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ABSTRACT

Physical kinetic roughening processes are well-known to exhibit universal scaling of observables that fluctuate in space and time. Are there
analogous dynamic scaling laws that are unique to the chemical reaction mechanisms available synthetically and occurring naturally? Here, we
formulate an approach to the dynamic scaling of stochastic fluctuations in thermodynamic observables at and away from equilibrium. Both
analytical expressions and numerical simulations confirm our dynamic scaling ansatz with associated scaling exponents, function, and law.
A survey of common chemical mechanisms reveals classes that organize according to the molecularity of the reactions involved, the nature
of the reaction vessel and external reservoirs, (non)equilibrium conditions, and the extent of autocatalysis in the reaction network. Varying
experimental parameters, such as temperature, can cause coupled reactions capable of chemical feedback to transition between these classes.
While path observables, such as the dynamical activity, have scaling exponents that are time-independent, the variance in the entropy produc-
tion and flow can have time-dependent scaling exponents and self-averaging properties as a result of temporal correlations that emerge during
thermodynamically irreversible processes. Altogether, these results establish dynamic universality classes in the nonequilibrium fluctuations
of thermodynamic observables for well-mixed chemical reactions.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION

Chemical reaction mechanisms have the functionality and the
diversity to create materials, synthesize medications, and sustain
life. However, these kinetic mechanisms can be difficult to clas-
sify because of this diversity and their nonequilibrium nature. By
contrast, it is well known in statistical physics that seemingly unre-
lated physical phenomena, from sandpiles to earthquakes, can share
universal laws when we change the time and length scale of our
observation. © Moreover, simulations of and experiments’ ~ on
growing interfaces have shown that concepts of scaling and univer-
sality can apply beyond equilibrium critical phenomena to systems
driven out of equilibrium.” Despite this progress for physical phe-
nomena, it is unclear whether there are complementary dynamic
scaling laws for chemical reactions.

Universal scaling behavior has been found in biochemical
networks,” the stochastic exponential growth and division of bac-
terial cells,” " the growth of human cancers,'' and dissipative
self-assembly.'” Formal analogies have expanded the scope of kinetic
roughening theory = even further by treating the fluctuations of
mathematical functions as surrogates for the physical interface.
Examples include biological systems, such as DNA,"” complex
networks,'® crude oil prices,'” heartbeat signals,'® strongly interact-
ing gases,'” and material fracture.”’ Applying this idea to the Lya-
punov exponents of dynamical systems, for example, has revealed
that the leading Lyapunov vector of extended dissipative dynamical
systems falls within the Kardar, Parisi, and Zhang universal-
ity class.”” Hamiltonian dynamical systems show anomalous non-
KPZ behavior; long-range correlations can cause the fluctuations
in finite-time Lyapunov exponents in these systems to self-average
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weakly’”” and even diverge.”® These results highlight not only
the breadth of kinetic roughening theory but also how dynamical
mechanisms can influence universal behavior. Given the diversity
of chemical transformations, they also motivate a deeper look at
the dynamic scaling and potential universality classes of chemical
reactions.

Chemical reactions are dynamic phenomena involving trans-
formations of energy, which makes the fluctuating observables
of stochastic thermodynamics good candidates for an analogy
with surface roughening. In the framework of stochastic
thermodynamics,}J ol quantities, such as heat, work, and entropy,
can be treated at the level of individual, fluctuating trajectories.
Nonequilibrium fluctuations are known to obey strong relations,
including fluctuation theorems and thermodynamic uncertainty
relations,”” ** some of which can be cast as thermodynamic
speed limits.”” *° Here, we show the fluctuations of thermody-
namic observables also satisfy a dynamical scaling hypothesis in
well-mixed chemical reaction systems. We do this by analyzing
the nonequilibrium fluctuations in stochastic thermodynamic
observables of a broad set of elementary and coupled chemical
reactions at and away from equilibrium. Numerical and analytical
agreement with our scaling hypotheses suggest the division of
fluctuations in dynamical observables into distinct classes. The
corresponding scaling exponents do not depend on the molecular
nature of the chemical species. In some cases, the exponents are also
independent of the reactions conditions, such as temperature, or
whether the reaction vessel is open or closed to the flux of matter.
Our approach here enables us to divide chemical kinetic processes
into classes according to the values of these characteristic scaling
exponents.

Il. MODEL AND METHODS
A. Well-mixed chemical reaction systems

To model systems of chemical reactions, we adopt a standard
framework at the mesoscopic level: we consider well-mixed chem-
ical populations of finite number in a reaction vessel with vol-
ume V. Each system we consider consists of # chemical species
X:=(X1,X2,...,Xs)", with X; representing the number of
molecules of the kth species at a time t and " denoting the transpose.
A total of m reactions are possible, each reaction having a stoichio-
metric or state-change vector v; € R” whose ith element is the change
in the number of X; molecules caused by the jth reaction. The evolu-

tion of the entire mixture is governed by the chemical master equa-
10

tion,” which for the time evolution of the probability distribution,
P(X,t),is

dP(X,t i i

% = > aj(X-v,t)P(X - v, 1) - > aj(X,1)P(X,1). (1)

j=1 j=1

The propensity function, a;(X,t), determines the probability,
aj(X, t)dt, that the jth reaction occurs in an infinitesimal time
interval [t,t+dt). The propensity also depends on b, which is
the molecularity for elementary reactions. For example, unimolec-
ular reactions, A — fJ, have a propensity ¢;Xa(¢) with stochas-
tic rate constant ¢; o< 1; bimolecular reactions, A +B — J, have
a propensity ¢Xa(t)Xp(t) with ¢ o< 1/V. The total propensity,
a(X,t) = ¥"aj(X,t), is the sum of the propensities for all
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m-reactions. The rate constants k; of each reaction are related to
the stochastic rate constant ¢; through combinations of the volume
and Avogadro’s number N, that depend on the reaction molec-
ularity. For example, for a second-order reaction, the relation is
¢j = kj/NaV."" Here, we fix V so that ¢; does not depend on the
number of molecules.

The chemical master equation can be solved numerically
with the finite-state projection method, >’ thresholding,** and the
stochastic simulation algorithm.” To extract scaling laws and scal-
ing exponents, we use stochastic simulations of the chemical kinet-
ics, kinetic Monte Carlo using the Doob-Gillespie algorithm.* **
This algorithm generates stochastic realizations (trajectories) of the
chemical kinetics. An ensemble of these trajectories is a statisti-
cal sample of the distribution that is the solution to the chemical
master equation.w“:” Each realization represents the composition
(number of molecules of each chemical species) of a mixture of
N molecules in a volume V evolving over time. That is, the mixture
advances through a time-ordered sequence of chemical composi-
tions X(t) = {X(t+),...,X(t)} as a result of chemical reaction
events with exponentially-distributed waiting times.*! Our simula-
tions of these stochastic trajectories require a chemical mechanism
(the elementary or composite reaction and their associated rate
constants) and experimental conditions, such as volume, tempera-
ture, and initial number of molecules. In the results that follow, we
simulate a wide range of reactions, varying rate parameters, tem-
perature, and initial number of reactants for each reactive system of
interest.

