
Binary Branching Multi-Objective Conflict-Based Search
for Multi-Agent Path Finding

Zhongqiang Ren1*, Jiaoyang Li1*, Han Zhang2,

Sven Koenig2, Sivakumar Rathinam3, Howie Choset1

1Carnegie Mellon University, Pittsburgh, PA 15213, USA
2University of Southern California, Los Angeles, CA 90007, USA

3Texas A&M University, College Station, TX 77843, USA
zhongqir@andrew.cmu.edu, jiaoyangli@cmu.edu, zhan645@usc.edu,

skoenig@usc.edu, srathinam@tamu.edu, choset@andrew.cmu.edu

Abstract

This paper considers a multi-agent multi-objective path-
finding problem that requires not only finding collision-free
paths for multiple agents from their respective start locations
to their respective goal locations but also optimizing multiple
objectives simultaneously. In general, there is no single solu-
tion that optimizes all the objectives simultaneously, and the
problem is thus to find the so-called Pareto-optimal frontier.
To solve this problem, an algorithm called Multi-Objective
Conflict-Based Search (MO-CBS) was recently developed
and is guaranteed to find the exact Pareto-optimal frontier.
However, MO-CBS does not scale well with the number of
agents due to the large branching factor of the search, which
leads to a lot of duplicated effort in agent-agent collision res-
olution. This paper therefore develops a new algorithm called
Binary Branching MO-CBS (BB-MO-CBS) that reduces the
branching factor as well as the duplicated collision resolu-
tion during the search, which expedites the search as a result.
Our experimental results show that BB-MO-CBS reduces the
number of conflicts by up to two orders of magnitude and of-
ten doubles or triples the success rates of MO-CBS on various
maps given a runtime limit.

1 Introduction

Multi-Agent Path Finding (MAPF), as its name suggests, re-
quires finding collision-free paths for multiple agents from
their respective start locations to their respective goal loca-
tions, while optimizing a scalar measure of the paths. MAPF
arises in applications such as warehouse logistics (Wurman,
D’Andrea, and Mountz 2008) and airport surface manage-
ment (Morris et al. 2016). Variants of MAPF have been
widely studied over the last few years (Stern et al. 2019).
This paper considers a generalization of MAPF to multiple
objectives, called Multi-Agent Multi-Objective Path Find-
ing (MA-MO-PF) (Weise et al. 2020; Ren, Rathinam, and
Choset 2021, 2022). In MA-MO-PF, agents have to trade
off one objective for another, such as arrival times, travel
risks, and path lengths. MA-MO-PF is a generalization of
MAPF and is, in general, NP-Hard to solve to optimality (Yu

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and LaValle 2013). In general, there does not exist a single
MA-MO-PF solution that simultaneously optimizes all the
objectives. The goal of MA-MO-PF is thus to find a Pareto-
optimal set of solutions, whose corresponding cost vectors
(where each component corresponds to an objective to be
minimized) form the so-called Pareto-optimal frontier.

A solution is Pareto-optimal if one cannot improve on one
objective without deteriorating at least one of the other ob-
jectives. Ultimately, the challenge of the MA-MO-PF prob-
lem is to compute the Pareto-optimal frontier, which requires
both resolving agent-agent collision and optimizing multi-
ple objectives. To address this challenge, evolutionary algo-
rithms (Weise et al. 2020) were proposed to quickly approx-
imate the Pareto-optimal frontier, while search-based algo-
rithms (Ren, Rathinam, and Choset 2021, 2022) were devel-
oped to compute the exact Pareto-optimal frontier. We are
interested in search algorithms in this paper.

Among these search algorithms, Multi-Objective
Conflict-Based Search (MO-CBS) (Ren, Rathinam, and
Choset 2022) is a leading approach that leverages both
Conflict-Based Search (CBS) (Sharon et al. 2015) for
(single-objective) MAPF and the dominance principle from
multi-objective optimization (Ehrgott 2005). Similar to
CBS, MO-CBS is a two-level search algorithm. It begins by
finding a Pareto-optimal set of (individual) paths for each
single agent ignoring any agent-agent collision and then
takes all combinations of these paths over all the agents
to form a set of joint paths, where a joint path is a set of
paths with one path for each agent. MO-CBS then creates a
constraint tree (Sharon et al. 2015) for each joint path for
the high-level search. In a joint path, if two agents occupy
the same location at the same time, a conflict happens. To
resolve a conflict between two agents, a constraint is added
to either of the agents, and the low-level search finds a new
Pareto-optimal set of paths for that agent while satisfying
all constraints. Each of these paths results in a new branch
for future search, and the number of branches (i.e., the
branching factor) is often large, as each agent may have
many Pareto-optimal paths.

