograms simulating 3D bumps similar
to those shown on figure 1. The combined-cue stimuli provided
both texture and disparity information. In figure 7c, I show the
results of a representative observer [70]. The results accurately
match the predictions of the Vector Sum model and contradict
the predictions of the MLE model.

These findings impose a radical re-interpretation of pre-
vious results on depth-discrimination experiments used as
the strongest evidence in support of the MLE model. As men-
tioned before, previous results seem to indicate that the
variance of combined-cue estimates is smaller than the var-
iance of single-cue estimates as predicted by MLE (figure 1c,
equations (4) and (5)) [15,30]. However, in these experiments,
depth discrimination was studied separately for single-cue
and combined-cue stimuli. Note, however, that in these exper-
imental conditions the Vector Sum model makes identical
predictions for the slope of the psychometric function
(figure 7a,b) where the smaller JND observed for combined-
cue discriminations is due to the larger combined-cue strength,
which amplifies the response to distal depth changes (figure 2e,
equations (7) and (8)). Most importantly, when strengths are
expressed in terms of JNDs (figure 2f, equations (9) and (10))
the relationship between the predicted JND of the combined-
cue stimulus and the JNDs of the single-cue stimuli is identical
to the prediction of the MLE model (figure 2c, equation (5))1.

In summary, the Vector Sum model can predict previous
results from depth-discrimination experiments used to confirm
the predictions of the MLE model. However, the Vector Sum
model can also predict the outcomes of untested experimental
conditions where the cues displayed in the standard and com-
parison stimuli are different. In these newly tested conditions
thepredictions of theMLEmodel are falsified.Fromthese results
we can conclude that variability of depth judgements measured
in depth-discrimination tasks does not reflect the output varia-
bility of 3D processing modules, as predicted by the MLE
model. Instead, as predicted by the Vector Sum model, the
JND is influenced by task-related noise and the cue strength.
4. Are 3D estimates from single-cues accurate?
Evidence from a depth-matching experiment

The MLE model is based on the fundamental assumption that
the output of depth modules is on average accurate (i.e. it is
unbiased). The Vector Sum model, instead, assumes that indi-
vidual outputs are only linearly related to distal 3D
properties, but, in general, do not correspond the ground
truth (i.e. they are biased). It is only the ‘lucky’ circumstance
of encountering the ideal stimulus that yields a cue strength
ki = 1 that will coincidentally produce a veridical output. Typi-
cally, cue strengths elicit under-estimation of 3D properties,
but can in some specific viewing conditions also produce
over-estimations (figure 2d, left panels, equations (D1)).

If the assumption of the MLE model is true then the per-
ceived depth from one cue should match the perceived depth
from a different cue as long as both cues specify the same 3D
structure. Specifically, consider a depth-matching task where
a fixed single-cue (e.g. motion) standard stimulus specifying a
depth magnitude z1 is compared to a comparison stimulus
specified by a different depth cue (e.g. disparity). The simulated
depth of the comparison stimulus (z2) is varied until a depth
match is obtained. If the single-cue outputs are unbiased, as
assumed by the MLE model, then a perceptual match is
obtainedwhen z1 ¼ z2. By contrast, the Vector Summodel pre-
dicts that the distal depth values resulting in a perceptualmatch
are not in general the same, but depend on the cue strength of
each cue. Since perceived depth ẑ1 ¼ k1z1 and ẑ2 ¼ k2z2
(figure 2d, equation D1) a perceptual match is obtained
when k1z1 ¼ k2z2, where k1 and k2 are the cue strengths. There-
fore, since z2 ¼ ðk1=k2Þz1, the depth match can be predicted
from the cue strength ratio (k1/k2). Unfortunately, this ratio
cannot be determined since the values of the cue strengths are
unknown. Remember, however, that according to the Vector
Summodel JNDs are inversely proportional to the cue strengths
(figure 2f, equation (9)). Therefore, the ratio k1/k2 can be deter-
mined from the two discrimination thresholds JND1 and JND2

