FINITE PERMUTATION RESOLUTIONS
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ABSTRACT. We prove that every finite dimensional representation of a
finite group over a field of characteristic p admits a finite resolution by
p-permutation modules. The proof involves a reformulation in terms of
derived categories.
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1. INTRODUCTION

Throughout this paper, G is a finite group and k is a field of characteris-
tic p > 0, typically dividing the order of G. All modules are assumed finitely
generated.

Permutation modules are those obtained by linearizing finite G-sets, see
Recollection 1.9. Letting the group vary, the class of permutation mod-
ules is also the smallest one that contains free modules and that is closed
under induction and restriction along arbitrary homomorphisms. Any per-
mutation kG-module is isomorphic to k(G/Hy) & --- @& k(G/H,) for some
subgroups Hy, ..., H, of G, of which there are of course finitely many. Direct
summands of permutation kG-modules are called p-permutation or trivial
source modules. Despite their apparent simplicity, permutation modules play
an important role in many areas of group representation theory, as recalled
for instance in the introduction of Benson-Carlson [BC21]. Our own interest
stems from the theory of Artin motives, see Voevodsky [Voe00, § 3.4].
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Recall that projective resolutions of non-projective kG-modules are nec-
essarily unbounded. Our Theorem 5.13 shows that p-permutation modules
are significantly more flexible than projectives, in that they allow finite res-
olutions of all modules.

1.1. Theorem. Every kG-module M admits a finite resolution by p-permuta-
tion kG-modules. In particular, for G a p-group, every module admits a
finite resolution by permutation modules.

It is surprising that this result could be new, in such a mature part
of mathematics. A possible explanation is that it runs contrary to intu-
ition. Bouc-Stancu-Webb [BSW17] show that if bounded p-permutation
resolutions exist and moreover remain acyclic on H-fixed points for all sub-
groups H of G then the p-Sylow subgroups of G are very special: either
cyclic or dihedral. In broader terms, modular representation theory is well-
known to be wild for most groups, whereas permutation modules, with their
finitely many isomorphism types of indecomposables, may not seem ‘wild
enough’ to control all kG-modules. In any case, conventional wisdom was
that such a result would probably not hold for all finite groups.

Things changed with the partial result of [BB20], a weaker form of The-
orem 1.1 ‘up to direct summands’, resolving M @ N instead of M for some
ad hoc complement N. No control on N was given in [BB20]. Our first
proof of Theorem 1.1 followed [BB20] and was based on a reduction to el-
ementary abelian groups via Carlson [Car00]; the latter in turn relies on
Serre’s theorem on products of Bockstein [Ser65]. We present here a simpler
proof, which is more self-contained. We do not need to reduce to elementary
abelian groups and do not invoke [Ser65] at all.

Theorem 1.1 is an existence result, not a recipe to construct p-permutation
resolutions. The proof does give a method to find them but it is convoluted.
We leave the problem of finding effective constructions to interested readers.

The overarching theme we explore in this paper and the sequel [BG20)]
is how representations are controlled by permutation ones, even with more
general coefficients. So let R be a commutative noetherian ring. Consider the
inclusion of the additive category of permutation RG-modules (Notation 1.8)

perm(G; R) C mod(RG)

inside the abelian category of finitely generated RG-modules. This inclusion
induces a canonical functor Y: Ky, (perm(G; R)) — Dy(RG) = Dy, (mod(RG))
from the bounded homotopy category of the former to the bounded de-
rived category of the latter. The kernel of Y is the thick subcategory
Kp ac(perm(G; R)) of acyclic complexes of permutation modules, studied
in [BC21]. The functor YT descends to the corresponding Verdier quotient
and, after idempotent-completion (—)%, yields

- [ Kyp(perm(G; R)) |
(1.2) T: (Khac(perm(G; R))) — Dp(RG).
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This canonical functor Y is our central object of study — hence the eye-
catching notation Y. The only formal property that T inherits by construc-
tion is being conservative. So the first surprise is:

1.3. Theorem. The canonical functor T of (1.2) is always fully faithful.

See Theorem 4.3. This result employs a notion of ‘good’ (p-)permutation
resolution of complexes, first introduced for modules in [BB20]. They are
resolutions admitting sufficiently many projectives in low homological de-
grees. We discuss this more precisely in Section 2. An important property
of ‘good’ resolutions, as opposed to naive resolutions, is that the class of
complexes which admit such ‘good’ resolutions forms a triangulated subcat-
egory of Dy(RG), denoted here

9(G; R).

A key fact is that the trivial RG-module R belongs to this subcategory
Q(G; R) when G is a p-group. This occupies Section 3. For odd primes p we
describe the required ‘good’ resolution of R as an explicit Koszul complex.
However, for p = 2 (and when 2 # 0 in R), the terms in the Koszul complex
need not be actual permutation modules because signs come in the way. We
solve that issue via an induction on the order of the 2-group and a few tricks
of technical nature.

In Section 4, we complete the proof of Theorem 1.3 and identify the
essential image of Y as the idempotent-completion of the aforementioned
subcategory Q(G; R) of Dp(RG). This is Theorem 4.3, which holds for
any R, not just for fields.

Of course, (1.2) cannot be essentially surjective in general, even for G
trivial, unless R is regular. Indeed, for G = 1 the functor Y boils down to
the canonical inclusion Dperf(R) < Dy(R). Regularity of R turns out to
be the only obstruction. We recover in this way an unpublished result of
Rouquier [BV08, §2.4] (1):

1.4. Theorem (Scholium 4.6). Let R be a regular noetherian commutative
ring. The canonical functor Y of (1.2) is a triangulated equivalence

( Kp(perm(G; R))
Kp ac(perm(G; R)

)>h . Dy(RG).

This theorem will also be an easy consequence of the companion pa-
per [BG20], where we construct on Dy(RG) an invariant that completely
characterizes the complexes in the essential image of Y, for possibly singu-
lar rings R.

We now come full circle and return to coefficients R = k in a field k& of
characteristic p > 0. Write p-perm(G; k) := perm(G; k) for the category of
p-permutation modules. In that situation, we have:

1 See also https://www.math.ucla.edu/~rouquier/papers/perm.pdf
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1.5. Theorem (Theorem 5.13). The canonical functor is an equivalence
Kp(p-perm(G;k))  ~
Kb, ac(p-perm(G; k))

Note that this is sharper than Theorem 1.4 for we do not idempotent-
complete the quotient. (The confused reader might want to consult Re-
mark 1.7.) The crux of the matter is the following. Theorem 1.4 tells us
that our category Q(G; k) of complexes admitting ‘good’ p-permutation res-
olutions is a dense triangulated subcategory of the derived category, i.e.
Q(G; k) = Dy(kG). Theorem 1.5 relies on the fact that we already have
Q(G; k) = Dp(kG). We use Thomason’s classification of dense subcategories
in triangulated categories to reduce the proof of Q(G;k) = Dy (kG) to an
equality of Grothendieck groups: Ko(Q(G;k)) = Go(kG). This is accom-
plished in Section 5, using Brauer’s Induction Theorem in the modular case,
and it completes the proof of Theorem 1.5. Finally, for a kG-module M,
the information that M belongs to Q(G; k) says more than just M being the
homology in degree zero of a complex of p-permutation modules. It does
say that M has a p-permutation resolution. This fact is another advan-
tage of ‘good’ resolutions (Corollary 2.5) and we obtain Theorem 1.1 as a
consequence.