This paper relies on our key observation that the high-
level search of MO-CBS often resolves the same conflict
many times, which reduces the computational efficiency

of MO-CBS. To reduce the wasted computational effort,
we develop a new algorithm called Binary Branching MO-
CBS (BB-MO-CBS), which (i) employs a new high-level
search to update all joint paths intelligently, when a con-
flict is resolved and enjoys the small constant branching
factor of two; and (ii) is able to discard dominated joint
paths during the search and thus avoids the duplicated con-
flict resolution effort for the discarded joint paths. Con-
sequently, BB-MO-CBS runs much faster than MO-CBS.
We prove that BB-MO-CBS is guaranteed to find the ex-
act Pareto-optimal frontier. Our experimental results show
that BB-MO-CBS reduces the number of conflicts by up to
two orders of magnitude. As a result, with a runtime limit of
300 seconds per test instance, BB-MO-CBS often doubles
or triples the success rates of MO-CBS on various maps.

2 Problem Definition

Let index set I = {1, 2, . . . , N} denote a set of N agents.
We use i, j ∈ I to denote agents. All agents move in a shared
workspace, which is represented as a finite undirected graph
G = (V,E), where the vertex set V denotes all possible
locations of the agents, and the edge set E ⊆ V × V de-
notes all possible actions that can move an agent between
two vertices in V . An edge between u, v ∈ V is denoted as
(u, v) ∈ E, and the cost of e ∈ E is an M -dimensional vec-
tor: cost(e) ∈ (0,∞)M with M being a positive integer and
each component in cost(e) being a finite positive real value.

We use a superscript i, j ∈ I with a variable to indicate
the agent that the variable relates to (e.g., vi ∈ V means
the vertex occupied by agent i). Let πi(vi1, v

i
ℓ) represent a

path that connects vertices vi1 and viℓ via a sequence of ver-

tices (vi1, v
i
2, . . . , v

i
ℓ) in G. Let g⃗(πi(vi1, v

i
ℓ)) (as opposed to

a scalar g) denote the M -dimensional cost vector (also re-
ferred to as path cost) associated with the path, which is the
sum of the cost vectors of all edges present in the path, i.e.,
g⃗(πi(vi1, v

i
ℓ)) = Σj=1,2,...,ℓ−1cost((vij , v

i
j+1)).

All agents share a global clock and start to move along
their paths at time t = 0. Each action, either to wait or
move along an edge, for any agent requires one unit of time.
Agents i, j ∈ I are in conflict iff (i.e., if and only if) one
of the following two cases happens. The first case is a ver-
tex conflict where two agents occupy the same vertex at the
same time. The second case is an edge conflict where two
agents traverse the same edge from opposite directions at
the same time.

Let vio, v
i
d ∈ V denote the initial vertex and the destina-

tion of agent i. To simplify the notation, we also refer to a
path πi(vio, v

i
d) for agent i between its initial vertex and des-

tination simply as πi. Let π = (π1, π2, . . . , πN) represent
a joint path for all agents. The cost vector of a joint path is
defined by the vector sum of the individual path costs over
all agents, i.e., g⃗(π) = Σig⃗(π

i). In this work, an agent i ∈ I
eventually stays at vid and incurs no cost from then on.

To compare any two paths or joint paths, we compare their

cost vectors. Given two vectors a⃗ and b⃗, vector a⃗ is said to

dominate vector b⃗ iff every component in a⃗ is no larger than

the corresponding component in b⃗ and there exists at least
one component in a⃗ that is smaller than the corresponding

component in b⃗. Let a⃗(m),m ∈ {1, 2, · · · ,M} denote the
m-th component in a⃗.

Definition 1 (Dominance (Ehrgott 2005)) Given two vec-

tors a⃗ and b⃗ of length M , a⃗ dominates b⃗, notationally

a⃗ ≺ b⃗, iff ∀m ∈ {1, 2, . . . ,M}, a⃗(m) ≤ b⃗(m), and

∃m ∈ {1, 2, . . . ,M}, a⃗(m) < b⃗(m).

