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Abstract The Hermite-Taylor method, introduced in 2005 by Goodrich,
Hagstrom and Lorenz, is highly efficient and accurate when applied to linear
hyperbolic systems on periodic domains. Unfortunately its widespread use has
been prevented by the lack of a systematic approach to implementing bound-
ary conditions. In this paper we present the Hermite-Taylor Correction Func-
tion method, which provides exactly such a systematic approach for handing
boundary conditions. Here we focus on Maxwell’s equations but note that the
method is easily extended to other hyperbolic problems.

Keywords Hermite method - Correction function method - Maxwell’s
equations - High order - Boundary conditions

Mathematics Subject Classification (2010) 35Q61 - 65M70

1 Introduction

The property of waves to travel over large distances and long time without
changing their shape is an important feature used in current technologies, such
as communication devices and other electromagnetic products. The governing
equations for electromagnetic problems are the Maxwell’s equations and it is to
these we seek approximate solutions in this paper. To make the numerical ap-
proximation to the solution accurate either low order methods on fine meshes,
which can be computationally costly, or high-order methods on coarser meshes
can be used. The latter approach is usually preferable for large scale problems.

Several high-order methods in computational electromagnetics have been
proposed, such as high-order finite-difference time-domain (FDTD) methods
[28,26], discontinuous Galerkin (DG) methods [14,8,4,13] and pseudo-spectral
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methods [9,10,27], to name a few. High-order explicit FDTD methods require a
restrictive stability condition and wide stencils, which complicate the enforce-
ment of boundary conditions. Unconditionally stable alternating-direction-
implicit (ADI) FDTD methods have been developed to circumvent the time
step constraints [24,29,25,6,18], however, methods are difficult to generalize
to high order and treating complex geometry is not straightforward.

Discontinuous Galerkin methods achieve high-order convergence rates by
approximating the function using local high order polynomials and are an
excellent choice for problems where a high quality mesh can be generated.
The main drawbacks of DG methods is their restrictive time step at high
order of accuracy and the duplication of degrees of freedom on the edges of
elements.

Another avenue to handle time dependent wave problems is the Hermite-
Taylor method, which consists of a Hermite interpolation procedure in space
and a Taylor method in time [11] (see also [12] for a review of Hermite meth-
ods). The key idea is to evolve, in time, the numerical solution as well as its
space derivatives through order m to achieve a (2 m+1) order accurate method
using only (m + 1)¢ degrees of freedom per element in d-dimensions.

As was shown for linear symmetric hyperbolic problems in [11], this method
provides a stability condition that only depends on the largest wave-speed, in-
dependent of the order. Hence, large time-step sizes can be used for these
high-order methods and therefore ease the computational burden for large-
scale problems. As the (m + 1) degrees of freedom in a Hermite method are
collocated at a single node the imposition of general boundary conditions can
be challenging. Typically, in addition to the physical boundary conditions the
method needs to be augmented with a relatively large number of numerical
boundary conditions (sometimes called compatibility boundary conditions or,
more recently, inverse Lax-Wendroff conditions). While this has been success-
fully done for the wave equation on both Cartesian and curvilinear meshes
in [20], it has proven difficult to use this technique for first order hyperbolic
systems.

A possible solution to this is to use a hybrid DG-Hermite method [7] for
Maxwell’s equations. The method in [7] takes advantage of the flexibility of DG
solvers to handle complex geometries and boundary conditions by considering
two non-overlapping meshes, an unstructured mesh for the DG method and a
staircased Cartesian mesh where the Hermite method is used. This approach
requires a hybrid structured-unstructured mesh and the use of local time-
stepping to maintain large time-step sizes in the Hermite method. In [5] an
overset grid method that combines a Hermite method (on Cartesian meshes)
and a DG method (on structured curvilinear meshes) for the wave equation is
proposed. This method does not require a hybrid non-overlapping mesh and
as such it is somewhat more geometrically flexible but again, it is not easy to
extend to first order hyperbolic systems.

In this work, we propose an alternative solution for imposing boundary
conditions for Maxwell’s equations within the framework of Hermite methods.
Our new method is based on the correction function method (CFM). The CFM
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was first proposed in [21] to handle Poisson’s equation with interface conditions
and continuous coeflicients in a finite-difference context. Given a numerical
solution (for example from a finite difference method) that has been updated
near but not on the boundary from the CFM seeks a polynomial approximation
to the solution in the vicinity of a boundary or interface using a minimization
procedure. A functional that is based on a square measure of the residual of the
original PDE problem and that also contains terms from the finite difference
solver is minimized over a suitable space of polynomials. Once this polynomial
approximation, also called the correction function, is found, the numerical
solution can be corrected so that it satisfies the boundary conditions to high
order of accuracy. The CFM method has been used for Poisson’s equation [22,
23], the wave equation [1] and for electromagnetic problems with both interface
and boundary [15,16,17].

In this paper we introduce a CFM - Hermite-Taylor method. An advantage
with using Hermite based methods for the base scheme is that the Hermite
stencil remains the same regardless of its order. This is not the case for FDTD
methods. Additionally, the Hermite-Taylor method directly provides a space-
time polynomial approximating the solution that is required in the CFM func-
tional. In this paper we focus exclusively on the case when the geometry of the
problem can be represented on a Cartesian mesh or on a logically Cartesian
curvilinear mesh. Already in this setting the Hermite stencil provides a good
advantage but we expect that in future work where we treat interfaces and
non-grid aligned boundaries the advantage will be even greater.

We are focusing exclusively on the enforcement of boundary conditions.
Other important concerns, such as the preservation of the divergence-free con-
straints and the energy, will not be addressed here.