> Db(k‘G)

Let us record an easy application to tensor-triangular geometry:

1.6. Corollary. The homogeneous spectrum Spec™(H*(G, k)) is an open sub-
space of the tt-spectrum of the tensor-triangulated category Ky (perm(G;k)).

We shall return to the analysis of Spc(Ky(perm(G; k))) and of the closed
complement of Spec?(H*(G, k)) in forthcoming work on Artin motives.

Acknowledgements. We thank Robert Boltje and Serge Bouc for removing
our assumption that the field k£ should be ‘sufficiently large’ in Proposi-
tion 5.9. We thank Raphaél Rouquier for making his letter to Beilinson and
Vologodsky available online, in response to an earlier version of this work.

Notation and convention.

We write ~ for isomorphisms and reserve 22 for canonical isomorphisms.

A commutative noetherian ring R is regular if it is locally of finite pro-
jective dimension. Most results reduce to the case where R is connected.

For a left-noetherian ring A, not necessarily commutative, we write mod(A)
for the category of finitely generated left A-modules.

We use homological notation for complexes -+ — M, — M, 1 — ---.
We write Chy, for categories of bounded complexes, Ky, for homotopy cat-
egories of bounded complexes, and Dy, for bounded derived categories. We
abbreviate Dy(A) for Dy(mod(A)). When we speak of a module M as a
complex, we mean it concentrated in degree zero.

All triangulated subcategories are implicitly assumed to be replete. We
abbreviate ‘thick’ for ‘triangulated and thick’ (i.e. closed under direct sum-
mands). We write thick(A) for the smallest thick subcategory containing A.
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We denote by A? the idempotent-completion (Karoubi envelope) of an
additive category A, or its obvious realization in an ambient idempotent-
complete category. See details in [BS01], including Ky, (A?) = Ky (A)°8.

1.7. Remark. The reader should distinguish the following three categories

Ky (perm(G; R)) c Ky, (perm(G; R)?) (Kb(perm(G;R)) )h
Kp ac(perm(G; R)) — Kp ac(perm(G; R)?) — \ Kpac(perm(G; R)) )

The one on the right is the idempotent-completion of the other two. More-
over, if R = k is a field then Theorem 1.5 implies that the middle one is
already idempotent-complete so that the middle one and the one on the
right coincide.

This subtlety is an important point to appreciate the present work. In gen-
eral, the Verdier quotient of an idempotent-complete category does not nec-
essarily remain idempotent-complete. In algebraic geometry, it was Thoma-
son’s major insight in [T'T90] that the only difference between the derived
category Dperf(U) of an open subscheme U C X and the obvious Verdier
quotient of Dpers(X) was precisely an idempotent-completion. We return to
Thomason’s ideas in Section 5.

We already used the following notation. We spell it out for clarity.

1.8. Notation. For a (finite) left G-set A we write R(A) for the free R-
module with G-action extended R-linearly from its basis A. An RG-module
is called a permutation module if it is isomorphic to R(A) for some G-set A.
We denote by perm(G; R) C mod(RG) the subcategory of permutation RG-
modules. We use the phrase ‘P is f-permutation’ to say that P belongs
to perm(G; R)!, that is, there exists Q such that P @ Q is permutation. This
is meant to evoke the following:

1.9. Recollection. If R = k is a field of characteristic p > 0, our g-permutation
modules are usually called p-permutation modules. They are characterized as
those modules which restrict to permutation modules on p-Sylow subgroups,
i.e. they are trivial source modules. (In particular, if G is a p-group then
perm(G; k)! = perm(G; k); see [Gre59, Theorem 8].) This characterization
is specific to fields of characteristic p whereas the idempotent-completion
perm(G; R) makes sense for any ring R.

1.10. Remark. We tensor RG-modules over R and let G act diagonally. Note
that the tensor of permutation modules remains permutation. Recall also
that if P is free and M is such that Res{’ M is R-free then P ® M is free,
by Frobenius reciprocity.

2. BOUNDED PERMUTATION RESOLUTIONS

In this section, all complexes are bounded except if explicitly stated other-
wise. As in [BB20] we begin with a stronger notion of resolution.
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2.1. Definition. Let X be a bounded complex of RG-modules and m € Z.
An m-free permutation resolution of X is a quasi-isomorphism of complexes
s: P — X where P is a bounded complex of permutation RG-modules which
is m-free, meaning that P, is free for all i« < m. Clearly m’-free implies m-free
when m’ > m.

Similarly (Recollection 1.9) an m-projective fj-permutation resolution is a
quasi-isomorphism P — X where all P; are f-permutation, and projective
for i < m.

2.2. Remark. The statements of Lemma 2.4, Corollary 2.5 and Proposi-
tion 2.7 hold with the words ‘permutation’ replaced by ‘f-permutation’ and
with ‘free’ replaced by ‘projective’. We leave most such proofs to the reader.

2.3. Remark. The word ‘resolution’ in Definition 2.1 can be misleading for
the complex P is allowed to extend further to the right than X itself, even
for X = M|[0], a single RG-module in degree zero. This can be corrected,
when m is large enough:

2.4. Lemma. Let m > n be such that the complex X is acyclic strictly below
degree n and such that X admits an m-free permutation resolution. Then
X admits an m-free resolution P — X where moreover P; = 0 for all i < n.

(See Remark 2.2.)

Proof. We can assume n = 0. Som > 0. Let s: ) — X be an m-free per-
mutation (resp. m-projective f-permutation) resolution. Since s is a quasi-
isomorphism, H;(Q) = 0 for ¢ < 0. Since Q; is projective for i < 0, the com-
plex @ ‘splits’ in negative degrees. So we have a decomposition Q = Q' ® Q"
where the subcomplex Q' = -+ — Q1 — Q( — 0 — - -+ is concentrated in
non-negative degrees whereas Q" = -+ = 0 — Qf — Q-1 — --- lives in
non-positive degrees and is acyclic, i.e. the composite Q' — @ — X remains
a quasi-isomorphism. At this stage @ is only projective but not necessarily
free. (In the case of m-projective g-permutation resolutions, the proof stops
here with P = @Q’.) Since Q" is split exact, we see that Q) is stably free:
QO D (Bico,evenQi) =~ Di<0,0ddQi- Since Q@ Q) = Qo is free, we see that Q)
is also stably free, namely Qf, @ L is free for the free L = @0 04a@i- Adding
to @' the complex 0 — L L L = 0 with L in degrees 1 and 0 (with zero
map to X), we obtain a new complex P and a quasi-isomorphism P — X
where now Py = Q( @ L is free and P, = Q; @ L is permutation (and free
if Q1 was) and P; = Q; for i > 1 and P, =0 for ¢ < 0. This P — X is the
desired resolution. O

2.5. Corollary. Let M € mod(RG) be such that, when viewed as a complez,
M admits a 0-free permutation resolution in the sense of Definition 2.1.

Then M admits a finite resolution by finitely generated permutation modules.
(See Remark 2.2.) O
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2.6. Lemma. Let P, X,Y be bounded complexes, let f: P — X and s: Y —
X be morphisms in Chy(RG) such that s is a quasi-isomorphism:

X
Suppose that m € Z is such that X; = 0 and Y; = 0 for i > m and P;

is projective for all i < m. Then there exists f: P — Y such that sf is
homotopic to f.