Any two joint paths (or two individual paths) are
undominated with respect to each other iff their cost vectors
do not dominate each other. A joint path π is undominated
with respect to a set of joint paths Π if π is undominated
by any π′ ∈ Π. Among all conflict-free joint paths (i.e.,
solutions), the set of all undominated ones is called the
Pareto-optimal set. Given the graph G, vio and vid, i ∈ I , the
MA-MO-PF problem seeks to find all cost-unique Pareto-
optimal solutions, i.e., any maximal subset of the Pareto-
optimal set, where any two solutions in this subset do not
have the same cost vector. The cost vectors of the solutions
in this subset form the Pareto-optimal frontier.

Definition 2 Given two vectors a⃗ and b⃗ of length M ,

a⃗ weakly dominates b⃗, notationally a⃗ ⪯ b⃗, iff ∀m ∈

{1, 2, . . . ,M}, a⃗(m) ≤ b⃗(m).

a⃗ ⪯ b⃗ is equivalent to that a⃗ dominates or is equal to b⃗. Fi-
nally, given a set Π of joint paths, let ND(Π) denote a maxi-
mal cost-unique undominated subset of Π.

3 Preliminaries

This section reviews CBS (Sharon et al. 2015) and
MO-CBS (Ren, Rathinam, and Choset 2022). The concepts
and notations in this section will be used later.

3.1 Review of CBS

Conflict-Based Search (CBS) is a two-level search algorithm
that finds a minimum-cost solution for any solvable (single-
objective) MAPF. On the high level, every node P is defined
as a tuple (π, g,Ω), where:

• Ω is a set of constraints. Each constraint has form (i, v, t)
(or (i, e, t)), which means that agent i is forbidden to oc-
cupy vertex v (or to traverse edge e) at time t (between t
and t+ 1).

• π = (π1, π2, . . . , πN) is a joint path that connects vio and
vid for all agents. Each path πi in π is a minimum-cost
path that satisfies the constraints in Ω related to agent i.

• g is the scalar cost value of π (i.e., g = g(π)).

CBS constructs a constraint tree with the root node Po =
(πo, g(πo), ∅), where πo is constructed by running the low-
level (single-agent) planner, such as A*, for every agent with
an empty constraint set while ignoring all other agents. Po

is then added to OPEN, a queue that prioritizes nodes based
on their g-values from the minimum to the maximum.

In each search iteration, a node P = (π, g,Ω) with the
minimum g-value is popped from OPEN for expansion. To
expand P , every pair of individual paths in π is checked for
a vertex conflict (i, j, v, t) (and an edge conflict (i, j, e, t)),
which means agents i and j are in conflict at vertex v (and
edge e, respectively) at time t. If no conflict is detected, π

Algorithm 2 Pseudocode for BB-MO-CBS

1: Po ← (ND(Πo), πo,rep, g⃗o,rep, ∅, {Π
i
o})

2: add Po to OPEN
3: C ← ∅
4: while OPEN is not empty do
5: Pk = (Πk, πk,rep, g⃗k,rep,Ωk, {Π

i
k})← OPEN.pop

6: Πk ←DomPrune(C, Πk)
7: if any joint path in Πk is filtered then
8: if Πk ̸= ∅ then
9: πk,rep ← Πk.first, g⃗k,rep ← g⃗(πk,rep)

10: add Pk to OPEN

11: continue
12: cft←DetectConflict(πk,rep)
13: if cft= NULL then
14: add g⃗k,rep to C
15: delete πk,rep from Πk

16: if Πk ̸= ∅ then
17: πk,rep ← Πk.first, g⃗k,rep ← g⃗(πk,rep)
18: add Pk to OPEN

19: continue
20: {ωi, ωj} ← GenerateConstraints(cft)
21: for all i′ ∈ {i, j} do
22: {Πi

l} ← {Π
i
k}

23: Ωl ← Ωk ∪ {ω
i′}

24: Πi′

∗
← LowLevelSearch(i′, Ωl)

25: replace Πi′

l (in {Πi
l}) with Πi′

∗

26: Πl ← NonDomJointPath({Πi
l})

27: if Πl = ∅ then continue
28: π⃗l,rep ← Πl.first, g⃗l,rep ← g⃗(πl,rep)
29: add Pl = (Πl, πl,rep, g⃗l,rep,Ωl, {Π

i
l}) to OPEN

30: return C

Pl is added to OPEN for future expansion.
BB-MO-CBS terminates when OPEN is empty and then

returns the set C, which the Pareto-optimal frontier of the
given MA-MO-PF problem instance (see Sec. 5).

