
Conflict-Tolerant and Conflict-Free

Multi-Agent Meeting

Dor Atzmona, Ariel Felnera, Jiaoyang Lib,
Shahaf Shperberga, Nathan Sturtevantd, Sven Koenigc

aBen-Gurion University of the Negev, Israel
bCarnegie Mellon University, USA

cUniversity of Southern California, USA
dUniversity of Alberta, Canada

Abstract

In the Multi-Agent Meeting problem (MAM), the task is to find the optimal

meeting location for multiple agents, as well as a path for each agent to that

location. Among all possible meeting locations, the optimal meeting location

has the minimum cost according to a given cost function. Two cost functions are

considered in this research: (1) the sum of all agents paths’ costs to the meeting

location (SOC) and (2) the cost of the longest path among them (MKSP). MAM

has many real-life applications, such as choosing a gathering point for multiple

traveling agents (humans, cars, or robots).

In this paper, we divide MAM into two variants. In its basic version, MAM

allows multiple agents to occupy the same location, i.e., it is conflict tolerant.

For MAM, we introduce MM*, a Multi-Directional Heuristic Search algorithm,

that finds the optimal meeting location under different cost functions. MM*

generalizes the Meet in the Middle (MM) bidirectional search algorithm to the

case of finding an optimal meeting location for multiple agents. Several admissi-

ble heuristics are proposed for MM*, and experiments demonstrate the benefits

of MM*.

As agents may be embodied in the world, a solution to MAM may contain

conflicting paths, where more than one agent occupies the same location at the

same time. The second variant of the MAM problem is called Conflict-Free

Multi-Agent Meeting (CF-MAM), where the task is to find the optimal meeting

Preprint submitted to Artificial Intelligence Journal May 25, 2023

location for multiple agents (as in MAM) as well as conflict-free paths (in the

same manner as the prominent Multi-Agent Path Finding problem (MAPF))

to that location. For optimally solving CF-MAM, we introduce two novel algo-

rithms, which combine MAM and MAPF solvers. We prove the optimality of

both algorithms and compare them experimentally, showing the pros and cons

of each algorithm.1

Keywords: Multi-Agent Meeting, Conflict-Tolerant, Conflict-Free,

Multi-Agent Path Finding, Multi-Directional Heuristic Search, MM*,

Conflict-Based Search, Network-Flow

1. Introduction and Overview

In the Multi-Agent Meeting problem (MAM) [3, 1] the input is a graph and

a set of k traveling agents, each with its start location. The task is to find a

meeting location for the agents, and a path for each agent from its start location

to the meeting location. Ideally, one should find an optimal location, which is5

determined by the cost function. This usually considers the travel effort by

each agent. Two common cost functions [4], which we consider in this paper,

are the Sum-of-Costs (SOC) and Makespan (MKSP) cost functions. SOC is

the sum of all agents paths’ costs to the meeting location, while MKSP is the

cost of the longest path among them. Both functions are formally defined in10

Section 3. MAM is a very practical problem. It is applicable to finding a

gathering location for multiple agents (humans, cars, or robots). Additionally,

given a set of locations, in many scenarios, one may wish to choose a point that

is as close as possible to all these locations. An example would be placing a

hospital close to a number of schools. We divide MAM into two variants of the15

problem, namely, the basic Conflict-Tolerant MAM (denoted for simplicity as

MAM) and Conflict-Free MAM (CF-MAM).

1Portions of this work have been previously published [1, 2]. This paper ties together
all the results, provides more insights, more theoretical understandings, more experimental
results, and presents a comprehensive manuscript that summarizes this line of work.

2

1.1. Basic, Conflict-Tolerant Multi-Agent Meeting

In the basic variant (MAM) the paths can be conflicting, i.e., more than

one agent is allowed to occupy the same location at the same time. This is20

relevant, for instance, if the locations are much larger than the physical body of

the agents. For example, if a number of persons wish to meet in a nearby coffee

shop. In addition, conflict-tolerant solutions are relevant for the second scenario

described above (of the hospital), as usually there is only one moving agent that

evacuates a patient to the hospital. To find the optimal meeting location for25

MAM, we introduce theMulti-Directional Meet in the Middle algorithm (MM*).

MM* is a best-first search algorithm that progresses in k directions until a

meeting location is found. MM* is a general algorithm that uses a priority

function to order nodes in its open list. We provide a unique priority function

for each of the Sum-of-Costs (SOC) and Makespan (MKSP) cost functions.30

We prove the optimality of MM* for both of these priority functions. MM*

is strongly related to the Meet in the Middle algorithm (MM) [5], a recently

introduced bidirectional heuristic search algorithm that is guaranteed to meet

in the middle, i.e., the two frontiers of the search meet at the halfway point of

the optimal solution (the exact definition is given below). The priority function35

of MM* for MKSP is a generalization of that of MM, although their halting

conditions are different: MM returns a path from the start location to the goal

location while MM* returns the actual meeting location (and paths from the

start locations to that meeting location).

MM* relies on an admissible heuristic function that estimates the remaining40

cost to the goal location for each node encountered during the search. We

propose a number of such heuristic functions for the SOC and MKSP priority

functions, and prove their admissibility. We then provide experimental results

that demonstrate the benefits of MM* with these heuristic functions.

1.2. Conflict-Free Multi-Agent Meeting45

As agents may be embodied in the world, practically, a solution to MAM

may cause conflicts (collisions) between the agents on their paths. Indeed, in a

3

MAM solution, agents may be located in the same location at the same time.

Therefore, we introduce a second variant of the problem called Conflict-Free

Multi-Agent Meeting (CF-MAM). In CF-MAM, we seek a meeting location for50

multiple agents and conflict-free paths to that location. In CF-MAM, the agents

are prohibited from occupying the same location at the same time, except,

of course, for the meeting location, where all agents gather. This scenario is

relevant when the physical shape of the agents is large, such that only one agent

fits a location.55

Several related, but distinctly unique problems have been studied previ-

ously. A related problem for which algorithms find conflict-free paths for mul-

tiple agents is the Multi-Agent Path Finding problem (MAPF) [4, 6, 7]. MAPF

algorithms must find a path for each agent from its start location to its speci-

fied goal location, while avoiding conflicts with other agents. A commonly used60

algorithm for optimally solving MAPF is the Conflict-Based Search (CBS) algo-

rithm [8]. Importantly, both variants of MAM are not a special case of MAPF

and are significantly different. The main significant difference between MAM

and MAPF is that, in MAPF, goal locations are given as input. By contrast, in

MAM, goal locations are not part of the input and the task is to find a specific65

meeting location for the agents, as well as a set of paths to that specific meeting

location. Therefore, whether conflicts are allowed or not is a parameter setting

in MAM and thus different variants of the problem exist. Naturally, in MAPF,

if conflicts are allowed, the problem does not exist as agents can solve a set of

independent single-agent pathfinding sub-problems to solve the problem.70

Indeed, CF-MAM has some connections to MAPF as we now discuss. A

unique variant of MAPF is the Permutation Invariant MAPF problem (PI-

MAPF) [9]. PI-MAPF is the problem of finding conflict-free paths to lead the

agents to a set of goal locations that were not pre-assigned to the agents. A

special case of PI-MAPF is the Shared-Goal MAPF problem (SG-MAPF) [10],75

in which all goal locations are identical, i.e., finding conflict-free paths to a single

goal location. CF-MAM is different from SG-MAPF as in CF-MAM the goal

location is not given as input and must be calculated.

4

receive, as input, a destination for leading the agents to (goal locations), MAM

problems (MAM and CF-MAM; columns 1 and 5) are required to find a des-

tination for the agents (a meeting location). Note that, while PI-MAPF gets

the goal locations as input, a solution to the problem determines which goal100

location will be reached by each agent. Thus, as presented in the table, MAPF

and PI-MAPF may get the same input but have different optimal solutions.

MAM is the only problem in the table that allows conflicts. It is less restricted

than CF-MAM, and hence, a solution to MAM may be invalid for CF-MAM.

In the examples for MAM and CF-MAM, both get similar input. In the output105

example depicted for MAM, both agents a1 and a4 that start at locations s1

and s4, respectively, conflict at timestep 1 (both located in the same location at

the same time). As CF-MAM does not allow conflicts, this solution is invalid

for CF-MAM. Thus, in the output example for CF-MAM, the path of agent a4

is modified to a non-conflicting path.110

The paper is organized as follows. In Section 2, we provide basic definitions

and details of background and related work. Then, we specifically define the

MAM problem in Section 3. We present a naive approach and propose the

MM* algorithm for optimally solving MAM in Sections 4 and 5. We discuss

the different priority functions for MM* and their relation to MM in Section 6.115

We suggest a number of heuristic functions for MM* and compare them exper-

imentally in Sections 7 and 8, respectively. In Section 9, we formally define the

problem of CF-MAM and, in Sections 10 and 11, we propose the CFM-CBS and

IMS algorithms, respectively, for optimally solving CF-MAM. We evaluate these

algorithms experimentally in Section 12. Finally, we conclude this research and120

suggest directions for future work in Section 13.

Preliminary versions of this paper were published in IJCAI-2020 [1] for MAM

and in ICAPS-2021 [2] for CF-MAM. This paper (1) unifies these two papers;

(2) creates a similar terminology for this area of research; (3) extends CF-MAM

to support an additional cost function (i.e., MKSP); and (4) presents extended125

experimental and theoretical results.

6

2. Definitions, Background, and Related Work

This paper is related to three research areas: (1) Heuristic and Bidirectional

Search; (2) Multi-Agent Meeting; and (3) Conflict-Free Path Planning. We

cover each of them next.130

2.1. Heuristic and Bidirectional Search

Given a graph G = (V, E), a start location s ∈ V, and a goal location g ∈ V,

a Search Algorithm finds a path π from the start location s to the goal location

g. Such a path consists of a sequence of locations, i.e., π = (s, . . . , g). Let

π(t) denote the t-th location in π. Thus, π(0) = s and π(|π| − 1) = g. Let135

N(v) represent the neighbors of v, i.e., N(v) = {v′ ∈ V | (v, v′) ∈ E}. Each

two consecutive locations π(t), π(t + 1) (0 ≤ t < |π| − 1) must satisfy π(t +

1) ∈ N(π(t)). We call this edge traversal, performed between two neighboring

locations at two consecutive timesteps, a move action.

Depending on the problem, graph G can either be weighted or have unit costs140

for the edges. The cost of edge e = (v1, v2) ∈ E is denoted by c(e) = c(v1, v2) >

0. The cost of path π is denoted by C(π) and equals the sum of the cost of all

move actions in π (C(π) =
∑

0≤t<|π|−1 c(π(t), π(t + 1))). We use d(v1, v2) to

denote the cost of a shortest (optimal) path between the two locations v1 and

v2. Trivially, if path π is a shortest path, C(π) = d(s, g).145

Heuristic Search algorithms investigate the given graph by building a search

tree of nodes, where each node maintains some location v, a g-value, and an

h-value. The g-value (g(v)) represents the cost of the path from s to v (along

the search tree) and the h-value (h(v)) estimates the cost of the shortest path

from v to g. h is calculated by a heuristic function. A heuristic function is called150

admissible if it never overestimates, i.e., ∀v, h(v) ≤ d(v, g). A heuristic function

is called consistent if its estimate is less than or equal to the estimate from any

neighbour plus the cost of reaching that neighbour, i.e., ∀v∀v′ ∈ N(v), h(v) ≤

c(v, v′) + h(v′), and its estimate of the goal location g equals 0, i.e., h(g) = 0.

