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Abstract The matrix valued exponential function can be used for time-stepping

numerically stiff discretization, such as the discontinuous Galerkin method but this

approach is expensive as the matrix is dense and necessitates global communication.

In this paper, we propose a local low-rank approximation to this matrix. The local

low-rank construction is motivated by the nature of wave propagation and costs sig-

nificantly less to apply than full exponentiation. The accuracy of this time stepping

method is inherited from the exponential integrator and the local property of it al-

lows parallel implementation. The method is expected to be useful in design and

inverse problems where many solves of the PDE are required. We demonstrate the

error convergence of the method for the one-dimensional (1D) Maxwell’s equation

on a uniform grid.

1 Introduction

It was recognized by Kreiss and Oliger [11] almost half a century ago that high-

order methods are superior in terms of accuracy for propagating waves over long dis-

tances. Since then, much research has been devoted to spectral and high-order meth-

ods and as a result, many highly accurate finite-difference, finite-element, spectral

element and discontinuous Galerkin (DG) methods have been developed. Moreover,

advances in computational hardware with its ever increasing level of parallelism

have favored methods that are robustly stable, geometrically flexible and suitable to

implement on parallel computers. The DG method posses all these qualities and has
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become popular among practitioners, for example in computational electromagnet-

ics where it is gradually replacing the Yee - FDTD scheme. Although DG methods

are spectrally convergent in the order q of the approximation, very high orders are

rarely used in practice. A reason for this is that polynomials on bounded domains,

used as bases in DG methods, have boundary layers at the element edges, [14].

These boundary layers cause the norms of matrices corresponding to differentiation

to grow fast with the order, q resulting in numerical stiffness. In turn, this numeri-

cally induced stiffness forces the use of excessively small time steps, discouraging

the use of very high order methods. Since polynomials vary slowly near the middle

of the reference interval, methods such as co-volume filtering has been suggested

to tame the CFL condition [14]. Similar ideas were also used in [12], where Li et

al. formulated central DG methods for solving ideal magnetohydrodynamic (MHD)

equations on overlapping meshes. Yet another way to allow for larger time step sizes

is to modify the numerical flux as proposed in [1].

Another source of stiffness, not specific to DG methods, arises from small cells

needed to resolve geometric features. For geometric stiffness, local time-stepping

and implicit time stepping can be advantageous. Diaz and Grote [4] and Grote and

Mitkova [7] proposed energy conserving explicit local time steppers for second or-

der wave equation and Maxwell’s equation, respectively. Local time-stepping using

linear multistep methods has also been considered by Goedel and et al. [6]. Locally

implicit energy conserving methods have been proposed in [3, 5, 13], and locally

implicit upwind DG methods were considered by Hockbruck and Sturm [10].

Yet another class of time stepping methods, exponential time integrators, are

capable of handling both numerically and geometrically induced stiffness. For a

spatially discretized linear autonomous system of differential equations, the solution

at each time step can be calculated exactly (up to machine precision) and the time

stepping is stable for any choice of time step size. This is particularly beneficial for

stiff problems. The literature on exponential integrators is extensive but summarized

in the review paper by Hochbruck and Ostermann in [9]. In this paper we focus on

the time evolution of a system of linear differential equations,

ut = Au,

arising from a spatial DG discretization of a linear, variable coefficient, hyperbolic

PDE. We refer to entries in u as degrees of freedom or shorter, DOF. An exponential

time-stepping scheme would then advance the DOF at time tn by the use of the

identity

u(tn+1) = eA∆ tu(tn)≡ Qu(tn),

where thus Q is the matrix exponential solution operator corresponding to a timestep

∆ t. The main drawback with this approach is that the exponentiation of a matrix is

an expensive and memory demanding operation. In addition as the matrix Q is in

general dense, efficient parallelization can be difficult.

in this paper, to reduce the computational cost and memory requirements for

finding and storing Q, we propose a local approximation to the exponential time

integrator. This approximation still tames the CFL condition of DG schemes but is
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amenable to parallelization by domain decomposition techniques and is inexpensive

to apply. The method is motivated by the finite-speed-of-propagation intrinsic to

wave propagation. That is, the value of a solution at some location x and time t will

only influence the solution nearby during a time interval ∆ t. This locality can be

used to find an approximation, Q̃, to, Q, one row at a time by considering matrix

exponentiation of low rank versions of ∆ tA. These low rank matrices will be chosen

so that the time update of a DOF will only use nearby DOF.

The rest of the paper is organized as follows. In Section 2, we present the con-

struction of our local exponential time integrator. We also present an error bound

and discuss computational cost of the local approximation. In Section 3, we test the

local exponential integrator for the one-dimensional Maxwell’s equation discretized

in space using DG. In Section 4, we conclude this work by pointing out potential

applications of our local exponential time integrator and an outlook to future work.

