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Abstract

In the Multi-Agent Meeting problem (MAM), the task is to find the optimal
meeting location for multiple agents, as well as a path for each agent to that
location. Among all possible meeting locations, the optimal meeting location
has the minimum cost according to a given cost function. Two cost functions are
considered in this research: (1) the sum of all agents paths’ costs to the meeting
location (SOC) and (2) the cost of the longest path among them (MKSP). MAM
has many real-life applications, such as choosing a gathering point for multiple
traveling agents (humans, cars, or robots).

In this paper, we divide MAM into two variants. In its basic version, MAM
allows multiple agents to occupy the same location, i.e., it is conflict tolerant.
For MAM, we introduce MM*, a Multi-Directional Heuristic Search algorithm,
that finds the optimal meeting location under different cost functions. MM*
generalizes the Meet in the Middle (MM) bidirectional search algorithm to the
case of finding an optimal meeting location for multiple agents. Several admissi-
ble heuristics are proposed for MM*, and experiments demonstrate the benefits
of MM*.

As agents may be embodied in the world, a solution to MAM may contain
conflicting paths, where more than one agent occupies the same location at the
same time. The second variant of the MAM problem is called Conflict-Free
Multi-Agent Meeting (CF-MAM), where the task is to find the optimal meeting
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location for multiple agents (as in MAM) as well as conflict-free paths (in the
same manner as the prominent Multi-Agent Path Finding problem (MAPF))
to that location. For optimally solving CF-MAM, we introduce two novel algo-
rithms, which combine MAM and MAPF solvers. We prove the optimality of
both algorithms and compare them experimentally, showing the pros and cons
of each algorithm.?

Keywords: Multi-Agent Meeting, Conflict-Tolerant, Conflict-Free,
Multi-Agent Path Finding, Multi-Directional Heuristic Search, MM*,
Conflict-Based Search, Network-Flow

1. Introduction and Overview

In the Multi-Agent Meeting problem (MAM) [3, 1] the input is a graph and
a set of k traveling agents, each with its start location. The task is to find a
meeting location for the agents, and a path for each agent from its start location
to the meeting location. Ideally, one should find an optimal location, which is
determined by the cost function. This usually considers the travel effort by
each agent. Two common cost functions [4], which we consider in this paper,
are the Sum-of-Costs (SOC) and Makespan (MKSP) cost functions. SOC is
the sum of all agents paths’ costs to the meeting location, while MKSP is the
cost of the longest path among them. Both functions are formally defined in
Section 3. MAM is a very practical problem. It is applicable to finding a
gathering location for multiple agents (humans, cars, or robots). Additionally,
given a set of locations, in many scenarios, one may wish to choose a point that
is as close as possible to all these locations. An example would be placing a
hospital close to a number of schools. We divide MAM into two variants of the
problem, namely, the basic Conflict-Tolerant MAM (denoted for simplicity as
MAM) and Conflict-Free MAM (CF-MAM).

IPortions of this work have been previously published [1, 2]. This paper ties together
all the results, provides more insights, more theoretical understandings, more experimental
results, and presents a comprehensive manuscript that summarizes this line of work.
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1.1. Basic, Conflict-Tolerant Multi-Agent Meeting

In the basic variant (MAM) the paths can be conflicting, i.e., more than
one agent is allowed to occupy the same location at the same time. This is
relevant, for instance, if the locations are much larger than the physical body of
the agents. For example, if a number of persons wish to meet in a nearby coffee
shop. In addition, conflict-tolerant solutions are relevant for the second scenario
described above (of the hospital), as usually there is only one moving agent that
evacuates a patient to the hospital. To find the optimal meeting location for
MAM, we introduce the Multi-Directional Meet in the Middle algorithm (MM*).
MM* is a best-first search algorithm that progresses in k directions until a
meeting location is found. MM* is a general algorithm that uses a priority
function to order nodes in its open list. We provide a unique priority function
for each of the Sum-of-Costs (SOC) and Makespan (MKSP) cost functions.
We prove the optimality of MM* for both of these priority functions. MM*
is strongly related to the Meet in the Middle algorithm (MM) [5], a recently
introduced bidirectional heuristic search algorithm that is guaranteed to meet
in the middle, i.e., the two frontiers of the search meet at the halfway point of
the optimal solution (the exact definition is given below). The priority function
of MM* for MKSP is a generalization of that of MM, although their halting
conditions are different: MM returns a path from the start location to the goal
location while MM* returns the actual meeting location (and paths from the
start locations to that meeting location).

MM* relies on an admissible heuristic function that estimates the remaining
cost to the goal location for each node encountered during the search. We
propose a number of such heuristic functions for the SOC and MKSP priority
functions, and prove their admissibility. We then provide experimental results

that demonstrate the benefits of MM* with these heuristic functions.

1.2. Conflict-Free Multi-Agent Meeting

As agents may be embodied in the world, practically, a solution to MAM

may cause conflicts (collisions) between the agents on their paths. Indeed, in a
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MAM solution, agents may be located in the same location at the same time.
Therefore, we introduce a second variant of the problem called Conflict-Free
Multi-Agent Meeting (CF-MAM). In CF-MAM, we seek a meeting location for
multiple agents and conflict-free paths to that location. In CF-MAM, the agents
are prohibited from occupying the same location at the same time, except,
of course, for the meeting location, where all agents gather. This scenario is
relevant when the physical shape of the agents is large, such that only one agent
fits a location.

Several related, but distinctly unique problems have been studied previ-
ously. A related problem for which algorithms find conflict-free paths for mul-
tiple agents is the Multi-Agent Path Finding problem (MAPF) [4, 6, 7]. MAPF
algorithms must find a path for each agent from its start location to its speci-
fied goal location, while avoiding conflicts with other agents. A commonly used
algorithm for optimally solving MAPF is the Conflict-Based Search (CBS) algo-
rithm [8]. Importantly, both variants of MAM are not a special case of MAPF
and are significantly different. The main significant difference between MAM
and MAPF is that, in MAPF, goal locations are given as input. By contrast, in
MAM, goal locations are not part of the input and the task is to find a specific
meeting location for the agents, as well as a set of paths to that specific meeting
location. Therefore, whether conflicts are allowed or not is a parameter setting
in MAM and thus different variants of the problem exist. Naturally, in MAPF,
if conflicts are allowed, the problem does not exist as agents can solve a set of
independent single-agent pathfinding sub-problems to solve the problem.

Indeed, CF-MAM has some connections to MAPF as we now discuss. A
unique variant of MAPF is the Permutation Invariant MAPF problem (PI-
MAPF) [9]. PI-MAPF is the problem of finding conflict-free paths to lead the
agents to a set of goal locations that were not pre-assigned to the agents. A
special case of PI-MAPF is the Shared-Goal MAPF problem (SG-MAPF) [10],
in which all goal locations are identical, i.e., finding conflict-free paths to a single
goal location. CF-MAM is different from SG-MAPF as in CF-MAM the goal

location is not given as input and must be calculated.
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Problem (1) MAM (2) MAPF (3) PLMAPF (4) SG-MAPF (5) CF-MAM

- Graph - Graph - Graph
+ Graph - Graph
- Set of start locations - Set of start locations - Set of start locations
Input - Set of start locations - Set of start locations
+ Set of goal locations - Set of goal locations - Goal location

Meeting location and paths | Conflict-free paths from | Conflict-free paths from | Conflict-free paths from | Meeting location and

o (possibly conflicting) to each start location to a | each start location to an | each start location to the | conflict-free paths to
utput
the meeting location specified goal location unspecified goal location | given goal location the meeting location

Table 1: Related problems overview.

We present two algorithms for solving CF-MAM and prove their optimality
and completeness. The first algorithm, called CF-MAM CBS (CFM-CBS), uses
the framework of CBS. CFM-CBS has two levels. The low level solves the given
problem as MAM (e.g., using MM*) under a given set of constraints. The high
level of CFM-CBS repeatedly calls the low level, identifies new conflicts, and
resolves conflicts by imposing constraints on the conflicting agents. The second
algorithm, called Iterative Meeting Search (IMS), iteratively solve the problem
as SG-MAPF with different meeting locations until the optimal meeting location
can be determined. We introduce a specifically designed reduction from SG-
MAPF to Network Flow. An experimental study shows that each algorithm has
circumstances where it performs best.

Table 1 summarizes all related problems. For each problem (each column),
the output example in the table (second row) shows a solution for the input
example (first row). In these examples, all edges have a unit cost. Optimal
solutions to all these problems minimize some cost function. In the case of the
presented solutions in the table, they are optimal for both SOC and MKSP. All
the problems in the table receive as input a graph and a set of start locations.

While MAPF problems (MAPF, PI-MAPF, and SG-MAPF; columns 2-4) also
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receive, as input, a destination for leading the agents to (goal locations), MAM
problems (MAM and CF-MAM; columns 1 and 5) are required to find a des-
tination for the agents (a meeting location). Note that, while PI-MAPF gets
the goal locations as input, a solution to the problem determines which goal
location will be reached by each agent. Thus, as presented in the table, MAPF
and PI-MAPF may get the same input but have different optimal solutions.
MAM is the only problem in the table that allows conflicts. It is less restricted
than CF-MAM, and hence, a solution to MAM may be invalid for CF-MAM.
In the examples for MAM and CF-MAM, both get similar input. In the output
example depicted for MAM, both agents a; and a4 that start at locations s;
and s4, respectively, conflict at timestep 1 (both located in the same location at
the same time). As CF-MAM does not allow conflicts, this solution is invalid
for CF-MAM. Thus, in the output example for CF-MAM, the path of agent a4
is modified to a non-conflicting path.

The paper is organized as follows. In Section 2, we provide basic definitions
and details of background and related work. Then, we specifically define the
MAM problem in Section 3. We present a naive approach and propose the
MM* algorithm for optimally solving MAM in Sections 4 and 5. We discuss
the different priority functions for MM* and their relation to MM in Section 6.
We suggest a number of heuristic functions for MM* and compare them exper-
imentally in Sections 7 and 8, respectively. In Section 9, we formally define the
problem of CF-MAM and, in Sections 10 and 11, we propose the CFM-CBS and
IMS algorithms, respectively, for optimally solving CF-MAM. We evaluate these
algorithms experimentally in Section 12. Finally, we conclude this research and
suggest directions for future work in Section 13.

Preliminary versions of this paper were published in IJCAI-2020 [1] for MAM
and in ICAPS-2021 [2] for CF-MAM. This paper (1) unifies these two papers;
(2) creates a similar terminology for this area of research; (3) extends CF-MAM
to support an additional cost function (i.e., MKSP); and (4) presents extended

experimental and theoretical results.
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2. Definitions, Background, and Related Work

This paper is related to three research areas: (1) Heuristic and Bidirectional
Search; (2) Multi-Agent Meeting; and (3) Conflict-Free Path Planning. We

cover each of them next.

2.1. Heuristic and Bidirectional Search

Given a graph G = (V, ), a start location s € V, and a goal location g € V,
a Search Algorithm finds a path 7 from the start location s to the goal location
g. Such a path consists of a sequence of locations, i.e., 7 = (s,...,g). Let
7(t) denote the ¢-th location in 7. Thus, 7(0) = s and n(|7] — 1) = g. Let
N(v) represent the neighbors of v, i.e., N(v) = {v' € V | (v,v') € £}. Each
two consecutive locations 7(t),m(t + 1) (0 < ¢t < |7| — 1) must satisfy 7 (¢t +
1) € N(m(t)). We call this edge traversal, performed between two neighboring
locations at two consecutive timesteps, a move action.

Depending on the problem, graph G can either be weighted or have unit costs
for the edges. The cost of edge e = (v1,v2) € € is denoted by c(e) = c(vy,v2) >
0. The cost of path 7 is denoted by C(7) and equals the sum of the cost of all
move actions in 7 (C(m) = Y g<jcir—q c(m(t),7(t +1))). We use d(vi,v2) to
denote the cost of a shortest (optimal) path between the two locations v; and
vy. Trivially, if path 7 is a shortest path, C(7) = d(s, g).