The paper is organized as follows. We introduce Maxwell’s equations with
the considered boundary conditions in Section 2. In Section 3, the 1-D Hermite-
Taylor method is described in detail and some remarks are provided for higher
dimensional cases. The correction function method is introduced and described
in detail in the Hermite-Taylor setting in Section 4. Finally, numerical exam-
ples in 1-D and 2-D that verify the properties of the Hermite-Taylor correction
function method are presented in Section 5.

2 Problem Definition

In this work, we seek approximate solutions to Maxwell’s equations

woH +V x E =0,
cO,E—V x H=0,
V- (eE)=0,
V- (pH) =0,

(1)

in the domain 2 C R? with d = 1,2 and the time interval I = [to,t;]. Here
H is the magnetic field, E is the electric field, p is the magnetic permeability
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and e is the electric permittivity. To complete the system (1), we consider the
initial conditions
H(.’B,to)ZHO in Q,

E(w,to) = Eo in .Q,

and the boundary conditions on the electromagnetic fields.
In this work, we focus on the following boundary conditions:

1. Perfect electric conductor (PEC):
nxE=0 onI xI, (2)
2. Perfect magnetic conductor (PMC):
nxH=0 onl xI, (3)
3. Impedance boundary condition:
Exn+Znx(Hxn)=0 onl xI. (4)

Here Z = \/g is the impedance, I" is the boundary of the domain {2 and n
is the outward unit normal to I'. For further discussions on Maxwell’s equa-
tions with these boundary conditions and results on their well-posedness, we
refer the reader to [2,19]. Note that we consider the non-homogeneous case of
these boundary conditions to facilitate the verification of the Hermite-Taylor
correction function method. We denote the given right-hand side function by

g(z,y,t).

3 Hermite-Taylor Method

In the following, a brief review of the Hermite-Taylor method, introduced by
Goodrich et al. [11], is provided. For simplicity, we consider the 1-D case and
include some comments regarding higher dimensions.

The Hermite method uses a mesh staggered in both space and time as
illustrated in Fig. 1. Consider the domain 2 = [z¢,x,] and a time interval
I = [ty,t]. We then define the primal mesh to be

Ty — Ty

ri=xp+iAx, i=0,...,N,, Axr= N,

Here N, is the number of cells on the primal mesh. The dual mesh is then
defined as the cell centers of the primal mesh

$Z+1/2:$g+(l+1/2)A$7 ZZO,,Nz—l
The approximate solution on the primal mesh is centered at times

tr—1
th=to+nAt, n=0,...,N, At=-L_"2
Ny
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Fig. 1 Illustration of the Hermite-Taylor procedure to evolve the data from (z;41,tn—1)
to (zi41,tn). The Hermite interpolation procedure and the Taylor method are denoted
respectively by Z and 7. The primal and dual nodes are respectively represented by black
squares and blue circles.

while the approximation on the dual mesh is centered at times
tpy1/2 =to+ (n+1/2) At, n=0,...,N;— 1.

Here N, is the number of time steps.
The Hermite-Taylor method requires three processes:

1. Hermite interpolation:
Assume that the values of the electromagnetic fields and their derivatives
through order m (or sufficiently accurate approximation of these) are avail-
able on the primal mesh at ¢,,_1. Then, for each cell in the primal mesh, for
each electromagnetic field, we construct the unique polynomial of degree
2m+1 coinciding with the electromagnetic field and its derivatives through
order m at the endpoints of the cell, that is the Hermite interpolant of the
electromagnetic field. In Fig. 1, this step is represented by Z.

2. Recursion relation:
The recursion relation constructs a space-time polynomial, referred as a
Hermite-Taylor polynomial in this work, approximating each electromag-
netic field. Considering a cell and a given Hermite interpolant of each
electromagnetic field on this cell, we identify the derivatives of the elec-
tromagnetic field as scaled coefficients of the polynomial at the cell center.
By expanding, in time, each scaled coefficient in a Taylor polynomial and
enforcing the PDE at the cell center, we obtain a recursion relation for the
coefficients of the Hermite-Taylor polynomials. This step is represented in
Fig. 1 by either blue dashed circles or black dashed squares.

3. Time evolution:
Finally, we update the electromagnetic fields and their derivatives through
order m at the dual mesh points by simply evaluating the Hermite-Taylor
polynomials. This step is represented by 7 in Fig. 1.

Let us now detail each time step of the method.
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3.1 Hermite Interpolation

Assuming that the space derivatives through order m of the electromagnetic
fields at the initial time ¢y are available on the primal mesh, we compute the
(2m+1) degree Hermite interpolant pz.f+1/2(m) on each cell [x;, z;41] satisfying

¢, f 0, f
d°p; 1 (@i, to) _ d' fzi,to) 4 Pig1ya(@ivis o) _ d f(ziy1,to) (=0
dxt dzt daxt dzt ’ T
Here f is either the magnetic field H or the electric field E. We then obtain a
polynomial approximating each electromagnetic field on the cell [z;, z;41] and

centered at the cell center z; /s,

2m+1 ¢
T —Tit1/2
H(w, )=t ~ Pihaje@) = 3 e (=, (m/) ,

2m41 ¢
T —Tit1/2
B, )]ty = Pljo@) = Y ef ()limiy (A/> ’

where ¢ (t) and ¢ (t) are time-dependent coefficients.

3.2 Recursion Relation

Let us now compute a Hermite-Taylor polynomial approximating each elec-
tromagnetic field. To do so, we expand the coefficients in a Taylor polynomial
of degree ¢ centered at ty, which leads to

2m+1 q l‘+1/2 4 t—to s
A~ ol o) = 3 Soell (T2 ) (S50

¢=0 s=0

Ruae E [T~ Tig1/2 Clt—1)°
E(z, t)~pl+1/2xt Z Zces Aa gy .