2 Time-Stepping by Local Approximation to the Matrix

Exponential

Consider a DG semi-discretization of a linear first order hyperbolic system on a

mesh in one, two or three dimensions. This semi-discretization can be expressed as

linear system of ordinary differential equations

ut = Au, u ∈ R
M, A ∈ R

M×M,

where M is the number of degrees of freedom in u. To identify nearby elements and

their degrees of freedom we will let ρ( j,k) be the Euclidian distance between the

element centers of elements j and k. The set

D(k,r) = { j ∈ [1, . . . ,M] : ρ(k, j)≤ r},

thus represents a ball of radius r in the physical space. We note that the matrix A

acting on u can be expressed as

(Au)k =
M

∑
j=1

ak ju j, k = 1, . . . ,M.

However, as we consider DG methods for hyperbolic problems most of the elements

in A are zeros. In fact, for a degree of freedom k on a (finite) element E, only matrix

elements ak, j with degree of freedom j belonging to the element E or its nearest

neighbor elements would be nonzero. Let Rk be the radius of a circle with a center

coinciding with the element center of E and let Rk be large enough for the circle to

enclose the nearest neighbor elements (note that we may take Rk larger to improve

the timestep constraints, see below). This allows us write the formula above as
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(Au)k = ∑
j∈D(k,Rk)

ak ju j, k = 1, . . . ,M.

2.1 Local Exponentiation

We now define the local exponentiation of the matrix A. For a given k, we fix Rk

and form the M ×M matrix Ã(k) by copying all the rows whose row-index belong

to D(k,Rk) into the M×M zero matrix one row at a time. We write this as a matrix

operation Ã(k) = P(k)A so that P(k) is the matrix that extracts the rows in A that cor-

responds to the indices in the set D(k,Rk) and sets all the other rows to zero. In other

words P(k) is a diagonal matrix with ones in the diagonal elements corresponding to

the integers contained in the set D(k,Rk).
With Ã(k) computed we can now build one part of the approximation, Q̃ ≈ Q ≡

e∆ tA. Precisely, the kth row in Q̃ is defined to be the kth row of the matrix

e∆ tÃ(k)
.

Expressing this construction in a formula we have

Q̃T δk = (e∆ tÃ(k)
)T δk = e∆ tÃ(k)T

δk = e∆ tAT P(k)
δk, k ∈ Ω , (1)

where δk is the kth unit vector.

Remark 1 The equation (1) is defined one row / DOF at a time and the set D(k,Rk)
above is defined so that it may contain a fraction of the number of DOF in an element

as this makes the formulas short. However, in practice we work on one element at a

time and process all rows of that element, one at a time, before moving to the next

set of degrees of freedoms (rows).

Remark 2 In terms of matrix operations on the vector u, the degrees of the free-

dom in A that are to be multiplied with the corresponding entries in u should be

columns of A and one may consider the above approach but with the construction

done column-by-column instead. However, our numerical experiments show that Q̃

constructed using rows of A yields better approximation to the full exponential time

integrator Q.

Remark 3 Since the construction of the rows in Q̃ is local, depending only on de-

grees of freedom in A of the neighboring elements inside the circle of radius Rk of

the center of the element that hold the degree of freedom k, the computation for each

k can trivially be carried out in parallel.
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2.2 Exponential Locality and Decay of Discretizations of

Hyperbolic Operators

The following theorem shows that for Rk large the locally exponentiated Q̃ is close

to Q = e∆ tA in the operator norm.

Theorem 1. Let Ω = {1, . . . ,M} and let W = max
k∈Ω

|D(k,Rk)| be the largest number

of degrees of freedom included for the construction of any row. Further let m =
⌊

Rk

⌋

and Tm(z) =
∞

∑
k=m+1

zk

k!
, then

∥Q− Q̃∥ ≤ (W +1)Tm(∥∆ tA∥)≤ (W +1)e∥∆ tA∥ ∥∆ tA∥m+1

(m+1)!
.

Proof. It suffices to show the above norm estimate for the transposed matrices. First,

note that AT has the same nearest neighbor structure as A and hence AT δk is sup-

ported on D(k,Rk), that is, (AT δk) j = 0 for all j ∈ Ω\D(k,Rk). Using the triangle

inequality for the metric ρ we obtain that (AT )2δk is supported on D(k,2Rk) and by

induction (AT )nδk is supported on D(k,nRk). Then for n ≤ m we have n ≤ Rk and

hence Pk(A
T )nδk = (AT )nδk. This implies

(Ã(k)T )nδk = (AT P(k))nδk = (AT )nδk, n ≤ m, k ∈ Ω .

Next, consider an arbitrary vector u ∈ R
M such that u = ∑k∈Ω ukδk. Then

(

QT − Q̃T
)

u = ∑
k∈Ω

uk

(

QT − Q̃T
)

δk = ∑
k∈Ω

uk

(

e∆ tAT

− e∆ tÃ(k)T )

δk.

Using the Taylor series expansion for e∆ tAT
and e∆ tÃ(k)T

, we get

(

QT −Q̃T
)

u= ∑
k∈Ω

uk

m

∑
n=0

(∆ tAT )n − (∆ tÃ(k)T )n

n!
δk+ ∑

k∈Ω

uk

(

Tm(∆ tAT )−Tm(∆ tÃ(k)T )
)

δk.