Proof. Let Z be an acyclic complex such that Z; = 0 for ¢ > m + 1. Then
any map P — Z is null-homotopic, as one can build a homotopy using the
usual induction argument, that only requires P; projective for i < m to lift
against the epimorphism Z;4; —im(Z;+1 — Z;). Now Z := cone(s) is such

a complex. So the composite P Lx o cone(s) is zero in Ky(mod(RG)).
Hence f factors as claimed. ([

2.7. Proposition. Let s: Y — X be a quasi-isomorphism. Then X admits
m-free permutation resolutions for all m > 0 if and only if Y does. (See
Remark 2.2.)

Proof. From Y to X is trivial. So suppose that X has the property and let
us show it for Y. Let m > 0. Increasing m if necessary, we can assume that
X, =Y, =0 for all i > m. Let then f: P — X be an m-free permutation
resolution of X. By Lemma 2.6, there exists f: P — Y such that sf ~ f.
By 2-out-of-3, f : P — Y is a quasi-isomorphism, hence yields an m-free
permutation resolution of Y. O

So far we dealt with complexes on the nose, in Chy(RG). The above
proposition allows us to pass to the derived category, if we make sure to
require the existence of m-free permutation resolutions for all m > 0.

2.8. Definition. Using the special permutation resolutions of Definition 2.1,
we have two well-defined replete subcategories of the derived category

resolutions, for all m > 0

P(G;R) = {X € Dy(RG)

X admits m-free permutation }
and
0(G: R) = { X € Dy(RG) X admits m—Projective g-permutation
resolutions, for all m >0

2.9. Proposition. The two subcategories P(G; R) C Q(G; R) above are tri-
angulated subcategories of Dy, (RG).

Proof. We prove it for P(G; R). The proof for Q(G; R) is similar. It suffices
to show that if f: X — Y is a morphism in Dy (RG) with X,Y € P(G; R)
then cone(f) € P(G;R). The morphism f is represented by a fraction
X&EZ% Yy Chy,(RG) with s a quasi-isomorphism. By Proposition 2.7,
we have Z € P(G; R). Since cone(f) ~ cone(g) in Dy(RG), we can assume
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that f: X — Y is a plain morphism of complexes. Let now n > 0. Since
Y belongs to P(G; R), choose an n-free permutation resolution ¢: @ — Y.
Choose m > n such that @; = Y; = 0 for ¢ > m, using that Q and Y
are bounded. Since X € P(G; R), choose an m-free permutation resolution
s: P — X. We thus have the (plain) morphisms f, s, ¢:

P > Q
f
X —Y

By Lemma 2.6, there exists h: P — ) such that th ~ fs. Since s and ¢t
are quasi-isomorphisms, so is the induced map cone(h) — cone(f). Now,
the mapping cone of h is a complex of permutation modules that is free
in degrees < n since P and @ are. As n > 0 was arbitrary, we proved
cone(f) € P(G; R) as claimed. O

2.10. Remark. Let G be a p-group and R = k a field of characteristic p. Then
Dy, (kG) is generated as a triangulated subcategory by k. So, by Proposi-
tion 2.9, the triangulated subcategory P(G; k) = Q(G; k) is equal to Dy, (kG)
if and only if it contains k. In fact, we will prove in Theorem 5.13 that
Q(G; k) = Dp(kG) holds, for all finite groups.

2.11. Remark. It follows easily from Proposition 2.9 that an RG-module M
belongs to Q(G; R) if and only if all its Heller loops (syzygies in a projective
resolution) admit finite g-permutation resolutions. This can be sharpened
as follows.

2.12. Proposition. Let M be an RG-module such that M belongs to Q(G; R).

Let -+ > P, = -+ =5 Pp 5 M — 0 be a possibly unbounded resolu-
tion of M by finitely generated projective RG-modules, viewed as a quasi-
isomorphism P — M. Then there exists a sequence of complexes {Q(n)}nen
in Ch>o(RG) and a commutative diagram of quasi-isomorphisms

M=QO0)+—Q()+—  «+—Qn)+—Qn+1)+—-:--

such that for each n > 1:
(1) The complex Q(n) is bounded and consists of i-permutation RG-modules.
(2) The map Py — Q(n)q is the identity for all d < n.

In particular, the sequence -+ — Q(n) — -+ — Q(0) eventually stabilizes
in each degree and P is the limit of that sequence in Ch(RG).

Proof. Suppose we have the factorization via Q(n) for some n > 0 satisfy-
ing (1) and (2) if n > 1. Since Q(n) is bounded, there exists m > n such
that the quasi-isomorphism P — Q(n) factors as P — P’ — Q(n) via the
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canonical m-truncation P’ of P

|

! l + H

P = 0 N P, Pog — -

where N = im(P,,+1 — P,). By Proposition 2.9, we know that N still
belongs to Q(G; R) and in particular it admits a finite j-permutation reso-
lution. Let Q(n + 1) be the complex obtained by replacing N in P’ by this
g-permutation resolution, via splicing. So we have the four (plain) quasi-
isomorphisms

Po—__:

l\ T~y

Q(n)+—— P +—Q(n+1).

There exists a dashed arrow P — Q(n + 1) making the diagram commute
because P is a complex of projectives. By construction, Q(n+1) satisfies (1),
as well as (2) since m > n and since the maps Q(n+1)g — Pj < P; are the
identity for all d < m. The map Q(n+1) — Q(n) is the above composite. [

2.13. Recollection. A triangulated subcategory A C T is dense if every ob-
ject X of T is a direct summand of an object X @Y of A. This amounts to
X®YX € Asince X XX =cone ((§9): X®Y - X @Y). Hence the
thick closure of A is

thick(4) = { X € T|IY €Tst. XY eA} = {XeT|XaTX A}
When T is idempotent-complete (like Dy,(RG) here) we have thick(A) = Al

2.14. Proposition. The triangulated subcategory P(G;R) C Q(G;R) is
dense.

Proof. Tt suffices to show that for every X € Q(G; R), we have X @ XX €
P(G; R). By Definition 2.1, it suffices to show that if P is an m-projective
complex of f-permutation RG-modules for some m > 0 then P & X P is
homotopy equivalent to an m-free complex P of permutation RG-modules.
For each i, since P, is f-permutation (resp. projective for i < m), there exists
Q; such that P;®Q); is permutation (resp. free for i < m). Adding to PGXP

short complexes ---0 — Q) RN Q; — 0---, with Q; in degrees ¢ + 1 and 1,

yields the wanted m-free complex P of permutation RG-modules. U
2.15. Remark. The thick closure of the subcategory P(G; R) of Dy, (RG)
P(G; R)* = Q(G; R)? = thick(P(G; R)) = thick(Q(G; R))

is a key player in this paper, as it will turn out (Theorem 4.3) to be the
essential image of the functor T in (1.2). We also want to decide when
P(G; R)? or P(G; R) or Q(G; R) coincide with Dy, (RG); see Sections 4 and 5.
More ambitiously, we want an invariant on Dy,(RG) that detects P(G; R)".
This is the subject of [BG20).
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2.16. Example. For G trivial, P(1; R)! = Dperf(R), the perfect complexes.
Let us start with generalities about the Mackey 2-functor P(?; R).