Heuristic Search algorithms investigate the given graph by building a search
tree of nodes, where each node maintains some location v, a g-value, and an
h-value. The g-value (g(v)) represents the cost of the path from s to v (along
the search tree) and the h-value (h(v)) estimates the cost of the shortest path
from v to g. h is calculated by a heuristic function. A heuristic function is called
admissible if it never overestimates, i.e., Vv, h(v) < d(v, g). A heuristic function
is called consistent if its estimate is less than or equal to the estimate from any
neighbour plus the cost of reaching that neighbour, i.e., YoVv' € N(v), h(v) <
c(v,v") + h(v'), and its estimate of the goal location ¢ equals 0, i.e., h(g) = 0.

Best-First Search (BFS) algorithms organize nodes in two lists: an open list

(OPEN) and a closed list (CLOSED). Iteratively, such algorithms select for expan-
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sion the best node v from OPEN (according to some priority function), generate
its neighbors N(v) while adding them to OPEN, and move v to CLOSED. If a
shorter path to a node on CLOSED is found, it is re-opened by being placed back
on OPEN, however, this cannot happen if the heuristic function is consistent.
A*[11] is a BFS algorithm that uses the priority function f = g+h for choosing
the next node for expansion. If h is admissible, then A* is guaranteed to return
an optimal solution and, under certain circumstances, is optimally efficient [12].

Algorithms, such as A*, initialize OPEN with location s and halt when loca-
tion g is expanded. Therefore, their search is unidirectional (one sided). Other
algorithms, called bidirectional, start the search both from location s and from
location g, and halt when some path is found and the termination conditions
are met.

MM [5] is a bidirectional heuristic search algorithm with a unique prior-
ity function; nodes are ordered in OPEN according to max{2g,g + h}. MM is
guaranteed to meet in the middle. The practical meaning of this property is
that the two search frontiers never venture (nodes are never expanded) further
than C* /2 from their start locations, where C* is the cost of the shortest path.
Nevertheless, it is important to note that a meeting location is not returned by
MM. In fact, a meeting location is not even defined in MM. As any (bidirec-
tional) search algorithm, MM returns a shortest path from a start location to a
goal location. Below, we introduce our new algorithm, MM*, which generalizes
MM from bidirectional search to multi-directional search. Unlike MM, MM*
returns the, so called, meeting location and paths from the start locations to

the meeting location, as fully defined and explained below.

2.2. Multi-Agent Meeting

In this paper, we focus on MAM, which is the problem of finding a meeting
location and a set of paths to the meeting location. Previous work has solved
this problem with a variety of approaches. MAM has been investigated on
general graphs by applying variants of Dijkstra’s algorithm [13] in parallel, one

for each agent. Once a path from all start locations to all locations in the graph
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is known, the best meeting location can be chosen by exhaustively iterating
over all relevant meeting locations. Yan et al. [3] suggested an algorithm that
progresses in parallel from all start locations, in a BFS manner. When a new
location is reached from one of the search frontiers, the Dijkstra’s algorithm
is executed from that frontier up to the new location. Thus, the algorithm
prunes areas of the state space by executing Dijkstra’s algorithm only up to a
number of potential meeting locations in order to determine the optimal meeting
location. More improvements for pruning additional areas of the state space
exist, however, they require prepossessing time in which the given graph needs
to be explored in advance. Xu et al. [14] repeatedly solved the problem while
assuming that the start locations of the agents change between each problem
instance. They demonstrated how the history of the movement of agents can
be used for future calculations. Geisberger et al. [15] showed that some nodes
can be removed from the graph (e.g., nodes with a degree of one) in such a
way that shortest paths, in the remaining graph, are preserved. Moreover, the
authors showed that nodes can be ordered based on their likelihood to be part
of shortest paths, in such a way that finding paths in the graph is enhanced, in
terms of runtime.

Izmirlioglu et al. [16] solved a related problem, for which the agents must
pass through specific locations on their way to the meeting location. By adding
this constraint, forcing agents to pass specific locations, the problem becomes
intractable. The authors solve the problem using Answer Set Programming
(ASP) [17], a logic-based representation and automated reasoning framework.

In the field of computational geometry, MAM is known as the Weber prob-
lem [18]. Many efficient algorithms exist for MAM in continuous Euclidean
spaces [19, 20, 21, 22] that calculate a geometric point that satisfies the relevant
constraints. Other researches showed how to find the optimal weighted center
(1-Center), which minimize a weighted euclidean distance, on a plane [23, 24],
and how to find the smallest circle (Smallest Enclosing Discs) that contains all
the given agents’ locations on a plane [25].

FastMap [26, 27] is a near-linear preprocessing algorithm that approximates
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the cost of a shortest path between any two locations. In Section 7, we provide

additional details on FastMap and use it for MAM.

2.8. Conflict-Free Path Planning

Some path finding problems that involve multiple agents have different re-
strictions on the paths of the agents. We say that two paths conflict if they do
not comply with some of the restrictions of the problem. We define below two
types of such conflicts. A related problem to MAM that finds conflict-free paths
for multiple agents is the Multi-Agent Path Finding problem (MAPF) [4, 6, 7].
MAPF gets as input an undirected graph G = (V, &), a set of start locations
S = {s1,...,8} C V, and a set of goal locations G = {g1,...,gx} C V for
a set of agents A = {ay,...,ax}. As output, algorithms for MAPF return a
set of paths IT = {my,..., 7} for the agents, respectively. In conflict-tolerant
problems, agents are allowed to conflict. Thus we assume that, in such prob-
lems, there are only move actions and, in fact, agents can simply solve a set of
single-agent pathfinding sub-problems independently, and the problem is triv-
ially solved. On the other hand, conflict-free problems restrict the returned set
of paths II to be conflict-free, and thus wait actions must also be considered,
i.e., an agent can stay at its current location between two consecutive timesteps.
Both move actions and wait actions have unit cost.

Two main types of conflicts are defined for MAPF [4]: vertex conflicts and
swapping conflicts. A vertex conflict {(a;,a;,v,t) occurs between two paths 7;
and m; if the same vertex v € V is occupied by both agents a; and a; at the
same timestep t, i.e., m;(¢t) = 7;(t) = v. A swapping conflict (a;, a;,e,t) occurs
between two paths m; and 7; if the same edge e € £ is traversed in opposite
directions by both agents a; and a; between the same two consecutive timesteps
tand t+1, ie., (m(t), m(E+1)) = (mj(t+1),7;(t)) =e.

The cost of a set of paths is determined by a cost function. There are two
commonly used cost functions: (1) Sum-Of-Costs (SOC) is the sum of the
costs of all paths in II (Csoc(Il) = > g C(m)). (2) Makespan (MKSP),

which equals the cost of the path with the maximum cost among all paths in IT

10
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(Cursp(ll) = max, . C(m;)). We use C* to denote the cost of the optimal
(minimum cost) solution (either SOC or MKSP). In this paper, we focus on
these two cost functions in the content of MAM.

Although solving a MAPF instance optimally is NP-hard [28, 29], a number
of algorithms have been developed that are cable of solving instances optimally
for many agents, e.g., M* [30], BIBOX [31], ICTS [32], and Conflict-Based
Search (CBS) [8]. The latter, CBS, is a prominent algorithm that (1) plans
a path for each agent, without considering other agents; and (2) repeatedly
resolves conflicts by constraining each of the conflicting agents and replanning
new paths. Many enhancements have been introduced for CBS [33, 34, 35, 36].
In general, MAPF has been investigated extensively and has many variants and
extensions, including large agents [37], trains [38], convoys [39], heterogeneous
agents [40], deadlines [41], and robustness [42, 43]. Later in the paper we intro-
duce a new algorithm for solving CF-MAM that uses the framework of CBS.

A unique variant of MAPF is the Permutation Invariant MAPF problem
(PI-MAPF) [9]. PI-MAPF is the problem of finding conflict-free paths to lead
the agents to a set of goal locations that were not pre-assigned to the agents,
i.e., each goal location must be reached by one of the agents. This problem is
also known as Anonymous MAPF [44] or Unlabeled MAPF [45]. While opti-
mally solving MAPF instances is NP-hard, PI-MAPF instances can be optimally
solved in polynomial time by reducing the problem to Network-Flow [10] and
using a Network-Flow solver.

A special case of PI-MAPF is the Shared-Goal MAPF problem (SG-MAPF;
also known as Ewacuation) [10], in which all goal locations are identical, i.e.,
finding conflict-free paths to a single goal location. There are a number of
possible assumptions for how agents behave at their goal locations [4] for the
classical MAPF problem. As all agents share a single goal, SG-MAPF must
either assume that when an agent reaches the goal it immediately disappears or
that agents are allowed to conflict at the goal location. SG-MAPF can also be
optimally solved by the same reduction used for PI-MAPF [10]. As mentioned,
SG-MAPF is different from CF-MAM as, in CF-MAM, the goal is not given in

11
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advance. We modify their reduction specifically from the SG-MAPF to Network
Flow and use it to solve CF-MAM with a number of calls for a Network-Flow

solver, as described in Section 11.

3. Multi-Agent Meeting (M AM)

Next, we formally define the basic version of the Multi-Agent Meeting prob-
lem (MAM), which is tolerant to conflicts. MAM receives as input the tuple
(G, S), where G = (V,€) is a weighted undirected graph and S is a set of k
start locations for k agents A = {aj,...,ax}. A solution is a location m € V,
indicating a meeting location for the agents, plus a set of shortest paths IT from
each start location s; to location m. In its basic form, MAM is conflict-tolerant
and more than one agent can occupy any component of the graph at any time.
Under these assumptions, the cost functions for SOC and MKSP for a meeting

location m can be calculated as follows. For SOC:

Csoc(m) =Y d(s;,m). (1)

a; €A
This corresponds to the sum of the costs of the paths to the meeting location.

For MKSP:

Cursp(m) = max d(s;,m). (2)

This is the cost of the longest path to the meeting location. An optimal solution
has the lowest cost C* among all possible solutions. The meeting location of
the optimal solution is denoted by m*.

Figure 1 illustrates a MAM problem instance with three agents a1, as, and
a3 with start locations si, so, and s3, respectively. Edges are labeled with their
costs. Consider location v; as a meeting location. Since d(s1,v1) =5, d(s2,v1) =
5, and d(s3,v1) = 5, Csoc(v1) = 15 while Cprrgp(v1) = 5. Now, consider vs.
Since d(s1,v2) = 8, d(s2,v2) = 2, and d(s3,v2) = 2, Csoc(v2) = 12 and
Cursp(v1) = 8. vy is an optimal meeting location for minimizing MKSP and

vg is an optimal meeting location for minimizing SOC.

12



305

310

315

320

Ouad
)

Figure 1: MAM cost functions example.

4. Naive Approach

A common straightforward approach for finding optimal paths for multiple
agents defines a search space in which each state is a vector (vy,...,vg) of
the location of all agents, where v; represents the location of agent a;. For
a given state (v1,...,v), a successor is each item in the Cartesian product
N(vy)x--+xN(vg), where N (v) represents the neighbors of location v. In MAM,
a goal state is a state (vy, ..., vg) in which all locations are equal (v; = -+ - = vg).
Searching an optimal solution for MAM in this search space can be done, for
example, using Dijkstra’s algorithm or A*. As each state in this approach
contains the locations of all agents, the size of the search space is exponential
in the number of agents. This can also be seen in our experiments below. Next,

we present our efficient MM* algorithm for MAM.

5. Multi-Directional MM (MM?*) for MAM

In this section, we introduce our novel algorithm MM*. MM* is a multi-
directional best-first search algorithm that is guaranteed to return an optimal
solution for MAM and the cost for both the SOC and MKSP cost functions.
As will be shown below, MM* has a general structure, but each cost function
(SOC and MKSP) has a different unique priority function.

A node in MM* is a pair (a;,v) representing an agent and its location. MM*

organizes nodes in a single open-list (denoted OPEN) and a single closed-list

13
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(denoted CLOSED).? OPEN is initialized with k root nodes: (a;, s;) representing
each of the k agents and its start location. Each node is associated with a

g-value. Naturally, g(a;, s;) = 0. Expanding a node (a;,v) has two parts:

1. Generating (possibly overwriting if the cost is improved) a node (a;,v")
for each v € N(v), setting g(a;,v") < g(a;,v) + ¢(v,v’), and inserting it
into OPEN.