¢=0 s=0

Here cfo and CEO are known from the initial data and the interpolation step.
Consider Maxwell’s equations in 1-D with constant coefficients,

o _ 108
o oz’
o8 _ 1o
ot € 0x’
For smooth solutions, we then have
olts+tig 1 §ttstig
ot +10xt T ot oz ©
8£+s+1E 1 a€+s+1H

oozt~ e ot Pt
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Substituting H and E by their Hermite-Taylor approximations pﬁl /2(33, t) and
pﬁ_lﬂ(z,t), in the system (6) and evaluating them at (z;41/2,%0), we obtain
the following recursion relations for the coefficients

g (+1)At g g ({+1)At 4

= c _ ¢, =———"—c¢ _ £=0,....2m+1
l,s /LSAiE l+1,5s—1> l,s csAx l+1,5—1> ) ) ’

Knowing cfo and CEO, these recursion relations allow the computation of the
Hermite-Taylor polynomials approximating the electromagnetic fields.

3.2.1 Variable Coefficients Problems

For spatially variable coefficients, the recursion relations for the polynomial
coefficients involve high-order derivatives of the coefficients. As in [11], we
consider high-order derivatives of the coefficients u(z) = M(lx) and e(z) = 6(100)
and take advantage of the Leibnitz’ rule.

For sufficiently smooth solutions and coefficients v and e, we have

a€+s+1H _ _ié 3s+1E _i ¢ aé—iu ai+s+1E
oozt~ ot \" oror ) i) 0zt OtsOzit1’
PHtE 9 ot H _Zé: 0\ 9 gLl
ot 1ozt~ 0at\  oror ) i) 0zt Ot DLt

Identifying the coefficients of the Hermite-Taylor polynomials as scaled deriva-
tives and enforcing the system (7) at (2;41/2,t0), we obtain

= _ ze: (i + 1) At Azt—i=1 9ty r

o i—0 (L—1i)s Opt—i Citls—1
B o= — L i+ 1) At Aztim1 gtie )

o (L—1i)s Opl—i Citls—1

i=0
for{=0,....2m+1land s=1,...,q.
We note that this step can be generalized for other problems including

linear, non-linear and variable coefficient problems. We refer the reader to [12]
for more details.

3.3 Time Evolution

Finally, we evolve the electromagnetic fields and their space derivatives through
order m on the dual mesh nodes, located at (2;41/2,%1/2) for the cell [z, z; 1],
by evaluating (5)

8€pﬁ1/2(9€i+1/27 t1/2) aépﬂl/g(%ﬂ/m t1/2)
Oxt ’ Oxt ’

£=0,...,m.
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A similar process is repeated to evolve the data from the dual mesh at
t1/2 to the primal mesh at #; and therefore to complete the time step. The
overall procedure is repeated until the final time is reached. Fig. 1 illustrates
the Hermite-Taylor method at a given primal node.

Remark 1 For linear constant coefficients hyperbolic problems, the Taylor ex-
pansion in time of the coefficients of the Hermite polynomials is computed
exactly for ¢ sufficiently large [11], for example ¢ = 2m + 1 in (5) for the 1-D
case. In general, we set ¢ = v (2m+1) in R” to obtain an exact time expansion
of the coefficients.

Remark 2 In higher dimensions, the primal mesh is defined as the classical
Cartesian mesh while the dual nodes are defined at the cell center. Hence, this
differs from the mesh used in FDTD methods. As for the Hermite interpola-
tion procedure, approximations are computed using a tensor product of 1-D
Hermite polynomials. We refer the interested reader to [11] for more details
on the Hermite-Taylor setting for higher dimensions.

As mentioned before, a challenge for the Hermite-Taylor method is to en-
force general boundary conditions. Indeed, this method requires to know all
information on the boundary, including the space derivatives through order
m, which are usually not available. In the next section, we present a way to
obtain the needed information using the correction function method.

4 Correction Function Method

In this section, we describe the correction function method that computes
approximations to the electromagnetic fields and their derivatives through
order m at the nodes located on the boundary of the domain. There are two
key ingredients to the CFM: the minimization of functionals describing the
electromagnetic fields near the boundary, and careful definition of the space-
time domains of the functionals along the boundary. We refer to a space-time
domain of a functional as a local patch. Once the minimization procedure
is completed, we obtain space-time polynomials, called correction functions,
approximating each electromagnetic field in the vicinity of the boundary. The
correction functions are used to update the solution at the boundary nodes. In
the following, we first describe the method in detail in 1-D and then generalize
it in higher dimensions.

4.1 The Hermite CFM Method in One Dimension

On the mesh in Fig. 1, the first step has allowed for the update of the Hermite
solution on the dual mesh at time level ¢,,_; 5 and the second step has allowed
for the update of the numerical solution on the primal mesh at t,, except near
the boundary. At (zg,t,) and (xy,,t,) for n = 1,..., Ny the solution will be
updated using the CFM.
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We define a node where the numerical solution is updated using the Hermite-
Taylor method as a Hermite node and a node where the numerical solution
is computed using the CFM we denote as a CF node. In the following, the
subscript i refers to the i*" CF node in the mesh and the superscript n refers
to the time level ¢,,. In the 1-D case, i = 0 and ¢ = 1 refer respectively to the
boundary nodes zy and zy, .

We further note that although the functional just to be defined can depend
on time, as manifested by the n superscript, (for example to account for a
moving geometry) but for all the problems considered here it will not. When
there is no time dependence all the small linear system of equations (one at
each CF node) resulting from the quadratic optimization problem, will not
change in time and can thus be formulated, factored and stored once and for
all before the time stepping loop. Consequently the complexity of the Hermite-
CFM method will approach that of the Hermite method in the limit A — 0.

The CFM minimizes a functional unique to each CF node composed of
three parts

J =G+ B!+ H!. (8)

Here, GI* weakly enforces the governing equations, B}’ weakly enforces the
boundary conditions and H} weakly enforces that the correction functions
match the Hermite solution near the i*" CF node.