2.17. Recollection. Recall that for a subgroup H < G, induction is a two-
sided adjoint to restriction. In particular, these functors preserve injectives
and projectives and yield well-defined functors on derived categories without
need to derive them on either side. Recall also that the composite (for Y a
module or a complex over H)

¢ r
(2.18) Y~ ResG IndG (V) —<— Y
_ " J
of (usual) unit for the Ind 4 Res adjunction and (usual) counit for the
Res - Ind adjunction is the identity. The other composite (for X over G)

T 2
(2.19) X 5 Ind% Res§ (X) —— X

! [G:H]- J
of (usual) Res +Ind unit and Ind - Res counit is multiplication by [G : H].

2.20. Proposition. Let H < G be a subgroup. Let X € Dy(RG) and Y €

Dy(RH).

(a) If X belongs to P(G; R)? then Res$ X belongs to P(H; R).

(b) Y belongs to P(H; R)! if and only if Ind$ Y belongs to P(G; R)".

(¢) IfRes X belongs to P(H; R)" and multiplication by [G : H] is invertible
on X (e.g. if [G: H] is invertible in R) then X belongs to P(G; R)".

Proof. Direct from Resg and Indg being exact and preserving permutation
modules and free modules, using (2.18) in the ‘if’ part of (b) and using (2.19)
in (c). O

2.21. Corollary. The following are equivalent for X € Dy(RG):

(i) The complex X belongs to P(G; R)".
(ii) Its restriction Res$ X belongs to P(H; R)? for every Sylow subgroup
H<G.

Proof. The implication (i)=-(ii) is immediate from Proposition 2.20 (a). For
the converse, choose a p-Sylow subgroup H), of G for each prime p dividing
the order of G. The integers {[{G : Hp] | p divides |G|} are coprime hence
there exist integers a, with > a,[G : Hp| = 1. It follows that the sum of

the modified composites (2.19)
x @, @y md§, Resf x 2
p divides |G|

X

is the identity. In particular, X is a direct summand of the sum of induced
complexes in the middle. The claim now follows from Proposition 2.20 (b)
and the fact that P(G; R)! is idempotent complete. O
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2.22. Definition. We say that a complex X € Dy(RG) is R-perfect if the
underlying complex Res{ (X) is perfect over R. This defines a thick subcat-
egory of Dy(RG)

Dppert(RG) := { X € Dp(RG) | Res{' (X) € Dpert(R) }.
2.23. Corollary. We have P(G; R)" C Dgpet(RG). If the order |G| is
invertible in R, then P(G; R)* = Dg_pert(RG).
Proof. Direct from Proposition 2.20 for H = 1 and from Example 2.16. [

In view of Corollary 2.23, it is interesting to see what happens when we
localize R.

2.24. Lemma. Let r € R and set R' = R[1/r]. The canonical functor
R ®pr —: Chp(perm(G; R)) — Chy(perm(G; R')) is essentially surjective.

Proof. Pick P’ € Chy(perm(G; R’)). We can assume P; = 0 unless 0 < i <
n. Each P/ = R/(A;) for some finite G-set A; clearly comes from R(A;)
over R. For every integer N > 1 consider the following construction (note
the changing powers of r, vertically):

On—
P(N) := 0, Oy O 2 Yo g
ls(N):: J/TnN lr('n—l)N lrw J,l
/ f— “ e / I ) / / )
P = 0— P, T%) Py o Py P Y F, 0

where 9; := rV9!. This morphism is an isomorphism s(N): P(N) = P’
in Chy,(perm(G; R')). Increasing N >> 1, one easily arranges that the maps 9;
in P(N) are defined over R, that they are RG-linear and finally that they
form a complex, for all these properties only involve finitely many denomi-
nators. Then P(N) provides a source of P'. O

2.25. Proposition. Let r € R and set R = R[1/r]. Let X € Dy(RG) be
such that R’ ®r X € Dy(R'G) belongs to P(G; R'). Then there exists an
exact triangle P — X — T — X P in Dy(RG) where P € Chy,(perm(G; R))
and T € D{*"(RQG) is r-torsion, meaning that r"-idy = 0 in Dy,(RG) for
n > 1 large enough.

Proof. By Lemma 2.24, there exists P € Chy(perm(G; R)) and an isomor-
phism R’ ®p P = R'®g X in Dy,(R'G). By the usual localization sequence

DItos(RG) ) Dy (RG) — 2R Dy(R'G)

(see Keller [Kel99, Lemma 1.15]), we have D, (R'G) = Dy (RG)[1/r]. So the

isomorphism R' ©p P R ®g X is given by a fraction P ¢~ P I X
in Dy,(RG) for some n > 1 and some f: P — X such that T := cone(f)
belongs to D}, *"(RG). O
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2.26. Corollary. Let G be a p-group for some prime p and let X € Dy(RGQ)
be R-perfect (Definition 2.22). Then there exists an exact triangle in Dy (RG)

P XXX —-T—XP
where P belongs to Chy,(perm(G; R)) and T is p-torsion in Dy(RG).

Proof. We apply Proposition 2.25 for r = p, so R’ = R[1/p]. Tt is easy to
check that X’ := R'®@p X € Dy,(R'G) remains R'-perfect. By Corollary 2.23,
we have X’ € P(G;R')? hence X' @ ¥X' € P(G;R'). We conclude by
Proposition 2.25. (]

2.27. Remark. If X is p-torsion, say p™-idx = 0, the octahedron axiom gives
X € thick(X @ £X) = thick(cone(X £ X)) C thick(cone(X & X)).
3. PERMUTATION RESOLUTIONS OF THE TRIVIAL, MODULE

The goal of this section is to prove:

3.1. Theorem. Let R be a commutative ring and G be a p-group for some
prime p. Then there exists a bounded acyclic complex of permutation RG-
modules

(3.2) C,=--0-C,—>Ch1—--—=C1—=>Cop—0---
such that Co = R (with trivial G-action) and Cy is a free RG-module.

We use tensor-induction; see for instance [Ben98, §1.3.15 and I1.4.1].

3.3. Recollection. Let H <1 G be a normal subgroup of index n. Choose
J1,---,9n € G a complete set of representatives of G/H. Using the bijection
{1,...,n} S G/H, j ~ [g;], the left G-action on G/H yields a group
homomorphism o: G — S), to the symmetric group on n elements. Consider
the action of S,, on H™ permuting the factors and the associated semi-direct
product S,, X H"™. Define an injective group homomorphism

i:G— S, x H"

by mapping g € G to (0g,h1,...,hy) Where g - gj = gisq)(j) - hy for all j =
1,...,n.

We write ¢* for the restriction of (S, x H™)-sets or R(S,, X H™)-modules
along i. The tensor-induction of an RH-module N is the RG-module that
we denote

N®G/H — i*(N®n);
here N¥" = N ®g --- ®r N, with n = [G : H] factors, is acted upon
by S, X H™ via permutation of factors for S,, and factorwise action for H",
that is, (h1,...,hp) - (21 ® ... Q@ xy) = (M1 21) ® ... ® (hy zp).
3.4. Example. Consider the (S, x H")-set A =U7_;H on which S, acts by
permuting the summands and H™ acts via (h1, ..., hy) -z = h;-x if z belongs

to the j-th summand H of A. Although A is not free, one can check that i* A
is a free G-set. Linearizing, let N = R(A) = @' | RH with S,, permuting the
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summands and H"™ acting via (hy,...,hy) - (x1,...,2n) = (h1 21, .., hp Tp).
Again, N is not necessarily R(S,, x H™)-free but i* N is RG-free.