2. Moving (a;,v) to CLOSED.

In heuristic search, given a node n in the search tree, f*(n) is defined to
be the cost of the optimal solution that passes through n, and f(n) is defined
to be a lower bound on f*(n). This terminology is migrated to MM*. Let
f*(ai,v) be the cost of the optimal MAM solution (for either SOC or MKSP)
such that a; passes through v (via a path of cost g(a;,v) along the search
tree?) on its way to the meeting location. f(a;,v) is a lower bound on f*(a;,v)
(f(as,v) < f*(a;,v)). Note that f(a;,v) (and f*(a;,v)), besides agent a;, also
depends on the other agents meeting agent a; after it visits location v. In
Section 6, we define f(a;,v) for either SOC or MKSP by exploiting admissible
heuristic functions that estimate the remaining cost of all agents (including that
of a;) that can be added to g(a;,v) (the cost of the path from s; to v along the
search tree). Each of these f-values can be plugged into MM*.

There is no notion of a goal node in MM* but instead we have a goal condi-
tion on each location v. We say that location v becomes a possible goal when it
has been generated from all directions, i.e., Ya; € A, (a;,v) € OPEN U CLOSED.
To manage this in practice, for each location v, we keep a k bit-vector, where bit

i is set when node (a;,v) is generated. When location v becomes a possible goal,

2Bidirectional searches usually maintain two open-lists, one for each search direction, but
the priority function can choose a node from either one of them. This is logically equivalent
to a single open-list that contains nodes from both directions. MM* uses a single open-list,
which is equivalent to k£ open-lists, one for each agent, that share the same priority function.

That is, the priority function can choose a node from any of these open-lists.
3Note that in our definition of f*(a;,v), the current g-value is assumed even if shorter

paths from s; to v might be found later.

14
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the cost of meeting at location v, denoted by C(v), can be calculated depending
on the cost function as follows:

Csoc(v) =>_,,c49(a;,v) and

Cuksp(v) = maxy,ca g(ai, v).*

Let U be the cost of the incumbent solution, i.e., U is the minimum C(v)
among all possible goals that have been identified thus far (initially U = o).
U is an upper bound on C*. The halting condition for MM* is to halt if fmin
> U, where fmin is the minimum f-value in OPEN.® This guarantees that U
cannot be further improved.

Algorithm 1 gives the pseudo-code of MM*. First, MM* initializes OPEN
and CLOSED, and sets U < oo (Line 2). Then, the initial nodes (a;,s;) are
inserted into OPEN (Lines 3-4). MM* performs a best-first search as follows.
While OPEN is not empty (Line 5), it extracts (a;,v), the best node (with the
lowest f-value) from OPEN (Line 6). Then, it checks the halting condition
on location v, i.e., whether fmin = f(a;,v) > U (Lines 7-8). Otherwise, it
performs the expansion cycle on (a;,v) (Lines 9-18). MM* performs duplicate
detection and pruning on CLOSED (Lines 10-13) and OPEN (Lines 14-16). As
a result, MM* always keeps the lowest seen g-value for each generated node
(a;,v"). In general, MM* allows nodes in CLOSED to be re-opened (Line 13).
But, this will never happen for consistent heuristics (including all heuristics that
we propose and experiment with below). If (a;,v’) is not a duplicate node, then
(a;,v") is inserted into OPEN (Line 17). If location v’ is a possible goal and its
solution is better than U (C(v') < U) then U is decremented accordingly (Line
18). If location v’ is not a possible goal (v" has not been generated from all
directions), its cost is C(v') = oo, and U is not updated. After its expansion,
(a;, v) is inserted into CLOSED (Line 19). When U is returned (Lines 8 and 20),

it also includes the meeting location m as well as the paths to m, that can be

4In Equations 1 and 2, we used d(s;,v). Here, we use g(a;,v) because the path is the path

from location s; to location v along the search tree.
5 f-values, for SOC and MKSP, are fully defined below in Section 6.
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Algorithm 1: The MM* Algorithm

1 Main(MAM problem instance I = {A,S})

2 Init OPEN, CLOSED; U « oo
3 foreach (ai, s;) € {A, S} do
4 Insert (a;, s;) into OPEN
5 while OPEN is not empty do
6 Extract (a;,v) from OPEN // with lowest f(a;,v)
7 if f(ai,v) > U then
8 return U // including the meeting location and the corresponding
paths
° foreach v’ € N(v) do
10 if CLOSED contains (a;,v’) then
11 if g(a;,v") < g(ai,v) + c(v,v’) then
12 ‘ continue
13 Remove (a;,v’) from CLOSED
14 else if OPEN contains (a;,v’) then
15 if g(a;,v') < g(ai,v) + c(v,v’) then
16 ‘ continue
17 Insert (a;,v’) into OPEN // possibly overwriting if cost improved
18 U+ min{U,C(v")} // if C(v") < U, v' becomes the incumbent
meeting location
19 Insert (a;,v) into CLOSED
20 return U // including the meeting location and the corresponding paths

constructed by parent-pointers (not included in the pseudo-code).

5.1. Theoretical Analysis

Theorem 1 (Completeness). MM* is guaranteed to return a solution if one

exists, and it returns U = oo otherwise.

Proof. For each agent a;, MM* performs a best-first search from location s;.
In the worst case, MM* explores every reachable location for each agent. If
a solution exists, a location reachable for all agents will be generated from all
directions and U will be updated (Line 18). At some point, either fmin will

reach U or the entire graph will have been explored for all agents (OPEN will be
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empty), and a solution will be returned. If no solution exists (because some of
the agents are in different connected components), there is no location that is

reachable for all agents and U will never be updated and thus remains co. O

Observation 1. If MM* has not yet generated node (a;, m*) for agent a; from
the optimal path of agent a; to m*, there exists a node (a;,v;) in OPEN such
that v; is a location on the optimal path of a; to location m*, and every node

before v; on the optimal path has already been erpanded.

Proof. Let w} be the optimal path of agent a; from location s; to the optimal
meeting location m*. We prove the observation by induction on the nodes of
the optimal path of each agent along the search.

Base case: At the beginning, OPEN is initialized with (a;, s;) for each agent
a;, which is the first location on the optimal path of agent a; to location m™*,
ie., (a;,7}(0)) is in OPEN.

Inductive step: Let us assume that exactly « (|7f| > = > 0) nodes have
been expanded on the optimal path of agent a; to location m* and one node
(a;,v;) such that v; = 7f(x) is generated and not yet expanded. When node
(ai,v;) is expanded, it generates a new node (a;,v;) in OPEN for each neighbor
v; € N(v;). By definition, a path consists of adjacent locations. Therefore, one
such neighbor v} € N(v;) must be on the optimal path to m* (v = 7} (x + 1))

and (a;, 7} (x+1)) is inserted into OPEN. Note that the duplicate detection and

pruning mechanism of MM* will never prune the node (a;, v,

) as v/ is on the

optimal path and there cannot exist a different path to v} with a lower cost.
Conclusion: Since the base case and the inductive step are both true, by

induction we conclude that, for agent a; that has not yet reached m* from the

optimal path, there must be a node on the optimal path of agent a; in OPEN. [

Theorem 2 (Optimality). Given an admissible f (i.e., f(n) < f*(n) for all
nodes n), MM* is guaranteed to return the optimal location m* with cost C*, if

one exists.

Proof. Assume, by contradiction, that MM* returned a suboptimal location
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m # m* with cost C > C*. Since MM* has terminated and returned a solution,
fmin > C > C*. Since MM* terminated without returning an optimal solution,
Observation 1 holds and there exists a node n’ = (a;,v;) in OPEN such that v;
is a location on the optimal path of a; to location m*, and every node before
n' on the path has already been expanded. Since n’ is the first node on the
optimal path that was not expanded, it was generated by a node on the optimal
path, and thus g(n’) = d(s;,v;). By definition, f*(n') is the cost of the optimal
solution that passes through n'. Therefore, since g(n') = d(s;,v;), f*(n') = C*.
Since f is admissible then f(n’) < f*(n') = C*. Asn’ € OPEN, fmin < f(n') <

f*(n') = C*, which contradicts the fact that fmin > C > C*. O

6. MM* Priority Functions

We next define the priority function f for MM* for both SOC and MKSP
to be used on the basic MAM problem. Recall that in A*, given a node n, a
perfect heuristic function is h*(n) = d(n,g) and a perfect priority function is
f*(n) = g(n) + h*(n). Similarly, if h(n) is a lower bound on h*(n) = d(n, g),
then f(n) = g(n) + h(n) is a lower bound on f*(n). Next, we generalize this
to MM* and define all these functions (h*, h, f*, and f) for both the SOC and
MKSP cost functions.

6.1. The functions for SOC

Consider node (a;, v) in OPEN. f&,s(a;i,v) is the cost of the optimal solution

such that:

Item 1. Agent a; passes through location v (via the path of cost g(a;,v) along

the search tree).

Item 2. Agent a; continues from location v along a shortest path to meet the
other agents at some location m (it might be that m = v).

Item 3. Each of the other agents a; travels from its start location s; along a

shortest path to location m.
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We note that the meeting location m in fi,-(a;,v) may not be the optimal
meeting location for our problem; it is the optimal meeting location assuming
agent a; reaches location v via a path of cost g(a;,v).

Now, féoc(ai,v) = g(a;,v) + hipo(ai,v), where Ry (as, v) is defined to
be the sum of the cost of agent a; to get from location v to location m along a
shortest path (item 2), plus the cost of the other agents to get from their start

locations to location m along shortest paths (item 3). Formally:

Fiool ) = mipldem) = 3 dism) 3)

So, f* is the sum of all three items while h* is the sum of items 2 and 3. We
next move to discuss f and h.

We denote the best meeting location m w.r.t. node (a;,v) by m*(a;,v).
Let hsoc(a;,v) be an admissible estimate (lower bound) of h§, o (as,v), ie.,
hsoc(ai,v) < hpe(ai,v). We propose a number of admissible h-functions for
SOC in Section 7.

For SOC, naturally,

fsoc(ai,v) = gla;,v) + hsoc(ai, v). (4)

6.2. The functions for MKSP

The MKSP case is more complicated. Since, in MKSP, we take the maximum
among agents (not the sum), we do not know which agent has the path with
the highest cost. We begin by defining f;,x¢p(ai,v), which is the cost of the
optimal solution given that a; passes through v, via a path of cost g(a;,v):

g(a;,v) +d(v,m),

fuksp(aiv) = 717{1611‘} max . (5)
MaX, ¢ 4\ (a4} d(sj,m)

For a given possible meeting location m, we want the path of one of the agents
with the highest cost. If this is our current agent a;, this is given by g(a;,v) +
d(v,m) (top line of the max term in Equation 5). If it is some other agent aj,

it is given by d(s;,m) (bottom line).
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Next, we need to define fyxsp as a lower bound on fj;qp. Here, we do
not define h};xqop and hyrsp but define fyxsp(a;,v) in terms of hsoc(ai,v)

as follows:
fMKSP (aia U) = max {g(ai, U)7 g(ai’v)+’2500(ai’v) } ) (6)

where k is the number of agents. g(a;, v) is a lower bound on fiqp (i, v) be-
cause a; has already traveled along a path of cost g(a;,v). Thus, fi;xsp(ai,v) >
g(a;,v). Now, let m’ be the optimal meeting location for objective function x
(2 is either SOC or MKSP). Observe that Csoc(m§oe) < Csoc(Misksp)
and Cyrspe(Miyrsp) < Cuksp(Mmioo) (because the cost of an optimal solu-
tion is always < than the cost of any other given solution). Moreover, for any
meeting location m, it holds that Cs%(m) < Curksp(m) because one of the

Csoc(m) (
k

agents must travel at least average is < than max). Thus, we get that

Csoc(mzoc) Csoc(myxsp) * . IR
socs < sk < Cygsp(Mygsp)- Along the same reasoning, for

fsoc(ai,
k

agent a; that passes through v, v) < fiksp(ai,v). Since fsoc(a;,v)

is a lower bound on f§,(as;,v), dividing it by k will yield a lower bound on

g(ai,v)+hsoc(ai,
k

f;/[KSP(ai"U)v ie., ©) < f}T/fKSP(aivv)-

6.2.1. Costs of Subsets

firxsp for k agents is determined by the path of one of the agents with the
highest cost. Therefore, fy;rqp and fuxsp for any subset of these k agents
are also lower bounds on f3;sp(a;,v) for all k agents. Thus, for any subset
of ¥ < k agents, we can compute fyxsp and use it as a lower bound on
firxsp for the entire set of k agents. Therefore, while the right-hand side of
the max function in fyrsp(ai,v) (Equation 6) contains all k agents, it can also
contain any subset of agents. This can be done by calculating hgoc(a;,v) for
the selected subset of &’ < k agents and dividing it by &’ instead of k.