Best-First Search (BFS) algorithms organize nodes in two lists: an open list155

(Open) and a closed list (Closed). Iteratively, such algorithms select for expan-

7

sion the best node v from Open (according to some priority function), generate

its neighbors N(v) while adding them to Open, and move v to Closed. If a

shorter path to a node on Closed is found, it is re-opened by being placed back

on Open, however, this cannot happen if the heuristic function is consistent.160

A* [11] is a BFS algorithm that uses the priority function f = g+h for choosing

the next node for expansion. If h is admissible, then A* is guaranteed to return

an optimal solution and, under certain circumstances, is optimally efficient [12].

Algorithms, such as A*, initialize Open with location s and halt when loca-

tion g is expanded. Therefore, their search is unidirectional (one sided). Other165

algorithms, called bidirectional, start the search both from location s and from

location g, and halt when some path is found and the termination conditions

are met.

MM [5] is a bidirectional heuristic search algorithm with a unique prior-

ity function; nodes are ordered in Open according to max{2g, g + h}. MM is170

guaranteed to meet in the middle. The practical meaning of this property is

that the two search frontiers never venture (nodes are never expanded) further

than C∗/2 from their start locations, where C∗ is the cost of the shortest path.

Nevertheless, it is important to note that a meeting location is not returned by

MM. In fact, a meeting location is not even defined in MM. As any (bidirec-175

tional) search algorithm, MM returns a shortest path from a start location to a

goal location. Below, we introduce our new algorithm, MM*, which generalizes

MM from bidirectional search to multi-directional search. Unlike MM, MM*

returns the, so called, meeting location and paths from the start locations to

the meeting location, as fully defined and explained below.180

2.2. Multi-Agent Meeting

In this paper, we focus on MAM, which is the problem of finding a meeting

location and a set of paths to the meeting location. Previous work has solved

this problem with a variety of approaches. MAM has been investigated on

general graphs by applying variants of Dijkstra’s algorithm [13] in parallel, one185

for each agent. Once a path from all start locations to all locations in the graph

8

is known, the best meeting location can be chosen by exhaustively iterating

over all relevant meeting locations. Yan et al. [3] suggested an algorithm that

progresses in parallel from all start locations, in a BFS manner. When a new

location is reached from one of the search frontiers, the Dijkstra’s algorithm190

is executed from that frontier up to the new location. Thus, the algorithm

prunes areas of the state space by executing Dijkstra’s algorithm only up to a

number of potential meeting locations in order to determine the optimal meeting

location. More improvements for pruning additional areas of the state space

exist, however, they require prepossessing time in which the given graph needs195

to be explored in advance. Xu et al. [14] repeatedly solved the problem while

assuming that the start locations of the agents change between each problem

instance. They demonstrated how the history of the movement of agents can

be used for future calculations. Geisberger et al. [15] showed that some nodes

can be removed from the graph (e.g., nodes with a degree of one) in such a200

way that shortest paths, in the remaining graph, are preserved. Moreover, the

authors showed that nodes can be ordered based on their likelihood to be part

of shortest paths, in such a way that finding paths in the graph is enhanced, in

terms of runtime.

Izmirlioglu et al. [16] solved a related problem, for which the agents must205

pass through specific locations on their way to the meeting location. By adding

this constraint, forcing agents to pass specific locations, the problem becomes

intractable. The authors solve the problem using Answer Set Programming

(ASP) [17], a logic-based representation and automated reasoning framework.

In the field of computational geometry, MAM is known as the Weber prob-210

lem [18]. Many efficient algorithms exist for MAM in continuous Euclidean

spaces [19, 20, 21, 22] that calculate a geometric point that satisfies the relevant

constraints. Other researches showed how to find the optimal weighted center

(1-Center), which minimize a weighted euclidean distance, on a plane [23, 24],

and how to find the smallest circle (Smallest Enclosing Discs) that contains all215

the given agents’ locations on a plane [25].

FastMap [26, 27] is a near-linear preprocessing algorithm that approximates

9

the cost of a shortest path between any two locations. In Section 7, we provide

additional details on FastMap and use it for MAM.

2.3. Conflict-Free Path Planning220

Some path finding problems that involve multiple agents have different re-

strictions on the paths of the agents. We say that two paths conflict if they do

not comply with some of the restrictions of the problem. We define below two

types of such conflicts. A related problem to MAM that finds conflict-free paths

for multiple agents is the Multi-Agent Path Finding problem (MAPF) [4, 6, 7].225

MAPF gets as input an undirected graph G = (V, E), a set of start locations

S = {s1, . . . , sk} ⊂ V, and a set of goal locations G = {g1, . . . , gk} ⊂ V for

a set of agents A = {a1, . . . , ak}. As output, algorithms for MAPF return a

set of paths Π = {π1, . . . , πk} for the agents, respectively. In conflict-tolerant

problems, agents are allowed to conflict. Thus we assume that, in such prob-230

lems, there are only move actions and, in fact, agents can simply solve a set of

single-agent pathfinding sub-problems independently, and the problem is triv-

ially solved. On the other hand, conflict-free problems restrict the returned set

of paths Π to be conflict-free, and thus wait actions must also be considered,

i.e., an agent can stay at its current location between two consecutive timesteps.235

Both move actions and wait actions have unit cost.

Two main types of conflicts are defined for MAPF [4]: vertex conflicts and

swapping conflicts. A vertex conflict 〈ai, aj , v, t〉 occurs between two paths πi

and πj if the same vertex v ∈ V is occupied by both agents ai and aj at the

same timestep t, i.e., πi(t) = πj(t) = v. A swapping conflict 〈ai, aj , e, t〉 occurs240

between two paths πi and πj if the same edge e ∈ E is traversed in opposite

directions by both agents ai and aj between the same two consecutive timesteps

t and t+ 1, i.e., (πi(t), πi(t+ 1)) = (πj(t+ 1), πj(t)) = e.

The cost of a set of paths is determined by a cost function. There are two

commonly used cost functions: (1) Sum-Of-Costs (SOC) is the sum of the245

costs of all paths in Π (CSOC(Π) =
∑

πi∈Π C(πi)). (2) Makespan (MKSP),

which equals the cost of the path with the maximum cost among all paths in Π

10

(CMKSP (Π) = maxπi∈Π C(πi)). We use C∗ to denote the cost of the optimal

(minimum cost) solution (either SOC or MKSP). In this paper, we focus on

these two cost functions in the content of MAM.250

Although solving a MAPF instance optimally is NP-hard [28, 29], a number

of algorithms have been developed that are cable of solving instances optimally

for many agents, e.g., M* [30], BIBOX [31], ICTS [32], and Conflict-Based

Search (CBS) [8]. The latter, CBS, is a prominent algorithm that (1) plans

a path for each agent, without considering other agents; and (2) repeatedly255

resolves conflicts by constraining each of the conflicting agents and replanning

new paths. Many enhancements have been introduced for CBS [33, 34, 35, 36].

In general, MAPF has been investigated extensively and has many variants and

extensions, including large agents [37], trains [38], convoys [39], heterogeneous

agents [40], deadlines [41], and robustness [42, 43]. Later in the paper we intro-260

duce a new algorithm for solving CF-MAM that uses the framework of CBS.

A unique variant of MAPF is the Permutation Invariant MAPF problem

(PI-MAPF) [9]. PI-MAPF is the problem of finding conflict-free paths to lead

the agents to a set of goal locations that were not pre-assigned to the agents,

i.e., each goal location must be reached by one of the agents. This problem is265

also known as Anonymous MAPF [44] or Unlabeled MAPF [45]. While opti-

mally solving MAPF instances is NP-hard, PI-MAPF instances can be optimally

solved in polynomial time by reducing the problem to Network-Flow [10] and

using a Network-Flow solver.

A special case of PI-MAPF is the Shared-Goal MAPF problem (SG-MAPF;270

also known as Evacuation) [10], in which all goal locations are identical, i.e.,

finding conflict-free paths to a single goal location. There are a number of

possible assumptions for how agents behave at their goal locations [4] for the

classical MAPF problem. As all agents share a single goal, SG-MAPF must

either assume that when an agent reaches the goal it immediately disappears or275

that agents are allowed to conflict at the goal location. SG-MAPF can also be

optimally solved by the same reduction used for PI-MAPF [10]. As mentioned,

SG-MAPF is different from CF-MAM as, in CF-MAM, the goal is not given in

11

advance. We modify their reduction specifically from the SG-MAPF to Network

Flow and use it to solve CF-MAM with a number of calls for a Network-Flow280

solver, as described in Section 11.

3. Multi-Agent Meeting (MAM)

Next, we formally define the basic version of the Multi-Agent Meeting prob-

lem (MAM), which is tolerant to conflicts. MAM receives as input the tuple

〈G, S〉, where G = (V, E) is a weighted undirected graph and S is a set of k285

start locations for k agents A = {a1, . . . , ak}. A solution is a location m ∈ V,

indicating a meeting location for the agents, plus a set of shortest paths Π from

each start location si to location m. In its basic form, MAM is conflict-tolerant

and more than one agent can occupy any component of the graph at any time.

Under these assumptions, the cost functions for SOC and MKSP for a meeting290

location m can be calculated as follows. For SOC:

CSOC (m) =
∑

ai∈A

d(si,m). (1)

This corresponds to the sum of the costs of the paths to the meeting location.

For MKSP:

CMKSP (m) = max
ai∈A

d(si,m). (2)

This is the cost of the longest path to the meeting location. An optimal solution

has the lowest cost C∗ among all possible solutions. The meeting location of

the optimal solution is denoted by m∗.

Figure 1 illustrates a MAM problem instance with three agents a1, a2, and295

a3 with start locations s1, s2, and s3, respectively. Edges are labeled with their

costs. Consider location v1 as a meeting location. Since d(s1, v1) = 5, d(s2, v1) =

5, and d(s3, v1) = 5, CSOC (v1) = 15 while CMKSP (v1) = 5. Now, consider v2.

Since d(s1, v2) = 8, d(s2, v2) = 2, and d(s3, v2) = 2, CSOC (v2) = 12 and

CMKSP (v1) = 8. v1 is an optimal meeting location for minimizing MKSP and300

v2 is an optimal meeting location for minimizing SOC.

12

(denoted Closed).2 Open is initialized with k root nodes: (ai, si) representing

each of the k agents and its start location. Each node is associated with a

g-value. Naturally, g(ai, si) = 0. Expanding a node (ai, v) has two parts:

1. Generating (possibly overwriting if the cost is improved) a node (ai, v
′)325

for each v′ ∈ N(v), setting g(ai, v
′) ← g(ai, v) + c(v, v′), and inserting it

into Open.