3.5. Recollection. One can perform the above construction in other symmet-
ric monoidal categories instead of mod(R), since we only need S, to act
on N®". Explicitly, it suffices to know what transpositions do on N®", and
this is the swap of factors given in the symmetric monoidal structure. We
can then do this for @ in Chy(R) for instance. This is straightforward but
makes signs appear.

So, with the above notation for H <t G of index n, if we take a bounded
complex C' € Chy(RH) of RH-modules then we write

C®G/H _ Z*(c@n)

where the action of S, on C®" involves signs, following the Koszul rule.
This C®G/H is a bounded complex of RG-modules, which in degree s is

B c or--@rC,

1+t rn=s

and whose G-action is restricted via 7: G — S,, x H™ from the ‘obvious’
action of S, x H™ as above. For instance, a transposition (k¢) will swap
the factors Cy, and C,, and leave the others unchanged (typically landing
in another term of the above direct sum), multiplied by a sign if both 7y

and ry are odd.
The above construction motivates the following definition.

3.6. Definition. An RG-module M is called sign-permutation if it admits a
sign-permutation basis, that is, an R-basis A such that G- A C AU (—A).

3.7. Ezample. Consider the case H = 1, so n = |G|. Then C®¢/! is C®"
where G acts by ‘permuting the indices’, with Koszul rule. This depends
on an ordering of the elements of G. Let us take a special case where

C=0—R LR 0) concentrated in degrees one and zero. Then direct
inspection shows that C®G/! is the Koszul complex Kos(G; R) associated
with the augmentation morphism € : RG — R considered as a morphism
of R-modules R” — R which is the identity on each summand. Explicitly,
Kos(G; R) is concentrated in degrees n, ..., 0, and in degree s is the exterior
power A%(RG) with action given by g - (v1 A~ Aws) = (gui) A=+ A (gvg).
Note that Kos(G; R)s has the standard R-basis given by Ay :={ g;; A+ A
9i, ‘ 1 <41 <o <y < n} in the chosen numbering ¢i,...,g, of the
elements of G. The action of S, x H" = S, and therefore of G (via 1)
essentially permutes this basis Ag, except that it introduces signs. The
differential Kos(G; R)s — Kos(G; R)s—1 sends a basis element g;, A--- A gi,

to the sum
S

Z(*l)j_lgh A-ee /\g;; A A gi,
j=1
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where the factor g;; is removed. We conclude that Kos(G; R) is an acyclic
complex of sign-permutation modules in the sense of Definition 3.6. Note
also that Kos(G; R)p = R and Kos(G; R); = RG.

The proof of Theorem 3.1 will differ depending on p being even or odd.

3.8. Lemma. Let p be an odd prime and G be a p-group. FEvery sign-
permutation RG-module is a permutation module.

Proof. If 1 = —1 in R there is nothing to prove. So assume 1 % —1. Let M
be an RG-module with sign-permutation basis A. Let m = dimg(M) = |A|,
so that M ~ R™ as R-modules. Embed the elementary abelian 2-group
(Co)™ — Gl (R) as {£1}™ diagonally and the symmetric group S,, <
Gl»(R) as permutation matrices and let I' = (C2)™ - S, < Gl (R) the
subgroup of matrices that have exactly one +1 entry in each row and each
column and all other entries zero. One shows easily that ' = S, x (Co)™
and in any case [I' : Sp,] = 2™. The basis A yields a group homomorphism
f: G — Gl,(R) that lands inside T' by hypothesis.

Now f(G) is a p-subgroup of I', hence is contained in a p-Sylow. Since
[ :S,,] = 2™ is prime to p, the image f(G) is I'-conjugate to a subgroup
of S,,. This means that, up to reordering and changing some signs in the
basis A, we can assume that G acts on A via the action of S, on R™, that
is, by permuting the basis. U

3.9. Lemma. Let G be a 2-group and H << G be a subgroup of index 2. Let
L = Inﬂg/H(ngn) be the one-dimensional sign representation Rgsg, of the
cyclic group G/H of order 2, on which G acts via G— G/H. Let M be an
RG-module with a sign-permutation basis A (Definition 3.6) and suppose
that A is permuted by H, that is, H- A C A without signs. Then there exists
a decomposition of M
M=M'®(LeoM")
as an RG-module, where M and M~ are permutation RG-modules.

Proof. Again we can assume 1 # —1 in R. Pick g € G~ H. Decompose A =
ATUA™ where AT ={a€cAlg-ac A}and A~ ={ac A|g-ac—-A}.
Both A' and A~ are H-subsets of A because of the assumption on the H-
action and because H is normal in G. Consider the R-submodules M and
N generated inside M by AT and by A~ respectively. It is easy to see that
MT is an RG-submodule. In fact, N = RA™ is also an RG-submodule,
because g2 € H givesus g- A~ C —A~. Hence M = M+ @& N as RG-module
and M+ = R(A™") is a permutation RG-module. The submodule N = RA~
is not permutation because g, and in fact any element of G\ H, acts on A~
by a permutation of A~ times —1. Therefore M~ := L ® N is permutation
and M =MTON=M"® (Lo M"). O

Proof of Theorem 3.1. The case of p odd is direct from the sign-permutation

resolution Kos(G;R) = (0 — R & R — 0)®C%/! of Example 3.7 combined
with Lemma 3.8.
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So suppose that p = 2 and proceed by induction on the order of the 2-
group G. By induction hypothesis, we can assume the result for any index-2
subgroup H <1 G. Let D be a bounded complex as in (3.2) but for H; so we
have Dy = R and Dy is RH-free and all D; are permutation RH-modules.
Consider now for m > 0:

Claim (A)p: There exists an acyclic complex C' of RG-modules concen-
trated in non-negative degrees such that:

(1) Cpis either Ror L = Infl§ /i (Rsgn) the sign representation of Lemma 3.9,
(2) Cy #0 is free,

(3) each Cj is sign-permutation, and

(4) each C; for j > m is permutation.

The claim (A)g is the theorem. We proceed by descending induction
on m. First, let C = D®E/H be the tensor-induced of the complex for H
as in Recollection 3.5. Note that here n = 2 and S, = Cy 2 G/H and we
have tacitly chosen representatives, say 1, g, of G/H = {[1], [¢9]}. Since C' is
a bounded complex, let m be big enough so that C; = 0 for j > m.

We will now establish the base of induction for this m. Condition (4) is
trivially true. And condition (1) is easy: Cyp = D§" = R®? = R and S,
acts trivially as everything comes from even degree (zero). For (2) and (3),
given permutation bases B; of D; over H, consider for every degree d the
following R-basis of Cy:

Ag = oglglgd Bj & Bd—j C Cy.