B. Stochastic thermodynamics and kinetics

Fluctuations in several thermodynamic observables fit within
the scaling theory we present here. For example, the number of
configuration changes in the reaction mixture over a given time
interval is a common measure of the lability of the dynamics through
configuration space (of chemical compositions).”! This “dynamical
activity,” K[X(t)], for each stochastic trajectory X(¢) is the num-
ber of reactions occurring in a mixture of N molecules over an
observation time ¢ = t — to. In practice, we add one to the reaction
count, K[X(t)], at each time a reaction occurs during the observa-
tion time. We define this path functional, and others, more simply as
K(x,N,t) == K[X«(t)] to emphasize the label or “trajectory index”
x that identifies a particular stochastic realization of the reaction pro-
cess. For other model systems, this counting observable has revealed
dynamical phase transitions.”” Even for the well-mixed reaction ves-
sels we consider here, its distribution over trajectory ensembles is
not necessarily Poissonian.

Complementing the work of others on the stochastic thermody-
namics of chemical reaction networks (e.g., Refs. 53-57), we analyze
the entropy flow, which is directly related to the heat dissipated to
or absorbed from surroundings for systems that are local detailed
balanced.”””” For a single stochastic realization of the reaction
process, the action functional,”

K(t)-1

QoN= 3 In@E=Xrwh)

mae AT A 2
pr ai(X+vi—>X,ti) @

is often interpreted as the entropy exchanged between the system
and the environment.”""" Here, a; is the propensity of the reaction
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that occurs at time t; along a particular stochastic trajectory, Xy,
when the reaction mixture has composition X. This “entropy flow,”
Qs(x,N,t) = —As,, is accumulated over the K reactions that occur
up to a time ¢. So, for each realization labeled by x, this observable
depends on t and the number of molecules, N (through the propen-
sities of the reactions along the stochastic trajectory). The subscript
on Q, indicates the connection to the entropy flow. This connection
follows from the decomposition of the entropy change for the system
along the path,

P(X,t)

As = Asi+ As, = —In — 2,
S Si Se nP(X,tO)

3)

into contributions from the entropy flow and the entropy produc-
tion internal to the system As;.”""" This partitioning also applies to
ensemble averages in stochastic thermodynamics where, for local
detailed balanced systems, the entropy production, AS; > 0, is non-
negative and vanishes at thermodynamic equilibrium, a statement of
the second law of thermodynamics.”’

The entropy production and flow decompose into observ-
ables used in information theory and dynamical systems using the
branching observables for a forward path

K- ai(X - X+ v,-,t,-)

LN, t) = 1 4
Q+(x ) ; n a(X, ti) (4)
and its conjugate reverse
KO ai(X+vi— X 1) a(X,t)
- (x,N,t) = In -~ d a . (5
QCeNt)= 2 I Xy O

Here, the subscripts + and — indicate the forward and reverse paths,
respectively. At steady-state, the trajectory-average of Q, is related
to the dynamical entropy per unit time hgs(N) = —lim/- o0 {Q, )/t
in information theory (the analog of the Kolmogorov-Sinai entropy
rate in dynamical systems theory).””*” These observables measure
the degree of branching along a particular forward (or reverse)
stochastic path. Together, —As. = Q, = Q, — Q_,*” they are the inte-
grated entropy flow, the entropy exchanged between the reaction
vessel and the surroundings.®’

C. Dynamic scaling ansatz

To characterize the statistical evolution of an ensemble of
M statistically independent trajectories, we analyze the average,
ha(N,t) = (A(N,t)) = M"Y MA(x,N,t) using M =10* for each
chosen observable, A. We quantify fluctuations about this mean
across the trajectory ensemble using the variance

wi(N, 1) = M*lf [A(x,N,t) — ha(N,1)]%, (6)

which depends on time and the number of N molecules in the
volume V at ¢ = 0. Our objective here is to analyze the dynamic scal-
ing of the mean and the variance for observables of the stochastic
dynamics of chemical systems. This scaling is analogous to the
roughening of surfaces, as illustrated in Fig. 1. Each panel in
Fig. 1(a) shows the value of the dynamical activity across an ensem-
ble of trajectories. This perspective of the ensemble shows an
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abstract “surface” whose dynamic behavior is governed by stochastic
trajectories of a unimolecular decay process, A — B. In this anal-
ogy, ha(N,t) and wj (N, t) are the average height and interfacial
width, respectively, that lead to scaling relationships and chemical
universality classes.

For a fixed reaction volume that is large compared to molec-
ular length scales, our dynamic scaling ansatz for the mean hy and
variance wa of trajectory-level thermodynamic observables is

ha(N,t) ~ N'£,[(xt)°N°]

R 5t ™
WH(N 1) ~ N'g, [(xt)N'].

The scaling functions of the mean £, and the variance g, are differ-

ent in most of the reactions we consider, but all the reactions have

three characteristic exponents. The three scaling exponents are as

follows:

(i) The wandering exponent y is a measure of the self-averaging
property® of the observable, A. A y > 0 implies that the rel-
ative variance of A decays as w3 /hi ~ N7 with increasing
numbers of molecules for all times. Most, but not all, of the
observables we consider here are system-size extensive with
y =1 for their mean and their variance. Observables that are
system-size intensive and self-average, however, will have a
wandering exponent of 0 for their mean and —1 for their
variance.

(ii) The dynamic exponent ( is specific to the chosen reaction. For
a given reaction, we define a characteristic timescale as the
time between reaction events: ¢ := N/ 3, a;(to) with the total

propensity N™* Y aj(to) per molecule. This exponent deter-
mines the system size dependence of the characteristic time
tc ~ 1/xN°. For mechanisms with any number of reactions,
the exponentis { = b — 1 provided they have the same molecu-
larity b. The value of ( is the same for both mean and variance.
When t ~ £, £, ~O(1) and g, ~ O(1) so that ha(N, t;) ~ N”
and wj (N, t) ~ N”. The dynamic exponent { accounts for the
system size dependence of the time between reaction events;
increasing N decreases the time between reactions.

The parameter « is a constant specific to the particular reaction
that makes ¢/t. = xtN® dimensionless (see the Appendix). For exam-
ple, it is the stochastic rate constant x = ¢ in the case of unimolecular
decay, A 5B

(iii) The growth exponent § determines the power law growth
of the scaling functions. We find f, and 4, for the mean

and variance go as («t)° for the activity, —Q,, and —Q_.
These scaling functions hold at all times for reactive sys-
tems at equilibrium and nonequilibrium stationary states
and at early times for systems transiently relaxing to station-
ary states. The well-mixed chemical systems here all have
& =1 for the mean and variance, reflecting initial Poisson
growth.