The domains over which the different terms in the functional are computed
are not the same. The domain of B}’ should include the part of the boundary
in the vicinity of the i*" CF node to weakly enforce the boundary conditions.
The domain of H}' should be the same as the space-time domains of the Her-
mite nodes closest to the i** CF node. We then weakly enforce the correction
functions to match the Hermite solution in the domain of H} while avoiding
extrapolation procedures of the Hermite solution. Finally, the domain of inte-
gration for G should enclose the i*® CF node, the domain of integration for
B and the domain of integration for H;' to enforce Maxwell’s equations over
the whole local patch of the functional J".

As an example for the CF node g at time level ¢,,, G contains the residual
of the PDE and it is integrated over the rectangular space-time region (the
local patch) consisting of the direct product of the space interval Sy = [z, 23]
with the time interval I,, = [t,—1,t,] as illustrated in Fig. 2. We then have

12
G5 (Hy. o) =3 [ [ (W01 + 0. E7 ) + (OB + 0. )t
I, So

where £y = 23/ —x9 = 1.5 Ax is the characteristic length of the space interval
So. Here Hyp, and Ep , are the sought correction functions approximating
the electromagnetic fields and are used to update the numerical solution at
(xo, tn).

The term B contains the residual of the boundary condition at g and it
is integrated over the time interval I,, as shown in Fig. 3. As an example, we
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Integration domain of Gj

L SO
tn ® o )
tn1/2 :
tn,1 o w a .:
X0 T1/2 T Z3/2 T2

Fig. 2 Illustration of the domain of integration So X I, of Gf}. The primal CF and Hermite
nodes are respectively represented by green squares and black squares while the dual Hermite
nodes are represented by blue circles. The CFM seeks the information located at (zo,tn)
which is enclosed by the red circle. The space-time local patch Sp X I, is denoted by a
dashed magenta box.

Integration domain of B

Zo T1/2 Z1 T3/2 T2

Fig. 3 Illustration of the domain of integration I, at zo of Bj. The primal CF and Hermite
nodes are respectively represented by green squares and black squares while the dual Hermite
nodes are represented by blue circles. The CFM seeks the information located at (zo,tn)
which is enclosed by the red circle. The intersection between the boundary and the local
patch, that is the line connecting (zo,tn—1) to (zo,tn), is denoted by a dashed purple line.

have
BL(EL ) = / (B o0, 1) — g(t))?

In

N~

for the boundary condition (2). We now require the correction functions to
weakly match the Hermite solution over the space-time domains of the primal
Hermite node x1 and the dual Hermite node x; /5. This is what connects the
two methods and is needed for the minimization problem to be well-posed. The
first part of H{ contains the Hermite-Taylor polynomials H*(z,t) = p{l/2(x, t)
and E*(z,t) = pfm(x, t), which are associated with the cell of the dual Hermite
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Fig. 4 Illustration of the domains of integration Sg'fd X [tn—1,t,_1/2] and Sg'fp X [tp_1/2,tn]
of Hy. The primal CF and Hermite nodes are respectively represented by green squares
and black squares while the dual Hermite nodes are represented by blue circles. The CFM
seeks the information located at (xo,tn) which is enclosed by the red circle. The domains
Sg,td X [tn—1,tn—1/2] and Sg'fp X [tp—1/2,tn], where we enforce the correction functions to
match the Hermite-Taylor polynomials, is denoted by a dashed blue box.

node z1/o, and it is integrated over the rectangular region consisting of the
direct product of the space interval Sg’fd = [z, z1] with the time interval
[tn—1,tn—1/2]. The second part of the term H{ contains the Hermite-Taylor
polynomials H*(x,t) = pi(x,t) and E*(z,t) = p¥(x,t), and it is integrated
over the rectangular space-time region consisting of the direct product of the
space interval ngp = [21/2,%3/2], which is the cell associated with the primal
Hermite node x;, with the time interval [t,_;/s,t,]. The space-time regions
Sg'fd X [tn—1,tn_1/2] and Sg'fp X [tn—1/2,tn] are illustrated in Fig. 4. We then
have

tn—1/2
n cH n * n *
Hi(Hio Bro) = 2 [ [ty = B+ (B~ B do e

tn—1 SZt,

] 0
CH n *\2 n %12
+7 / /(Hh,o—H) + (Eho — £%)" dz dt,

tn_1/2 Sg“p

where ¢y is a given penalization function that is such that 0 < cy(Az) < 1.

A similar procedure is used to define the local patch and the functional
associated with the second CF node zy, at the time level ¢,,.
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4.1.1 The Linear System of Equations that Solves the Optimization Problem

At each CF node we must solve the following problem.

Find (H} ;, By ;) € V x V such that

(HY, i, BY ) = argmin J} (v, w). (10)

Here V = Q" (S; x I,,) is the space of polynomials of degree k. In this work, we
use space-time Legendre polynomials. In our one dimensional example ¢ = 0, 1.
Note that althoughn =1, ..., N, since the boundary does not change in time,
there is in fact only one optimization problem for each CF node.

We formally compute the gradient of J* with respect to the coefficients of
the polynomial approximations H;', and E},, and use that it vanishes at a
minimum to find a solution to the minimization problem (10). This leads to a
linear system

M ¢! = b,

2

where ¢}’ contains the coefficients of Hj!, and Ej ;.

Again, since the boundary of the domain does not move, we have M; = M},
so the matrices M;, their scaling and LU factorization are found in a pre-
computation step. Consequently, the only computations needed at each time
step is the computation of the right-hand side b}, followed by forward and
backward substitutions to find ¢'.