4.2 Key Procedures of BB-MO-CBS

Filtering Solutions Procedure DomPrune removes (i.e.,
filters) all joint paths of a node that are weakly dominated
by existing solutions, similar to SolutionFilter of MO-CBS.
However, due to the new high-level search of BB-MO-CBS,
DomPrune works differently from SolutionFilter. As shown
in Alg. 3, DomPrune iterates over the given set of joint paths
Π, where the joint paths are lexicographically sorted in in-
creasing order of their cost vectors. DomPrune ensures that
the first joint path in Π is not weakly dominated by a so-
lution already found during the search. It does this by re-
peatedly removing the first joint path from Π until the first
joint path in Π is no longer weakly dominated by a solution
already found during the search. DomPrune needs to ensure
this property only for the first joint path in Π since Alg. 2 op-
erates only on that joint path (i.e., use it as the representative
joint path of the correpsonding node for conflict detection).
DomPrune could ensure this property for all joint paths in Π
but then would often be less efficient since Π can be large.

Algorithm 3 Pseudocode for DomPrune

Input: C is the set of solution cost vectors, and Π is a set
of joint paths of some node.
Output: Π filtered by C.

1: for all π ∈ Π do
2: if ∃c⃗ ∈ C, c⃗ ⪯ g⃗(π) then
3: remove π from Π
4: else break
5: return Π

Algorithm 4 Pseudocode for NonDomJointPath

Input: {Πi}.
Output: ND(Π1 ×Π2 × · · · ×ΠN).

1: Let Ai denote the cost vectors of paths in Πi.
2: B ← A1

3: for all j = 2, 3, . . . , N do
4: B ← {b+ a , b ∈ B, a ∈ Aj}
5: B ← NonDomVec(B)

6: return the joint paths corresponding to B

Computing Undominated Subsets The procedure Non-
DomJointPath computes a cost-unique undominated maxi-
mal subset of a given set of joint paths. A naive implementa-
tion would first compute Π = Π1×Π2×· · ·×ΠN and then
iterate over each pair of joint paths in Π to find a maximal
cost-unique undominated subset. However, this naive imple-
mentation is computationally prohibitive since the size of Π
is often large. For example, if |Πi| = 10, ∀i ∈ I , and there
are ten agents (N = 10), then |Π| = 1010.

Instead of calculating ND(Π1×Π2×· · ·×ΠN), we could
calculate ND(· · · (ND(ND(Π1 × Π2)× · · ·)× ΠN). Let Ai

denote the cost vectors of paths in Πi. It is faster to perform
this calculation with the set Ai as follows. Alg. 4 calculates
B = NonDomVec(· · ·NonDomVec(NonDomVec(A1+A2)+
· · ·) +AN), where Ai +Aj means taking the sum of every
pair of cost vectors a⃗i ∈ Ai and a⃗j ∈ Aj , and NonDomVec
computes the undominated subset of the input cost vectors
(Lines 2-5 in Alg. 4). The joint paths corresponding to B can
then be reconstructed at the end of Alg. 4. For each cost vec-

tor b⃗ ∈ B, we know that b⃗ =
∑

i∈I g⃗(π
i), πi ∈ Πi. Given

g⃗(πi), this reconstruction can look up the corresponding πi

in Πi since {Πi} is stored in each node. In practice, we only
need to reconstruct the joint path that corresponds to the lex-
icographically minimum cost vector of B (which is used as
the representative joint path of a node in Alg. 2).

An important procedure in Alg. 4 is NonDomVec, which
returns the undominated subset of a given set of vectors B.
A naive implementation iterates over every pair of vectors
in B, resulting in a runtime complexity of O(|B|2). To ex-
pedite the computation, we leverage Kung’s method (Kung,
Luccio, and Preparata 1975), which is a fast algorithm to
compute an undominated subset of vectors.

4.3 Relationship of BB-MO-CBS with MO-CBS
and CBS

Relationship of BB-MO-CBS and MO-CBS The main
differences between BB-MO-CBS and MO-CBS are:

• Searching a single constraint tree with the branching fac-
tor of two: In MO-CBS, each node contains one joint
path, while BB-MO-CBS introduces a new notion of
nodes where each node contains a set of undominated
joint paths. Correspondingly, MO-CBS searches multi-
ple constraint trees with varying branching factors of at
least two (but which are often larger than two), while
BB-MO-CBS searches only one constraint tree with the
constant branching factor of two.