We have examined this scaling ansatz for reactive systems at
equilibrium, transiently relaxing to equilibrium, and at nonequilib-
rium steady-state. It holds for K, Q,, Q_, and under some circum-
stances for Q,. Moreover, we find from our simulation data that
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FIG. 1. Dynamic scaling for the stochastic chemical kinetics of unimolecular decay, A — B. (a) The cumulative reaction count K(x, N, t) across a representative ensemble of
simulated trajectories at seven different times, ¢ = 0.1,1,2.5,5, 10, 15,25 in 1/c units. Mean, hx (N, t), and variance in the reaction count, w? (N, t), grow as t* with & = 1
up to the crossover at time tx = ¢~" In 2 after which the mean saturates and the variance decay to zero. For a given c, data for the (b) mean activity as a function of time
collapse onto a single curve when (c) scaled by system size hx (N, t) /N” with y = 1. For a given c, data for the (d) variance w? (N, t) as a function of time also collapse
onto a single curve when (e) scaled wf((N, £)/N? by the system size with y = 1. Time is scaled t — tN¢ and for this unimolecular reaction the dynamic exponent is ¢ = 0.
Points are numerical data, and dashed lines are from the analytical expression. Colors indicate ¥ = ¢ = 0.1 (green), 1.0 (black), and 10.0 (blue) with darker colors indicating
larger N (N = 10%-10% molecules). Insets in (c) and (e) show that scaling time by ¢ collapses data for all rate constants.

the exponents y, {, and & are related through y/8 = { - b+ 2. For
bimolecular reaction systems, this scaling relation becomes { = /8,
which is similar to the Family-Vicsek scaling law in surface
roughening, z = a/B.%

I1l. SINGLE MOLECULARITY CHEMICAL REACTIONS
A. Irreversible decay

As an illustration of the scaling ansatz, consider the irreversible

reaction A — B in a closed reaction volume. Initially, the ves-
sel contains only A and at a sufficiently long time later, it con-
tains only B. We chose these stochastic kinetics because they
are both analytically and numerically solvable (Fig. 1). This reac-
tion is an event-modulated Poisson process with a propensity
a(X > X+ v,t) = cXa(t) that decreases over time. At early times,
we find both the mean and variance in the activity grow as the mix-
ture, initially all reactant, becomes more chemically heterogeneous,
Fig. 1. But at long times, as the population of A is depleted, the mean
saturates and the variance is suppressed.

Statistical correlations in the activity across the trajectory
ensemble are the mechanism generating the onset of a new regime

of behavior [Fig. 1(a)]. The correlations are apparent in kg and wg;
they are caused by the irreversibility of the reaction and the con-
served number of molecules N. As shown in Figs. 1(b) and 1(d), the
mean and variance of the activity go as hx ~ N’t° and w} ~ N't°,
respectively. Scaling hx — hx/N? and wk — wg /N? gives data col-
lapse with y=48=1, {=0 for a given stochastic rate constant
¢ [Figs. 1(c) and 1(e)]. Our numerical data agrees with the
exact expression for the mean activity, hx(N,t) = N(1-¢e™%),
which goes as Nct' when t <« ¢ 'In2 and saturates at N when
t>te=c'ln2 [Fig. 1(b)]. While the nature of the correla-
tions is different, the result is reminiscent of ballistic deposition
where the interfacial width saturates because of lateral correla-
tions that develop from finite system size and irreversible particle
deposition." Unlike physical roughening, the late time behav-
ior in this reaction process is smoothing instead of constant
roughness.

The variance in the dynamical activity from numerical
simulations also agrees with the exact expression, wx(N,t)
=Ne™(1-¢™") [Fig. 1(d)]. Usinge ™ = 1 —ct + O(ct)* for ct < 1,
there is power law growth w?(N,t)/N’ ~ (ct)’ with &=1.
Fluctuations, as measured by the variance, grow to the value
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w?(N, tx) = N/4 at the crossover time tx = ¢~* In 2, after which they
die out. The scaling function is

(ct)’ if t<t
-B - - 1
gt (1-e )~ . if £ =t (8)
et if >t

Altogether, from our exact expressions and numerical data, the
mean and variance of the dynamical activity K are both system size
extensive such that y = 1. With the molecularity b = 1, the exponen-
tial arguments above give { = 0, and the scaling functions initially
grow as t° with 8 = 1 up to the crossover time tx = ¢ In 2.

For this reaction, we have focused on the dynamical activity
because its mean and variance as a function of time can be found
analytically. The scaling exponents follow immediately from the
exact expressions for ki and wg. However, because there are only
A — B transitions, the observables Q. and Q, are less useful. There is
no branching along stochastic trajectories, only one path is possible,
and the only randomness is in the stochastic time sequence of A — B
events; hence, Q, is zero for all times. Because of the irreversibility of
this reaction, Q_ is undefined. The entropy flow Q, diverges because
of the violation of detailed balance’' at the stationary state. However,
these observables are still of interest for larger reaction mechanisms,
provided the mechanism supports a stationary state with detailed
balance.

To test our scaling ansatz further, we considered sets of uni-
molecular reactions that are coupled in serial [Figs. 2(a) and 2(c)]
and parallel [Figs. 2(b) and 2(d)]. The scaling ansatz in Eq. (7) holds
for both cases yielding the scaling exponents (y,8,{) = (1,1,0). We
then hypothesize that the dynamic scaling ansatz in Eq. (7) holds
for the dynamical activity of any unimolecular, irreversible reaction,
regardless of the molecular nature of the reactant A or product B and
the connectivity of the reaction network.

With the dynamical activity, this example of unimolecular
decay also illustrates another layer of universality. When the reaction
vessel is thermostatted, the stochastic rate constant in ¢, is a function

(a) (b) °
e

(c) (d)

1()1) =

10° 7
~10-3 = /
& 10 < 10° // //

1077 1072 100
10 6 f 1011

1076 1076 1073 100 103
Kt

FIG. 2. Effect of connectivity of reactions on the scaling function of unimolecu-
lar reactions. Schematics of reaction network where the reactions are coupled in
(a) serial and (b) parallel. (c) Scaling the mean hx (N, t) /N and time t/t; = «tN°®
collapses data at all times when reactions are coupled in (c) serial (d) parallel.
Insets shows the raw data. In all cases, ¢ = 1/10 (green), 1 (black), and 10 (blue)
and N = 102, 10%, 10, 10, and 10°.
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FIG. 3. Dynamic scaling for the stochastic chemical kinetics of bimolecular
A+B—-C+D and termolecular A+B+C — D+E+F decay processes.
(@) The mean activity of the bimolecular reaction collapses onto a single curve
when scaled by system size hx (N, t)/NY with y = 1 and time t/t; = kN with
¢ = 1. (b) The mean activity of the termolecular reaction collapses onto a single
curve when scaled by system size hx (N, t)/N? with y = 1 and time t/t; = xtN°
with { = 2. Insets shows the raw data. In all cases, x = ¢ = 1/10 (green), 1 (black),
and 10 (blue) and N = 102, 10%, 10*, 10%, and 10°.

of temperature, « = c(T). Scaling time t— t/t. = ktN® by the
characteristic time, 1/cN°®, gives further data collapse of the variance
in activity at different temperatures [Fig. 1 (insets) and Figs. 2(c)
and 2(d)]. Therefore, we can hypothesize that not only does the
dynamic scaling ansatz in Eq. (7) hold for any unimolecular, irre-
versible reaction regardless of the nature of A and B, it also holds for
these reactions in a container at any temperature.