4.1.2 Summary of the Hermite-CFM Method in One Dimension

Given the numerical solution on the primal mesh at ¢,,_1, the algorithm of the
Hermite-Taylor correction function method to evolve the numerical solution
at t,, is:

1. Update the numerical solution on the dual mesh at ¢,,_; /5 using the Hermite-
Taylor method and store the Hermite-Taylor polynomials needed for the
CFM;

2. Update the numerical solution on the primal Hermite node at t,, using the
Hermite-Taylor method and store the Hermite-Taylor polynomials needed
for the CFM;

3. Update the numerical solution at the CF nodes using the CFM by comput-
ing the right hand sides b}' and solve for ¢’. This is done independently for
each ¢ and can thus be done in parallel without any communication step.

4.2 The Hermite-CFM Method in Two Dimensions

We only consider piecewise rectangular domains composed of straight lines
between primal nodes. For higher dimensions, the spatial domain of a local
patch is adapted depending on the geometry of the boundary and where the
Hermite solution is available in the vicinity of its CF node while the time
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Fig. 5 Illustration of a 2-D local patch for a bottom edge CF node. The left and right
plots show respectively the spatial component of the local patch over the time intervals
[tn—1,tn_1/2] and [t,_1/2,tn]. The primal CF and Hermite nodes are respectively repre-
sented by green squares and black squares while the dual Hermite nodes are represented by
blue circles. The CFM seeks the information located at (x;,yo), which is enclosed by the
red circle. The spatial domain S of local patches is denoted by a dashed magenta box. The
part of the boundary I' include in the local patch is represented by a dashed purple line.
The spatial domains S?i" and SZ,‘L where we enforce the correction functions to match the
Hermite-Taylor polynomials are denoted by a dashed blue box.

domain I,, remains the same. The spatial domain S; of a local patch needs to
satisfy three constraints:

1. The i*" CF node must be inside;

2. Part of the boundary of the domain close to the i*" CF node must be
contained in it;

3. It must contain the cells of the Hermite nodes closest to the i*® CF node.

Examples of the spatial domains of local patches in 2-D that satisfy these
constraints are shown in Fig. 5, Fig. 6 and Fig. 7. For simplicity, we omit the
subscript associated with the CF node in the description of the local patches.

Let us first consider a CF node (z;,yo) along an edge as depicted in Fig. 5.
In this case, the spatial domain of the local patch is S = [z;_1, Zi11] X [y, Y3/2]
while its intersection with the boundary of the domain, S NI, is the line
connecting the points (2;—1,y0) and (241, yo). The spatial domains where we
weakly enforce the Hermite solution are S¥ = [z;_1,x;41] X [yo,y1] over the
time interval [t, 1,t,_1/2] and SZ,{ = [Zi—1/2,Tiy1/2] X [Y1/2,Y3/2] over the
time interval [t,_1/9,%y].

For a CF node located at a corner (xq,yo) as illustrated in Fig. 6, we have
S = [xo,23/2) X [y0,y32), St = [wo, 1] X [yo,y1] and S =[x/, 23)2] X
[Y1/2,Y3/2]- The intersection of S with the boundary is composed of the line
connecting (o, o) to (zo,ys/2) and that connecting (zo,yo) to (73,2, o)

As a last example, we consider the situation in Fig. 7 where a CF node
is located at a reentrant corner (z;,y;). We then have S = [2;_1,2;13/2] X
[yj—1,Y;+3/2]. The spatial domain where the Hermite solution is enforced S
over the time interval [t, 1,t,_1/2] is the union of [z; 1,%i11] X [y, y;41]
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Fig. 6 Illustration of a 2-D local patch for a bottom-left corner CF node. The left and right
plots show respectively the spatial component of the local patch over the time intervals
[tn—1,tn_1/2] and [t,_1/2,tn]. The primal CF and Hermite nodes are respectively repre-
sented by green squares and black squares while the dual Hermite nodes are represented by
blue circles. The CFM seeks the information located at (zo,yo), which is enclosed by the
red circle. The spatial domain S of local patches is denoted by a dashed magenta box. The
part of the boundary I' include in the local patch is represented by a dashed purple line.
The spatial domains S?i" and SZ,‘L where we enforce the correction functions to match the
Hermite-Taylor polynomials are denoted by a dashed blue box.

and [z, 241 X [yj—1,Yy;]. The spatial domain where the Hermite solution is
enforced SZ," over the time interval [t,,_1 /2, t,] is the union of [z;_1 /9, 2;13/2] X
[yj+1/25 yj+3/2] and [Ii+1/2, 367;+3/2] X [yj—l/Qa yj+1/2] . The intersection between
the spatial domain S of the local patch and the boundary is composed of the

line connecting (x;,y;—1) to (z;,y;) and that connecting (x;—1,y;) to (z;,y;)-

Let us now consider Maxwell’s equations in 3-D and seek polynomial ap-
proximations of the magnetic field and the electric field in each local patch,
that is Hy'; and Ep, for ¢ = 0,...,Np and n = 1,..., N;. Here N is the
total number of CF nodes. The first part of the functional (8) becomes

2 n n n n
O/ (H; BR) = 5 [ [(uOH 4V B (n0H, ¥ x By
I, S;
+ (e 8tEZ’i -V x H;’L’Z) - (e atE,';,i -V x H}ZZ)
(V- (W Hp )P + (V- (e By dadt,

where ¢; = [ h is the characteristic length of the spatial domain S; that de-
pends on the mesh size h and § > 0. The second part of the functional J;
that weakly enforces the boundary conditions is either

n 1 n
BB =5 [ [ (nxBli-ge) (nx By - gr)dsct,
I, I'nS;
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Fig. 7 Illustration of a 2-D local patch for a reentrant corner CF node. The left and right
plots show respectively the spatial component of the local patch over the time intervals
[tn—1,tn_1/2] and [t,_1/2,tn]. The primal CF and Hermite nodes are respectively repre-
sented by green squares and black squares while the dual Hermite nodes are represented by
blue circles. The CFM seeks the information located at (x;,y;), which is enclosed by the
red circle. The spatial domain S of local patches is denoted by a dashed magenta box. The
part of the boundary I' include in the local patch is represented by a dashed purple line.
The spatial domains Szl'[ and SZ;L where we enforce the correction functions to match the
Hermite-Taylor polynomials are denoted by a dashed blue box.