2. Moving (ai, v) to Closed.

In heuristic search, given a node n in the search tree, f∗(n) is defined to

be the cost of the optimal solution that passes through n, and f(n) is defined330

to be a lower bound on f∗(n). This terminology is migrated to MM*. Let

f∗(ai, v) be the cost of the optimal MAM solution (for either SOC or MKSP)

such that ai passes through v (via a path of cost g(ai, v) along the search

tree3) on its way to the meeting location. f(ai, v) is a lower bound on f∗(ai, v)

(f(ai, v) ≤ f∗(ai, v)). Note that f(ai, v) (and f∗(ai, v)), besides agent ai, also335

depends on the other agents meeting agent ai after it visits location v. In

Section 6, we define f(ai, v) for either SOC or MKSP by exploiting admissible

heuristic functions that estimate the remaining cost of all agents (including that

of ai) that can be added to g(ai, v) (the cost of the path from si to v along the

search tree). Each of these f -values can be plugged into MM*.340

There is no notion of a goal node in MM* but instead we have a goal condi-

tion on each location v. We say that location v becomes a possible goal when it

has been generated from all directions, i.e., ∀ai ∈ A, (ai, v) ∈ Open ∪Closed.

To manage this in practice, for each location v, we keep a k bit-vector, where bit

i is set when node (ai, v) is generated. When location v becomes a possible goal,345

2Bidirectional searches usually maintain two open-lists, one for each search direction, but

the priority function can choose a node from either one of them. This is logically equivalent

to a single open-list that contains nodes from both directions. MM* uses a single open-list,

which is equivalent to k open-lists, one for each agent, that share the same priority function.

That is, the priority function can choose a node from any of these open-lists.
3Note that in our definition of f∗(ai, v), the current g-value is assumed even if shorter

paths from si to v might be found later.

14

the cost of meeting at location v, denoted by C(v), can be calculated depending

on the cost function as follows:

CSOC (v) =
∑

ai∈A g(ai, v) and

CMKSP (v) = maxai∈A g(ai, v).
4

Let U be the cost of the incumbent solution, i.e., U is the minimum C(v)350

among all possible goals that have been identified thus far (initially U = ∞).

U is an upper bound on C∗. The halting condition for MM* is to halt if fmin

≥ U , where fmin is the minimum f -value in Open.5 This guarantees that U

cannot be further improved.

Algorithm 1 gives the pseudo-code of MM*. First, MM* initializes Open355

and Closed, and sets U ← ∞ (Line 2). Then, the initial nodes (ai, si) are

inserted into Open (Lines 3-4). MM* performs a best-first search as follows.

While Open is not empty (Line 5), it extracts (ai, v), the best node (with the

lowest f -value) from Open (Line 6). Then, it checks the halting condition

on location v, i.e., whether fmin = f(ai, v) ≥ U (Lines 7-8). Otherwise, it360

performs the expansion cycle on (ai, v) (Lines 9-18). MM* performs duplicate

detection and pruning on Closed (Lines 10-13) and Open (Lines 14-16). As

a result, MM* always keeps the lowest seen g-value for each generated node

(ai, v
′). In general, MM* allows nodes in Closed to be re-opened (Line 13).

But, this will never happen for consistent heuristics (including all heuristics that365

we propose and experiment with below). If (ai, v
′) is not a duplicate node, then

(ai, v
′) is inserted into Open (Line 17). If location v′ is a possible goal and its

solution is better than U (C(v′) < U) then U is decremented accordingly (Line

18). If location v′ is not a possible goal (v′ has not been generated from all

directions), its cost is C(v′) = ∞, and U is not updated. After its expansion,370

(ai, v) is inserted into Closed (Line 19). When U is returned (Lines 8 and 20),

it also includes the meeting location m as well as the paths to m, that can be

4In Equations 1 and 2, we used d(si, v). Here, we use g(ai, v) because the path is the path

from location si to location v along the search tree.
5f -values, for SOC and MKSP, are fully defined below in Section 6.

15

Algorithm 1: The MM* Algorithm

1 Main(MAM problem instance I = {A,S})

2 Init Open, Closed; U ←∞

3 foreach (ai, si) ∈ {A,S} do

4 Insert (ai, si) into Open

5 while Open is not empty do

6 Extract (ai, v) from Open // with lowest f(ai, v)

7 if f(ai, v) ≥ U then

8 return U // including the meeting location and the corresponding

paths

9 foreach v′ ∈ N(v) do

10 if Closed contains (ai, v
′) then

11 if g(ai, v
′) ≤ g(ai, v) + c(v, v′) then

12 continue

13 Remove (ai, v
′) from Closed

14 else if Open contains (ai, v
′) then

15 if g(ai, v
′) ≤ g(ai, v) + c(v, v′) then

16 continue

17 Insert (ai, v
′) into Open // possibly overwriting if cost improved

18 U ← min {U,C(v′)} // if C(v′) < U , v′ becomes the incumbent

meeting location

19 Insert (ai, v) into Closed

20 return U // including the meeting location and the corresponding paths

constructed by parent-pointers (not included in the pseudo-code).

5.1. Theoretical Analysis

Theorem 1 (Completeness). MM* is guaranteed to return a solution if one375

exists, and it returns U =∞ otherwise.

Proof. For each agent ai, MM* performs a best-first search from location si.

In the worst case, MM* explores every reachable location for each agent. If

a solution exists, a location reachable for all agents will be generated from all

directions and U will be updated (Line 18). At some point, either fmin will380

reach U or the entire graph will have been explored for all agents (Open will be

16

empty), and a solution will be returned. If no solution exists (because some of

the agents are in different connected components), there is no location that is

reachable for all agents and U will never be updated and thus remains ∞.

Observation 1. If MM* has not yet generated node (ai,m
∗) for agent ai from385

the optimal path of agent ai to m∗, there exists a node (ai, vi) in Open such

that vi is a location on the optimal path of ai to location m∗, and every node

before vi on the optimal path has already been expanded.

Proof. Let π∗
i be the optimal path of agent ai from location si to the optimal

meeting location m∗. We prove the observation by induction on the nodes of390

the optimal path of each agent along the search.

Base case: At the beginning, Open is initialized with (ai, si) for each agent

ai, which is the first location on the optimal path of agent ai to location m∗,

i.e., (ai, π
∗
i (0)) is in Open.

Inductive step: Let us assume that exactly x (|π∗
i | > x ≥ 0) nodes have395

been expanded on the optimal path of agent ai to location m∗ and one node

(ai, vi) such that vi = π∗
i (x) is generated and not yet expanded. When node

(ai, vi) is expanded, it generates a new node (ai, v
′
i) in Open for each neighbor

v′i ∈ N(vi). By definition, a path consists of adjacent locations. Therefore, one

such neighbor v′′i ∈ N(vi) must be on the optimal path to m∗ (v′′i = π∗
i (x+ 1))400

and (ai, π
∗
i (x+1)) is inserted into Open. Note that the duplicate detection and

pruning mechanism of MM* will never prune the node (ai, v
′′
i) as v′′i is on the

optimal path and there cannot exist a different path to v′′i with a lower cost.

Conclusion: Since the base case and the inductive step are both true, by

induction we conclude that, for agent ai that has not yet reached m∗ from the405

optimal path, there must be a node on the optimal path of agent ai inOpen.

Theorem 2 (Optimality). Given an admissible f (i.e., f(n) ≤ f∗(n) for all

nodes n), MM* is guaranteed to return the optimal location m∗ with cost C∗, if

one exists.

Proof. Assume, by contradiction, that MM* returned a suboptimal location410

17

m 6= m∗ with cost C > C∗. Since MM* has terminated and returned a solution,

fmin ≥ C > C∗. Since MM* terminated without returning an optimal solution,

Observation 1 holds and there exists a node n′ = (ai, vi) in Open such that vi

is a location on the optimal path of ai to location m∗, and every node before

n′ on the path has already been expanded. Since n′ is the first node on the415

optimal path that was not expanded, it was generated by a node on the optimal

path, and thus g(n′) = d(si, vi). By definition, f∗(n′) is the cost of the optimal

solution that passes through n′. Therefore, since g(n′) = d(si, vi), f
∗(n′) = C∗.

Since f is admissible then f(n′) ≤ f∗(n′) = C∗. As n′ ∈Open, fmin ≤ f(n′) ≤

f∗(n′) = C∗, which contradicts the fact that fmin ≥ C > C∗.420

6. MM* Priority Functions

We next define the priority function f for MM* for both SOC and MKSP

to be used on the basic MAM problem. Recall that in A*, given a node n, a

perfect heuristic function is h∗(n) = d(n, g) and a perfect priority function is

f∗(n) = g(n) + h∗(n). Similarly, if h(n) is a lower bound on h∗(n) = d(n, g),425

then f(n) = g(n) + h(n) is a lower bound on f∗(n). Next, we generalize this

to MM* and define all these functions (h∗, h, f∗, and f) for both the SOC and

MKSP cost functions.

6.1. The functions for SOC

Consider node (ai, v) inOpen. f∗
SOC

(ai, v) is the cost of the optimal solution430

such that:

Item 1. Agent ai passes through location v (via the path of cost g(ai, v) along

the search tree).

Item 2. Agent ai continues from location v along a shortest path to meet the

other agents at some location m (it might be that m = v).435

Item 3. Each of the other agents aj travels from its start location sj along a

shortest path to location m.

18

We note that the meeting location m in f∗
SOC

(ai, v) may not be the optimal

meeting location for our problem; it is the optimal meeting location assuming

agent ai reaches location v via a path of cost g(ai, v).440

Now, f∗
SOC

(ai, v) = g(ai, v) + h∗
SOC

(ai, v), where h∗
SOC

(ai, v) is defined to

be the sum of the cost of agent ai to get from location v to location m along a

shortest path (item 2), plus the cost of the other agents to get from their start

locations to location m along shortest paths (item 3). Formally:

h∗
SOC (ai, v) = min

m∈V
{d(v,m) +

∑

aj∈A\{ai}

d(sj ,m)}. (3)

So, f∗ is the sum of all three items while h∗ is the sum of items 2 and 3. We

next move to discuss f and h.

We denote the best meeting location m w.r.t. node (ai, v) by m∗(ai, v).

Let hSOC (ai, v) be an admissible estimate (lower bound) of h∗
SOC

(ai, v), i.e.,

hSOC (ai, v) ≤ h∗
SOC

(ai, v). We propose a number of admissible h-functions for445

SOC in Section 7.

For SOC, naturally,

fSOC (ai, v) = g(ai, v) + hSOC (ai, v). (4)

6.2. The functions for MKSP

The MKSP case is more complicated. Since, in MKSP, we take the maximum

among agents (not the sum), we do not know which agent has the path with

the highest cost. We begin by defining f∗
MKSP

(ai, v), which is the cost of the

optimal solution given that ai passes through v, via a path of cost g(ai, v):

f∗
MKSP (ai, v) = min

m∈V



max







g(ai, v) + d(v,m),

maxaj∈A\{ai}
d(sj ,m)









 . (5)

For a given possible meeting location m, we want the path of one of the agents

with the highest cost. If this is our current agent ai, this is given by g(ai, v) +

d(v,m) (top line of the max term in Equation 5). If it is some other agent aj ,450

it is given by d(sj ,m) (bottom line).