To extend the scaling ansatz to reactions of different molec-
ularity, we considered the bimolecular A+B - C+D and ter-
molecular A+B+C — D+E+F decay processes shown in Figs. 3(a)
and 3(b), respectively. We see good data collapse for the
mean activity of the bimolecular reaction with scaling exponents
(9,6,{) = (1,1,1). For the termolecular reaction, the scaling expo-
nents are (y,9,{) = (1,1,2). These data suggest that any well-mixed
elementary chemical reaction of the form Y, viXy — Y vk Yy obeys
the scaling ansatz with the scaling exponents (y,6,{) = (1,1,b-1)
that are determined by the molecularity of the reaction, b.

B. Reversibility, molecularity, and reaction conditions

We sought to test the ansatz more generally for chemical
reactions beyond irreversible decay. To start, we systematically var-
ied the main features of the chemical mechanism and the reaction
conditions, analyzing reactions both at and away from equilibrium.
For larger mechanisms, we found that the scaling ansatz holds for
any set of reactions, regardless of whether the reactions are coupled
in serial or in parallel or consist of cycles when the mechanism is
composed of elementary reactions with the same molecularity.

One class of reactions we considered was reversible elementary
reactions at equilibrium. Any elementary chemical reaction of the
form vwW + vxX +--- = wY +vzZ +- - - obeys the scaling ansatz
and has the scaling exponents (y,6,{) = (1,1,b—1) (Fig. 4), pro-
vided the forward and reverse reactions have the same molecularity,
b. Here, vx represents the stoichiometric coefficient of chemical
species X. For example, A = B at dynamic equilibrium has a mean
and variance that agree with our scaling hypothesis for K, Q,,
and Q_. Here, dynamic equilibrium is the state in which the for-
ward and reverse reaction rates are equal and the composition
of the system is unchanging. We confirmed the agreement both
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FIG. 4. Effect of experimental conditions and the reaction reversibility on the scal-
ing function of a bimolecular, autocatalytic reaction. The variance of the activity
w& (N, t) as a function of time when the reaction is (a) irreversible in a vessel

that is open A + B — 2B (10), (b) reversible in a closed reaction vessel and at
dynamic equilibrium, A + B = 2B (RC), and (c) irreversible in a closed vessel
A + B — 2B (IC). In all cases, ¢ = 1/10 (green), 1 (black), and 10 (blue), with a
reverse rate constant of one for RC conditions and N = 102, 103, 10%, 10%, and
108. (d) Scaling the variance w? (N, t) /N” and time t/t. = xtN® collapses data at
all times. The scaling function Jy depends on both the reaction reversibility and
molecularity and the experimental conditions, behaving as g, ~ 1 at all times for
RC conditions and at early times otherwise.

analytically and numerically. As shown in Fig. 5, the mean and vari-
ance of the branching observables diverge as ho(N, ) ~ N't> and
wo(N, ) ~ N”#, respectively. Also of note is that the scaling ansatz
in Eq. (7) for the standard deviation give § = 1/2, which agrees with
growth exponent in the random deposition model,' the Gaussian
universality class.

Another group of reactions that agree with the scaling ansatz
are irreversible reactions. We considered irreversible reactions of
the form ¥, v;W; + YiviXj > v Yx + Xy viZy+ - - -, where
W, indicates a molecular population that is constant over time (for
a particular N) because it is in excess or because of the perme-
ability of the vessel walls to a reservoir of W;.”" The molecular
population of W; may change when varying the total number of
molecules N, since the total molecular number is the sum of the
molecular populations of all species. For this class of reactions, the
scaling exponents for the mean and the variance of K are (y,6,{)
= (1,1,b-1).

Autocatalytic reactions are particularly important in
combustion® and the chemistry of living systems.”® Well-
mixed reactions of the form X; — n'X; with branching coefficient n’
(supplementary material, Fig. 1) also agree with the scaling ansatz.
Entire cycles of autocatalytic reactions do as well, such as the
stochastic Hinshelwood cycle for cell division’ (supplementary
material, Fig. 2). Iyer-Biswas et al. showed the statistics of the copy
numbers and division times obey complementary scaling laws.
For an individual autocatalytic reaction in the cycle, X — 2X, we
found our scaling ansatz holds for the mean hx (N, t) = Ne‘ and the
variance in dynamical activity wg (N, t) = Ne™[¢* - 1], which
grows as t*' at short times and as ¢** at long times, in agreement
with numerical simulations.

From this survey of reactions, as we found for unimolecular
decay, the scaling exponents and scaling functions depend on both
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FIG. 5. Confirmation of dynamic scaling ansatz for the thermodynamic branching
observables Q,, Q_, and the entropy flow Q; = Q, — Q_ for a reaction mixture at
equilibrium and relaxing to equilibrium in a closed reaction vessel. The reversible
reaction A = B occurs [(a), (c), and (e)] at equilibrium and [(b), (d), and (f)] relax-
ing to equilibrium from an initial state of all A molecules. Mean ho(N, t) ~ N7
of the branching observables Q.., Q_, and Q as a function of time (a) at equi-
librium and (b) relaxing to equilibrium. Corresponding variance wZQ(N, t) ~ N7t
as a function of time (c) at and (d) relaxing to equilibrium. In (a)—(d), the forward
rate constant is ¢ = 0.1 (green), 1 (black), and 10 (blue); the reverse rate con-
stant is [(@) and (c)] ¢ = ¢ and [(b) and (d)] ¢, = 1. Darker colors indicate larger
N: N = 102-108. (e) Sum of variances, wa +wd ,and cov(Q., Q-) (¢) atequi-
librium () relaxing to equilibrium from an initial state of all reactant. In (e) and (f),
¢¢ = ¢r = 1. The wandering exponent is y = 1 for the mean of Q,,_ and the vari-
ance wj ~ N*'"t*1. At equilibrium, Qs has a scaling exponent y = 0 both for its
mean and variance. During the relaxation to equilibrium y = 1 for hq_; however, for
the variance, wés has a y = 1 away from equilibrium and y = 0 near equilibrium.

the nature of the chemical reaction (reversibility, molecularity) and
the chosen experimental reaction conditions (open, closed). When
density is fixed instead of volume, the scaling exponents are the
same regardless of the molecularity of the reaction or the conditions
(18.0) = (1,1,0).