Figure 2 shows examples of MAM problem instances with three agents. In
both cases, the optimal MKSP is 5 and the agents meet at location m. For
Figure 2(a), the optimal SOC is 12 where the agents meet at location v;. As-

sume a perfect heuristic for SOC. Thus, for each agent a;, fsoc(as,s;) = 12,
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(a)

Figure 2: fyksp examples.

and, by computing MKSP for all agents, we get fyxsp(a;,s;) = 12/3 = 4.
Now, consider the subset of agents {aj,as}. Their SOC is 10, and hence
fursp(ai,s;) = 10/2 = 5. For Figure 2(b), the optimal SOC is 15 at loca-
tion m, and thus (assuming a perfect heuristic hsoc) fsoc(ai,s;) = 15. By
computing MKSP for all agents, we get fayxsp(ai, s;) = 15/3 =5 but the SOC
of the subset of agents {aj,as} is 8, and hence fyrsp(ai,s;) = 8/2 = 4. This
shows that there is no best subset for all cases. In our experiments, we used all
combinations of pairs of agents, in addition to the set of all agents. It is future

work to investigate additional subset selection policies.

6.3. MM versus MM* — Similarities and Differences

MM* is named after the MM algorithm. We discuss their relationship here.
It is very interesting to see that fa/xsp is a generalization of the priority function
of the MM algorithm: pr(n) = max(2g(n), g(n) + h(n)) [5]. If we divide this

), M) This is a special case

expression by two, we get pr(n) = max(g(n
of the proposed fyxsp for k =2 (h(n) is equivalent to an estimate of the cost
from the start location of the backward agent — the goal in MM — to the current
location of the forward agent). MM prioritizes nodes based on MKSP to keep
MM restrained [46], i.e., to never expand nodes with g(n) > C*/2.

While the priority function is similar, the halting condition is different. In
Figure 3, we illustrate the difference between MM and MM* (for MKSP with
2 agents) with regard to halting. Both algorithms start by inserting s; and s

into OPEN. Next, both algorithms expand s; and generate v; and so. MM
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Figure 3: MM and MM* difference example.

sets pr(v1) = 12 and pr(s2) = 10 (from the forward side; hp(vi) = 6 and
hr(s2) = 0), and U = 10 because a path of cost 10 has been found via the
direct edge between locations s; and sy. At this point, MM halts, as U <
fmin = 10, so a path of a smaller cost cannot be found. By contrast, MM*
sets faursp(ai,v1) = max{g(ai,v1), W} =6 and fyksp(ai,s2) =
max {g(ay, $2), %}M} = 10, and U = 10 because a meeting location
with cost 10 has been found. Unlike MM, MM* continues to search because a
better meeting location might be found as fmin = fyxsp(a1,v1) = 6. While U
is similar for both algorithms, the priorities of MM* are half of the ones of MM.
So, MM* continues and returns either v; or vy as meeting location for MKSP.

Note that for SOC, MM* returns ss as meeting location with cost 10, as it is

on a path of the minimum cost.

7. Heuristics for MM*

We now introduce a number of heuristics for SOC and prove their admissi-
bility. They compute hgoc(a;,v) in fsoc(ai,v) = g(a;,v) + hsoc(a;,v) and
are used indirectly for fyxsp, as shown in Equation 6. Recall that m*(a;, v) is
the optimal meeting location for SOC where a; passes through v.5 For simplic-
ity, we use h(a;,v) to denote hgoc(a;,v). Recall that S is the set of all start
locations. Let S;(v) be the set of all start locations in S, except for s;, which is

replaced with v (the current location of a;). Formally, S;(v) = S\ {s;} U {v}.

6We do not use m* in order to avoid overloading this term, which is already used to denote

the optimal meeting location in the general context, unlike the current context of (a;,v).
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Then, hioc(aiv) = 3, s, ) A0’ m*(a;,v)) (from Equation 3); we want to

* 7
compute a lower bound on h§,.

7.1. hy : Clique Heuristic

We assume that, for every pair of locations (vs,v,), there exists a classic
admissible heuristic h (e.g., straight-line distance or Manhattan distance), such
that h(vg,vy) < d(vg,vy).

Based on the triangle inequality, for every pair of locations vy, v, € S;(v)

(with v, # vy), we have that:
d(vxavy) < d(Uxam*(aiaU)) + d(vyvm*(a’iav))' (7)

By summing over all such pairs in S;(v), we get:

Yoo dwev) < Y (et (an0) + d(oy,mt (0, 0))]

{va,vy }ES; (v)? {va,vy }ES; (v)?
<y <y
(8)

Aseach v’ € S;(v) is paired with k—1 other locations in S;(v), we can rewrite the

right-hand side of Equation 8 as (k —1) > () d(v';m* (a;,v)). Therefore:

v’ ES;

d(vxa Uy) / * %
Z k—1 — z : d(’U ,m (CLZ, U)) h (a“ U) (9)
{va,vy }ES; (v)? v'€8;(v)
<y

Now, since h(vg,vy) < d(vg, vy), we get that:

h(vg, v N
hi(a;,v) = E 7(]{ — 1y) < h*(a;,v). (10)
{Uzvvy}esi(v)2
<y

This heuristic h; is called the Clique heuristic, as it combines the heuristic

values of every (unordered) pair of locations in S;(v). Figure 4 presents an

"This is a form of a front-to-end heuristic as we assume that all other agents (except for
a; which is located at v) are located at their start states. A front-to-front heuristic needs to
estimate the remaining costs when all other agents are in their current locations, but these

locations thus need to be specified for a given node (a;,v). This is left for future work.

23



530

535

540

545

Figure 4: Clique heuristic example.

example of the clique heuristic for three agents. For node (ai,s1), Si(s1) =

h(s1,50)+h h
{s1, 82, 83}. Therefore, h(ay,s;) = (s1,52)+ (812’83)+ (s2.8) _ 3+;’+6 =6.

For each start location s; € S, Si(s;) = S and hence h; can be calcu-
lated once for all start locations. For each location v that is not a start lo-
cation, all locations in S;(v) except for v remain the same. So, h; can be
calculated incrementally in time that is linear in the number of agents. As-

sume we generate location m from location s; for agent a; in the above exam-
_ h(m,s2)+h(m,s3)+h(s2,s3)
- 2

ple. As h(aj,m) , it can also be calculated as follows:

h(ai,m) = h(a1,s1) — h(sl’”);h(sl’%) + h(m’s2);h(m’53). It is easy to see that if

h(vg,vy) is consistent, then h; is also consistent.

7.2. ho : Median Heuristic

For a set of numbers B C R, the median of B provably minimizes the sum

of the absolute deviations, i.e.,
median(B) = argmin Z |b—r|. (11)

reR  {°p

Inspired by this property, we design the Median heuristic (hy) for 4-neighbor
2D grids. On such a grid, each location has two coordinates — x and y. For
a set of locations, we can find the median over the z-coordinates (dimension
1) of all locations and the median over the y-coordinates (dimension 2) of all
locations. Let tmg be the median of dimension d. This creates a potential
meeting location tm = (tmq,tms), that minimizes the sum of the absolute
deviations over both dimensions. Namely, if there are no obstacles on the grid,

tm will be the optimal meeting location for minimizing SOC. This is due to
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the fact that the distance between any two locations is their L;-distance (also
known as Manhattan distance on 2D grids).

Assume that the input graph G = (V, £) is a 4-neighbor 2D grid where every
location v € V is represented by its coordinates ¢ = (v1,vs). The L;-distance
for any two locations u,v € V is defined as @ — ¥ = |u; — v1| + |us — v2|. Due
to the existence of obstacles, for any pair of locations u,v € V, @ — ¥ < d(u,v).
So, for a given node (a;,v),

S v —mranv) <Y d m*(ag,0)) = h*(ai,v). (12)

v €8;(v) v €S (v)
Therefore, by modeling the problem in an empty 2D Li-space (i.e., without
obstacles), we introduce a new admissible (and consistent) heuristic, called the

Median heuristic:
ha(ai,v) = min { Y o/ —ni} (13)
Following the property of the median, defined in Equation 11,

hg(ai,v) = Z 17/—t7_;1 (14)

v’ €8 (v)

S [oh — ] + Jo — tma] - (15)

v'€8;(v)

This is admissible because the right-hand side of Equation 13 is no larger than
the left-hand side of Equation 12.

We use the Quick-select algorithm for finding medians [47], which runs in
©(k) time, to compute ho(a;,s;) for all root nodes. Then, for every non-root
node (a;,v) (i.e., v # s;), k — 1 locations have not changed (as in the clique
heuristic k1) and we only need to update the median based on the single location
that has changed. This can be done in O(1) time.

Figure 5 shows an example of a MAM problem instance with three agents
(81,82, and s3) that are located in (1,1), (3,1), and (1, 2). The z-coordinates are
{1,3,1} and the y-coordinates are {1,1,2}. Thus, the median location is (1,1).
By computing the Manhattan distances from (1,1) to each start location, we

get ha(ay, s;) = 3 for each agent a;.
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Figure 5: Median heuristic example.

ho can be generalized easily for 6-neighbor 3D grids and similar graphs of

higher dimensions.

7.8. hs : FastMap Heuristic

The Median heuristic (hg) only works for graphs that are embedded in 4-
neighbor 2D grids. In addition, ho ignores obstacles, which may introduce
inaccuracies to the heuristic. The FastMap heuristic (hs) handles this and can
work for any general graph. FastMap [26, 27] is a near-linear preprocessing algo-
rithm that embeds the locations of a given edge-weighted undirected connected
graph G = (V,€) into a D-dimensional L;-space R”. The dimension D of the
Li-space is user-specified. Each location v; € V is mapped to a D-dimensional
point p; € RP. The length of a shortest path d(v;, v;) between any two locations
v;,v; € V is approximated by the Li-distance pj — pj between the corresponding
two points p;, p; € RP in this space. The way that the embedding is calculated
in FastMap ensures that the L;-distance in R” can be used as an admissible
and consistent heuristic for the shortest path computation in G. To compute
h-values for MAM, h3 applies the Median heuristic on the generated embedding

RP. For any node (a;,v), its FastMap heuristic is defined as:
ha(a;,v) = min { > -}, (16)

where p7 € RP is the point of the embedding of location v’ generated by
FastMap. By the same analysis as for hs, it can be shown that the FastMap
heuristic (hs) is admissible (and consistent), and it can be computed for every

root node in O(kD) time and for any non-root node in O(D) time.
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There are many other approaches for embedding a graph in a continuous
space [48, 49, 50]. However, most of these use Ly-distances, which are not
computationally feasible here because the Ls-distance version of Equation 16 is
NP-hard to solve optimally [47].

We next provide experiments for solving MAM with MM* for both SOC and

MKSP using all our heuristics.

8. Experimental Results for MAM

We experimented with MM* on an Intel®) Xeon E5-2660 v4 @2.00GHz pro-
cessor with 16GB of RAM. We compared all our new heuristics to the Dijkstra
version of MM*, i.e., where h = 0 (denoted by hg), on different grids while
minimizing both SOC and MKSP. For h;, we used the Manhattan Distance
(MD) as a classic admissible heuristic between any two locations. The number

of dimensions D for h3 was always set to 10, as suggested by Li et al. [27].8

8.1. Naive Approach vs. MM*

First, we experimentally compare the non-heuristic versions of the naive
approach and our proposed MM* algorithm presented above, for minimizing
SOC and MKSP. Table 2 shows the average number of expansions of 50 problem
instances of 2, 3, and 4 agents on a small 6 x 6 open grid. As can be seen, for
the naive approach, increasing the number of agents causes exponential growth
in the number of expansions. Consequently, while each problem instance tested
for 2, 3, or 4 agents was solved in less than 5 minutes, no instance (out of 50)
was solved by the naive approach within this time limit. Therefore, we only

consider MM* in our next experiments below.

8.2. SOC

We experimented on 500 x 500 grids with 0% — 30% randomly allocated

obstacles. Table 3 shows the average over 50 instances of: the solution cost, the

8Qur implementation is publicly available at https://github.com/doratzmon/MAM.
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| soc | wksp

#Agents | Naive ‘ MM* | Naive ‘ MM*

2 | 146 ‘ 33 | 125 ‘ 12
3 | 936 ‘ 78 | 1,464 ‘ 27
4 | 16,677 ‘ 137 | 28,259 ‘ 50

Table 2: Results on 6 X 6 open grids, for SOC and MKSP.