for the boundary condition (2),

1
BrHL) =5 [ [ (nx H - gu) (0 x H - gu)dsat
1, INS;
for the boundary condition (3) or

1
B?(H,?yi, E};‘,Z) =3 / / (Eﬁ’ixn—i—an (H;le xn)—g)-(E;L”i xn+Znx(Hj ;xn)—g)dsdt,
I, I'NnS;
for the boundary condition (4).
The final part of J* that weakly enforces the correction functions to match

the Hermite solution is given by

tn—1/2
n n n CH n * n * n * n *
H(Hy ., By ) = > / /(th —H") - (Hy,—H")+ (B}, — E") - (Ej; — E")dzdt
tn—1 SZfd

2%
+5 / /<Hf’iz'—H*)-(Hf’l',i—H*)+(Ez,i—E*)-(Eg,i—E*)dzdt.

tn—1/2 Si’fp

We then have the following problem statement:
Find (Hp ;, E ;) € V x V such that

(H},, Ep,) = argmin J7 (v, w), (11)
v,weV
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fori=0,...,Nrandn=1,..., N;. Here

V= {ve QS x 1,)]"}.

As in 1-D, we use that the gradient of the functional J* with respect to
the coefficients of the polynomial approximations Hy}'; and Ej; vanishes at
a minimum to obtain a linear system of equations to solve. The dimension of
the minimization problems is independent of the mesh size and the time step
size, and is 3 (k + 1)3 in 2-D and 6 (k + 1)* in 3-D. However, the number of
minimization problems (Np + 1) Ny increases as the mesh size and the time
step size diminish. Once the minimization problem is solved on a local patch,
the electromagnetic fields and their space derivatives through order m are
estimated at its CF node using H}'; and Ej ;.

Remark 8 The terms in G* enforcing the residual of Maxwell’s equations (1)
are scaled by ¢; to guarantee that all the terms in G]' and B}’ behave in a
similar way as the mesh size diminishes [21]. Let us assume that the correction
functions are polynomials of degree k that leads to an accuracy of O(éf“)
and that k = 2m. Using H = H + O({F™') and Ef = E + O(F™) in the
functional J*, we have that the terms in G and B} behave as O(¢2 %) while
the term in H? scales as O(£2*+6). Hence, the functional J}* is dominated by
the boundary conditions and Maxwell’s equations as ¢; diminishes.

Remark 4 The number of matrices to construct can be further reduced de-
pending on the geometry of the domain and the physical properties of the
material u and e. As an example, let us consider a 2-D geometry discretized
with a Cartesian mesh with Az = Ay. We also assume the boundary I" of the
domain to coincide only with primal nodes. For problems with constant coef-
ficients on a rectangular domain, the number of matrices is reduced to eight
because the spatial domain S; of local patches on an edge translates along it.
If reentrant corners are also considered, there is a maximum of twelve matrices
to compute.

Remark 5 Assuming that the correction functions are polynomials of degree
k that lead to an accuracy of O(£¥™!), we then have k > 2m to preserve the
accuracy of a (2m + 1) order Hermite-Taylor method. As was remarked for
FDTD methods in [16], the CFM impacts the stability of the original method
because of the Hermite-Taylor polynomials H* and E*. Since a rigorous proof
of the stability of the proposed method is out of reach for the moment, we
investigate numerically its stability properties in Section 5.

5 Numerical Examples

In this section, we numerically investigate the stability of the proposed method
and perform convergence studies in 1-D and 2-D.
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5.1 Examples in One Dimension

Let us seek approximate solutions to Maxwell’s equations

u@tH + @;E = O,
e(‘)tE + 8$H = O,

in the domain {2 = [z¢,2,] and the time interval I = [to,t;]. The initial
conditions are H(z,ty) = a(x) and E(z,ty) = b(x), and we focus on the
boundary conditions E(x¢,t) = ge(t) and E(x,,t) = g-(t). Here a(z), b(z),
ge(t) and g, (t) are known functions.

In this subsection, we use the Hermite-Taylor correction function method
with 1 < m < 5. We set the degree of the correction functions to be 2m. The
CFM should not therefore impact the convergence rate of the Hermite-Taylor
method.

5.1.1 Stability

Let us first investigate the stability of the Hermite-Taylor correction function
method. We consider 2 = [0,1], and set 4 = 1 and e = 1. The stability
condition of the Hermite-Taylor method depends only on the largest wave
speed and is given here by At < h, where h is the mesh size. As mentioned in
Remark 5, the stability of the Hermite-Taylor method is impacted by the CFM
because we use Hermite-Taylor polynomials H* and E* in the minimization
problem (11). Although we do not have a rigorous proof of the stability of the
Hermite-Taylor correction function method, we provide numerical evidences
of it by investigating the eigenvalues of the global matrix associated with the
method.

Since Maxwell’s equations is a linear system of PDEs and assuming g, =
g = 0, the proposed numerical method can be written as

n+1 __ n
Wil = AW,

where A is a square matrix of dimension 2 (N, + 1) (m + 1) and W} is a
vector containing all the degrees of freedom on the primal mesh at time t,.
A stable method should have all the eigenvalues of A inside the unit circle of
the complex plane. In the following, we compute numerically the eigenvalues
of A and consider that the scheme is stable if the spectral radius p(A) of the
matrix A is at most one with an error of O(10719).