In our analysis of these reactions, we also scaled the time coor-
dinate by the parameter x to achieve data collapse for different
choices of rate constants. For single, reversible reaction systems
that conserve the total number of molecules, we determined « as
described in the Appendix. Scaling time by « collapses the distri-
bution of waiting-times between reaction events; for single-reaction
systems, the mean and variance of an observable A for reactions with
different rate constants collapse onto a single curve. So, the system-
size intensive parameter « is defined such that «t is a dimensionless
time but also such that the scaling functions f, and g, are indepen-
dent of the stochastic rate constants of the forward, cf and reverse,
cr, reactions. Figures 4 and 5 show that with «, the scaling functions
of ha and wj for different ¢; and ¢, collapse onto a single curve,
independent of the identity of the chemical species and the rate
constants governing the reactions. The values of the rate constants
are commonly taken to be functions of temperature through an
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TABLE 1. Scaling exponents for the dynamical activity, K, in the reaction mechanisms
considered here.

Reaction y ) ¢
Unimolecular® 1 1 0
Bimolecular” 1 1 1
Termolecular® 1 1 2
Mixed molecularity 1 1 1 1
Mixed molecularity 2° 1 1 0

A — Bina closed container, A — B opento A, A = Batand relaxing to equilibrium,
A — 2A autocatalytic reactions, A - B - C — D — E reactions coupled in serial and
A —>B,A—>C,A—D,A— Ein parallel.

YA+B—C+D,A+B - 2Binaclosed container, A+ B — 2B open to A, A + B = 2B
(equilibrium as well as relaxation process).

‘A+B+C—D+E+Finaclosed container.

4A+B—2B,B—>C (a1 > ay), Keizer reaction A + B = 2B, B = C (a1,a, > a3,a4) in
Sec. IV.

€A+ B —2B,B — C (a; < ap), Keizer reaction A + B = 2B, B = C (41,4, < a3, a4) in
Sec. IV.

Arrhenius expression. Within this modeling assumption, these
scaling functions do not depend on the chemical species or
temperature.

Table I summarizes the reaction mechanisms and dynamic
scaling exponents for the activity, K, that we considered here.

C. Dynamic scaling of entropy

More observables satisfy this ansatz than the data shown so far
would suggest. We also analyzed the scaling of the path observables
relating to entropy: Q,, Q_, Q,, and As;.

1. Information-theoretic entropy rates

For reactions where there is branching, the scaling exponents,
function, and relation of —Q, and —Q_ are the same as those of
cumulative reaction count. The observables K, Q,, and Q_ are
extensive, and so, (y,9,) = (1,1,b - 1). For chemical reactions that
are well described by Poisson processes, we can relate the scaling
of Q, and Q_ to another entropy, the entropy per unit time, "
and determine the scaling exponents exactly. While this entropy rate
has previously been used to extract typical paths in nonequilibrium
chemistry,”” its scaling has not been investigated.

As an example, take the equilibrium reaction A = B and
assume the propensities are constant and proportional to the mean
number of molecules of A and B. In that case, we find from the ther-
modynamic formalism of Markov processes™ that the entropy rate
is —(Q,)/t = hks = (ag + ar)In[(as + ar)/as]. To make this result
more transparent, consider cr=cr=1 with ar =X ;q and a, = X ;q.
With these values the entropy per unit time hgs=NInN/
Xa = Nln2 is extensive in system size and the branching observ-
able (Q,) = —NtIn?2 is extensive in system size and time. A similar
result holds for Q_. For both branching observables, the mean has
the scaling exponents (y,9,) = (1,1,0). From the thermodynamic
formalism, we also find the exact scaling exponents for the vari-
ance wy(N,t) = t(as +ar) In[(a + a,)/as]. Again assuming that
¢ = ¢ = 1, the variances for both Q, and Q_ are Ntln(N/X4)
= NtIn2. The variance of the branching observable wg/N” then
grows as t and wé /Nt =1n 2. For both branching observables
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then, the mean and variance have the scaling exponents (y,9,()
=(1,1,0). These analytical predictions agree with our numerical
data as shown in Fig. 5.

2. Entropy flow

The branching observables Q, and Q_ evolve at an entropy
(rate) and are related to the entropy production and flow. At
the ensemble level, the entropy that flows between the reaction
vessel and the surroundings as the system evolves is related to
Q, = Q, — Q_ through (Q;) = —AS.. The entropy flow for A = B is
shown in Figs. 5(a) and 5(¢) at equilibrium and Figs. 5(b) and 5(d)
relaxing to equilibrium from an initial population of pure reactant A.
For all the reactions and nonequilibrium initial conditions we con-
sider, the mean entropy flow has a y = 1 for all times, regardless of
whether the system is away from equilibrium or relaxed to equilib-
rium [Fig. 5(b)]. The entropy flow, however, is a camulative quantity
and reflects the path and initial conditions; when the mixture is at
equilibrium for all times, the mean entropy flow is zero and scales as
NP, Fig. 5(a).

Unlike the other observables we consider, the wandering expo-
nent y for the variance of the entropy flow varies in time as reaction
mixtures relax to equilibrium. At t = fy, we find good data collapse
with y = 1 for hq, but also wg, (t) ~N™" [Fig. 5(d)]. The relative
variance wés / h%); scales as ~ N7', so the entropy flow (and the heat,
assuming local detailed balance) is strongly self-averaging. As the
system evolves from pure reactant A through successive nonequilib-
rium states to equilibrium proportions of A and B, the variance of
the entropy flow transition from y = 1 to y = 0 [Figs. 5(b) and 5(d)].

The variance in the entropy flow (and production) exhibit an
even richer scaling behavior that depends on the scaling of correla-
tions between Q. and Q_. For the reactions above that are in detailed
balance, the variance U’(Z); ~ N satisfies our scaling ansatz with y = 0
[Fig. 5(c)]; itis independent of the system size N. While spatial corre-
lations manifest at critical points, here the correlations are temporal
correlations between the forward and conjugate reverse paths.

The distinct scaling behavior of wés at and during the relax-
ation to equilibrium is the result of (positive) correlations between
Q, and Q_ (Fig. 5). Because Q, is the sum of two potentially
correlated variables Q, and —Q_, its variance is wés = wa + wéf
- 2[(Q+Q-) - {(Q+){Q-)]- The transition of the wandering expo-
nent y from one to zero is understandable from the limiting cases.
As shown in Figs. 5(b) and 5(d), the reactant A is initially in excess,
so early in the relaxation process the reaction is effectively the
decay from pure A and reaction events are predominantly A — B.
As shown in Sec. Il A, this reaction has (9,6,{) = (1,1,0). In
that case, the Q, and Q_ are uncorrelated or weakly correlated,
wg, +wh_ > 2[(Q+Q-) — (Q+){Q-)], and the variance scales as
wy, ~» wy, +wg_ ~ N [Fig. 5(0)].