SOC
Initial h-value #Expansions (thousands) Time (sec)
#Obs. [ Cost
ho ‘ hi ‘ ho ‘ h3 ho ‘ hi ‘ ho ‘ hs ho ‘ hi ‘ ho ‘ h3
0% | 995 | 0 ‘ 828 ‘ 995 ‘ 643 | 1,244 ‘ 330 ‘ 34 ‘ 634 | 22.05 ‘ 4.50 ‘ 0.28 ‘ 9.48

10% | 1,008 | 0 ‘ 828 ‘ 995 ‘ 680 | 1,120 ‘ 322 ‘ 58 ‘ 561 | 19.04 ‘ 4.29 ‘ 0.54 ‘ 8.66

20% | 1,033 | 0 ‘ 828 ‘ 995 ‘ 736 | 994 ‘ 320 ‘ 83 ‘ 465 | 16.10 ‘ 4.18 ‘ 0.77 ‘ 6.81

5.60

30% | 1,103 | 0 ‘ 828 ‘ 995 ‘ 778 | 856 ‘ 318 ‘ 143 ‘ 402 | 13.04 ‘ 4.01 ‘ 1.40

Table 3: Results on 500 x 500 grids with varying obstacles, for SOC.

initial h-value, the number of expansions, and the CPU time for 5 randomly
placed agents. Each instance was randomly created with the selected number
of agents and percentage of obstacles. The best results are highlighted in bold.
ho had the best initial h-value, had the lowest number of expansions, and was
the fastest. The initial h-values of h; (MD) and hy remain constant as more
obstacles are added since they both ignore obstacles. By contrast, hs increases
as more obstacles are added. So, when adding more obstacles ho degrades while
hs improves, in terms of number of expansions and CPU time. hg incurred a
preprocessing time of & 30s, which is incurred only once per grid and thus was
amortized over multiple problem instances. Thus, this was not included in the
numbers in the table.

We also fixed the number of obstacles at 10% while varying the number of
agents from 3 to 9. Table 4 shows the CPU time for SOC. Here, too, he was

the best heuristic with only 1.27s for 9 agents because hq is suitable for grids
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SOC

#Agcntsl ho ‘ hy ’ ho ’ h3

3 | 6.87 ‘ 0.16 ’ 0.16 ’ 1.92
5 | 18.98 ‘ 4.66 ’ 0.81 ’ 8.50
7 | 29.46 ‘ 16.15 | 0.85 ‘ 18.66
9 | 44.17 ‘ 36.29 ‘ 1.27 ‘ 33.20

Table 4: Average time (sec) on 500 x 500 grids with 10% obstacles, for SOC
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Figure 6: (a) Enigma grid. (b) SOC expansions. (c) SOC time.

with small numbers of obstacles.

We also experimented on the 768 x 768 Enigma grid (presented in Fig-
ure 6(a)) from the Starcraft video game, available in the movingai reposi-
tory [51]. Figures 6(b) and 6(c) show the average number of expansions and
CPU time, respectively, for 3 to 9 agents for SOC. Here, hg was the best heuris-
tic in both expansions and time. Since this grid has many obstacles (about
57%), h1 and ho were less effective than hgz, which uses real distances (albeit in
the embedded graph). Nevertheless, hs required a preprocessing time of 39s for
this grid (done once). ho was the second best heuristic but hg is only suited for
grids while h; can be used on any graph. For 9 agents, h; expanded slightly
fewer nodes than hg but, since it consumes time for computing the heuristic,
was a little slower than hg.

Finally, besides the Enigma map (which is the largest in the suit), we tested
MM* with our heuristics on another set of nine publicly available benchmark

maps [51]: brc202d, den312d, 1lak503d, lt_gallowstemplar_n, orz900d, ost003d,
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Table 5: Results on nine benchmark maps, for minimizing SOC

orz101d, maze-128-128-2, and room-64-64-8, and measured the average number
of expansions. The results are presented in Table 5. Here too, as in the results
performed on the Enigma map, hg was the best heuristic with the fewer number
of expansions. To summarize, based on our experiments, for SOC, we believe
that, on sparse maps, ho is best while, on dense maps with structured obstacles,

hg is best.

8.8. MKSP

As described in Section 6, there are different policies for choosing subsets of
agents for computing heuristics for MKSP. We compared two of these policies:
(1) selecting all agents and (2) selecting all agents plus all pairs of agents and

taking the maximum over all of those. Figure 7 shows the number of expansions
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MKSP
Initial h-value #Expansions (thousands) Time (sec)

#Obs. | Cost
hU‘hl‘hQ‘h:j hg‘hl‘hg‘h;g ho‘hl‘hz‘fm
0% | 292 | 0 ‘ 166 ‘ 199 ‘ 127 | 542 ‘ 180 ‘ 179 ’ 308 | 7.81 ‘ 2.83 ‘ 2.79 ‘ 6.99
10% | 293 | 0 ‘ 166 ‘ 199 ’ 137 | 485 | 159 | 158 ’ 299 | 6.69 ‘ 2.43 ‘ 2.40 ’ 5.44
20% | 295 0 ‘ 166 ‘ 199 ‘ 140 | 420 ‘ 133 ‘ 132 ’ 239 | 5.47 ‘ 1.94 ‘ 1.93 ‘ 4.12
30% | 305 0 ‘ 166 ‘ 199 ‘ 148 | 341 ’ 121 ‘ 119 ’ 197 | 4.10 ‘ 1.66 ‘ 1.64 ‘ 4.00

Table 6: Results on 500 x 500 grids with varying obstacles, for MKSP.

and CPU time averaged over 50 instances for h3 on the Enigma grid with 3 to 9
agents. As expected, adding all pairs of agents produces a better heuristic and
fewer expansions. It was also better in terms of the CPU time despite the fact
that its computational overhead is larger. Therefore, below, we use this subset
selection policy (2) for computing the heuristics when minimizing MKSP. We
do not consider all subsets of agents for more than two agents as the number
of such possible subsets grows exponentially with the size of the subsets. It is
future work to investigate different policies for choosing specific subsets, out of
the many possible subsets.

Next, for MKSP, we repeat the entire set of experiments on all domains that
were used above for SOC. Table 6 presents the results on the 500 x 500 grids.
Here, too, ho was the best heuristic but here, unlike SOC, h; was very close
to he. This is probably because the clique heuristic (h1) for MKSP also guides

the agents to the median. In addition, as the number of obstacles increases, the
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3 | 1.91 ‘ 0.47 ‘ 0.46 ‘ 1.48
5 | 6.73 ‘ 2.62 ’ 2.60 ’ 6.57
7 | 11.03 ‘ 3.57 ‘ 3.52 ‘ 9.59
9 | 18.07 ‘ 6.53 ‘ 6.38 ‘ 16.46

Table 7: Average time (sec) on 500 x 500 grids with 10% obstacles, for MKSP
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Figure 8: (a) Enigma grid. (b) MKSP expansions. (¢) MKSP time.

initial h-value of hs3 increases while all other heuristics remain the same; at 0%
obstacles, the initial h-value of hs was 127, while, at 30% obstacles, the initial
h-value of hy was 148. This is reasonable as hg is the only heuristic function
that considers obstacles when calculating its estimate.

The same trends were observed when we varied the number of agents with
10% obstacles and are presented in Table 7. Again, for all heuristics, a larger
number of agents results in a longer average time. Here, as in Table 6, hy was
the fastest heuristic where h; was a close second.

In the Enigma grid for MKSP (Figures 8(b,c)), hs was again the best heuris-
tic. hy and hs (the curves cover each other) had fewer expansions, but were
slower than hg. As mentioned, in maps with many obstacles h; and ho become
less accurate, while hs has an advantage over the other heuristics as it is the
only heuristic function that considers obstacles.

Finally, for MKSP too, we experimented on the additional nine benchmark

maps. Table 8 presents the results. Here too, h3 resulted in the fewest number
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Table 8: Results on nine benchmark maps, for minimizing MKSP

8.4. Increasing the Number of Agents

33

of expansions while hg resulted in the highest number of expansions.

40, 60, and 80 agents on 200 x 200 grids with 10% randomly allocated obstacles.
Table 9 shows the average time (in seconds; 50 problem instances) for hg, hq,
ho, and hg, for SOC and MKSP. Similarly to the experiments above on the
500 x 500 grids, here too, ho performs best, which is more prominent when
minimizing SOC than MKSP. This is again a result of the fact that, when
MKSP is minimized, our heuristic for MKSP is calculated indirectly, using a
heuristic for SOC. Here, we can see that as the number of agents increases, the

grid becomes more crowded, and the advantage of the heuristic decreases. In
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SOC | MKSP

HAgents | o ‘ hy ‘ hy ‘ hs | ho ‘ hy ‘ hy ‘ hs
20 202 | 220 |07 | 104 158] 73] 70| 109
40 518 | 622 | 2.2 526 | 541239 | 283 40.
60 | 1036 | 1248 | 4.9 | 1048 | 1128 | 579 | 53.6 | 924

80 176.4 ‘ 204.2 ‘ 9.1 ‘ 173.0 | 155.3 ‘ 99.7 ‘ 86.1 ‘ 152.0

Table 9: Results on 200 x 200 grids with %10 obstacles, for SOC and MKSP.

fact, we can see that, in SOC, hy performs similarly or even better than h;
and hz. The results here again show that ho performs best when the given
map is sparse and not many obstacles are present. While hs achieved better
performance in structured grids, ho is simpler and performs better on grids with

random obstacles.

9. Conflict-Free Multi-Agent Meeting (CF-MAM)

While the basic version of MAM discussed thus far seeks a meeting location
and paths for multiple agents to that meeting location, it is conflict-tolerant
and ignores conflicts between the agents. Path-finding problems for multiple
agents, such as MAPF, are often restricted to return conflict-free paths. We
next define the conflict-free version of MAM as finding both a meeting location
and conflict-free paths to that meeting location.

The Conflict-Free Multi-Agent Meeting problem (CF-MAM) receives as in-
put the tuple (G, S), where G is an undirected connected graph and S' is a set of
start locations. For simplicity, in this paper, we assume that for CF-MAM all
edges have unit cost, which is common in other conflict-free MAPF problems [4].
Extending the CF-MAM algorithms presented below to general weighted graphs
is left for future work [52, 53].

A solution to CF-MAM is a meeting location m and a set of conflict-free

paths II to the meeting location m. While agents must avoid conflicts on their
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Input MAM output CF-MAM output

Meeting location and paths | Meeting location and
- Graph
(possibly conflicting) to conflict-free paths to
- Set of start locations
the meeting location the meeting location

Gy G2 ) G2
O | O
Q D20

Table 10: Input for both MAM and CF-MAM, and output for each, separately.

path to m, naturally, we define that agents cannot conflict at the goal location.
Otherwise, the problem cannot be defined. We also define that agents can
arrive at location m at the same timestep. Even if agents cannot physically
conflict at the goal location, this is practical, for example, in the case that agents
disappear at goal [4] (e.g., robots entering a charging station or autonomous

vehicles entering a garage).

9.1. Solutions to MAM and CF-MAM

In some cases, a solution to MAM is invalid for CF-MAM. In the examples
for MAM and CF-MAM in Table 10 (taken from Table 1) both get identical
input (column 1). In the output example depicted for MAM (column 2), both
agents a1 and a4 conflict at timestep 1. As defined in Section 2, we focus on two
types of conflicts, i.e., vertex conflicts and swapping conflicts. As CF-MAM does
not allow either vertex conflicts or swapping conflicts, this solution is invalid for
CF-MAM. Thus, in the example output for CF-MAM (column 3), the path of

agent a4 is modified to be a non-conflicting path.

Lemma 1. There exists a solution to CF-MAM iff there exists a solution to

MAM.

Proof. Direction 1: A solution to CF-MAM is naturally also a (not necessarily

optimal) solution to MAM. Direction 2: Let IT = {m,..., 7} be a set of

35



715

720

725

730

735

740

shortest paths from a set of start locations S to a meeting location m, namely, a
solution to MAM. Based on IT we can construct (reschedule) a new set of conflict-
free paths from the given set of start locations S to m, namely, a solution to CF-
MAM, as follows. We order on the agents in increasing order of their shortest
paths to the meeting location. In its turn, only agent a; follows its path ;.
Meanwhile, the other agents a; where j > 4 (those that had not yet moved)
wait at their start locations. As only the agent with the shortest path moves
among agents that are not yet at the meeting location, it must not conflict with
a start location of one of the other agents a;. Otherwise, the path of a; is
shorter than that of a;. Therefore, this process results in a new set of paths
without conflicts, which is a (not necessarily optimal) solution to CF-MAM.