• Ignoring dominated joint paths: During the search, while
MO-CBS has to consider all joint paths for conflict res-
olution,4 BB-MO-CBS considers only a maximal sub-
set of undominated joint paths in each node for con-
flict resolution, since the dominated joint paths are dis-
carded in NonDomJointPath (Line 26 in Alg. 2). Only
BB-MO-CBS is able to leverage NonDomJointPath dur-
ing the search due to its new high-level search.

• Incurring negligible computational overhead per node:
In each iteration, MO-CBS resolves a conflict by updat-
ing a single joint path, while BB-MO-CBS resolves a
conflict by updating multiple joint paths. During this up-
date, BB-MO-CBS incurs a computational overhead over
MO-CBS due to procedure NonDomJointPath (which is
not used in MO-CBS). However, with the help of Kung’s
method, this overhead is small, as our experiments show.

Relationship of BB-MO-CBS and CBS We consider
that BB-MO-CBS is ªmore similarº to CBS than to
BB-MO-CBS in the following sense.

• Both CBS and BB-MO-CBS build a single constraint tree
with the branching factor of two.

• While each node in BB-MO-CBS contains multiple joint
paths (instead of one), BB-MO-CBS uses the first joint
path as the representative joint path of the node. If we
consider the representative joint path in BB-MO-CBS as
the counterpart of the joint path in CBS, then the high-
level searches of CBS and BB-MO-CBS are analogous
(e.g., with respect to how the costs of nodes are computed
or how conflicts are resolved), except that BB-MO-CBS
exhausts OPEN before termination while CBS terminates
when it finds the first solution.

5 Analysis

We prove that BB-MO-CBS computes the Pareto-optimal
frontier C∗. A joint path is consistent with a set of constraints
Ω if the joint path satisfies every constraint in Ω.

4Intuitively, if dominated joint paths were pruned in MO-CBS,
it means the corresponding individual paths in these nodes are dis-
carded. When MO-CBS later generates a child node and replan the
paths for an agent, MO-CBS may lose solutions that consist of the
pruned paths of the other agents and the new path of this agent.
This makes the MO-CBS incomplete.

Definition 3 (CVN set) Given an arbitrary set of cost vec-
tors C and a node P with constraint set Ω, let CVN(P, C) be
the set of all joint paths π that (i) are consistent with Ω, (ii)
are conflict-free (i.e., valid), and (iii) have cost vectors g⃗(π)
that are not weakly dominated by any cost vector in C.

Correspondingly, a node P permits a joint path π with re-
spect to C iff π ∈ CVN(P, C). For the rest of this section,
let Pk = (Πk, πk,rep, g⃗k,rep,Ωk, {Π

i
k}) denote a node that

is popped from OPEN for processing in the k-th iteration in
Alg. 2 and Ck denote the set of solution cost vectors com-
puted till the beginning of the k-th iteration of the search.

Lemma 1 Every time when Alg. 2 reaches Line 12, for every
joint path π′ ∈ CVN(Pk, Ck), there exists a joint path πk ∈
Πk such that g⃗(πk) ⪯ g⃗(π′).

Proof 1 In Pk, Πi
k for every agent i ∈ I is computed by

the low-level search and is thus guaranteed to be a maxi-
mal subset of all cost-unique Pareto-optimal paths that are
consistent with Ωk. Let Π′ = ND(Π1

k × Π2
k × · · · × ΠN

k).
Then, for any joint path π that is consistent with Ωk, ∃π′ ∈
Π′, g⃗(π′) ⪯ g⃗(π) (Claim 1). Πk in Pk is initialized to Π′

when Pk is generated on Line 26. A joint path in Πk is
then deleted only if (i) it is added to Ck on Lines 14 and
15 or (ii) its cost is weakly dominated by a cost vector in
Ck (Line 6). Therefore, given a joint path π′ ∈ Π′, either
π′ ∈ Πk or ∃c⃗ ∈ Ck, c⃗ ⪯ g⃗(π′). Combined with Claim 1, we
know that, given a joint path π that is consistent with Ωk,
either ∃πk ∈ Πk, g⃗(πk) ⪯ g⃗(π) or ∃c⃗ ∈ Ck, c⃗ ⪯ g⃗(π).
Since, by definition, any joint path π′ ∈ CVN(Pk, Ck) is
consistent with Ωk and ∄c⃗ ∈ Ck, c⃗ ⪯ g⃗(π′), we know that
∃πk ∈ Πk, g⃗(πk) ⪯ g⃗(π′).