obtained in independent discrimination tasks performed on
each cue separately. As a consequence, the ratio between the
cue strengths is inversely proportional to the ratio between
the JNDs: k1 =k2 ¼ JND2=JND1. Given this additional quantity,
the prediction of the Vector Summodel is z2 ¼ ðJND2=JND1Þz1.
I tested this prediction formotion anddisparity cues in two sep-
arate studies [71,72] and indeed found that the perceptual
match was not veridical as predicted by the MLE model. As
can be seen in figure 8 (top), simulated depth from disparity
(z2) producing a perceptual depth match is much smaller than
the simulated depth from motion (z1). However, as can be
seen in figure 8 (bottom), the simulated depth from motion
scaled by the JND ratio (such that z2 ¼ ðJND2=JND1Þz1) accu-
rately predicts the empirical data and therefore confirms the
predictions of the Vector Sum model.

On a final note, these results not only reject the assumption
of the MLE model that 3D perception is accurate, but also pro-
vide further converging evidence that JNDs do notmeasure the
s.d. of single-cue outputs. In fact, according to the MLE theory,
the PSEs estimated in a matching task and the JNDs resulting
from discrimination tasks should be completely unrelated par-
ameters. This is because the PSEs are estimates of the means
of the likelihood functions associated with each cue (which
should correspond to the ground truth) and the JNDs are esti-
mates of the s.d. of these likelihood functions. By contrast, for
the Vector Sum model, both PSEs and JNDs are univocally
determined by the cue strength. The results shown in figure 8
clearly confirm this second interpretation of JNDs.
5. Predicting cue combination
The MLE and Vector Sum models make different predictions
about the outcome of cue integration experiments. In reference
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to figure 1, consider an experiment exploring the combination
of texture and shading information. In the single-cue condition,
only one cue carries information about the 3D structure of
distal objects. The bump in figure 1b viewed in a uniformly illu-
minated environment contains only a texture gradient.
Conversely, if the material composition of the bump produces
a negligible texture gradient but it is illuminated by a distant
light source it carries only shading information (figure 1c). In
the combined-cue conditions, both texture and shading are
present (figure 1a).

The MLE model combines in a statistical optimal fashion
the single-cue outputs through a weighted average, where
the weights are inversely proportional to variance of the
output noise (figure 2b, equations (1) and (2)). The perceived
depth magnitude of a cue-combined stimulus is therefore
predicted to be ‘in between’ the perceived depthmagnitudes of
the single-cue stimuli and closer to that of themore reliable cue.
In the example of figure 1, the perceived depth of the texture-
shading stimulus should be intermediate to the perceived
depth of the shading-only and texture-only stimuli.
The Vector Sum model treats the single-cue outputs as
orthogonal components of a multi-dimensional vector. The
length of this vector is the combined-cue estimate (figure 2e,
equations (6)–(8)). Therefore, the perceived depth magnitude
of the combined-cue stimulus is always predicted to be
larger than the perceived depth of single-cue stimuli. This
phenomenon can be directly observed in figure 1where the tex-
ture-shading stimulus appears deeper than the texture-only
and shading-only stimuli.

In a recent experimentwherewe studied the combination of
texture and binocular-disparity information, we confirmed the
predictions of the Vector Sum model [73]. Observers judged
thedepthof a sinusoidal corrugationbyadjusting theamplitude
of a two-dimensional sinusoidal probe in three conditions
(figure 9a). In theTexture condition, only the texture cuewaspre-
sent. In the Disparity condition, we showed subjects a random-
dot stereogram, so that only binocular disparities were present.
In the Combined condition, both cues were present.