O

9.2. Eliminating Swapping Conflicts

Lemma 2. Let II be a set of paths from a set of start locations S to a meeting
location m with a cost of C(IT) (either for SOC or MKSP), such that II only
contains swapping conflicts (and no vertex conflicts). Then, there exists a set
of conflict-free paths (without vertex conflicts and without swapping conflicts)

' = {xl,...,m,} from S to m with the same cost of C(II).

Proof. Consider a swapping conflict {(a;,a;, e, t) between paths m; and 7; in II.
The agents a; and a; cannot conflict at timestep ¢t with another agent, as a
swapping conflict with more than two agents must result in a vertex conflict.
Now, we can create two new paths 7} and 773- from start locations s; and s;, re-
spectively, to m with the same cost and the swapping conflict is eliminated, as
follows. First, for each timestep ¢’ < ¢ we set m;(t') < m;(t') and 7} (t') < 7;(¢').
By definition of a swapping conflict, (m;(t), m(t + 1)) = (m;(t + 1), 7;(t)) = e.
Thus, instead of swapping locations, we can force the agents to wait (not tra-
verse e) and continue following the path of the other agent. This can be done by
setting for each timestep t' > ¢, 7{(t')  m;(t') and 7} (t') « m;(t'). After per-
forming this mechanism, C(7}) = C(w;) and C(7}) = C(m;). Thus, it maintains

both C(m}) + C(n}) = C(m;) + C(7;) (same SOC) and max{C(7}),C(7})} =
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Figure 9: Example of eliminating a swapping conflict.

max{C(m;),C(n;)} (same MKSP). This can be performed repeatedly for each
swapping conflict until I’ is conflict-free and with the same cost of C(IT). To
eliminate swapping conflicts, the agents are forced to switch paths and then
each of the two smoothly follows the other agent’s path. In a swapping conflict,
the agents are at some locations v; and vy at some timestep ¢ and at vy and
v1 at t + 1, respectively. Therefore, it is identical to the case where the agents
are at locations v and vo at timestep ¢t and ¢t + 1, which are wait actions. This
wait action may be required in order to avoid other conflicts with other agents
(other than these two agents). If the optimal solution contains such swapping

conflicts, it means that such wait actions are mandatory. O

Figure 9 presents an example of a MAM problem instance where only agents
ai,as, and ag are presented in the figure. For simplicity, we ignore the rest
of the agents. Let m be a meeting location and let II contain the paths of
a1, a2, and ag such that 71 = (s1, 82,4, m), ma = (82,51, 82, 4, m), and w3 =
(s3,A,m). II contains the swapping conflict (ai, as, (s1,$2),0), and no vertex
conlicts. Following Lemma 2, we can construct 7j = (s1, 51, $2, A, m) and 75 =
(82, 82, A,m) which resolves the swapping conflict without increasing the cost.

In Sections 10 and 11 we introduce two algorithms for CF-MAM. As a
(conflict-free) solution can be constructed from a set of paths that only con-
tains swapping conflicts (Lemma 2), both algorithms ignore possible swapping
conflicts and are only designed to avoid vertex conflicts.

We now introduce our algorithms.
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10. CBS-Based Solution for CF-MAM

Conflict-Based Search (CBS) [8] is a prominent, state-of-the-art MAPF
solver. It plans a set of paths that may contain conflicts and iteratively resolves
them by imposing constraints on the agents and replanning new paths for the
constrained agents. Here, we introduce the CF-MAM-CBS (CFM-CBS) algo-
rithm for solving CF-MAM, which uses the framework of the CBS algorithm.
CFM-CBS works with either SOC or MKSP.

A constraint is a tuple (a;,v,t) that prohibits agent a; from occupying lo-
cation v at timestep t. As in CBS, we use such constraints in CFM-CBS for
resolving conflicts, as explained below.

CFM-CBS has two levels. The high level of CFM-CBS searches the binary
constraint tree (CT). Each node N € CT contains:

1. A set of constraints imposed on the agents (N.constraints).

2. A set of possibly conflicting paths (N.IT) from start locations S to the
optimal meeting location m such that the paths satisfy all constraints in
N.constraints (but may conflict otherwise).

3. The cost of N.IT (N.cost).

The root node of CT contains an empty set of constraints. The high level
searches the CT in a best-first manner, prioritizing nodes with lower cost.
Generating a CT node. Given a node N, the low level of CFM-CBS
solves the given CF-MAM problem instance as a MAM problem that satisfies
all constraints of node N. Such a solution can be achieved using any MAM
solver, such as MM*, which was presented in Section 3. However, to support
constraints, as well as wait actions, MM* needs to be slightly modified to be-
come CF-MM*. Thus, instead of a pair (a;,v), a node in CF-MM* is a tuple
of (a;,v,t) representing an agent and its location at timestep t. In CF-MM* an

invalid node (a;,v,t) is a node that violates the constraint (a;,v,t). CF-MM*

90riginally, to solve MAPF, the low level of CBS finds a path for each individual agent,
e.g., using A*. Here, we jointly search for all agents with CF-MM*.
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Algorithm 2: High level of CFM-CBS

1 Main(CF-MAM problem instance)
2 Root.constraints < {}
3 Root.II + low-level(instance, Root.constraints)

a Root.cost <— C(Root.11) // either SOC or MKSP

5 Insert Root into OPEN

6 while OPEN is not empty do

7 N < Pop the node with the lowest cost in OPEN
8 if N.II is conflict-free then

9 return N.II // N is goal

10 (a1, a2,v,t) < get-con flict(N)

11 N1 + GenChild(N,{a1,v,t))

12 N2 < GenChild(N,(az, v, t))

13 Insert N1 and N2 into OPEN
14 return No Solution

15 GenChild(Node N, Constraint NewCons)
16 N'.constraints < N.constraints U {NewCons}
17 N'II + low-level(instance, N’ .constraints)

18 N'.cost < C(N'.II) // either SOC or MKSP

19 return N’

may generate invalid nodes as such nodes may be meeting locations. However,
if an invalid node N is chosen for expansion, CF-MM* only moves N to CLOSED
and does not expand it. Note that, as the root node of CT does not contain
constraints, it is the only node that executes MM* instead of CF-MM*. Be-
sides the difference described above, CF-MM* is identical to MM*; CF-MM*
performs a best-first search using OPEN, but also performs duplicate detection
and pruning on CLOSED.

Expanding a CT node. Once CFM-CBS has chosen a node N for expan-
sion, it checks its paths N.II for conflicts. If it is conflict-free, then node N is
a goal node and CFM-CBS returns its solution. Otherwise, CFM-CBS splits
node N on one of the conflicts (a;, aj,v,t) by generating two children for node
N. Each child node has a set of constraints that is the union of N.constraints

and a new constraint. One of the two children adds the new constraint (a;, v, t)
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and the other child adds the new constraint (a;,v,t).

Pseudo code. Algorithm 2 presents the pseudo code of the high level of
CFM-CBS. In Lines 2-5, we generate the root CT node. Then, while OPEN is
not empty, we iteratively explore CT nodes. In Line 7, we extract from OPEN
the CT node N with the lowest cost. If N.II is conflict-free (Line 8), it is a
solution and returned in Line 9. Otherwise, we get one of the conflicts in N.II
(Line 10) and resolve it by imposing constraints and generating two new CT
nodes (Lines 11-13).

Example. Figure 10 presents an example of (a) a CF-MAM problem in-
stance with five agents; and (b) its corresponding CT, created by CFM-CBS.
First, at the root CT node, we call MM* with an empty set of constraints. A set
of paths II with a cost of 7 is returned, in which the agents meet at location vs.
Location vs is closer to a larger number of agents (agents asz, as4, and as) than
other locations, and thus has a lower cost. At the root, both agents a; and as
conflict at location vy at timestep 1, and hence II is not a solution. We create
two CT nodes with the constraints (aq,v1,t) and (as,v1,t), and call CF-MM*
under each of the constraints. Then, one of the new CT nodes is chosen for
expansion and a solution with a cost of 8 is returned (the agent waits at its
start location). Notice that while the agents meet at location vy at the root
node and at both child CT nodes, the meeting location may change under a

different set of constraints.

Theorem 3 (Completeness). CFM-CBS is guaranteed to return a solution if

one exists, and it returns No Solution otherwise.

Proof. CFM-CBS performs a best-first search on the CT, where the cost cannot
decrease, i.e., newly generated CT nodes cannot have lower cost than the current
lowest costs of any CT node in OPEN. The number of sets of paths with a cost
that is smaller than or equal to the cost of some valid solution is finite. By
resolving a conflict at some node N, one or more such sets of paths are avoided,
i.e., sets of paths that contain the resolved conflict. Thus, after resolving a finite

number of conflicts, the node with the lowest cost in OPEN contains a solution.
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Figure 10: CF-MAM problem instance and CFM-CBS’s CT.

As the root node of the CT does not contain any constraints, a standard
version of MM* can be executed at the root, instead of CF-MM*. Following
Lemma 1, if there is no solution to MAM, there is no solution to CF-MAM.
Thus, if MM* returns No Solution, we can say that there is no solution to the

given problem for CF-MAM. O

Theorem 4 (Optimality). When CFM-CBS returns a solution, the solution

has the lowest cost among all solutions.

Proof. CFM-CBS never eliminates solutions by splitting a CT node. It performs
a best-first search on the CT where the costs cannot decrease. Thus, the cost
of an expanded node is a lower bound on the cost of all solutions, and the first

expanded node with a solution contains the solution with the lowest cost. [

11. Iterative Meeting Solution for CF-MAM

As described in Section 2, PI-MAPF [9] is the problem of finding conflict-free
paths to a set of goal locations G that were not pre-assigned to the agents. For
each agent a;, a solution for PI-MAPF must include an assignment of a goal
location g; € G and a proper path for that agent to that goal location. Yu and
LaValle [10] defined SG-MAPF as a special case of PI-MAPF in which for each
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agent a; we set g; < ¢ (the same goal location g). As PI-MAPF can be optimally
solved in polynomial time using a reduction to Network Flow [10], SG-MAPF
can also be optimally solved in polynomial time using the same reduction [10].

Naively, CF-MAM can be solved by (1) solving SG-MAPF |V| times, each
time with a different location v € V as a goal location; and (2) determining
the optimal meeting location, based on the cost of meeting at each location.
Thus, CF-MAM can be optimally solved in polynomial time. Experimentally,
this naive algorithm fails to solve many of our problems. It only solved small
domain problems, and slower than the enhanced algorithm described below.

In this section, we first describe a specially designed reduction from SG-
MAPF to Network Flow. Our new reduction is more suitable for SG-MAPF
than the reduction presented by Yu and LaValle [10] for PI-MAPF, although
it borrows some concepts. Then, we introduce the Iterative-Meeting Search
algorithm (IMS), which intelligently iterates over relevant meeting locations
and sets each as a goal location in SG-MAPF and solves it with a Network Flow

algorithm.

11.1. Network Flow Problems

To refresh the memory of the reader, we first provide a brief description of
a network and a Minimum-Cost Mazimum Flow problem (MCMF), which we
use later in our reduction.

A network N = <a, u, ¢, source, sink, R> consists of a directed graph 8 =
(V, &) with capacities u and costs ¢ on the edges, i.e., Ve € &, u(e), c(e) € ZT,
source, sink € V, and a required flow R € ZT. Let 67 (v) and 6~ (v) denote the
sets of edges entering and leaving v, respectively. Given network N, a feasible
flow f (Ve € &, f(e) € ZT) must satisfy the following constraints.

(1) Edge capacity constraint,

Ve € &, f(e) < u(e).
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(2) Flow conservation constraint at non sink/source vertices,

Yv € V\ {source, sink}, Z fle)= Z fle).

e€d— (v) ecdt(v)
(3) Required flow (supply/demand) at sink and source vertices,

Z fle) = Z f(e) = R.

e€d~ (sink) e€dt (source)

Definition 1 (Minimum-Cost Flow problem (MCFP)). Given a network N, let
F be the set of all feasible flows. The MCFP problem returns a minimum-cost

feasible flow f, i.e., mingep (D o cle) - f(e)).