19

Next, we need to define fMKSP as a lower bound on f∗
MKSP

. Here, we do

not define h∗
MKSP

and hMKSP but define fMKSP (ai, v) in terms of hSOC (ai, v)

as follows:

fMKSP (ai, v) = max
{

g(ai, v),
g(ai,v)+hSOC (ai,v)

k

}

, (6)

where k is the number of agents. g(ai, v) is a lower bound on f∗
MKSP

(ai, v) be-

cause ai has already traveled along a path of cost g(ai, v). Thus, f
∗
MKSP

(ai, v) ≥

g(ai, v). Now, let m∗
x be the optimal meeting location for objective function x

(x is either SOC or MKSP). Observe that CSOC (m∗
SOC

) ≤ CSOC (m∗
MKSP

)455

and CMKSP (m
∗
MKSP

) ≤ CMKSP (m
∗
SOC

) (because the cost of an optimal solu-

tion is always ≤ than the cost of any other given solution). Moreover, for any

meeting location m, it holds that CSOC (m)
k

≤ CMKSP (m) because one of the

agents must travel at least CSOC (m)
k

(average is ≤ than max). Thus, we get that

CSOC (m∗

SOC
)

k
≤

CSOC (m∗

MKSP
)

k
≤ CMKSP (m

∗
MKSP

). Along the same reasoning, for460

agent ai that passes through v,
f∗

SOC
(ai,v)
k

≤ f∗
MKSP

(ai, v). Since fSOC (ai, v)

is a lower bound on f∗
SOC

(ai, v), dividing it by k will yield a lower bound on

f∗
MKSP

(ai, v), i.e.,
g(ai,v)+hSOC (ai,v)

k
≤ f∗

MKSP
(ai, v).

6.2.1. Costs of Subsets

f∗
MKSP

for k agents is determined by the path of one of the agents with the465

highest cost. Therefore, f∗
MKSP

and fMKSP for any subset of these k agents

are also lower bounds on f∗
MKSP

(ai, v) for all k agents. Thus, for any subset

of k′ < k agents, we can compute fMKSP and use it as a lower bound on

f∗
MKSP

for the entire set of k agents. Therefore, while the right-hand side of

the max function in fMKSP (ai, v) (Equation 6) contains all k agents, it can also470

contain any subset of agents. This can be done by calculating hSOC (ai, v) for

the selected subset of k′ < k agents and dividing it by k′ instead of k.

Figure 2 shows examples of MAM problem instances with three agents. In

both cases, the optimal MKSP is 5 and the agents meet at location m. For

Figure 2(a), the optimal SOC is 12 where the agents meet at location v1. As-475

sume a perfect heuristic for SOC. Thus, for each agent ai, fSOC (ai, si) = 12,

20

Then, h∗
SOC(ai, v) =

∑

v′∈Si(v)
d(v′,m∗(ai, v)) (from Equation 3); we want to

compute a lower bound on h∗
SOC .

7
520

7.1. h1 : Clique Heuristic

We assume that, for every pair of locations (vx, vy), there exists a classic

admissible heuristic h (e.g., straight-line distance or Manhattan distance), such

that h(vx, vy) ≤ d(vx, vy).

Based on the triangle inequality, for every pair of locations vx, vy ∈ Si(v)

(with vx 6= vy), we have that:

d(vx, vy) ≤ d(vx,m
∗(ai, v)) + d(vy,m

∗(ai, v)). (7)

By summing over all such pairs in Si(v), we get:

∑

{vx,vy}∈Si(v)
2

x<y

d(vx, vy) ≤
∑

{vx,vy}∈Si(v)
2

x<y

[

d(vx,m
∗(ai, v)) + d(vy,m

∗(ai, v))
]

.

(8)

As each v′ ∈ Si(v) is paired with k−1 other locations in Si(v), we can rewrite the

right-hand side of Equation 8 as (k − 1) ·
∑

v′∈Si(v)
d(v′,m∗(ai, v)). Therefore:

∑

{vx,vy}∈Si(v)
2

x<y

d(vx, vy)

k − 1
≤

∑

v′∈Si(v)

d(v′,m∗(ai, v)) = h∗(ai, v). (9)

Now, since h(vx, vy) ≤ d(vx, vy), we get that:

h1(ai, v) =
∑

{vx,vy}∈Si(v)
2

x<y

h(vx, vy)

k − 1
≤ h∗(ai, v). (10)

This heuristic h1 is called the Clique heuristic, as it combines the heuristic525

values of every (unordered) pair of locations in Si(v). Figure 4 presents an

7This is a form of a front-to-end heuristic as we assume that all other agents (except for

ai which is located at v) are located at their start states. A front-to-front heuristic needs to

estimate the remaining costs when all other agents are in their current locations, but these

locations thus need to be specified for a given node (ai, v). This is left for future work.

23

the fact that the distance between any two locations is their L1-distance (also

known as Manhattan distance on 2D grids).

Assume that the input graph G = (V, E) is a 4-neighbor 2D grid where every

location v ∈ V is represented by its coordinates ~v = (v1, v2). The L1-distance

for any two locations u, v ∈ V is defined as ~u − ~v = |u1 − v1| + |u2 − v2|. Due

to the existence of obstacles, for any pair of locations u, v ∈ V , ~u− ~v ≤ d(u, v).

So, for a given node (ai, v),

∑

v′∈Si(v)

~v′ − ~m∗(ai, v) ≤
∑

v′∈Si(v)

d(v′,m∗(ai, v)) = h∗(ai, v). (12)

Therefore, by modeling the problem in an empty 2D L1-space (i.e., without

obstacles), we introduce a new admissible (and consistent) heuristic, called the

Median heuristic:

h2(ai, v) = min
~m∈R2

{
∑

v′∈Si(v)

~v′ − ~m} (13)

Following the property of the median, defined in Equation 11,

h2(ai, v) =
∑

v′∈Si(v)

~v′ − ~tm (14)

=
∑

v′∈Si(v)

[

|v′1 − tm1|+ |v
′
2 − tm2|

]

. (15)

This is admissible because the right-hand side of Equation 13 is no larger than

the left-hand side of Equation 12.

We use the Quick-select algorithm for finding medians [47], which runs in550

Θ(k) time, to compute h2(ai, si) for all root nodes. Then, for every non-root

node (ai, v) (i.e., v 6= si), k − 1 locations have not changed (as in the clique

heuristic h1) and we only need to update the median based on the single location

that has changed. This can be done in O(1) time.

Figure 5 shows an example of a MAM problem instance with three agents555

(s1, s2, and s3) that are located in (1, 1), (3, 1), and (1, 2). The x-coordinates are

{1,3,1} and the y-coordinates are {1,1,2}. Thus, the median location is (1, 1).

By computing the Manhattan distances from (1, 1) to each start location, we

get h2(ai, si) = 3 for each agent ai.

25

There are many other approaches for embedding a graph in a continuous

space [48, 49, 50]. However, most of these use L2-distances, which are not

computationally feasible here because the L2-distance version of Equation 16 is

NP-hard to solve optimally [47].570

We next provide experiments for solving MAM with MM* for both SOC and

MKSP using all our heuristics.

8. Experimental Results for MAM

We experimented with MM* on an Intel® Xeon E5-2660 v4 @2.00GHz pro-

cessor with 16GB of RAM. We compared all our new heuristics to the Dijkstra575

version of MM*, i.e., where h = 0 (denoted by h0), on different grids while

minimizing both SOC and MKSP. For h1, we used the Manhattan Distance

(MD) as a classic admissible heuristic between any two locations. The number

of dimensions D for h3 was always set to 10, as suggested by Li et al. [27].8

8.1. Näıve Approach vs. MM*580

First, we experimentally compare the non-heuristic versions of the naive

approach and our proposed MM* algorithm presented above, for minimizing

SOC and MKSP. Table 2 shows the average number of expansions of 50 problem

instances of 2, 3, and 4 agents on a small 6 × 6 open grid. As can be seen, for

the naive approach, increasing the number of agents causes exponential growth585

in the number of expansions. Consequently, while each problem instance tested

for 2, 3, or 4 agents was solved in less than 5 minutes, no instance (out of 50)

was solved by the naive approach within this time limit. Therefore, we only

consider MM* in our next experiments below.

8.2. SOC590

We experimented on 500 × 500 grids with 0% – 30% randomly allocated

obstacles. Table 3 shows the average over 50 instances of: the solution cost, the

8Our implementation is publicly available at https://github.com/doratzmon/MAM.

27

SOC MKSP

#Agents Naive MM* Naive MM*

2 146 33 125 12

3 936 78 1,464 27

4 16,677 137 28,259 50

Table 2: Results on 6× 6 open grids, for SOC and MKSP.

SOC

#Obs. Cost
Initial h-value #Expansions (thousands) Time (sec)

h0 h1 h2 h3 h0 h1 h2 h3 h0 h1 h2 h3

0% 995 0 828 995 643 1,244 330 34 634 22.05 4.50 0.28 9.48

10% 1,008 0 828 995 680 1,120 322 58 561 19.04 4.29 0.54 8.66

20% 1,033 0 828 995 736 994 320 83 465 16.10 4.18 0.77 6.81

30% 1,103 0 828 995 778 856 318 143 402 13.04 4.01 1.40 5.60

Table 3: Results on 500× 500 grids with varying obstacles, for SOC.

initial h-value, the number of expansions, and the CPU time for 5 randomly

placed agents. Each instance was randomly created with the selected number

of agents and percentage of obstacles. The best results are highlighted in bold.595

h2 had the best initial h-value, had the lowest number of expansions, and was

the fastest. The initial h-values of h1 (MD) and h2 remain constant as more

obstacles are added since they both ignore obstacles. By contrast, h3 increases

as more obstacles are added. So, when adding more obstacles h2 degrades while

h3 improves, in terms of number of expansions and CPU time. h3 incurred a600

preprocessing time of ≈ 30s, which is incurred only once per grid and thus was

amortized over multiple problem instances. Thus, this was not included in the

numbers in the table.

We also fixed the number of obstacles at 10% while varying the number of

agents from 3 to 9. Table 4 shows the CPU time for SOC. Here, too, h2 was605

the best heuristic with only 1.27s for 9 agents because h2 is suitable for grids

28

SOC MKSP

#Agents h0 h1 h2 h3 h0 h1 h2 h3

20 20.2 22.9 0.7 19.4 15.8 7.3 7.0 10.9

40 51.8 62.2 2.2 52.6 54.1 23.9 23.3 40.1

60 103.6 124.8 4.9 104.8 112.8 57.9 53.6 92.4

80 176.4 204.2 9.1 173.0 155.3 99.7 86.1 152.0

Table 9: Results on 200× 200 grids with %10 obstacles, for SOC and MKSP.

fact, we can see that, in SOC, h0 performs similarly or even better than h1

and h3. The results here again show that h2 performs best when the given

map is sparse and not many obstacles are present. While h3 achieved better675

performance in structured grids, h2 is simpler and performs better on grids with

random obstacles.