Figure 9 shows the results of the experiment repeated at
two viewing distances (40 cm and 80 cm) [73]. Note first
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that at 40 cm the single-cue estimates differ from each other.
Perceived depth from disparity (red) is larger than perceived
depth from texture (green) and is significantly overestimated.
However, depth in the combined condition (black) is even
more overestimated. At 80 cm, perceived depth from dis-
parity appears to be close to veridicality and close to
perceived depth from texture, as seen by their matching
slopes. But when the cues are combined, perceived depth is
again larger and overestimated. These results are predicted
by the Vector Sum model: the shaded light-blue areas on
figure 9 indicate the confidence intervals of the predictions
for the combined-cue results obtained directly from the
single-cue data. The results clearly match this prediction
and deviate systematically from a weighted average predic-
tion of the MLE model (which should fall in-between the
single-cue estimates) [73].
6. Concluding remarks
In this paper, I proposed a new computational theory of cue
integration, termed IC, as an alternative to the current the-
ories based on probabilistic inference. The IC theory is
implemented with the Vector Sum model, a deterministic
model that represents the outputs of independent processing
modules as the components of a multi-dimensional vector.
The norm of this vector is the estimate of a 3D property
(e.g. depth, slant or curvature). This model maximizes the
sensitivity to changes in distal properties while minimizing
the undesired influence of nuisance scene parameters, such
as the motion of the observer, illumination conditions,
material composition of objects, etc. There are two main
reasons why I argue that the Vector Sum model of depth-
cue integration is a more viable alternative to the MLE
models. First, the Vector Sum model is more parsimonious,
since it does not require two strong foundational
assumptions of the MLE approach. The first assumption is
that independent modules provide accurate estimates of 3D
properties of distal objects. Instead, the Vector Sum model
only postulates a linear mapping between distal properties
and each module output. The second assumption of the
MLE model is that the outputs of the single-cue modules
are combined through a weighted average that favours the
most reliable cues. This requires that each module also pro-
vides information about cue reliability. In order to
hypothesize possible neural mechanisms that implement
this combination process, it has been suggested that cortical
neurons directly represent probability distributions and
then combine those distributions in a statistical optimal
fashion [19]. By contrast, the rule of combination of the
Vector Sum model does not necessitate any estimate of the
‘quality’ of the output of single-cue modules.

Second, the IC model has more explanatory power,
since it predicts previous results in support of the MLE
model and, most importantly, accounts for novel results
that cannot be predicted by these models without the intro-
duction of ad-hoc assumptions and priors [71–84]. From an
empirical standpoint, the MLE model makes accurate predic-
tions only in restricted experimental conditions, but fails to
account for systematic biases in 3D judgements and does
not explain simple phenomenological observations. The
experimental tests that do agree with the MLE model hinge
on the measurement and interpretation of discrimination
thresholds, commonly termed JND. The methodological
assumption of the MLE model is that JNDs are measures of
the s.d. of the noise of 3D estimates. We showed that this
methodological assumption, however, is incorrect, and pro-
vided new empirical evidence consistent with a radically
different interpretation of JND. Through this new interpret-
ation, the Vector Sum model can both predict previous data
in support of the MLE model and new results incompatible
with the MLE predictions.
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It is important to highlight that both the IC theory and
the probabilistic inference theories only specify how
3D estimates from separate modules are combined, but do
not specifyhow thedepthmodules are implemented. This is cer-
tainly work for future research, but the way this problem
should be approached must be guided by the assumptions
the two theories make about the nature of the computation of
depth modules and the output information. Take, for instance,
the problem of deriving 3D shape from texture information.
Probabilistic theories, and in particular Bayesian models, pos-
tulate that the visual system reverses the process of retinal
projection to find among infinite structures in the world the
most probable. This requires that the texture module embeds
information about the statistical distribution of textures in the
environment and also a priori probabilities of 3D structures in
the world. If this information is correct then the module can
compute the truthful probability distribution of 3D shapes
that have generated a given visual input. In reference again to
figure 1, this means that this output would generate a sharp
probability distribution for the texture in figure 1b and a wide
distribution for the texture in figure 1d. Moreover, the peaks
of these distributions are expected to vary across views, with
small variations for the reliable texture (figure 1b) and large
variations for the unreliable texture (figure 1d). However,
both outputs are expected to be on average veridical. Although
attempts have been made in the past to develop probabilistic
models of shape from texture, these have been confined to the
very special case of planar surfaces [4,23]. In general, there
are no existing working models of shape from texture that pre-
dict human behaviour. In contrast with probabilistic theories,
the IC theory postulates the existence of depth modules that
output a 3D estimate that is only linearly related to the
ground truth, but it is not in general accurate. Unlike the prob-
abilistic models, this estimate is stable across multiple views of
the same type of stimulus. What it is expected, instead, is that
the magnitude of this response depends on the strength of
the cue. In the example of figure 1, the texture module will
output a large response for the texture in figure 1b and a
weak response for the texture in figure 1d. In contrast with
the probabilistic models, the output estimate of depthmodules
does not carry any information about the ‘quality’ of the visual
input, such that the response to a weak cue (the texture cue in
figure 1d) and the response to a strong cue projected from a
shallow surface are indistinguishable. Therefore, according to
the IC theory, single-cue modules should be attuned to
image properties that are invariant with the nuisance scene
parameters (e.g. the material property that determines the sur-
face texture). A consequence of this assumption is that, in stark
contrast with the MLE model, the visual system does not
‘weigh’ the outputs of individual modules based on some
measure of ‘reliability’ or strength of cues, since such infor-
mation is absent from the module output. In other words, the
visual system is blind to the distal causes of the visual input
and simply combines all the module outputs through a vector
sum. It is the logic of the vector sum regime that guarantees
that the combined output will always optimally track the
underlying distal depth variable, regardless of the strength of
the individual cues.