The cost-scaling algorithm [54, 55] is a commonly used polynomial-time

solver for MCFP. We used it in our experiments below.

11.2. Reducing SG-MAPF to Network Flow

As defined above, MCFP minimizes the total cost of the flow. Thus, natu-
rally, this reduction is more suitable for SOC than for MKSP because costs are
being summed up. We first describe it in terms of SOC and later we show how
it can also be used for MKSP.

Recall that the input to SG-MAPF is (G, S, g). Let I be the latest timestep
(the cost of the longest path) among all paths of all optimal solutions to a
SG-MAPF problem instance. For this reduction, we need to first calculate the
depth of the network T, which must be an upper bound on I’ to allow all optimal
solutions. Let IT be a set of shortest individual paths from each start location
s; € S to g, in a relaxed variant of SG-MAPF, which allows conflicts between
the agents. Let [ denote the length of the longest path in II. Similarly, let II’
be an optimal solution for (standard conflict-free) SG-MAPF and let I’ denote
the length of the longest path in IT'. In II, in the worst case, the agent with the
longest individual path (with a cost of 1) conflicts with all other & — 1 agents.
Hence, in IT’, the path of this agent may be extended by one timestep for each
of the other k — 1 agents. That is, for each of the k — 1 conflicts the agent waits
one timestep. Thus, following the reduction of Yu and LaValle [10], T’ = [+ k—1
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is a tight upper bound on ', i.e., T > I’ (for more details, see [10]). Note that,
by using T as an upper bound on a possible solution to SG-MAPF, the agents
will have paths of different lengths and can no longer conflict, even if in the set
of shortest individual paths IT two agents conflict multiple times.

We next describe our reduction. In our network, each node represents a pair
of a location v € V and timestep ¢, i.e., (v,t). Given a SG-MAPF problem
instance (G, S, g), we build a network using the following three steps.

Step 1. We build the network backwards from the goal. First, we build
the pair (g,7) and set t « T. Then, while ¢ > 0, we perform the following:
(i) for each node N = (v,t) with timestep ¢, for each location v’ € {v} U N(v)
(either v or a neighbour of v in G) we create a new node N’ = (v/;t — 1) and
a directed edge (N’, N) with a capacity and cost of 1. These edges correspond
to traversing edges on G, which has cost 1 and can be performed by a single
agent at a given timestep (capacity 1); (ii) set ¢t ¢t — 1 and go back to (i) until
t = 0. Figure 11(a) presents a SG-MAPF problem instance with two agents
(k = 2). As the length of the longest individual path is 2, then I = 2. Thus,
T =1+k—1=3is an upper bound on the longest path in the optimal solution.
Figure 11(b) presents the corresponding network, built after executing step 1.
The construction of this network begins at the bottom-right side, at node (g, 3),
and progresses left. In this figure, moving horizontally corresponds to taking a
wait action and moving diagonally corresponds to a move action.

Step 2. Figure 11(c) shows the network after executing step 2, which is
done as follows. To prevent agents from occupying the same location at the
same timestep, we split each node N = (v,t) at each timestep 0 < ¢ < T into
two nodes: N = (v,t) and N’ = (v,¢') (¢ with an apostrophe). All in-edges
of node N, are transferred to enter node N’ (solid edges). In addition, we add
an edge (N', N) (dashed edges) with a capacity of 1 and a cost of 0. Dashed
edges enforce that only one agent may enter the N nodes (nodes without an
apostrophe) due to their capacity.

Step 3. Finally, as depicted in Figure 11(d), we add a source vertex and

a sink vertex. For each start location s; € S we add an edge (source, s;) with

44



930

935

940

945

S1

S2

V1

Figure 11: Reducing SG-MAPF to Network Flow. Numbers on the z-axis are timesteps and

letters on the y-axis are locations.

a capacity of 1 and a cost of 0. For all nodes N’ = (g,t'), as well as for node
N’ = (g9,T), we add an edge (N’,sink) with a capacity of k and a cost of
0. All these edges are the dashed edges in the figure. We set a required flow
R = |A|, for all agents. We need a capacity of k for any goal node N’ = (g,t'),
including N’ = (g, T'), to allow all agents to arrive at the goal at the same time.
The bold blue arrows show the solution returned by executing an MCFP solver
with R = 2. This solution corresponds to a solution of 71 = (s1, s1,v1,9) and

7o = (82,v1, g), which costs 5.

11.2.1. Independence detection enhancement.

To determine T', as described above, we need to calculate all shortest individ-
ual paths II, e.g., using a breadth-first search from location g. As the runtime
of an MCFP solver is mainly influenced by T' [10], before reducing SG-MAPF to
Network Flow we execute an independence-detection (ID) mechanism [56]. Such
mechanism detects paths in II that can be preserved unchanged in the returned
solution and not be passed to the reduction. We now identify a set of agents

A’ C A that will be reduced to Network Flow. We only reduce agents that either
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Algorithm 3: Independence-detection enhancement

1 ID(Set of shortest paths IT)

2 Init A’ + {}
3 C < get-all-con flicts(II)
a foreach Conflict (a1,a2,v,t) € C do
5 A0
6 [ + get-path-length(Il, a1)
7 do
8 A« get-all-agents-with-path-length(I1, Z)
0 A+ A'UA
10 [—i+1
11 A A+ A -1
12 while A > 0;
13 return A’

conflict in their paths in II or may conflict after conflicts are resolved as we now
describe (Algorithm 3). First, we initialize an empty set A’ (Line 2) and get all
conflicts in IT to set C' (Line 3). Then, for each conflict (a1, ag,v,t) we perform
the following steps (Lines 4-12). Let A represent the amount by which any path
can be further increased after conflicts are resolved. Based on this definition,
after the length of a path of an agent is extended by A, more agents may conflict
with the agent and these agents must be also considered in the reduction. We
set A + 0 and [ with the path length of the conflicting agents a; and as (Lines
5-6). The two agents a; and ag conflict on their individual shortest paths (in
IT) to location g. Thus, both agents must have paths of similar length and [
is the length of the paths of both agents. Then, we start adding agents to A’
and stop when A =0 (Lines 7-12). We get all agents A with a path length of [
and add them to A’ (Lines 8-9). These agents might conflict, after the conflict
is resolved, since they have paths of a similar length. We then increment [ and
update A + A + |A] — 1 (Lines 10-11). This specific update of A comes from
the fact that each agent can extend, in the worst case, its path by 1 to resolve
each conflict. This occurs when, in the optimal solution, each agent must have

a different length. Finally, we return A’ (Line 13) as the set of agents to be
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reduced. The other agents can safely use their optimal individual path because
they will never conflict with the other agents. T is then calculated on A’ and
might be smaller than if it had been calculated on the entire set of agents A.
Note that, this mechanism does not depend on the order by which conflicts are
considered by the algorithm as any order must result in the same set of agents
Al

For example, assume agents {a1, ..., a4} with shortest individual paths IT of
lengths 4, 4,5, and 7, respectively, in which the paths of a; and as conflict. a;
and asy are added to the set A’. We know that, in the optimal solution, one of
agents aj or as may have a path of length 5. Thus, we also add a3 (because it
also has a path of cost to 5) to A’. However, ay will not conflict with the other
three agents, as the longest path of the three agents can only reach a length of

6 [10] and they will be at least one step ahead on their way to location g.

11.2.2. Minimizing MKSP.

While the reduction described above is for minimizing SOC, it can also be
used for minimizing MKSP, as follows. We first calculated an upper bound T
on the depth, for which a solution surely exists. Then, we created a network
with depth T for an MCFP solver, which minimizes SOC. For SOC we set
T < I+ k —1 and looked for the lowest SOC solution for which the longest
individual paths is smaller than or equal to this depth T. By contrast, for
minimizing MKSP the depth of the network is the cost of the solution. Thus,
we set T' <— [ as [ is the lowest depth for which a solution may exist. We perform
the reduction with this bound and execute an MCFP solver. If no solution is
found, we repeatedly increment T and execute an MCFP solver until we find
a solution or reach T' = [ + k — 1 with no solution, in which case a failure is

returned.

11.2.3. Differences Between the Reductions
There are a number of differences between our reduction and the reduction

from PI-MAPF, introduced by Yu and LaValle [10].
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1. In our reduction the graph G is constructed by performing a single breadth-
first search from location g, instead of k breadth-first searches (from the
k start locations) in their reduction.

2. We apply independence detection to construct a smaller network flow.

3. Following Lemma 2, there is no need to avoid swapping conflicts, which

requires a special step by Yu and LaValle [10].

Therefore, optimality follows.

11.3. Iterative Meeting Search

We now present the Iterative Meeting Search algorithm (IMS) for solving CF-
MAM. IMS has two levels. The high level of IMS iteratively examines possible
meeting locations until the optimal meeting location can be determined. This
is done by a best-first search on possible meeting locations. We describe this
process below. The low level sets each possible meeting location (passed by the
high level) as a goal location of SG-MAPF and applies a Network-Flow solver
to solve it using our reduction.

Algorithm 4 describes the pseudo code of the high level of IMS. First, it
initializes OPEN and CLOSED, and initializes an upper bound on the cost of the
optimal solution U (U > C*) with infinity (Line 2). The high level performs
a best-first search, starting from only one of the start locations s; ((a;,s;) is
inserted to OPEN; Line 3). We explain how the start location s; can be selected
below. While OPEN is not empty, an expansion cycle is performed in Lines 4-16.
Each expansion cycle starts by extracting the node (a;,v) with the lowest f-
value (the same f-value as in MM*) from OPEN (Line 5). As MAM is a relaxed
problem of CF-MAM, for the same input (G, S), the cost C’ of the optimal
solution for MAM is a lower bound on the cost C* of the optimal solution for
CF-MAM, i.e., C' < C*. Thus, for each node of the optimal solution, since f
is a lower bound on C’, it is also a lower bound on C*. For each node (a;,v)
selected for expansion, the high level calls the low level to calculate the cost of
meeting at location v (by preforming the above reduction with v as the goal

location and then executing an MCFP solver on it). Then, U is updated with
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Algorithm 4: High level of IMS

1 Main(CF-MAM problem instance)

2 Init OPEN, CLOSED; U + oo
3 Insert (ai, s;) into OPEN // only a single start location
a while OPEN is not empty do
5 Extract (a;,v) from OPEN // with lowest f(a;,v)
6 U < min{U, low-level(instance,v)}
7 if f(ai,v) > U then
8 ‘ return U
° foreach v’ € N(v) do
10 if CLOSED contains (a;,v’) then
11 ‘ continue
12 else if OPEN contains (a;,v’) then
13 if g(a;,v’) < g(ai,v) + 1 then
14 ‘ continue
15 Insert (a;,v’) into OPEN
16 Insert (a;,v) into CLOSED
17 return U

the lowest cost found (Line 6).1° As U is an upper bound on the cost of the
optimal solution C*, if fmin > U then IMS halts and the optimal solution is
found (C* = U), where fmin is the lowest f in OPEN (Lines 7-8). Otherwise,
in case the optimal solution is still not found, for each neighbor v’ of v, the high
level inserts (a;,v’) to OPEN and moves (a;,v) to CLOSED (Lines 10-16). Note
that the node (a;,v") is not inserted to OPEN in case it is either in CLOSED or

in OPEN with a lower or equal cost (Lines 10-14).

Starting the search. In our experiments, we started the search from
the start location with the highest closeness centrality among all start loca-

tions in S.!' The closeness centrality of a start location s; is estimated by

10In the pseudo code we only keep U, but IMS also returns the paths of the optimal solution

and the optimal meeting location.
111n a connected graph, closeness centrality of a node is a measure of centrality in a network,

calculated as the reciprocal (1/z is the reciprocal for ) of the sum of the length of the shortest
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Zsje S\{si} h(%sj), where h is an admissible heuristic in the underlying graph
G between any two points. We found that IMS with this start location performs
better than random. This is reasonable as such a location is usually closer to the

optimal meeting location. Future work may investigate different start locations

for IMS.

Theorem 5 (Completeness). IMS is guaranteed to either return a solution or

return U = oo.

Proof. IMS starts the search by calling the low level for the selected start lo-
cation s;. The low level returns a valid solution for meeting at s;. IMS either
returns this solution or a solution of lower cost. In the worst case, IMS ex-
plores every reachable location (OPEN will be empty), the search will halt and
a solution will be returned.