9. Conflict-Free Multi-Agent Meeting (CF-MAM)

While the basic version of MAM discussed thus far seeks a meeting location

and paths for multiple agents to that meeting location, it is conflict-tolerant680

and ignores conflicts between the agents. Path-finding problems for multiple

agents, such as MAPF, are often restricted to return conflict-free paths. We

next define the conflict-free version of MAM as finding both a meeting location

and conflict-free paths to that meeting location.

The Conflict-Free Multi-Agent Meeting problem (CF-MAM) receives as in-685

put the tuple 〈G, S〉, where G is an undirected connected graph and S is a set of

start locations. For simplicity, in this paper, we assume that for CF-MAM all

edges have unit cost, which is common in other conflict-free MAPF problems [4].

Extending the CF-MAM algorithms presented below to general weighted graphs

is left for future work [52, 53].690

A solution to CF-MAM is a meeting location m and a set of conflict-free

paths Π to the meeting location m. While agents must avoid conflicts on their

34

shortest paths from a set of start locations S to a meeting location m, namely, a

solution to MAM. Based on Π we can construct (reschedule) a new set of conflict-

free paths from the given set of start locations S to m, namely, a solution to CF-

MAM, as follows. We order on the agents in increasing order of their shortest715

paths to the meeting location. In its turn, only agent ai follows its path πi.

Meanwhile, the other agents aj where j > i (those that had not yet moved)

wait at their start locations. As only the agent with the shortest path moves

among agents that are not yet at the meeting location, it must not conflict with

a start location of one of the other agents aj . Otherwise, the path of aj is720

shorter than that of ai. Therefore, this process results in a new set of paths

without conflicts, which is a (not necessarily optimal) solution to CF-MAM.

9.2. Eliminating Swapping Conflicts

Lemma 2. Let Π be a set of paths from a set of start locations S to a meeting725

location m with a cost of C(Π) (either for SOC or MKSP), such that Π only

contains swapping conflicts (and no vertex conflicts). Then, there exists a set

of conflict-free paths (without vertex conflicts and without swapping conflicts)

Π′ = {π′
1, . . . , π

′
k} from S to m with the same cost of C(Π).

Proof. Consider a swapping conflict 〈ai, aj , e, t〉 between paths πi and πj in Π.730

The agents ai and aj cannot conflict at timestep t with another agent, as a

swapping conflict with more than two agents must result in a vertex conflict.

Now, we can create two new paths π′
i and π′

j from start locations si and sj , re-

spectively, to m with the same cost and the swapping conflict is eliminated, as

follows. First, for each timestep t′ ≤ t we set π′
i(t

′)← πi(t
′) and π′

j(t
′)← πj(t

′).735

By definition of a swapping conflict, (πi(t), πi(t + 1)) = (πj(t + 1), πj(t)) = e.

Thus, instead of swapping locations, we can force the agents to wait (not tra-

verse e) and continue following the path of the other agent. This can be done by

setting for each timestep t′ > t, π′
i(t

′) ← πj(t
′) and π′

j(t
′) ← πi(t

′). After per-

forming this mechanism, C(π′
i) = C(πj) and C(π′

j) = C(πi). Thus, it maintains740

both C(π′
i) + C(π′

j) = C(πi) + C(πj) (same SOC) and max{C(π′
i), C(π′

j)} =

36

10. CBS-Based Solution for CF-MAM

Conflict-Based Search (CBS) [8] is a prominent, state-of-the-art MAPF765

solver. It plans a set of paths that may contain conflicts and iteratively resolves

them by imposing constraints on the agents and replanning new paths for the

constrained agents. Here, we introduce the CF-MAM-CBS (CFM-CBS) algo-

rithm for solving CF-MAM, which uses the framework of the CBS algorithm.

CFM-CBS works with either SOC or MKSP.770

A constraint is a tuple 〈ai, v, t〉 that prohibits agent ai from occupying lo-

cation v at timestep t. As in CBS, we use such constraints in CFM-CBS for

resolving conflicts, as explained below.

CFM-CBS has two levels. The high level of CFM-CBS searches the binary

constraint tree (CT). Each node N ∈ CT contains:775

1. A set of constraints imposed on the agents (N.constraints).

2. A set of possibly conflicting paths (N.Π) from start locations S to the

optimal meeting location m such that the paths satisfy all constraints in

N.constraints (but may conflict otherwise).

3. The cost of N.Π (N.cost).780

The root node of CT contains an empty set of constraints. The high level

searches the CT in a best-first manner, prioritizing nodes with lower cost.

Generating a CT node. Given a node N , the low level of CFM-CBS

solves the given CF-MAM problem instance as a MAM problem that satisfies

all constraints of node N . Such a solution can be achieved using any MAM785

solver, such as MM*, which was presented in Section 3.9 However, to support

constraints, as well as wait actions, MM* needs to be slightly modified to be-

come CF-MM*. Thus, instead of a pair (ai, v), a node in CF-MM* is a tuple

of (ai, v, t) representing an agent and its location at timestep t. In CF-MM* an

invalid node (ai, v, t) is a node that violates the constraint 〈ai, v, t〉. CF-MM*790

9Originally, to solve MAPF, the low level of CBS finds a path for each individual agent,

e.g., using A*. Here, we jointly search for all agents with CF-MM*.

38

Algorithm 2: High level of CFM-CBS

1 Main(CF-MAM problem instance)

2 Root.constraints← {}

3 Root.Π← low-level(instance,Root.constraints)

4 Root.cost← C(Root.Π) // either SOC or MKSP

5 Insert Root into Open

6 while Open is not empty do

7 N ← Pop the node with the lowest cost in Open

8 if N.Π is conflict-free then

9 return N.Π // N is goal

10 〈a1, a2, v, t〉 ← get-conflict(N)

11 N1 ← GenChild(N ,〈a1, v, t〉)

12 N2 ← GenChild(N ,〈a2, v, t〉)

13 Insert N1 and N2 into Open

14 return No Solution

15 GenChild(Node N , Constraint NewCons)

16 N ′.constraints← N.constraints ∪ {NewCons}

17 N ′.Π← low-level(instance,N ′.constraints)

18 N ′.cost← C(N ′.Π) // either SOC or MKSP

19 return N ′

may generate invalid nodes as such nodes may be meeting locations. However,

if an invalid node N is chosen for expansion, CF-MM* only moves N to Closed

and does not expand it. Note that, as the root node of CT does not contain

constraints, it is the only node that executes MM* instead of CF-MM*. Be-

sides the difference described above, CF-MM* is identical to MM*; CF-MM*795

performs a best-first search using Open, but also performs duplicate detection

and pruning on Closed.

Expanding a CT node. Once CFM-CBS has chosen a node N for expan-

sion, it checks its paths N.Π for conflicts. If it is conflict-free, then node N is

a goal node and CFM-CBS returns its solution. Otherwise, CFM-CBS splits800

node N on one of the conflicts 〈ai, aj , v, t〉 by generating two children for node

N . Each child node has a set of constraints that is the union of N.constraints

and a new constraint. One of the two children adds the new constraint 〈ai, v, t〉

39

and the other child adds the new constraint 〈aj , v, t〉.

Pseudo code. Algorithm 2 presents the pseudo code of the high level of805

CFM-CBS. In Lines 2-5, we generate the root CT node. Then, while Open is

not empty, we iteratively explore CT nodes. In Line 7, we extract from Open

the CT node N with the lowest cost. If N.Π is conflict-free (Line 8), it is a

solution and returned in Line 9. Otherwise, we get one of the conflicts in N.Π

(Line 10) and resolve it by imposing constraints and generating two new CT810

nodes (Lines 11-13).

Example. Figure 10 presents an example of (a) a CF-MAM problem in-

stance with five agents; and (b) its corresponding CT, created by CFM-CBS.

First, at the root CT node, we call MM* with an empty set of constraints. A set

of paths Π with a cost of 7 is returned, in which the agents meet at location v2.815

Location v2 is closer to a larger number of agents (agents a3, a4, and a5) than

other locations, and thus has a lower cost. At the root, both agents a1 and a2

conflict at location v1 at timestep 1, and hence Π is not a solution. We create

two CT nodes with the constraints 〈a1, v1, t〉 and 〈a2, v1, t〉, and call CF-MM*

under each of the constraints. Then, one of the new CT nodes is chosen for820

expansion and a solution with a cost of 8 is returned (the agent waits at its

start location). Notice that while the agents meet at location v2 at the root

node and at both child CT nodes, the meeting location may change under a

different set of constraints.

Theorem 3 (Completeness). CFM-CBS is guaranteed to return a solution if825

one exists, and it returns No Solution otherwise.

Proof. CFM-CBS performs a best-first search on the CT, where the cost cannot

decrease, i.e., newly generated CT nodes cannot have lower cost than the current

lowest costs of any CT node in Open. The number of sets of paths with a cost

that is smaller than or equal to the cost of some valid solution is finite. By830

resolving a conflict at some node N , one or more such sets of paths are avoided,

i.e., sets of paths that contain the resolved conflict. Thus, after resolving a finite

number of conflicts, the node with the lowest cost in Open contains a solution.

40

agent ai we set gi ← g (the same goal location g). As PI-MAPF can be optimally

solved in polynomial time using a reduction to Network Flow [10], SG-MAPF

can also be optimally solved in polynomial time using the same reduction [10].

Naively, CF-MAM can be solved by (1) solving SG-MAPF |V| times, each

time with a different location v ∈ V as a goal location; and (2) determining855

the optimal meeting location, based on the cost of meeting at each location.

Thus, CF-MAM can be optimally solved in polynomial time. Experimentally,

this naive algorithm fails to solve many of our problems. It only solved small

domain problems, and slower than the enhanced algorithm described below.

In this section, we first describe a specially designed reduction from SG-860

MAPF to Network Flow. Our new reduction is more suitable for SG-MAPF

than the reduction presented by Yu and LaValle [10] for PI-MAPF, although

it borrows some concepts. Then, we introduce the Iterative-Meeting Search

algorithm (IMS), which intelligently iterates over relevant meeting locations

and sets each as a goal location in SG-MAPF and solves it with a Network Flow865

algorithm.

11.1. Network Flow Problems

To refresh the memory of the reader, we first provide a brief description of

a network and a Minimum-Cost Maximum Flow problem (MCMF), which we

use later in our reduction.870

A network N =
〈−→
G , u, c, source, sink,R

〉

consists of a directed graph
−→
G =

(V, E) with capacities u and costs c on the edges, i.e., ∀e ∈ E , u(e), c(e) ∈ Z
+,

source, sink ∈ V, and a required flow R ∈ Z
+. Let δ+(v) and δ−(v) denote the

sets of edges entering and leaving v, respectively. Given network N , a feasible

flow f (∀e ∈ E , f(e) ∈ Z
+) must satisfy the following constraints.875

(1) Edge capacity constraint,

∀e ∈ E , f(e) ≤ u(e).

42

(2) Flow conservation constraint at non sink/source vertices,

∀v ∈ V \ {source, sink},
∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e).