The left plot of Fig. 8 illustrates the absolute difference between one and
the spectral radius of the matrix A, denoted p(A), as a function of the mesh
size for a CFL constant of 0.9, ¢y = 1 and various values of m. For m < 4, we
observe that the method is stable for a sufficiently small mesh size. In other
words, the eigenvalues of A are moving inside the unit circle as the mesh is
refined. This is expected since the terms in H;' impacting the stability scale as
O(£2¥76) while the other terms in J}* scale as O(¢£2*). For m = 5, we do not
observe a clear improvement as the mesh size diminishes for the considered
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Fig. 8 Absolute difference between one and the spectral radius of the matrix A as a function
of the mesh size, the CFL constant and the penalization parameter cy for various values
of m. For the left plot, the CFL constant is set to 0.9 and cy = 1. For the middle plot,
the mesh size is h = % and cy = 1. For the right plot, the CFL constant is set to 0.9 and
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Fig. 9 Absolute difference between one and the spectral radius of the matrix A as a function

of the CFL constant for m = 5, and various mesh sizes and values of cg. The left, middle

and right plots are respectively for cy =1, cyg = % and cyg = 1%0,

CFL constant. This motivates us to diminish the CFL constant and the value of
cy in order to improve the stability of the Hermite-Taylor correction function
method.

The middle plot of Fig. 8 illustrates the absolute difference between one
and p(A) as a function of the CFL constant for h = g5, cg = 1 and various
values of m. We clearly have a stable method as the CFL constant diminishes.

The right plot of Fig. 8 illustrates the absolute difference between one and
the spectral radius of the matrix A as a function of ¢y for a CFL constant
of 0.9, h = % and various values of m. For all m, a smaller value of the
penalization coefficient ¢y helps to obtain a stable method.

To give further evidences of that, Fig. 9 illustrates the absolute differ-
ence between one and p(A) as a function of the CFL constant for m = 5,
h € {%7ﬁ7%’ﬁv%ovﬁ and cy € {1,%, ﬁ}. A smaller penaliza-
tion coefficient cy does not improve the stability of the proposed method for
coarser meshes. In these cases, we therefore need to lower the CFL constant.
Based on these results, the stability of the Hermite-Taylor correction function
method improves by reducing the CFL constant and the value of the penal-
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ization coefficient cg. Moreover, the stability of this method improves as the
mesh size diminishes, which suggests that larger CFL constants could be used
for finer meshes.

5.1.2 Condition Number of CFM Matrices

Let us now investigate the impact of h, ¢y and the CFL constant on the
condition number of the matrices M; coming from the minimization procedure
used in the CFM. Fig. 10 illustrates the maximum condition number of these
matrices as a function of the mesh size, the CFL constant and the penalization
parameter cy for various values of m. We observe that the condition number
increases as the mesh size diminishes and, more precisely, scales as % for all
different settings. We also notice that the condition number first diminishes as
the CFL constant decreases, then appears to stabilize at a constant. Finally,
the condition number increases as cy diminishes and scales as % Hence,
an arbitrary small value of ¢y cannot be taken to avoid poorly conditioned
matrices coming from the CFM. It is then preferable to diminish the CFL
constant to obtain a stable method.

5.1.83 Accuracy

In the following, we use cg = 1 and k = 2m for all settings. We set the CFL
constant at 0.9 for m = 1 and m = 2, 0.5 for m = 3 and m = 4, and 0.25 for
m = 5. The computed spectral radius is maximum one up to an error of 10712
for all considered mesh sizes.

Let us now verify the convergence order of the proposed method. We con-
sider a domain {2 = [}, 3], a time interval I = [0,1], p =1 and € = 1. We set
the initial and boundary data so find that the solution to the problem is

H(z,t) = sin(250z) sin(250¢),

E(z,t) = cos(250x) cos(250¢). (12)
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Fig. 11 shows how the errors follow the expected (2m+1) rates of convergence.

2
5 --m=1|
I —+m =2
/7 2—m =4
1040\’, N _h2m+1 i
103 102 107

h

Fig. 11 Convergence plots in the maximum norm for a standing mode problem using
the Hermite-Taylor correction function method with different values of m in 1-D. Here
U=[HE|.

5.2 Examples in Two Dimensions

Let us consider the transverse magnetic (TM,) mode. We seek approximate
solutions to Maxwell’s equations

woH, +0,E, =0,

woHy —0,E, =0,

e E, —0,H,+ 0,H, =0,

0. Hy +0,H, =0,

(13)

in the domain 2 C R? and the time interval I, with initial conditions for H.,,
H, and E,. The boundary conditions are either

E, =gg, (14)
ny Hy —ny Hy = g (15)
or
—ny E, + Zny (ny, Hy — ny Hy) _g (16)
ng B, — Zng (ny Hy — ng Hy)
We consider two geometries of the domain, that is a square £2 = [3, 3] x [£, Z]

and one with reentrant corners, which is named cross domain and is illustrated
in Fig. 12. We set k = 2m and cyg = 1. The CFL constant is 0.9 for m = 1,
0.5 for m = 2 and 0.25 for m = 3. In the following, we numerically investigate
the stability of the Hermite-Taylor correction function method and perform
convergence studies for both geometries.
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Fig. 12 Geometry of a cross domain in 2-D.

5.2.1 Stability

Since the total number of degrees of freedom on the primal mesh in 2-D, given
by 3(N; + 1) (Ny + 1) (m + 1)? where N, and N, are the number of cells in
respectively the z and y direction, is very large, we cannot compute the spectral
radius of the matrix A for small mesh sizes, as in 1-D. To provide numerical
evidences of the stability of the proposed method, we therefore compute the
maximum norm of the electromagnetic fields over 10000 time steps using the
trivial solution, but with initial data, that is the electromagnetic fields and
their derivatives through order m, to be random numbers in | — 10 €57, 10 €p4].
Here €, is the machine precision. We set u = 1 and € = 1. Fig. 13 illustrates the
evolution of the maximum norm of the electromagnetic fields using different
values of m and boundary conditions for the cross domain and different mesh
sizes. These results suggest that the method is stable.