Lemma 2 At the beginning of a search iteration, for every
Pareto-optimal solution π∗ with g⃗(π∗) ∈ C∗\Ck, there exists
a node P in OPEN that permits π∗ with respect to Ck.

Proof 2 We prove this lemma by induction. After the initial-
ization, OPEN contains only the root node Po, which has an
empty constraint set Ωo. Po thus permits any conflict-free
joint path with respect to Co since Co and Ωo are empty. At
the beginning of the k-th iteration, assume that there is a
node P ′ in OPEN that permits π∗ with respect to Ck. If P ′

is not popped from OPEN (i.e., the popped node Pk does
not permit π∗ with respect to Ck), then P ′ is still in OPEN
after the iteration and still permits π∗ with respect to the
new Ck (i.e., Ck+1) after the iteration. Therefore the lemma
holds. Otherwise, there are three cases. First, some joint
paths in Πk are filtered (Lines 6-11). Because of Lemma 1
and because π∗ ∈ CVN(Pk, Ck), Πk cannot be empty af-
ter the filtering. Pk is thus re-inserted into OPEN, and the
lemma holds, Second, πk,rep is conflict-free (Lines 13-19). If
πk,rep = π∗, then g⃗(π∗) is added to Ck (i.e., g⃗(π∗) /∈ C∗\Ck)
and the lemma holds. If πk,rep ̸= π∗, then Pk is re-inserted
into OPEN (since Πk contains at least π∗ and cannot be
empty) and the lemma holds. Third, Alg. 2 branches on Pk

to resolve a conflict (Lines 12 and 20-29). Two constraints
ωi and ωj and two new corresponding nodes Pli and Plj are
created. π∗ cannot violate both ωi and ωj (because, other-
wise, π∗ would not be conflict-free). Thus, π∗ does not vio-
late at least one of the two constraints (say ωi), and the cor-

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 2120219, 2120529 and
2121028. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

References

Ehrgott, M. 2005. Multicriteria optimization, volume 491.
Springer Science & Business Media.

HernÂandez, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; Koenig, S.; and Salzman, O. 2023. Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial Intelligence, 314: 103807.

Kung, H.-T.; Luccio, F.; and Preparata, F. P. 1975. On find-
ing the maxima of a set of vectors. Journal of the ACM,
22(4): 469±476.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.

Morris, R.; Pasareanu, C. S.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, T. K. S.; and Koenig, S. 2016. Planning, schedul-
ing and monitoring for airport surface operations. In AAAI
Workshop: Planning for Hybrid Systems, 608±614.

Pulido, F.-J.; Mandow, L.; and PÂerez-de-la Cruz, J.-L. 2015.
Dimensionality reduction in multiobjective shortest path
search. Computers & Operations Research, 64: 60±70.

Ren, Z.; Rathinam, S.; and Choset, H. 2021. Subdimen-
sional expansion for multi-objective multi-agent path find-
ing. IEEE Robotics and Automation Letters, 6(4): 7153±
7160.

Ren, Z.; Rathinam, S.; and Choset, H. 2022. A conflict-
based search framework for multiobjective multiagent path
finding. IEEE Transactions on Automation Science and En-
gineering, 1±13.

Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced multi-objective A* using balanced bi-
nary search trees. In Proceedings of International Sympo-
sium on Combinatorial Search, volume 15, 162±170.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40±66.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
et al. 2019. Multi-agent pathfinding: definitions, variants,
and benchmarks. In Proceedings of International Sympo-
sium on Combinatorial Search, volume 10, 151±158.

Weise, J.; Mai, S.; Zille, H.; and Mostaghim, S. 2020. On the
scalable multi-objective multi-agent pathfinding problem. In
Proceedings of IEEE Congress on Evolutionary Computa-
tion, 1±8.

Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI magazine, 29(1): 9.

Yu, J.; and LaValle, S. 2013. Structure and intractability of
optimal multi-robot path planning on graphs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 27, 1443±1449.

Zhang, H.; Li, J.; Surynek, P.; Kumar, T. K. S.; and Koenig,
S. 2022. Multi-agent path finding with mutex propagation.
Artificial Intelligence, 311: 103766.