In a final note, it should be emphasized that although the
two theories do not specify how depth modules may be
learnt, the depth modules postulated by the IC theory do
not necessarily require information about the ground truth
for their mechanisms to be learnt. Instead, invariant proper-
ties of independent image signals that covary with distal
properties must also necessarily covary among themselves
and, likewise, covary with signals arising from other modal-
ities such as touch or proprioception. Discovering these
covariations may be a plausible learning process for a biologi-
cal system that never has direct access to the distal geometric
structure of the environment [85,86].
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Endnote
1This can be verified by combining equations (9) and (10) of figure 2f.
Appendix A
Appendix 1: The Vector Summodel maximizes the Signal-to-Noise-
Ratio. For simplicity consider only two signals s1 ¼ l1z and
s2 ¼ l2z, where li are unknownmultipliers depending on con-
founding variables and z is the magnitude of the 3D property.
These signals are the visual system encoding of 3D information
from single cues. We seek an estimate ẑC ¼ f(s1,s2) (1) pro-
portional to z and (2) most sensitive to 3D information and
least sensitive to random fluctuations 1i of li. If li0 is the unper-
turbed value of li then li ¼ li0 þ 1i and si0 ¼ li0z. We assume
small random perturbations due to changes in viewing con-
ditions such that 1i are Gaussian distributions with zero
mean and standard deviations si: Taking the derivative of

df(s1,s2)
dz

¼ df
ds1

(l10 þ 11)þ df
ds2

(l20 þ 12),

where df/dsi are calculated at si0, we observe a signal term
S ¼ f1l10 þ f2l20 (where fi ¼ df =dsi) and a noise term
E ¼ f111 þ f212 having s.d. sE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21s

2
1 þ f22s

2
2

q
. If we minimize

the Noise to Signal Ratio NSR ¼ sE

S
with respect to fi (by sol-

ving for fi the equation dSNR =dfi ¼ 0), we find that the first
derivatives of the function are df =dsi / li0 =s

2
i . It can be

shown that the derivatives dẑC =dsi of the equation

ẑC ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1
s1

� �2

þ s2
s2

� �2
s

(calculated at si0) meet this require-

ment. By substituting ki ¼ bðli=siÞ, we obtain the Vector
Sum equation ẑC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k1z)

2 þ (k2z)
2

p
(easily generalizable to n

signals).
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