5.2.2 Accuracy

For the convergence studies, we consider the time interval I = [0, 1], and set
p =1 and € = 1. The initial conditions and boundary conditions are chosen
in such a way that the solution is given by

1
H, = — —sin(wnr ) cos(wmy) sin(vV2wmt),

V2

1
H, = — cos(wrz) sin(wmy) sin(vV2wmt),

V2

E, = sin(wnz) sin(wry) cos(vV2wnt),

with w = 20. Fig. 14 illustrates convergence plots for different values of m,
boundary conditions and geometries in 2-D. As expected, we observe a (2m+1)
rate of convergence in the maximum norm for the Hermite-Taylor correction
function method. Fig. 15 illustrates convergence plots for the divergence-free
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Fig. 13 Evolution of the maximum norm of the numerical solution for different values of m
and boundary conditions using the cross domain in 2-D. The left, middle and right columns
are respectively for m = 1, m = 2 and m = 3. The top, middle and bottom rows are for the
boundary conditions (14), (15) and (16). Here U = [Hy, Hy, E.]T.

constraint on the magnetic field. We observe a 2m rate of convergence as
expected.

Let us now consider an initial Gaussian pulse on the electric field and PEC
boundary conditions, that is F, = 0, on all the boundary of the domain. The
square domain 2 = [0, 1] x [0, 1] and the cross domain are considered with the
time domain I = [0, 2]. The initial conditions are given by H, = H, = 0 and

1,2
E,=e 2.2,
Here 72 = (z — 0.5)? + (y — 0.5) and o = 0.035. We set p =1 and e = 1.

To our knowledge, there is no known analytic solution for this problem.
Hence, we perform self-convergence studies. The reference solution U* =
[H;, H;, E3]" is computed using the seventh-order Hermite-Taylor correction
function method with h = &. We use meshes with h = {2—15, %, ﬁ, ﬁ, ﬁ},
so all nodes used in the coarser meshes are also part of the reference solution
mesh.
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Fig. 16 Self-convergence plots for a Gaussian pulse problem using for different values of
m and the square domain in 2-D. The left and right plots are respectively for the error
on the electromagnetic fields in the maximum norm and the error on the divergence of the
magnetic field in the L2 norm. Here U = [H,, Hy, E.]T and H = [H,, Hy]T.
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Fig. 17 The components H;, Hy and E. for a Gaussian pulse problem using a square

domain with the seventh-order Hermite-Taylor correction function method and h = 8%0 at
the final time.

1

Fig. 16 illustrates the self-convergence plots for the square domain. We
obtain the expected (2m + 1) order of convergence for the electromagnetic
fields, while a 2m order of convergence is observed for the magnetic field
divergence. The reference electromagnetic fields at the final time are shown in
Fig. 17.

Fig. 18 illustrates the self-convergence plots for the cross domain. The
numerical solution does not convergence in the maximum norm. These results
are explained by the reentrant corners in the cross domain. In this setting,
the solution has a singular part that hinders the performance of the numerical
method [3]. The reference solution of the cross domain is shown in Fig. 19,
where strong variations in the magnetic field are observed at the reentrant
corners.
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Fig. 18 Self-convergence plots for a Gaussian pulse problem using for different values of
m and the cross domain in 2-D. The left and right plots are respectively for the error on
the electromagnetic fields in the maximum norm and the error on the divergence of the
magnetic field in the L2 norm. Here U = [Hy, Hy, E.]T and H = [Hy, Hy]T
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Fig. 19 The components H;, Hy and E, for a Gaussian pulse problem using a cross domain
with the seventh-order Hermite-Taylor correction function method and h = W at the final
time.

As a final numerical example, we consider a variable coefficients problem.
In this situation, we use a manufactured solution given by

H,= —xze ®Ysin(2mt),
ye Y sin(27t),
sin(2 7z y) cos(27t)

=&
I

with p(z,y) = sin(b7rxy) + 2 and e(z,y) = 2e”Y. Note that source terms
were considered in Maxwell’s equations (13). We consider the cross domain
and the time interval I = [0,1]. We enforce impedance boundary condition
(16). Fig. 20 illustrates the convergence plots for the electromagnetic fields
and the divergence of the magnetic field for different values of m. For m =1,
we observe a lower rate of convergence than expected. Based on previous nu-
merical examples and the convergence of the magnetic field divergence, finer
meshes should exhibit the expected order of convergence. As for m = 2, we
obtain the expected convergence order for the electromagnetic fields and the
divergence-free constraint on the magnetic field. Finally, the error on the elec-
tromagnetic fields with m = 3 is already very low for coarser meshes, making
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Fig. 20 Convergence plots for a manufactured solution problem with variable coefficients
using for different values of m, the boundary condition (16) and the cross domain in 2-D.
The left and right plots are respectively for the error on the electromagnetic fields in the
maximum norm and the error on the divergence of the magnetic field in the L? norm. Here
U = [Hy, Hy, E:]T and H = [H,, Hy]".

it hard to observe the seventh-order convergence of the method, while a clear
sixth-order convergence is observed for the divergence of the magnetic field.

6 Conclusion

In this work, we have proposed a new method to handle boundary conditions
for the Hermite-Taylor method for first order hyperbolic problems based on
the correction function method. Our method relies on a functional to be min-
imized that is a square measure of the residual of Maxwell’s equations, the
boundary conditions and the polynomial approximations of the electromag-
netic fields coming from the Hermite-Taylor method. Once the minimization
problems are solved, the information needed on the boundary, that is both
electromagnetic fields and their space derivatives through order m, are com-
puted. Numerical examples suggest that the Hermite-Taylor correction func-
tion method is stable under a loose CFL constant and value of the penaliza-
tion coefficient. Convergence rates of the Hermite-Taylor correction function
method have been verified in 1-D and 2-D with different boundary conditions
and geometries of the domain. Future work will focus on embedded boundary
and interface problems.
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