By contrast, there is no net preference for forward or reverse
reaction events at chemical equilibrium. Any imbalance created by
a forward (reverse) reaction event is soon rectified by a reverse
(forward) reaction event; if a forward reaction event occurs, there
is a contribution of +q to Q, and an increase in Xg, but this
increase in X3 also increases the reverse propensity, making a subse-
quent reverse reaction more likely to make a canceling contribution
—-q to Q,. At long times then, when mixtures relax to equilibrium,
there are strong correlations between forward and reverse reaction
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events, wa + wZQ_ ~2cov(Q4,Q-) ~ N*! and wéﬁ ~ N° [Figs. 5(c)
and 5(¢e)].

For all reactions and experimental conditions that we consider,
we find the means (Q. ), (Q_), and (Q,) (away from equilibrium),
the variances w(22+ and w(22+, and the covariance cov(Q,,Q_) all go
as ~N*! at all times. However, the magnitude of the (positive) cor-
relations between Q, and Q_ determine the system-size dependence
of the entropy flow Q, variance. During relaxation processes, as the
reaction progress towards equilibrium, these correlations increase
as the nonequilibrium currents vanish and the wandering exponent
y varies from 1 to 0.

3. Entropy production

For reactions at equilibrium and nonequilibrium steady-states,
the scaling behavior of the entropy production is identical to that
of the entropy flow; as can be seen from Eq. (3), they are equal up
to a sign under these conditions. For mixtures at chemical equi-
librium, we found the scaling exponents and the scaling function
are the same for As, and As;. We first confirmed this by consider-
ing a reaction vessel that is open reservoirs of A and B molecules,
which can transform reversibly A = B. We set ¢ r=cr and the num-
bers of each species at time-independent nonequilibrium values,
Xa # XB.

Given that our dynamic scaling approach applies outside of
equilibrium, we also analyzed the scaling of entropy production
for transient phenomena. We again considered the relaxation to
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equilibrium of a reversible reaction, A = B, in a closed reaction
vessel. The vessel initially contains pure A, so P(X,ty) = 1. At
a time t>> (¢; +¢,)”', the mixture will reach chemical equilib-
rium with a stationary probability distribution given by P*4(N, X )
=(1+ cf/c,)_N(cf/c,)X"(;i ).“N Taking ¢s = c;, the stationary pop-
ulation is X 3! = N/2. Putting these details together with Eq. (3) gives
the entropy production for the relaxation process (supplementary
material, Fig. 3). The dependence of the logarithm of the ratio of
the initial and final probabilities on N is negligibly small compared
to Q,. The entropy production then has the same scaling function,
relation, and exponents in this case.

Table 1T summarizes the dynamic scaling exponents associated
with the path observables related to entropy for different reaction
mechanisms and reaction conditions.

D. Analogy with kinetic roughening

Stepping back, we can see our approach to the scaling of
stochastic thermodynamic observables as analogous to the dynamic
scaling of roughening surfaces. Each numerical simulation here
provides a stochastic realization of the reaction that we label, x,
specifying the “spatial” location on the “surface” at a time ¢. Over
time, the dynamic growth of the observables across the ensemble
of trajectories is the “interface,” each point on the interface being
associated with a different set of time-ordered chemical events. For
the “height” at a given point on the surface, we use observables,
A(x,N,t), accumulated up to the time .

TABLE II. Dynamic scaling exponents for Q;, Q_, Qs, and As; for different mechanisms and reaction conditions.

Q. Q- Q; As;
Variance Variance

Reaction t—>0 t— o0 Mean t—=0 t— oo

0 0 0
Unimolecular A = B, equilibrium 0 0 0

0 0 0

1 1 0
Unimolecular A =B, relaxation 1 1 0

0 0 0

Bimolecular A + B = C + D, equilibrium

Bimolecular A + B = C + D, relaxation

Termolecular A + B+ C = D + E + F, relaxation

Keizer reaction A + B= 2B, B= Caj,a; > as,as

Keizer reaction A + B= 2B,B= Caj,a; < as,as

TN DHR IO SO N DR NN HR N SN O
O = N O O =
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For example, Fig. 1(a) shows the dynamical activity (cumulative
number of reactions) for an ensemble of stochastic simulations
of unimolecular decay A - B in a closed container. The mixture
evolves to an absorbing state in which only B is in the reaction ves-
sel on a timescale set by the stochastic rate constant ¢!, Here, the
value of K(x, N, t) across the ensemble of trajectories is an abstrac-
tion of a rough physical surface. The trajectory index corresponds to
the “spatial location.” An important difference with traditional sur-
face roughening is that here we do not analyze the dependence of
the height or width of the interface (mean or variance of the given
stochastic thermodynamic quantity) on the length of the surface (the
number of trajectories). Instead, we analyze the dependence of these
cumulative properties of the xth trajectory, A(x,N,t) := A[X.(t)]
on the system size (as measured by the total number of molecules).

Taking this analogy a step further for the activity, we can put
the scaling relation into the form of the well-known Family-Vicsek
relation.”"” Let the initially N molecules exclude a volume L with
d spatial dimensions of length L. We can then define the “roughness”
exponent as &' := dy and dynamic exponent as z’ := —d( such that
2z’ < 0; similar algebraic relationships between the a and y are known
for Lyapunov exponents.”® With these definitions, our ansatz takes
the ’Family—\,ficsek form: ha(L,t) ~L* A(Kt/LZ’) and w3 (L,t)
~ L% g, (xt/L*).

An important difference with the Family-Vicsek scaling func-
tion is that the scaling functions for chemical reactions do not tend
to saturate like those in physical surface roughening. This difference
is the result of our chosen observables, the reaction mechanisms,
and the characteristic timescale, all of which motivate different scal-
ing exponents. The scaling functions f, and g, depend on both the
nature of the chemical reaction (reversibility, molecularity) and the
chosen experimental reaction conditions (open, closed) (Fig. 4). Asa
consequence, the scaling law is &’ /dd = —z" — d(b - 2). For bimolec-
ular reaction systems, however, it becomes 7' =d /dé. This form
of the scaling law only differs in sign from that in surface rough-
ening, z = a/p; the sign difference is the result of the N~ = L%
dependence of our timescale . instead of the L* dependence of the
crossover time used in surface roughening.

IV. COUPLED CHEMICAL REACTIONS

The scaling exponents found so far are unaffected by cou-
pling reactions with the same molecularity. However, analyzing
two coupled reactions with different molecularity and tuning their
irreversibility leads to a collision of universality classes.