(3) Required flow (supply/demand) at sink and source vertices,

∑

e∈δ−(sink)

f(e) =
∑

e∈δ+(source)

f(e) = R.

Definition 1 (Minimum-Cost Flow problem (MCFP)). Given a network N , let

F be the set of all feasible flows. The MCFP problem returns a minimum-cost

feasible flow f , i.e., minf∈F (
∑

e∈E c(e) · f(e)).

The cost–scaling algorithm [54, 55] is a commonly used polynomial-time

solver for MCFP. We used it in our experiments below.880

11.2. Reducing SG-MAPF to Network Flow

As defined above, MCFP minimizes the total cost of the flow. Thus, natu-

rally, this reduction is more suitable for SOC than for MKSP because costs are

being summed up. We first describe it in terms of SOC and later we show how

it can also be used for MKSP.885

Recall that the input to SG-MAPF is 〈G, S, g〉. Let l′ be the latest timestep

(the cost of the longest path) among all paths of all optimal solutions to a

SG-MAPF problem instance. For this reduction, we need to first calculate the

depth of the network T , which must be an upper bound on l′ to allow all optimal

solutions. Let Π be a set of shortest individual paths from each start location890

si ∈ S to g, in a relaxed variant of SG-MAPF, which allows conflicts between

the agents. Let l denote the length of the longest path in Π. Similarly, let Π′

be an optimal solution for (standard conflict-free) SG-MAPF and let l′ denote

the length of the longest path in Π′. In Π, in the worst case, the agent with the

longest individual path (with a cost of l) conflicts with all other k − 1 agents.895

Hence, in Π′, the path of this agent may be extended by one timestep for each

of the other k− 1 agents. That is, for each of the k− 1 conflicts the agent waits

one timestep. Thus, following the reduction of Yu and LaValle [10], T = l+k−1

43

is a tight upper bound on l′, i.e., T ≥ l′ (for more details, see [10]). Note that,

by using T as an upper bound on a possible solution to SG-MAPF, the agents900

will have paths of different lengths and can no longer conflict, even if in the set

of shortest individual paths Π two agents conflict multiple times.

We next describe our reduction. In our network, each node represents a pair

of a location v ∈ V and timestep t, i.e., (v, t). Given a SG-MAPF problem

instance 〈G, S, g〉, we build a network using the following three steps.905

Step 1. We build the network backwards from the goal. First, we build

the pair (g, T) and set t ← T . Then, while t > 0, we perform the following:

(i) for each node N = (v, t) with timestep t, for each location v′ ∈ {v} ∪N(v)

(either v or a neighbour of v in G) we create a new node N ′ = (v′, t − 1) and

a directed edge (N ′, N) with a capacity and cost of 1. These edges correspond910

to traversing edges on G, which has cost 1 and can be performed by a single

agent at a given timestep (capacity 1); (ii) set t← t− 1 and go back to (i) until

t = 0. Figure 11(a) presents a SG-MAPF problem instance with two agents

(k = 2). As the length of the longest individual path is 2, then l = 2. Thus,

T = l+k−1 = 3 is an upper bound on the longest path in the optimal solution.915

Figure 11(b) presents the corresponding network, built after executing step 1.

The construction of this network begins at the bottom-right side, at node (g, 3),

and progresses left. In this figure, moving horizontally corresponds to taking a

wait action and moving diagonally corresponds to a move action.

Step 2. Figure 11(c) shows the network after executing step 2, which is920

done as follows. To prevent agents from occupying the same location at the

same timestep, we split each node N = (v, t) at each timestep 0 < t < T into

two nodes: N = (v, t) and N ′ = (v, t′) (t with an apostrophe). All in-edges

of node N , are transferred to enter node N ′ (solid edges). In addition, we add

an edge (N ′, N) (dashed edges) with a capacity of 1 and a cost of 0. Dashed925

edges enforce that only one agent may enter the N nodes (nodes without an

apostrophe) due to their capacity.

Step 3. Finally, as depicted in Figure 11(d), we add a source vertex and

a sink vertex. For each start location si ∈ S we add an edge (source, si) with

44

Algorithm 3: Independence-detection enhancement

1 ID(Set of shortest paths Π)

2 Init A′ ← {}

3 C ← get-all-conflicts(Π)

4 foreach Conflict 〈a1, a2, v, t〉 ∈ C do

5 ∆← 0

6 l̂← get-path-length(Π, a1)

7 do

8 Â← get-all-agents-with-path-length(Π, l̂)

9 A′ ← A′ ∪ Â

10 l̂← l̂ + 1

11 ∆← ∆+ |Â| − 1

12 while ∆ > 0;

13 return A′

conflict in their paths in Π or may conflict after conflicts are resolved as we now

describe (Algorithm 3). First, we initialize an empty set A′ (Line 2) and get all

conflicts in Π to set C (Line 3). Then, for each conflict 〈a1, a2, v, t〉 we perform

the following steps (Lines 4-12). Let ∆ represent the amount by which any path

can be further increased after conflicts are resolved. Based on this definition,950

after the length of a path of an agent is extended by ∆, more agents may conflict

with the agent and these agents must be also considered in the reduction. We

set ∆← 0 and l̂ with the path length of the conflicting agents a1 and a2 (Lines

5-6). The two agents a1 and a2 conflict on their individual shortest paths (in

Π) to location g. Thus, both agents must have paths of similar length and l̂955

is the length of the paths of both agents. Then, we start adding agents to A′

and stop when ∆ = 0 (Lines 7-12). We get all agents Â with a path length of l̂

and add them to A′ (Lines 8-9). These agents might conflict, after the conflict

is resolved, since they have paths of a similar length. We then increment l̂ and

update ∆ ← ∆+ |Â| − 1 (Lines 10-11). This specific update of ∆ comes from960

the fact that each agent can extend, in the worst case, its path by 1 to resolve

each conflict. This occurs when, in the optimal solution, each agent must have

a different length. Finally, we return A′ (Line 13) as the set of agents to be

46

reduced. The other agents can safely use their optimal individual path because

they will never conflict with the other agents. T is then calculated on A′ and965

might be smaller than if it had been calculated on the entire set of agents A.

Note that, this mechanism does not depend on the order by which conflicts are

considered by the algorithm as any order must result in the same set of agents

A′.

For example, assume agents {a1, . . . , a4} with shortest individual paths Π of970

lengths 4, 4, 5, and 7, respectively, in which the paths of a1 and a2 conflict. a1

and a2 are added to the set A′. We know that, in the optimal solution, one of

agents a1 or a2 may have a path of length 5. Thus, we also add a3 (because it

also has a path of cost to 5) to A′. However, a4 will not conflict with the other

three agents, as the longest path of the three agents can only reach a length of975

6 [10] and they will be at least one step ahead on their way to location g.

11.2.2. Minimizing MKSP.

While the reduction described above is for minimizing SOC, it can also be

used for minimizing MKSP, as follows. We first calculated an upper bound T

on the depth, for which a solution surely exists. Then, we created a network980

with depth T for an MCFP solver, which minimizes SOC. For SOC we set

T ← l + k − 1 and looked for the lowest SOC solution for which the longest

individual paths is smaller than or equal to this depth T . By contrast, for

minimizing MKSP the depth of the network is the cost of the solution. Thus,

we set T ← l as l is the lowest depth for which a solution may exist. We perform985

the reduction with this bound and execute an MCFP solver. If no solution is

found, we repeatedly increment T and execute an MCFP solver until we find

a solution or reach T = l + k − 1 with no solution, in which case a failure is

returned.

11.2.3. Differences Between the Reductions990

There are a number of differences between our reduction and the reduction

from PI-MAPF, introduced by Yu and LaValle [10].

47

1. In our reduction the graph G is constructed by performing a single breadth-

first search from location g, instead of k breadth-first searches (from the

k start locations) in their reduction.995

2. We apply independence detection to construct a smaller network flow.

3. Following Lemma 2, there is no need to avoid swapping conflicts, which

requires a special step by Yu and LaValle [10].

Therefore, optimality follows.

11.3. Iterative Meeting Search1000

We now present the Iterative Meeting Search algorithm (IMS) for solving CF-

MAM. IMS has two levels. The high level of IMS iteratively examines possible

meeting locations until the optimal meeting location can be determined. This

is done by a best-first search on possible meeting locations. We describe this

process below. The low level sets each possible meeting location (passed by the1005

high level) as a goal location of SG-MAPF and applies a Network-Flow solver

to solve it using our reduction.

Algorithm 4 describes the pseudo code of the high level of IMS. First, it

initializes Open and Closed, and initializes an upper bound on the cost of the

optimal solution U (U ≥ C∗) with infinity (Line 2). The high level performs1010

a best-first search, starting from only one of the start locations si ((ai, si) is

inserted to Open; Line 3). We explain how the start location si can be selected

below. While Open is not empty, an expansion cycle is performed in Lines 4-16.

Each expansion cycle starts by extracting the node (ai, v) with the lowest f -

value (the same f -value as in MM*) from Open (Line 5). As MAM is a relaxed1015

problem of CF-MAM, for the same input 〈G, S〉, the cost C ′ of the optimal

solution for MAM is a lower bound on the cost C∗ of the optimal solution for

CF-MAM, i.e., C ′ ≤ C∗. Thus, for each node of the optimal solution, since f

is a lower bound on C ′, it is also a lower bound on C∗. For each node (ai, v)

selected for expansion, the high level calls the low level to calculate the cost of1020

meeting at location v (by preforming the above reduction with v as the goal

location and then executing an MCFP solver on it). Then, U is updated with

48

Algorithm 4: High level of IMS

1 Main(CF-MAM problem instance)

2 Init Open, Closed; U ←∞

3 Insert (ai, si) into Open // only a single start location

4 while Open is not empty do

5 Extract (ai, v) from Open // with lowest f(ai, v)

6 U ← min{U, low-level(instance, v)}

7 if f(ai, v) ≥ U then

8 return U

9 foreach v′ ∈ N(v) do

10 if Closed contains (ai, v
′) then

11 continue

12 else if Open contains (ai, v
′) then

13 if g(ai, v
′) ≤ g(ai, v) + 1 then

14 continue

15 Insert (ai, v
′) into Open

16 Insert (ai, v) into Closed

17 return U

the lowest cost found (Line 6).10 As U is an upper bound on the cost of the

optimal solution C∗, if fmin ≥ U then IMS halts and the optimal solution is

found (C∗ = U), where fmin is the lowest f in Open (Lines 7-8). Otherwise,1025

in case the optimal solution is still not found, for each neighbor v′ of v, the high

level inserts (ai, v
′) to Open and moves (ai, v) to Closed (Lines 10-16). Note

that the node (ai, v
′) is not inserted to Open in case it is either in Closed or

in Open with a lower or equal cost (Lines 10-14).