This set is preserved by the (diagonal) action of H. For the G-action, we
only need to check what g does and it acts via [g] € G/H = C as the swap
of factors with Koszul sign rule. It follows that A, is a sign-permutation
basis for Cy. When d = 1, the only possible j are 0 and 1 and then one of
j or d — j is even, so no sign appears. One can check, as in Example 3.4,
that i*(A1) is a free G-set, that is, C; = R(A1) is a free RG-module. This
establishes the base for induction for m > 0.

We will now prove the induction step (A)pm+1 = (A)y, with m > 0. We
can inflate from G/H the acyclic complex 0 -+ R — R(G/H) — Rsgn — 0
to obtain the following quasi-isomorphism s of complexes of RG-modules:

i’:z -~~0*>]f4>R(G/H)*>O---
: |
L= .0 0 L 0---

Note that C’ is a complex of permutation modules. Let C' be a complex as
in (A);+1 and consider the sign-permutation module C,, in degree m. By
Lemma 3.9, we know that C,, decomposes as Cy,, = C,;\ & (L ® C,,,), where
both C}, and C;, are permutation modules. (To be picky, in the border case
of m = 1 take Cf" = Cy and C] = 0, not some fantasy.) There exists a
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quasi-isomorphism ¢ as follows

c" = cor —— Cpgpo —— Cip \C;Z 0
| I S
o .= 0 L®Cn_1 Cm—l Cm_gi%‘-

whose cone is our acyclic complex C'. Observe how the degree m part is split
between the permutation part (top) and the part twisted by L (bottom).
But those two quasi-isomorphisms of bounded complexes of RG-modules s
and t only involve free R-modules, hence tensoring them yields a quasi-
isomorphism s ® t: C' ® C"” — L ® C". Since both C’ and C” are already
complexes of permutation modules, so is C' ® C”. Note that at the bottom,
L ® C" now admits a permutation module in degree m, namely the module
L®L®C, =C,. Let C" = cone(s ®t). Then this complex is acyclic,
consists of sign-permutation modules, and has permutation modules in de-
grees > m. It is clear that Cj°V = L ® Cj is still R or L and it is easy to see
that CT°V remains free by Frobenius (Remark 1.10). Thus C™V witnesses
the truth of (A),, and this completes the proof. O

We finish this section with some consequences of Theorem 3.1 and its
proof. Recall from Definition 2.8 the subcategories P(G; R) and Q(G; R)

3.10. Proposition. The following are equivalent:

(i) The trivial RG-module R belongs to P(G; R).

(ii) It admits a O-free permutation resolution (Lemma 2.4): There is a
resolution 0 — P, — --- = P —- Py — R — 0 by permutation
RG-modules with Py free.

Proof. (i)=-(ii) is Lemma 2.4. For (ii)=-(i), let s : P — R be a 0-free
permutation resolution and fix m > 1. We claim that s®™ : P®™ — RO™M =~
R is an (m — 1)-free permutation resolution. Indeed, since the modules are
all R-flat, s®™ is a quasi-isomorphism. Then P®™ remains a complex of
permutation modules. (See Remark 1.10.) And if £ < m — 1 then every
summand Py, ® -+ ® Py, of (P®™), with £ = {1 + - + £, is free since at
least one of the ¢; must satisfy ¢; < 0. O

3.11. Remark. A similar characterization of when R belongs to Q(G; R) holds
with a 0-projective j-permutation resolution in (ii), with the same proof.

3.12. Corollary. Let G be a p-group for some prime p. Then R € P(G; R).
Proof. The criterion of Proposition 3.10 (ii) is precisely Theorem 3.1. U

3.13. Corollary. Let G be an arbitrary finite group. Then we have R €
P(G; R)".

Proof. Reduce to Sylow subgroups by Corollary 2.21 and then use Corol-
lary 3.12. O
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3.14. Remark. If G is abelian, then R € P(G; R) as well. See [BB20, Propo-
sition 7].

To end this section, we note a generalization of Lemma 3.8 when R is a

field (cf. [Dre75, Theorem 1]).

3.15. Lemma. Let k be a field of positive characteristic p and G an arbitrary
finite group. Ewvery sign-permutation kG-module M (Definition 3.6) is p-
permutation.

Proof. If p = 2 then —1 = 1 and M is permutation. If p is odd, M re-
stricts to a permutation module over a p-Sylow, by Lemma 3.8. Then use
Recollection 1.9. ([

3.16. Corollary. Let G be a finite group and assume that k is a field of
positive characteristic. Then k € Q(G; k).

Proof. Consider the Koszul complex Kos(G; k) of Example 3.7. We have
seen in Lemma 3.15 that Kos(G; k) defines a O-free p-permutation resolution
of k. We conclude by Remark 3.11. O

4. COMPLEXES OF PERMUTATION MODULES IN THE DERIVED CATEGORY

Recall the thick subcategory of Dy(RG) from Section 2 (Remark 2.15):

(4.1)
P(G: R = O(G: R)" {X X @ XX admits m-free permutation }

resolutions (Def.2.1) for all m > 0

Our main goal in this section is to prove that the canonical functor Y of (1.2)
in the Introduction is fully-faithful, with P(G; R)? as essential image (The-
orem 4.3). Moreover, we will prove that P(G; R)! = D,(RG) for R a field
(Corollary 4.5) and for R regular (Scholium 4.6). But first, let us verify that
T does at least land inside P(G; R)?. This is a consequence of our work in
the previous section.

4.2. Corollary. Let X be a bounded complex of permutation modules viewed
as an object of D,(RG). Then X € P(G; R)".

Proof. As P(G; R)! is triangulated, it suffices to show Ind%(R) € P(G; R)"
for each subgroup H < G. By stability under induction (Proposition 2.20),
it suffices to show that R € P(H; R)%, which we did in Corollary 3.13. O

4.3. Theorem. Let G be a finite group and R a commutative noetherian
ring. The canonical functor T of (1.2) restricts to an exact equivalence

_( Ky(perm(G; R))
T (Kb,ac<perm<c; R)

So Y of (1.2) is fully faithful and its essential image in Dy,(RG) is P(G; R)".

b u
(4.4) )) P(G; R)".
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Proof. By Corollary 4.2, the canonical functor Ky, (perm(G; R)) — Dyp(RG)
lands inside P(G; R)". Since the latter is idempotent-complete there exists a
well-defined exact functor Y as in (4.4). By Definition 2.1 (for m = 0), it is
clear that T is surjective-up-to-direct-summands, hence it suffices to prove
that the functor

K- Ky(perm(G; R)) +

 Kpac(perm(G; R))

is fully faithful. As every X is a retract of X @ XX, it suffices to prove that
the homomorphism T: Homg (X @ XX,Y) — Homp, (re) (X ®XX,Y) is an
isomorphism for every X, Y € Ky, (perm(G; R)). Again by Corollary 4.2, we
know that such a complex X belongs to P(G; R)f hence X ® ©X € P(G; R).
So it suffices to show that for every X,Y € Ky(perm(G; R)) such that X €
P(G; R), the homomorphism

T: Homg(X,Y) — Homp, (re)(X,Y)

Dy (RG)

is a bijection. For surjectivity, let fs~': X — Y be represented by a frac-

tion X & Z Ly Chyp(RG) where s is a quasi-isomorphism. Since X
belongs to P(G; R), so does Z by Proposition 2.7. So Z admits a 0-free
permutation resolution, i.e. there exists a quasi-isomorphism ¢: P — Z with
P € Chy(perm(G; R)). Hence our morphism fs~! = (ft)(st)~! comes from

x& Py Homg(X,Y). Injectivity is similar (or follows from con-
servativity and fullness of T). O

4.5. Corollary. Let k be a field. Then P(G;k)? = Dy(kG) and (1.2) is an
equivalence. If moreover G is a p-group where p = char(k) then P(G;k) =
Dy, (kG).