In case no solution exists, the MCFP solver will fail at T'=14k — 1 (either
for SOC or MKSP) and U = oo will be returned.!? O

Theorem 6 (Optimality). IMS is guaranteed to return the optimal meeting

location m* (with cost C*).

Proof. Let s; € S be the start location of agent a; from which IMS started to
search. Assume, by contradiction, that IMS returned a sub-optimal location
m # m™* with cost C > C*. Since IMS has terminated and returned a solution,
fmin > C > C*. Since IMS terminated without returning an optimal solution,
there exists a node N’ = (a;,v;) € OPEN such that v; is a location on the
path of agent a; to location m* in the optimal solution, and every node before
N’ on that path has already been expanded. Since N’ is the first node on
that path that was not expanded, it was generated by a node on that path,
and thus g(N’) = d(s;,v;). By definition, f*(N’) is the cost of the optimal

paths between the node and all other nodes in the graph [57]. Thus, the more central a node

is, the closer it is to all other nodes.
12T0 simplify the algorithm, this is not presented in Algorithm 4. It can be easily added by

returning U = oo if the low level in Line 6 does not find a solution.
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solution that passes through N’, assuming conflicts are ignored (MAM). Hence,
f*(N") is a lower bound on the optimal cost C*, considering conflicts, i.e.,
f*(N") < C*. f is admissible, and therefore, f(N') < f*(N') < C*. As
N’ € OPEN, fmin < f(N') < f*(N') < C*, which contradicts the fact that
fmin > C > C*. O

12. Experimental Results for CF-MAM

We performed experiments comparing our two algorithms for CF-MAM,
again on an Intel®) Xeon E5-2660 v4 @2.00GHz processor with 16GB of RAM.
For CFM-CBS, we used CF-MM* as a low-level solver. For IMS For solving
the Minimum-Cost Flow problem (MCFP) we used for an efficient implementa-
tion [55] of the cost—scaling algorithm of Goldberg and Tarjan [54], which runs
in polynomial time. For both, we used the clique heuristic as an admissible
heuristic for a meeting location, which balances well between simplicity and

efficiency.

12.1. Random Grids

We compared CFM-CBS and IMS on 10x10 and 50x50 grids with 20% ran-
domly placed obstacles, and 3,5,7,9,11,13, and 15 randomly allocated agents.
We created 50 problem instances for each combination and measured the suc-
cess rate (for timeout of 5min for each instance), average cost, and average time
(seconds). In all experiments, the average cost and time were calculated only
from problem instances that were solved by both solvers. Table 11 presents
the results for this experiment for minimizing SOC, and Table 12 presents the
results for this experiment for minimizing MKSP. Each row shows the number
of agents.

For minimizing SOC (Table 11), for the 10x10 grids (columns 3-4), both
CFM-CBS and IMS solve all problem instances and hence we do not present
the success rate in the table. As expected, a larger number of agents increases

the average cost and the average time for both solvers. However, the influence
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10 x 10 50 x 50
#Agents Solver
Cost | Time | Succ. ‘ Cost ‘ Time
CFM-CBS 0.0 50 0.0
3 11 59
IMS 0.0 50 0.3
CFM-CBS 0.0 50 0.5
5 23 106
IMS 0.0 50 8.3
CFM-CBS 0.1 50 3.9
7 34 155
MS 0.1 49 40.9
CFM-CBS 0.3 49 26.3
9 45 204
IMS 0.4 46 126.4
CFM-CBS 9.5 39 50.5
11 56 245
IMS 0.8 23 200.2
CFM-CBS 30.2 29
13 67 - -
IMS 1.2 3
CFM-CBS 57.3 21
15 79 - -
IMS 1.7 1

Table 11: Results for 10x10 and 50x50 grids with 20% Obs. for minimizing SOC

of this increase is greater for CFM-CBS than for IMS. For example, for 7 agents,
both solvers ran for ~ 0.1s, and for 15 agents, CFM-CBS ran for ~ 57.3s while
IMS ran for only ~ 1.7s. The runtime of CBS-based solutions is exponential in
the number of conflicts it resolves. Thus, CFM-CBS does not perform well in
dense environments, such as small grids with many agents. While CF-MM* (the
low level of CFM-CBS) is polynomial, many agents are led to the same meeting
location which may result in many conflicts that are needed to be resolved.
Each such conflict splits a high-level node into two new nodes, which causes an
exponential growth in the number of high-level nodes. These conflicts are more
likely to occur in dense environments as they require multiple agents to be at
the exact same location at the same timestep.

For the 50x50 grids (columns 5-7), not all instances were solved by both
solvers within the 5min timeout. As the number of agents increased, both

solvers solved fewer instances. However, CFM-CBS solved more instances than
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MKSP

10 x 10 50 x 50
#Agents Solver
Suce. ‘ Cost ‘ Time | Succ. ‘ Cost ‘ Time
CFM-CBS 50 0.0 50 0.0
3 5 25
IMS 50 0.0 49 14.8
CFM-CBS 50 0.0 50 0.2
5 7 30
IMS 50 0.1 47 62.9
CFM-CBS 50 0.0 50 0.7
7 7 33
IMS 46 0.2 40 105.7
CFM-CBS 50 2.0 50 2.2
9 8 35
IMS 50 0.3 39 178.0
CFM-CBS 49 5.9 49 3.0
11 8 37
IMS 50 0.6 32 210.7
CFM-CBS 47 77 49
13 8
IMS 50 0.8 9
CFM-CBS 39 13.7 47
15 9
IMS 50 1.2 1

Table 12: Results for 10x10 and 50x50 grids with 20% Obs. for minimizing MKSP

IMS. For 13 agents, CFM-CBS solved 29 problem instances while IMS only
solved 3. The average cost and average time in the table were calculated from
instances that were solved by both solvers. The same trend that was observed
for the success rate can be seen for the time: CFM-CBS was faster than IMS.
For 11 agents, CFM-CBS and IMS ran for approximately 50.5s and 200.2s,
respectively. Here, the environment is sparser and fewer conflicts occur. Thus,
CFM-CBS can perform better than observed above for the dense 10x10 grid.
For minimizing MKSP (Table 12), the trends were similar to those observed
for minimizing SOC: IMS performed better in the 10x10 grids (columns 3-5)
while CFM-CBS performed better in the 50x50 grids (columns 6-8). For 11
agents, the average times of CFM-CBS and IMS for 10x10 grids were approxi-
mately 5.9s and 0.6s, respectively, and for 50x50 grids the average times were

approximately 3.0s and 210.7s, respectively.
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Map | Success Rate ‘ Cost ‘ Time (sec)
50 l—l—l—lﬂ:’:: 300 120
2 a0 100
g ; .
2 3 H 200 s zg
3
g2 100 E
2 10 -®-CFM-CBS
[ 20
-m-IMS 0
0 3 5 7 9 111315 0
3 5§ 7 9 1 13 15 3 5 7 9 11 13 15
#Agents
#Agents #Agents
50 400 140
120
5 40 300 - 100
= 30 = < 80
£ & 200 E @
3 10 -@-CFM-CBS 100 4
0 ~-IMS 0 0
3 5 7 9 11 13 15 3 5 7 9 " 3 5 7 9 "
#Agents #Agents #Agents

Table 13: Results for the warehouse domain (first row) and the den312d map from DAO

(second row), for minimizing SOC

12.2. Structured Grids

We also tested CFM-CBS and IMS on a set of benchmark maps. Here, we

performed two experiments, as follows.

12.2.1. Ezxperiment 1
We tested CFM-CBS and IMS on:

e A warehouse map, used by Ma et al. [58] and Atzmon et al. [43].

e The den312d map from the Dragon Age Origins (DAO) video game, which
is publicly available [51].

The leftmost column in Table 13 shows figures of both maps, respectively. We
created 50 problem instances with 3,5,7,9,11,13, and 15 randomly allocated
agents, and measured the success rate, average cost, and average time in seconds
(columns 2-4 in Table 13, respectively). Here also, the average cost and average
time were calculated only from instances that were solved by both solvers. This
table presents the results for minimizing SOC.

For the warehouse map, while IMS solved all instances, a few instances were

not solved by CFM-CBS. This is similar to the trend that was observed in the
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Table 14: Results for the warehouse domain (first row) and the den312d map from DAO

(second row), for minimizing MKSP

10x10 grids above; the environment becomes denser, more conflicts occur, and
the problem becomes harder for CFM-CBS to solve. This trend can also be seen
in the time figure for 13 and 15 agents: the runtime of CFM-CBS exceeds the
runtime of IMS.

The den312d map is larger than the warehouse and fewer instances were
solved by both solvers. Similarly to the 50x50 grids, CFM-CBS solved more
instances than IMS and ran faster in instances that were solved by both solvers
because the environment was sparse.

We perform a similar experiment for minimizing MKSP (Table 14). In terms
of success rate, in the warehouse domain, IMS solved a few more instances
than CFM-CBS. However, in the den312d map, CFM-CBS solved many more
instances than IMS. Moreover, in terms of runtime, CFM-CBS performed better
than IMS in both domains. It is interesting to notice that CFM-CBS, in this
experiment, performed better when minimizing MKSP than when minimizing
SOC. In MKSP, the cost can only increase when we resolve a conflict which
involves the agent with the longest path. Thus, when resolving a conflict in

SOC, the solution cost increases more often than when minimizing MKSP.
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Table 15: Results on nine benchmark maps, for minimizing SOC

12.2.2. Experiment 2

We tested CFM-CBS and IMS on nine publicly available benchmark maps
[51]: arena, bre300d, den203d, isound1, 1lak109d, lgt101d, orz101d, maze-32-32-
4, and room-32-32-4.

We created 50 problem instances for each map with 3,5,7,9,11,13, and 15
randomly allocated agents. Table 15 shows the success rate of CFM-CBS and
IMS for a 5min time limit for each instance, for minimizing SOC.

In some maps, CFM-CBS performs better while, in others, IMS performs
better. Again, an important factor that influences the success of the algorithm
is the size of the map. For example, CFM-CBS performs better in arena and
isoundl where there are more than 2,000 states. In contrast, IMS performs

better in 1ak109d, 1gt101d, maze-32-32-4, and room-32-32-4 where there are less
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Table 16: Results on nine benchmark maps, for minimizing MKSP

than 1,000 states. In bre300d, IMS performed better than CFM-CBS although
more than 5,000 states exist. This is due to the special structure of the map
being a long snake-shaped map, which caused many conflicts for CFM-CBS

and thus poor performance. We performed a similar experiment for minimizing

MKSP (Table 16) and observe similar trends.

Our experiments provide the following general rule: CFM-CBS should be
used in sparse environments while IMS should be used in dense environments.

Future work will define and examine different features of problem instances for

choosing a preferred solver for cases that are not clearly sparse or dense.
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13. Conclusions and Future Work

In this paper, we explored the problems of Conflict-Tolerant Multi Agent
Meeting (MAM) and Conflict-Free Multi-Agent Meeting (CE-MAM).

We introduced the multi-directional search algorithm MM* that optimally
solves MAM instances. We proved that MM* is complete and optimal and pro-
posed three admissible heuristics: the Clique heuristic (h;), Median heuristic
(h2), and FastMap heuristic (h3). Experimentally, we showed that MM* per-
forms better with heuristics. For grids with few obstacles, hs is best. For grids
with many obstacles, hg is best but requires preprocessing. The advantage of
hq is that it is applicable to all domains without the need for preprocessing.

For solving CF-MAM, we introduced two algorithms: CFM-CBS and IMS.
We proved that both algorithms are complete and optimal and compared them
experimentally. Our experiments showed that IMS performs better in denser
domains while CFM-CBS performs better in sparser domains. Choosing a solver
in environments that are not clearly sparse or dense is left for future work. In
fact, there is no exact definition of sparse and dense within the context of MAPF
and this, too, is left for future work.

Moreover, future work will:

1. Develop a version of MM* that can find bounded-suboptimal solutions.

2. Extend MM* for solving MAM on a continuous space.

3. Further investigate subset selection for MKSP.

4. Enhance CFM-CBS with many of the improvements that were proposed
for CBS (such as prioritizing conflicts [33]).

5. For IMS, suggest more sophisticated rules for calling the low level.

6. Adjust other MAPF solvers for solving CF-MAM, such as ICTS [32].
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