Starting the search. In our experiments, we started the search from1030

the start location with the highest closeness centrality among all start loca-

tions in S.11 The closeness centrality of a start location si is estimated by

10In the pseudo code we only keep U , but IMS also returns the paths of the optimal solution

and the optimal meeting location.
11In a connected graph, closeness centrality of a node is a measure of centrality in a network,

calculated as the reciprocal (1/x is the reciprocal for x) of the sum of the length of the shortest

49

∑

sj∈S\{si}
1

h(si,sj)
, where h is an admissible heuristic in the underlying graph

G between any two points. We found that IMS with this start location performs

better than random. This is reasonable as such a location is usually closer to the1035

optimal meeting location. Future work may investigate different start locations

for IMS.

Theorem 5 (Completeness). IMS is guaranteed to either return a solution or

return U =∞.

Proof. IMS starts the search by calling the low level for the selected start lo-1040

cation si. The low level returns a valid solution for meeting at si. IMS either

returns this solution or a solution of lower cost. In the worst case, IMS ex-

plores every reachable location (Open will be empty), the search will halt and

a solution will be returned.

In case no solution exists, the MCFP solver will fail at T = l+ k− 1 (either1045

for SOC or MKSP) and U =∞ will be returned.12

Theorem 6 (Optimality). IMS is guaranteed to return the optimal meeting

location m∗ (with cost C∗).

Proof. Let si ∈ S be the start location of agent ai from which IMS started to

search. Assume, by contradiction, that IMS returned a sub-optimal location1050

m 6= m∗ with cost C > C∗. Since IMS has terminated and returned a solution,

fmin ≥ C > C∗. Since IMS terminated without returning an optimal solution,

there exists a node N ′ = (ai, vi) ∈ Open such that vi is a location on the

path of agent ai to location m∗ in the optimal solution, and every node before

N ′ on that path has already been expanded. Since N ′ is the first node on1055

that path that was not expanded, it was generated by a node on that path,

and thus g(N ′) = d(si, vi). By definition, f∗(N ′) is the cost of the optimal

paths between the node and all other nodes in the graph [57]. Thus, the more central a node

is, the closer it is to all other nodes.
12To simplify the algorithm, this is not presented in Algorithm 4. It can be easily added by

returning U =∞ if the low level in Line 6 does not find a solution.

50

solution that passes through N ′, assuming conflicts are ignored (MAM). Hence,

f∗(N ′) is a lower bound on the optimal cost C∗, considering conflicts, i.e.,

f∗(N ′) ≤ C∗. f is admissible, and therefore, f(N ′) ≤ f∗(N ′) ≤ C∗. As1060

N ′ ∈ Open, fmin ≤ f(N ′) ≤ f∗(N ′) ≤ C∗, which contradicts the fact that

fmin ≥ C > C∗.

12. Experimental Results for CF-MAM

We performed experiments comparing our two algorithms for CF-MAM,

again on an Intel® Xeon E5-2660 v4 @2.00GHz processor with 16GB of RAM.1065

For CFM-CBS, we used CF-MM* as a low-level solver. For IMS For solving

the Minimum-Cost Flow problem (MCFP) we used for an efficient implementa-

tion [55] of the cost–scaling algorithm of Goldberg and Tarjan [54], which runs

in polynomial time. For both, we used the clique heuristic as an admissible

heuristic for a meeting location, which balances well between simplicity and1070

efficiency.

12.1. Random Grids

We compared CFM-CBS and IMS on 10x10 and 50x50 grids with 20% ran-

domly placed obstacles, and 3, 5, 7, 9, 11, 13, and 15 randomly allocated agents.

We created 50 problem instances for each combination and measured the suc-1075

cess rate (for timeout of 5min for each instance), average cost, and average time

(seconds). In all experiments, the average cost and time were calculated only

from problem instances that were solved by both solvers. Table 11 presents

the results for this experiment for minimizing SOC, and Table 12 presents the

results for this experiment for minimizing MKSP. Each row shows the number1080

of agents.

For minimizing SOC (Table 11), for the 10x10 grids (columns 3-4), both

CFM-CBS and IMS solve all problem instances and hence we do not present

the success rate in the table. As expected, a larger number of agents increases

the average cost and the average time for both solvers. However, the influence1085

51

SOC

#Agents Solver
10× 10 50× 50

Cost Time Succ. Cost Time

3
CFM-CBS

11
0.0 50

59
0.0

IMS 0.0 50 0.3

5
CFM-CBS

23
0.0 50

106
0.5

IMS 0.0 50 8.3

7
CFM-CBS

34
0.1 50

155
3.9

IMS 0.1 49 40.9

9
CFM-CBS

45
0.3 49

204
26.3

IMS 0.4 46 126.4

11
CFM-CBS

56
9.5 39

245
50.5

IMS 0.8 23 200.2

13
CFM-CBS

67
30.2 29

- -
IMS 1.2 3

15
CFM-CBS

79
57.3 21

- -
IMS 1.7 1

Table 11: Results for 10x10 and 50x50 grids with 20% Obs. for minimizing SOC

of this increase is greater for CFM-CBS than for IMS. For example, for 7 agents,

both solvers ran for ≈ 0.1s, and for 15 agents, CFM-CBS ran for ≈ 57.3s while

IMS ran for only ≈ 1.7s. The runtime of CBS-based solutions is exponential in

the number of conflicts it resolves. Thus, CFM-CBS does not perform well in

dense environments, such as small grids with many agents. While CF-MM* (the1090

low level of CFM-CBS) is polynomial, many agents are led to the same meeting

location which may result in many conflicts that are needed to be resolved.

Each such conflict splits a high-level node into two new nodes, which causes an

exponential growth in the number of high-level nodes. These conflicts are more

likely to occur in dense environments as they require multiple agents to be at1095

the exact same location at the same timestep.

For the 50x50 grids (columns 5-7), not all instances were solved by both

solvers within the 5min timeout. As the number of agents increased, both

solvers solved fewer instances. However, CFM-CBS solved more instances than

52

MKSP

#Agents Solver
10× 10 50× 50

Succ. Cost Time Succ. Cost Time

3
CFM-CBS 50

5
0.0 50

25
0.0

IMS 50 0.0 49 14.8

5
CFM-CBS 50

7
0.0 50

30
0.2

IMS 50 0.1 47 62.9

7
CFM-CBS 50

7
0.0 50

33
0.7

IMS 46 0.2 40 105.7

9
CFM-CBS 50

8
2.0 50

35
2.2

IMS 50 0.3 39 178.0

11
CFM-CBS 49

8
5.9 49

37
3.0

IMS 50 0.6 32 210.7

13
CFM-CBS 47

8
7.7 49

- -
IMS 50 0.8 9

15
CFM-CBS 39

9
13.7 47

- -
IMS 50 1.2 1

Table 12: Results for 10x10 and 50x50 grids with 20% Obs. for minimizing MKSP

IMS. For 13 agents, CFM-CBS solved 29 problem instances while IMS only1100

solved 3. The average cost and average time in the table were calculated from

instances that were solved by both solvers. The same trend that was observed

for the success rate can be seen for the time: CFM-CBS was faster than IMS.

For 11 agents, CFM-CBS and IMS ran for approximately 50.5s and 200.2s,

respectively. Here, the environment is sparser and fewer conflicts occur. Thus,1105

CFM-CBS can perform better than observed above for the dense 10x10 grid.

For minimizing MKSP (Table 12), the trends were similar to those observed

for minimizing SOC: IMS performed better in the 10x10 grids (columns 3-5)

while CFM-CBS performed better in the 50x50 grids (columns 6-8). For 11

agents, the average times of CFM-CBS and IMS for 10x10 grids were approxi-1110

mately 5.9s and 0.6s, respectively, and for 50x50 grids the average times were

approximately 3.0s and 210.7s, respectively.

53

13. Conclusions and Future Work

In this paper, we explored the problems of Conflict-Tolerant Multi Agent

Meeting (MAM) and Conflict-Free Multi-Agent Meeting (CF-MAM).

We introduced the multi-directional search algorithm MM* that optimally1170

solves MAM instances. We proved that MM* is complete and optimal and pro-

posed three admissible heuristics: the Clique heuristic (h1), Median heuristic

(h2), and FastMap heuristic (h3). Experimentally, we showed that MM* per-

forms better with heuristics. For grids with few obstacles, h2 is best. For grids

with many obstacles, h3 is best but requires preprocessing. The advantage of1175

h1 is that it is applicable to all domains without the need for preprocessing.

For solving CF-MAM, we introduced two algorithms: CFM-CBS and IMS.

We proved that both algorithms are complete and optimal and compared them

experimentally. Our experiments showed that IMS performs better in denser

domains while CFM-CBS performs better in sparser domains. Choosing a solver1180

in environments that are not clearly sparse or dense is left for future work. In

fact, there is no exact definition of sparse and dense within the context of MAPF

and this, too, is left for future work.

Moreover, future work will:

1. Develop a version of MM* that can find bounded-suboptimal solutions.1185

2. Extend MM* for solving MAM on a continuous space.

3. Further investigate subset selection for MKSP.

4. Enhance CFM-CBS with many of the improvements that were proposed

for CBS (such as prioritizing conflicts [33]).

5. For IMS, suggest more sophisticated rules for calling the low level.1190

6. Adjust other MAPF solvers for solving CF-MAM, such as ICTS [32].

Acknowledgments

This research was supported by ISF grant 844/17 and BSF grants 017692

and 2021643 to Ariel Felner, NSF grant 1815660 to Nathan R. Sturtevant and

NSF grants 1409987, 1724392, 1817189, 1837779 and 1935712 to Sven Koenig.1195

58

References

[1] D. Atzmon, J. Li, A. Felner, E. Nachmani, S. S. Shperberg, N. Sturtevant,

S. Koenig, Multi-directional heuristic search, in: the International Joint

Conference on Artificial Intelligence (IJCAI), 2020, pp. 4062–4068.

[2] D. Atzmon, S. I. Freiman, O. Epshtein, O. Shichman, A. Felner, Conflict-1200

free multi-agent meeting, in: the International Conference on Automated

Planning and Scheduling (ICASP), 2021, pp. 16–24.

[3] D. Yan, Z. Zhao, W. Ng, Efficient processing of optimal meeting point

queries in Euclidean space and road networks, Knowledge and Information

Systems 42 (2) (2015) 319–351.1205

[4] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li,

D. Atzmon, L. Cohen, T. K. S. Kumar, R. Barták, E. Boyarski, Multi-agent

pathfinding: Definitions, variants, and benchmarks, in: the International

Symposium on Combinatorial Search (SoCS), 2019, pp. 151–159.

[5] R. C. Holte, A. Felner, G. Sharon, N. R. Sturtevant, Bidirectional search1210

that is guaranteed to meet in the middle, in: the AAAI Conference on

Artificial Intelligence (AAAI), 2016, pp. 3411–3417.

[6] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. Kumar, T. Uras,

H. Xu, C. Tovey, G. Sharon, Overview: Generalizations of multi-agent path

finding to real-world scenarios, the IJCAI-16 Workshop on Multi-Agent1215

Path Finding.

[7] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon,

N. R. Sturtevant, G. Wagner, P. Surynek, Search-based optimal solvers for

the multi-agent pathfinding problem: Summary and challenges, in: the

International Symposium on Combinatorial Search (SoCS), 2017, pp. 29–1220

37.