Proof. For the first statement, by Corollary 2.21, we can assume that G is a
p-group. If p is invertible in k, we are done by Corollary 2.23. So it suffices
to prove the second statement. If char(k) = p and G is a p-group then
k € P(G;k) by Corollary 3.12 and k generates Dy, (kG) as a triangulated
category (see Remark 2.10). O

We have all the ingredients to extend Corollary 4.5 to regular coefficients.

4.6. Scholium. Let us see that P(G; R)* = Dy,(RG) when R is regular. To-
gether with Theorem 4.3 this implies Theorem 1.4 in the Introduction.

Pick X € Dy,(RG) and let us show that X belongs to P(G; R)?. As before,
we reduce to the case of G a p-group by Corollary 2.21, for some prime p.
Note that X is automatically R-perfect since R is regular and therefore, by
Corollary 2.26, there exists an exact triangle

P—->XoYXX T —XP

in Dy,(RG) where P is a complex of permutation modules, and 7" is p-torsion.
In particular P € P(G; R)? already, by Corollary 4.2. So it suffices to prove
T € P(G;R)!, i.e. we can assume that p" - X = 0 for some n > 1. By
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Remark 2.27 we then have X € thick(cone(X & X)). But cone(X & X) =
cone(R 2, R)®% X 24,Li*(X) by the projection formula for the adjunction

Dy (RG)

Li*:R@%—\wi*

Dy,(RG)

given by the usual extension and restriction of scalars along R — R := R/p.
Hence

(4.7) X € thick(i«(Dp(RG))).

We claim that the image of Dy, (R) under Infif : Dy, (R) — Dy,(RG) generates
the whole of D,(RG) as a thick subcategory. This uses nilpotence of the
augmentation ideal I := Ker(RG — R), and the associated finite filtration
<IN C IYN --- of any RG-module N, in which every I*N/I**'N has
trivial G-action. Then one uses regularity of R one more time and the
commutativity of the following square

Dy (R) —— Dp(R) = Dper(R) = thick(R)

(48) Inﬁ?l llnﬂlG

Dy (RG) —— Dy (RG)
to continue from (4.7) and deduce

X € thick(i,(Inflf Dy(R))) C thick(Infif’ R) C P(G; R)*
(4.8)

where the last inclusion holds because R € P(G; R)? by Corollary 3.13.

4.9. Remark. Using Scholium 4.6 and Carlson [Car(00] one can easily show a
form of Chouinard’s theorem for P(G; R)!, namely if a complex X € D, (RG)
is such that Res%(X) belongs to P(E; R)? for all elementary abelian sub-
groups E < G, then X € P(G; R)". Indeed, by [Car00], the trivial module Z
belongs to the thick subcategory of Dy (ZG) generated by modules induced
from elementary abelian subgroups. Hence X = Z®%X belongs to the thick
subcategory of Dy, (RG) generated by complexes in Ind%(Dy,(ZE) @5 Res% X)
(use the projection formula for Ind% 4 Res%). We then conclude from
P(E;Z)" = Dy(ZE) by Scholium 4.6.

5. DENSITY AND GROTHENDIECK GROUP

We want to use Thomason’s classification of dense subcategories to derive
consequences from the results of previous sections. Let us remind the reader.

5.1. Recollection. Given an essentially small triangulated category T we may
consider its Grothendieck group, Ko(7), the free abelian group generated by
isomorphism classes of objects in T quotiented by the relation [X]+[Z] = [Y]
for each exact triangle X — Y — Z — ¥X in 7. In particular —[X] = [XX].
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For each dense triangulated subcategory A C T (Recollection 2.13) the
map Ko(A) = Ko(7T) is injective ([Tho97, Corollary 2.3]) hence Ko(A) de-
fines a subgroup of K(T). Conversely, each subgroup S C Ky(7) defines a
dense subcategory

A(S) = {X € ‘J" [X] €S in Ko(T) }
By [Tho97, Theorem 2.1] these constructions yield a well-defined bijection
{ dense triangulated subcategories of T } <~ { subgroups of Kq(7T) }.

Recall the triangulated subcategories P(G; R) and Q(G; R) of Defini-
tion 2.8 and recall that Im(T) = P(G;R)! = Q(G;R)! by Theorem 4.3
and Proposition 2.14.

5.2. Corollary. Let M € mod(RG) and Q(M) = Ker(RG® M — M). Sup-

pose that M belongs to Im(Y). Then M @ Q(M) belongs to Q(G; R). If
furthermore M is R-free then M @& Q(M) belongs to P(G; R).

Proof. We need to prove that in the group Ko(Q(G; R)?) the class [M @
Q(M)] = [RG ® M] belongs to the subgroup Ky(Q(G; R)). Since projective
modules belong to Q(G; R), we have Dpe(RG) € Q(G; R). So it suffices
to show that RG ® M is perfect over RG. But Res{'(M) is perfect (Corol-
lary 2.23) and by Frobenius RG' ® M = Ind¥ Res{ M € Dyers(RG). Hence
the first claim. Similarly, if M is moreover R-free then RG ® M is RG-free
and [M ® Q(M)] € Ko(P(G; R)). O

We record the following statement for later use in [BG20]:

5.3. Corollary. Let M be an RG-module that belongs to Im(Y). Then there
exists a sequence of quasi-isomorphisms of bounded complezes in Ch>o(RG)

Q1) = Q) = - = Q(1) — M (M)

such that Q(n) consists of f-permutation RG-modules, and in the range
0 < d < n, the module Q(n)q is projective and Q(n + 1)g — Q(n)q is the
identity. In particular, the sequence --- — Q(n) — --- — Q(1) is eventually
stationary in each degree and P = lim,,_,o, Q(n), computed degrecwise, is a
projective resolution of M @& Q(M).

Proof. By Corollary 5.2 we can apply Proposition 2.12 to M @& Q(M). O

We now turn our attention to the case of a field k of positive character-
istic p.
5.4. Remark. We want to apply Thomason’s Theorem to the triangulated
subcategories P(G; k) and Q(G;k) of T = Dy(kG) introduced in Defini-
tion 2.8, that are dense by Corollary 4.5. The Grothendieck group of Dy, (kG)

as a triangulated category coincides with the Grothendieck group of mod(kG)
as an abelian category

Ko(Dp(mod(kG))) = Ko(mod(kG)) = Go(kG).
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This Grothendieck group is free abelian on the set of isomorphism classes of
simple kG-modules. (*) We have the inclusions of subgroups in Go(kG):

Z - [kG] Ko(kG) = Ko(proj(kG))
N N

K3 (G; k) == Ko(P(G; k) K§ (G k) :=Ko(Q(Gsk)) < Go(kG).

N

N

Injectivity of K¥(G;k) — Go(kG) and K§(G;k) — Go(kG) follows from
density (Corollary 4.5) and Recollection 5.1. All inclusions displayed above
are then straightforward, already for the corresponding categories.