A. Keizer reaction

Collisions and reactions between four-bodies are sufficiently
improbable that they are commonly neglected in chemical kinet-
ics. We then only need to consider the dynamic exponent { for
unimolecular, bimolecular, and termolecular reaction types. From
our scaling ansatz, we expect each molecularity involved to have
the potential to contribute to a scaled dynamic exponent { = b —1
when chemical reactions of different molecularity are coupled. In
these cases, we do find that additional scaling exponents are gen-
erally necessary. Additional exponents can also be necessary in the
dynamic scaling of other systems when there is more than one
mechanism.’*® However, there can be experimental conditions
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where reactions of a particular molecularity are dominant and a
single dynamic exponent { is sufficient.

As a representative example, we apply our scaling approach to
an autocatalytic bimolecular reaction and a unimolecular reaction

A+B=—12B

N ©)

B— C
Cq

By altering the rate constants of each elementary reaction, we can
tune the (ir)reversibility of the overall reaction. Similar autocat-
alytic reactions can be found in biochemical reactions, such as the
phosphorylation activation of certain enzymes.”’

As a first example, we considered both reactions in (9) to be
purely irreversible (i.e., c2 = ¢4 = 0). For this case, there are two scal-
ing regimes shown in Fig. 6(a). When the propensities of the first
and second reaction steps are such that a; > a;, the unimolecu-
lar termination reaction dominates the kinetics and there is good
data collapse with { =0 [Figs. 6(b)-6(d)], and when a; > a,, the
bimolecular branching reaction dominates the kinetics and there
is good data collapse of (K)/N” as a function of xtN° with a sin-
gle dynamic exponent { = 1 [Figs. 6(c)-6(e)]. That is, experimental
conditions can exist where, despite the existence of two characteris-
tic timescales, one timescale can dominate the kinetics and lead to a
single dynamic scaling exponent.

1.5
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FIG. 6. Dynamic scaling for the stochastic chemical kinetics of A + B i 2B,

C2

B — C when both reactions are irreversible and the vessel is open to
reactant A. (a) Variation of the dynamic exponents as a function of c1/c, with
¢, = 1and N = 102-10°. (b) The unimolecular reaction dominates the mean activ-
ity as a function of ime when ¢; = 1 x 10=° and x = ¢, = 0.1 (green), 1.0 (black),
and 10.0 (blue). Darker colors indicate larger N. (c) The bimolecular reaction
dominates the mean activity as a function of time when ¢, = 1 and x = ¢; = 0.1
(green), 1.0 (black), and 10.0 (blue). Data for all system sizes and all rate constants
after scaling the mean activity (K(N, t))/N? and time xtN¢ with (d) y =1, { = 0
when ¢/c, is less than about 1075 and (e) y = 1, { = 1 when ¢4/c, is greater
than about 10=".
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FIG. 7. Dynamic scaling for the stochastic chemical kinetics of A +B = 2B,
B = C in a closed reaction vessel. (a) Scaled dynamic exponent { as a
function of ¢ /c; transitions from 0 — 1, corresponding to the transition from
a unimolecular- to a bimolecular-dominant reaction. Gray region marks where
a single ¢ is insufficient. Here, ¢4 = ¢, and c3 = ¢4 = 1. Data collapse for
(Q4 (N, t))/N? as a function of xtN¢ with (b) ¢ = 0.and (¢) { = 1. Data collapse for
(Qs(N,))/N as a function of «tN¢ with (d) ¢ = 0 and (e) { = 1. Scaling time by
x collapses data for all rate constants. Insets show raw data as a function
of t. (b) and (d) Unimolecular reaction events dominate the kinetics; colors
indicate the value of x = ¢3 = ¢4 = 0.1 (green), 1.0 (black), and 10.0 (blue),
¢1=cp =1x107°. (c) and (e) Bimolecular reaction events dominate the kinet-
ics; colors indicate the value of ¢y = ¢, = 0.1 (green), 1.0 (black), and 10.0
(blue), and ¢3 = ¢4 = 0.1. In all panels, N = 102-10°, with darker colors indicating
larger N.

Between these two regimes, the mean thermodynamic observ-
ables do not collapse using a single dynamic scaling exponent, and
s0, they do not satisfy the scaling ansatz [marked gray in Fig. 6(a)].
This regime marks a collision of two classes, here, one with { = 0 and
another with { = 1. The extent of this region depends on the range
of N; the difference between the largest and smallest N is directly
proportional to the range of rate constant ratios over which two
dynamic scaling exponents are necessary. The largest N determines
the ¢1/c; value up to which unimolecular reaction will dominate, and
the smallest N will determine the ¢;/c; value above which bimolec-
ular reactions dominate. For example, Fig. 6(a) shows that for the
ratio of rate constants ¢;/c; = 107%, when the range of N is 10°~10°,
only a single exponent, { =0, is sufficient. Here, a, > a; for all
N we consider. When N =10?-10’, data collapse is not possi-
ble using a single exponent since for N = 10°, a; > a, and the
bimolecular reaction dominates the kinetics.

The dominant molecularity can vary as the reaction progress,
which affect the scaling we consider here. For example, in the case
where both steps in reaction (9) are irreversible and the second step
is rate limiting, then the bimolecular reaction dominates the scal-
ing behavior at early times and the unimolecular reaction dominates
at later times. As the reaction progress, there is then a transition
between the molecularity defining the dynamic exponent { in the
scaling ansatz. Recognizing this situation, we can identify regions
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where the rate parameters lead to a single dominant molecularity.
By carefully selecting the rate parameters, we can find regimes where
one reaction step determines the scaling behavior for all times.

When both reactions are reversible, conditions also exist where
reactions of a particular molecularity dominate the kinetics and the
relaxation to equilibrium. For the reversible set of reactions [reaction
(9)], the unimolecular reaction dominates the scaling when ¢;/c; is
less than about 107°. The unimolecular and bimolecular reactions
compete, however, up to ¢1/c; of around 0.1, where there is a regime
in which the bimolecular reaction dominates the scaling. The extent
of the region where both reactions must be accounted for in the scal-
ing is the same as that of the irreversible case, again varying with
the range of system sizes. We found similar behavior for Q, and
Q, (Fig. 7). Considering the form of « used for A+B = 2B, one
might expect that ¥ would be a combination of all four rate con-
stants. However, from our analysis we found that x = ¢; = ¢; when
the bimolecular reaction dominates and « = ¢3 = ¢4 when the uni-
molecular reaction dominates. For this set of reactions, the reaction
step with the highest propensity can determine the characteristic
rate k.

At equilibrium, however, a single dynamic exponent is suf-
ficient for data collapse despite the different molecularities. For
instance, the set of scaling exponent for A+B = C at equilib-
rium is (y,6,{) = (1,1,0), Fig. 8. At equilibrium, the propensity
of forward and reverse reaction are the same and, as a result, the
bimolecular reaction scales as a unimolecular reaction. Our dynamic
scaling ansatz is then also valid for mixed molecular reactions at
equilibrium.