[8] G. Sharon, R. Stern, A. Felner, N. R. Sturtevant, Conflict-based search for

optimal multi-agent pathfinding, Artificial Intelligence 219 (2015) 40–66.

59

[9] S. Kloder, S. Hutchinson, Path planning for permutation-invariant multi-

robot formations, IEEE Transactions on Robotics 22 (4) (2006) 650–665.1225

[10] J. Yu, S. M. LaValle, Multi-agent path planning and network flow, in:

Algorithmic foundations of robotics X, Springer, 2013, pp. 157–173.

[11] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic deter-

mination of minimum cost paths, IEEE Transactions on Systems Science

and Cybernetics SSC-4(2) (1968) 100–107.1230

[12] R. Dechter, J. Pearl, Generalized best-first search strategies and the opti-

mality of a*, Journal of the ACM 32 (3) (1985) 505–536.

[13] E. W. Dijkstra, A note on two problems in connexion with graphs, Nu-

merische Mathematik 1 (1) (1959) 269–271.

[14] Z. Xu, H.-A. Jacobsen, Processing proximity relations in road networks,1235

in: the ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2010, pp. 243–254.

[15] R. Geisberger, P. Sanders, D. Schultes, D. Delling, Contraction hierar-

chies: Faster and simpler hierarchical routing in road networks, in: the

International Workshop on Experimental and Efficient Algorithms, 2008,1240

pp. 319–333.

[16] Y. Izmirlioglu, B. A. Pehlivan, M. Turp, E. Erdem, A general formal frame-

work for multi-agent meeting problems, in: the IEEE International Con-

ference on Robotics and Automation (ICRA), 2017, pp. 1299–1306.

[17] G. Brewka, T. Eiter, M. Truszczyński, Answer set programming at a glance,1245

Commun. ACM 54 (12) (2011) 92–103.

[18] L. Cooper, An extension of the generalized Weber problem, Journal of

Regional Science 8 (2) (1968) 181–197.

[19] L. M. Ostresh Jr, The multifacility location problem: Applications and

descent theorems, Journal of Regional Science 17 (3) (1977) 409–419.1250

60

[20] R. Chen, Location problems with costs being sums of powers of Euclidean

distances, Computers & Operations Research 11 (3) (1984) 285–294.

[21] F. Radó, The Euclidean multifacility location problem, Operations Re-

search 36 (3) (1988) 485–492.

[22] K. E. Rosing, An optimal method for solving the (generalized) multi-Weber1255

problem, European Journal of Operational Research 58 (3) (1992) 414–426.

[23] N. Megiddo, The weighted Euclidean 1-center problem, Mathematics of

Operations Research 8 (4) (1983) 498–504.

[24] M. A. Lanthier, D. Nussbaum, T.-J. Wang, Calculating the meeting point of

scattered robots on weighted terrain surfaces, in: the Australasian Theory1260

Symposium, Vol. 41, 2005, pp. 107–118.

[25] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in: New Results

and New Trends in Computer Science, Springer, 1991, pp. 359–370.

[26] L. Cohen, T. Uras, S. Jahangiri, A. Arunasalam, S. Koenig, T. K. S. Ku-

mar, The FastMap algorithm for shortest path computations, in: the In-1265

ternational Joint Conference on Artificial Intelligence (IJCAI), 2018, pp.

1427–1433.

[27] J. Li, A. Felner, S. Koenig, T. K. S. Kumar, Using FastMap to solve graph

problems in a Euclidean space, in: the International Conference on Auto-

mated Planning and Scheduling (ICAPS), 2019, pp. 273–278.1270

[28] J. Yu, S. M. LaValle, Structure and intractability of optimal multi-robot

path planning on graphs, in: the AAAI Conference on Artificial Intelligence

(AAAI), 2013, p. 1444–1449.

[29] P. Surynek, An optimization variant of multi-robot path planning is in-

tractable, in: the AAAI Conference on Artificial Intelligence (AAAI), 2010,1275

p. 1261–1263.

61

[30] G. Wagner, H. Choset, Subdimensional expansion for multirobot path plan-

ning, Artificial Intelligence 219 (2015) 1–24.

[31] P. Surynek, Towards optimal cooperative path planning in hard setups

through satisfiability solving, in: the Pacific Rim International Conference1280

on Artificial Intelligence (PRICAI), 2012, pp. 564–576.

[32] G. Sharon, R. Stern, M. Goldenberg, A. Felner, The increasing cost tree

search for optimal multi-agent pathfinding, Artificial Intelligence 195 (2013)

470–495.

[33] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, S. E.1285

Shimony, ICBS: improved conflict-based search algorithm for multi-agent

pathfinding, in: the International Joint Conference on Artificial Intelligence

(IJCAI), 2015, pp. 740–746.

[34] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. K. S. Kumar, S. Koenig,

Adding heuristics to conflict-based search for multi-agent path finding,1290

in: the International Conference on Automated Planning and Scheduling

(ICAPS), 2018, pp. 83–87.

[35] J. Li, D. Harabor, P. J. Stuckey, H. Ma, S. Koenig, Symmetry-breaking con-

straints for grid-based multi-agent path finding, in: the AAAI Conference

on Artificial Intelligence (AAAI), 2019, pp. 6087–6095.1295

[36] E. Lam, P. L. Bodic, D. Harabor, P. J. Stuckey, Branch-and-cut-and-price

for multi-agent pathfinding, in: the International Joint Conference on Ar-

tificial Intelligence (IJCAI), 2019, pp. 1289–1296.

[37] J. Li, P. Surynek, A. Felner, H. Ma, T. K. S. Kumar, S. Koenig, Multi-

agent path finding for large agents, in: the AAAI Conference on Artificial1300

Intelligence (AAAI), 2019, pp. 7627–7634.

[38] D. Atzmon, A. Diei, D. Rave, Multi-train path finding, in: the International

Symposium on Combinatorial Search (SoCS), 2019, pp. 125–129.

62

[39] S. Thomas, D. Deodhare, M. N. Murty, Extended conflict-based search for

the convoy movement problem, IEEE Intelligent Systems 30 (2015) 60–70.1305

[40] D. Atzmon, Y. Zax, E. Kivity, L. Avitan, J. Morag, A. Felner, Generalizing

multi-agent path finding for heterogeneous agents, in: the International

Symposium on Combinatorial Search (SoCS), 2020, pp. 101–105.

[41] H. Ma, G. Wagner, A. Felner, J. Li, T. S. Kumar, S. Koenig, Multi-agent

path finding with deadlines, in: the International Joint Conference on Ar-1310

tificial Intelligence (IJCAI), 2018, pp. 417–423.

[42] D. Atzmon, R. Stern, A. Felner, N. R. Sturtevant, S. Koenig, Probabilistic

robust multi-agent path finding, in: ICAPS, 2020, pp. 29–37.

[43] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, N.-F. Zhou, Robust

multi-agent path finding and executing, Journal of Artificial Intelligence1315

Research (JAIR) 67 (2020) 549–579.

[44] H. Ma, S. Koenig, Optimal target assignment and path finding for teams

of agents, in: the International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), 2016, pp. 1144–1152.

[45] K. Solovey, D. Halperin, On the hardness of unlabeled multi-robot motion1320

planning, The International Journal of Robotics Research 35 (14) (2016)

1750–1759.

[46] E. Shaham, A. Felner, J. Chen, N. R. Sturtevant, The minimal set of

states that must be expanded in a front-to-end bidirectional search, in:

the International Symposium on Combinatorial Search (SoCS), 2017, pp.1325

82–90.

[47] C. A. Hoare, Algorithm 65: Find, Communications of the ACM 4 (7) (1961)

321–322.

[48] T. S. E. Ng, H. Zhang, Predicting internet network distance with

coordinates-based approaches, in: the Annual Joint Conference of the IEEE1330

Computer And Communications Societies (INFOCOM), 2002, pp. 170–179.

63

[49] Y. Shavitt, T. Tankel, Big-bang simulation for embedding network dis-

tances in Euclidean space, IEEE/ACM Transactions on Networking 12 (6)

(2004) 993–1006.

[50] C. Rayner, M. Bowling, N. R. Sturtevant, Euclidean heuristic optimization,1335

in: the AAAI Conference on Artificial Intelligence (AAAI), 2011, pp. 81–86.

[51] N. R. Sturtevant, Benchmarks for grid-based pathfinding, Computational

Intelligence and AI in Games 4 (2) (2012) 144–148.

[52] A. Andreychuk, K. Yakovlev, D. Atzmon, R. Stern, Multi-agent pathfinding

with continuous time, in: the International Joint Conference on Artificial1340

Intelligence (IJCAI), 2019, pp. 39–45.

[53] T. T. Walker, N. R. Sturtevant, A. Felner, Extended increasing cost tree

search for non-unit cost domains, in: the International Joint Conference on

Artificial Intelligence (IJCAI), 2018, pp. 534–540.

[54] A. V. Goldberg, R. E. Tarjan, Finding minimum-cost circulations by suc-1345

cessive approximation, Mathematics of Operations Research 15 (3) (1990)

430–466.

[55] A. V. Goldberg, An efficient implementation of a scaling minimum-cost

flow algorithm, Journal of algorithms 22 (1) (1997) 1–29.

[56] T. S. Standley, Finding optimal solutions to cooperative pathfinding prob-1350

lems, in: the AAAI Conference on Artificial Intelligence (AAAI), 2010, pp.

28–29.

[57] G. Sabidussi, The centrality index of a graph, Psychometrika 31 (4) (1966)

581–603.

[58] H. Ma, T. S. Kumar, S. Koenig, Multi-agent path finding with delay prob-1355

abilities, in: the AAAI Conference on Artificial Intelligence (AAAI), 2017,

pp. 3605–3612.

64

	Introduction and Overview
	Basic, Conflict-Tolerant Multi-Agent Meeting
	Conflict-Free Multi-Agent Meeting

	Definitions, Background, and Related Work
	Heuristic and Bidirectional Search
	Multi-Agent Meeting
	Conflict-Free Path Planning

	Multi-Agent Meeting (MAM)
	Naïve Approach
	Multi-Directional MM (MM*) for MAM
	Theoretical Analysis

	MM* Priority Functions
	The functions for SOC
	The functions for MKSP
	Costs of Subsets

	MM versus MM* – Similarities and Differences

	Heuristics for MM*
	 Clique Heuristic
	 Median Heuristic
	 FastMap Heuristic

	Experimental Results for MAM
	Naïve Approach vs. MM*
	SOC
	MKSP
	Increasing the Number of Agents

	Conflict-Free Multi-Agent Meeting (CF-MAM)
	Solutions to MAM and CF-MAM
	Eliminating Swapping Conflicts

	CBS-Based Solution for CF-MAM
	Iterative Meeting Solution for CF-MAM
	Network Flow Problems
	Reducing SG-MAPF to Network Flow
	Independence detection enhancement.
	Minimizing MKSP.
	Differences Between the Reductions

	Iterative Meeting Search

	Experimental Results for CF-MAM
	Random Grids
	Structured Grids
	Experiment 1
	Experiment 2

	Conclusions and Future Work