The quotient Go(kG)/Ko(kG) is well-known to be a finite abelian p-
group, whose exponent is a power of p dividing |G|. See [Ser77, § 16, Theo-
rem 35] (%). Hence the same is true for Go(kG)/ Kg(G; k) but we shall prove
more in Corollary 5.12, namely that Kg(G; k) = Go(kG).

The subgroup Kg(G; k) C Go(kG) is not of finite index in general, simply
because permutation modules are defined integrally. The subgroup K (G k)
is always contained in the image of Go(F,G) inside Go(kG) that can have
infinite index when kG has simple modules not defined over F,.

5.5. Ezample. The cokernel of the ‘Cartan homomorphism’ Ko(RG) —
Go(RG) is not always of finite exponent when R is not a field, even for
a discrete valuation ring. Take R = Z(5) and G = (3 cyclic of order 2. Then
Ko(RC5) = Z- [RCy] since RCy is local. Let RT = R with trivial Cy-action.
Rationally, in Go(QCs) 2 Z-[QT]|®Z-[Q~] for QT trivial and Q~ = Q with
sign action, our [R*] maps to [QT] but [RC3] maps to [QT] + [Q~]. So no
non-zero multiple of [RT] € Go(RC2) belongs to Ko(RCs).

Applying Thomason’s classification (Recollection 5.1) to the situation of
Remark 5.4 we get for instance:

5.6. Corollary. An M € mod(kG) admits m-free permutation resolutions
for all m > 0 if and only if its class [M] € Go(kG) belongs to the subgroup
KJ(G; k). O

We do not have a description of KO?(G; k) in general but it is already re-
markable to have a condition in terms of the class of M in the Grothendieck
group. Using only that free modules belong to P(G; k) we get some inter-
esting consequences.

5.7. Corollary. Let M € mod(kG) and consider Q(M) = Ker(kGRM — M).
Then M @& Q(M) admits m-free permutation resolutions for all m > 0. In
particular, M @ Q(M) admits a finite resolution by finitely generated per-
mutation modules.

2In the classic reference [Ser77], Serre writes Ry (G) for Go(kG) and Py (G) for the
Grothendieck group Ko(kG) of projective modules. We do not adopt this notation to
avoid confusion with our coefficient ring R and the category P(G; k).

3 The general assumptions of [Ser77, p. 115] hold for any k by [Hocl7, Theorem, p. 23].
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Proof. The first part follows from Corollary 5.2, since every M is k-free.
The second part follows from Corollary 2.5. O

5.8. Remark. The essential images of the obvious functors Ky, (perm(G; k)) —
Dy, (kG) and Ky, (perm(G; k)?) — Dy (kG) are also dense triangulated subcat-
egories. Indeed, these essential images are the same as those of the functors

Ky, (perm(G; k)) Ky, (perm(G; k)*)
Kb, ac(perm(G; k)) Kp ac(perm(G; k)%)

As these functors are full (and faithful) by Theorem 4.3, their images are
triangulated subcategories. As these images contain P(G; k), they are dense
by Corollary 4.5. In fact, the right-hand functor is already essentially surjec-
tive, as we shall see in Theorem 5.13. By Thomason, it suffices to understand
what happens on Kj.

— Db(k‘G) and — Db(k‘G).

5.9. Proposition (Boltje/Bouc). The canonical homomorphism
Ko(perm(G; k)*) — Go(kG)

from the additive Grothendieck group of p-permutation modules (a. k. a. the
p-permutation ring [BT10], or trivial source ring [Bol98]) is a surjection
onto Go(kG). (%)

Proof. Brauer’s Theorem in the modular case [Ser77, §17.2] asserts that
Ind: &g Go(kH) —» Go(kG)

is surjective, where H runs through the so-called I' ix-elementary subgroups
of G (with notation of [Ser77, § 12.4]). So it suffices to prove the result for G
of that type. In that case, we prove that every simple kG-module M is
p-permutation.

In the ‘easy case’ where G = C' x @ with C (cyclic) of order a power of p
and Q of order prime to p, we can consider the non-zero submodule M
of M. As C is normal in G, it follows that M is a kG-submodule of M,
hence equal to it. In short, M has trivial restriction to the p-Sylow C of G,
hence is p-permutation.

The ‘tricky case’ is when G = C' x P where P is a p-Sylow and C' is cyclic
of order m prime to p. Using induction on |G| as in the proof of [Ser77,
§17.3, Theorem 41], we reduce to the case where M is a finite extension
k' = k[X]/f(X) where f is an irreducible factor of X™ — 1, on which P
acts through k-automorphisms of the field &’. As m and p are coprime, the
cyclotomic extension k’/k is separable and hence Galois. It follows from
the normal basis theorem that the k[P]-module &’ is permutation, and we
conclude as before (see Recollection 1.9). O

5.10. Remark. If we assume the field k ‘sufficiently large’ (cf. [Ser77, p. 115]),
e.g. algebraically closed, the above I'x-elementary subgroups are g-elemen-
tary for a prime ¢, i.e. of the form C x @ for a g-group @ and a cyclic

4 This homomorphism is rarely injective: Even for G = C,, we get Z[z]/(z* — pz) — Z.
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group C of order prime to g. In that case, the p-Sylow of G is normal and
we can apply the ‘easy case’ of the above proof. (In an early version of this
paper, we assumed k sufficiently large for that reason.) The ‘tricky case’
was communicated to us by Serge Bouc.

5.11. Remark. Robert Boltje gave us a different argument to remove ‘k suf-
ficiently large’ in Proposition 5.9, based on a natural section of the homo-
morphism Kg(perm(G;k)*) — Go(kG). This uses the canonical induction
formula for the Brauer character ring, as well as Galois descent to reduce to
the case of k sufficiently large discussed above.

5.12. Corollary. We have K& (G; k) = Go(kG) hence Q(G; k) = Dy (kG).

Proof. First, we claim that the subgroup K(G;k) C Go(kG) is an ideal.
Indeed, by Proposition 5.9, it suffices to show that K% (G; k) is closed un-
der multiplying by the class of a p-permutation module, which is straight-
forward. We are therefore reduced to show that 1 = [k] belongs to this
ideal K§(G;k). This is true by Corollary 3.16. The second statement fol-
lows by Thomason (Recollection 5.1). O

Summarizing the situation, we have our main result:

5.13. Theorem. Let G be a finite group, and k a field of characteristic p > 0.
Then every kG-module admits a finite p-permutation resolution. Moreover,
the canonical functor (see Recollection 1.9)

Ky (perm(G;k)f)  ~
Dy (kG
Kb, ac(perm(G; k)t) — Dy(kG)
is an equivalence. So the left-hand quotient is already idempotent-complete.

Proof. Every module M € mod(kG) belongs to Q(G; k) by Corollary 5.12. Tt
follows that M admits a p-permutation resolution by Corollary 2.5. For the
equivalence, we resume the discussion of Remark 5.8. By Theorem 4.3 and
Corollary 4.5, the quotient Ky, (perm(G;k)) /Ky, ac(perm(G;k)?) is a dense
subcategory of Dy, (kG). As every object in Q(G; k) is quasi-isomorphic to a
complex of g-permutation modules, this dense subcategory contains Q(G; k).
By Corollary 5.12, it therefore coincides with Dy, (kG). O
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