B. Autocatalytic reaction cycle

We now consider a set of reactions that are the simplest
example of a “reaction cycle” leading to autocatalysis,

A+B3C+D
C+D3A+B
c3 2B
2B5 C.

-1
10° 10 q

% :
/ / = 104

1077

hx

10°

10-10 10-5 100 1077 1o~ 10~
t Kt

FIG. 8. Dynamic scaling function of a mixed molecularity reaction, A+ B = C,

at equilibrium. (a) The mean activity hx (N, t) as a function of time (b) collapses

onto a single curve when scaled by system size hx (N, t) /N? with y = 1 and time

t/t; = «tNS with { = 0. Here, ¢, = ¢; = 1/10 (green), 1 (black), and 10 (blue),

Na = Ng = 10'-10%, and N¢ = N3.
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with darker colors indicating larger N.
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The reaction cycle consists of both unimolecular and bimolecular
reactions. Bimolecular reactions dominate the kinetics when the
reaction propensities satisfy: as << a1 + az + da4. To make our results
more transparent, we consider the rate constants of all reactions to
be identical, ¢; = ¢; = ¢3 = ¢4, so that a1, a2, as > as. Under this con-
dition, we see data collapse with { = 1 for K and Q,.. We also found
that x = ¢ [supplementary material, Figs. 4(d) and 4(e)].

The scaling for Q; is different than that of the activity. The
data do not collapse with { = 1 [supplementary material, Fig. 4(f)].
This distinct behavior is a consequence of both forward and back-
ward propensities being involved in the evolution of Q,. As a result,
the universality classes for Q; “collide” despite the clear domi-
nance of the bimolecular reaction in the kinetics. This result can
be explained in the following way: When the first (or second) reac-
tion occurs, then the contribution to Q, will be ~In(NaNg/NcNp)
[or Q, ~In(NcNp/NaNg)]. However, when the fourth reaction
occurs, then Q, » In(N(N — 1)/N¢). The smaller denominator in
the argument of the logarithm will cause a larger contribution to
Q, compared to cases where all reactions are bimolecular. Hence,
(=1 does not give data collapse, unless we choose particular
rate constants. For example, choosing rate constants such that
€1 = ¢ > ¢3 = ¢4, the data will collapse with { = 1 for Q,.

These results demonstrate that for reaction systems with differ-
ent molecularities, the scaling of Q, is more sensitive to the reaction
mechanism than the scaling of K or Q, . In order to get Q, to collapse
in systems with reactions of differing molecularity, one molecular-
ity must dominate over others. That is, the rate constants must be
such that the reactions of one molecularity exceed those of any other
molecularity.

C. Random chemical reaction networks

As a final test of the ansatz, we consider the dynamics of many
species reaction in a dilute, well-stirred mixture, where species are
“wired” together into a chemical reaction network by randomly
chosen pairs of species.”” The network consists of 25 species, inter-
convertible through one of the 35 reversible reactions. Most of the

10?
KtN

reactions in the network are unimolecular (24 out of 35) and the
rest are bimolecular. Self-replication is excluded from this reaction
mechanism, i.e., no species appear more than once as a reactant or
product. We take all rate constants to be the same and break detailed
balance by setting the initial numbers of molecules to be different
for each species. The initial population of each of 25 species was
randomly chosen from the set [1,2,3,...,25] x N/325.

For this reaction network, we get complete data collapse with
(9,6,0) = (1,1,1) for K, Q,, and Q,, Fig. 9. Although the probabil-
ity of bimolecular reactions is 0.3, it still dominates the kinetics over
the unimolecular reactions and determines the universality class.
Here, a single dynamic exponent is sufficient to get the data col-
lapse even for Q, because the molecularity of the forward and the
reverse reaction are the same. We can conclude that for a com-
plicated reaction network involving unimolecular, bimolecular, and
termolecular reactions, if there is a clear dominance of a particular
molecularity at all times, the universality class will be determined by
the molecularity of those dominant reactions.

V. CONCLUSIONS

While universal behaviors have been extensively explored for
physical phenomena, here we have shown that universal dynamical
scaling extends to the thermodynamic observables of chemical phe-
nomena at and away from equilibrium. These observables satisfy a
dynamic scaling ansatz that we have tested for broad classes of chem-
istry from simple, elementary reactions to coupled autocatalytic
reactions. Dynamical universality classes are typically determined
by the dimensionality, conservation laws, symmetry of the order
parameter, range of the interactions, and the coupling of the order
parameter to conserved quantities.” Here, we find classes of well-
mixed chemical reactions do not depend on the identities of the
chemical species or, in some cases, the temperature fixed by an
external bath. Instead, they are determined by the reaction ves-
sel dimensionality, whether the vessel is open or closed, observable
extensivity, and reaction molecularity. The ansatz we use to define
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these classes include scaling laws and relations, some unknown and
some known (Family-Vicsek).

The entropy flow and production have scaling exponents that
are different at and away from equilibrium. This difference is the
result of correlations between the forward and reverse branching
observables as mixtures approach equilibrium. Coupling reactions
capable of chemical feedback, creating collections of reactions with
multiple molecularities, leads to a richer collection of scaling expo-
nents. In these cases, the variance in thermodynamic observables can
transition between these classes with the variation of experimental
parameters. We find that despite this behavior, there are conditions
where a given molecularity reaction dominates, leading to a single
scaling law and universality class. Taking a broad view, while the cat-
alog of chemical reaction mechanisms is incredibly diverse, it does
contain universal signatures in their kinetics both at and away from
equilibrium.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional data.
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APPENDIX: CHARACTERISTIC RATE, x, FOR DETAILED
BALANCED SYSTEMS

For single, reversible reaction systems that conserve the total
number of molecules, we determined x using the condition of
detailed balance. As an example, take the reversible reaction,

5
A =B

o

The reaction is detail balanced when the forward and reverse
propensities are equal: ¢/ X! = ¢,X". When the reaction volume
is closed, the total number of molecules is conserved N = X + X5.
Combined with the detailed balance condition this constraint leads
to the equilibrium propensities

afeq cre al
Lo_exs LT xS Al
N foa ¢ +cr B N (A1)

The total propensity per molecule is N_l(afeq +aft) = 7' = kN¢
and gives

2
K= ﬂ (Az)
Cf+Cy

Similarly, we found that for bimolecular autocatalytic reaction

A+ B==2B,
L3

acke
k= __ 47T (A3)
(¢f +¢r)?

Through this approach, « is determined for reactions where detailed
balance is satisfied at equilibrium and where we can express the
number of each chemical species in terms of N; even for bimolecular
reactions A + B = C, this approach does not yield «.
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