Since (∆ tÃ(k)T )nδk = (∆ tAT )nδk for all n ≤ m, the first double sum in the above

equality is zero, so we have

(

QT − Q̃T
)

u = Tm(∆ tAT )u− ∑
k∈Ω

ukTm(∆ tÃ(k)T )δk.

Using the triangle inequality, the norm of the first term is easily estimated by

∥Tm(∆ tAT )u∥ ≤ Tm(∥∆ tA∥)∥u∥. To estimate the norm of the second term, we first

estimate the magnitude of its individual components. Noting that (∆ tÃ(k)T )nδk is

supported on D(k,Rk) for every n ≥ 0 and that ∥∆ tÃ(k)T∥ ≤ ∥∆ tA∥ we have
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∣

∣

∣

∣

(

∑
k∈Ω

ukTm(∆ tÃ(k)T )δk

)

j

∣

∣

∣

∣

=

∣

∣

∣

∣

∑
k∈D( j,Rk)

ukTm(∆ tÃ(k)T )δk

∣

∣

∣

∣

≤ Tm(∥∆ tA∥) ∑
k∈D( j,Rk)

|uk|, j ∈ Ω .

Then, using the Cauchy-Schwarz inequality and the fact that each disk D( j,Rk)
contains at most W points and hence each point k ∈ Ω lies in at most W distinct

disks D( j,Rk) we get

∥

∥

∥ ∑
k∈Ω

ukTm(∆ tÃ(k)T )δk

∥

∥

∥

2

≤ Tm(∥∆ tA∥)2 ∑
j∈Ω

(

∑
k∈D( j,Rk)

|uk|
)2

≤ Tm(∥∆ tA∥)2 ∑
j∈Ω

W ∑
k∈D( j,Rk)

|uk|
2 ≤ Tm(∥∆ tA∥)2W 2∥u∥2.

Combining the two estimates then yields

∥

∥

(

QT − Q̃T
)

u
∥

∥≤ Tm(∥∆ tA∥)(1+W )∥u∥.

Since u is an arbitrary vector we get

∥

∥Q− Q̃
∥

∥=
∥

∥QT − Q̃T
∥

∥≤ Tm(∥∆ tA∥)(1+W ).

2.3 Cost and Complexity for Local Exponentiation

The spatial discretization matrix A of size M ×M is a sparse matrix thus the lo-

cal discretization matrix for the k-th DOF, A(k), will be even more sparse as it is

composed of only a few of the entries in A. Moreover, as the vast majority of the

eigenvalues of A(k) will be zero the degree of the minimal polynomial M
A(k)(z) will

be very small compared to M. It is well known, [2], that if the degree of M
A(k)(z) is

mmin then the matrix exponent can be explicitly computed by the formula

e∆ tA(k)
=

mmin−1

∑
s=0

fs(∆ t)
(

A(k)
)s

,

where f0(∆ t), f1(∆ t), . . . , fmmin−1(∆ t) are analytical functions whose values can be

computed by solving a linear system of equations.

Suppose Ã(k) has m non-zero columns with at most n non-zero entries in each

column, where m,n ≪ M. Then the cost of computing all of e∆ tA(k)
would scale

as O((min{m,n})3 +min{m,n}mmin), where the first term represents the cost of

directly solving for f0, . . . and the second term corresponds to the applications of

the matrix powers of the sum to the kth unit vector. The cost of assembling all of

the rows of Q̃ would increase this by a factor of M but this is still much less than

computing e∆ tA and, again, can be trivially parallelized.
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3 Numerical Experiments in One Dimension: Maxwell’s

Equations

We consider example 2.6 from [8], Maxwell’s equations in one-dimension domain

x ∈ [−π,π]

ε(x)
∂E(x, t)

∂ t
=−

∂H(x, t)

∂x
, (2a)

µ(x)
∂H(x, t)

∂ t
=−

∂E(x, t)

∂x
, (2b)

with homogenous boundary conditions on the electric field and and initial conditions

BC : E(0, t) = E(2π, t) = 0,

IC : E(x,0) = sin(x), H(x,0) = 0.
(3)

Here E and H are the electric and magnetic fields, and ε and µ are permittivity

and permeability. To this end, we take ε(x) and µ(x) to be 1. We note that this

system assumes solutions to the three dimensional Maxwell system where the elec-

tric and magnetic fields are of the form E(x,y,z, t) = (0,E(x, t),0), H(x,y,z, t) =
(0,0,H(x, t)). The exact solution to this particular problem is the standing wave

E(x, t) = cos(t)sin(x), H(x, t) =−sin(t)cos(x).
We numerically approximate the solution with a modal DG method using Leg-

endre polynomial bases on a uniform spatial grid with n elements. The standard

upwind discontinuous Galerkin method takes the form

MEEt = SH+(H−
R −H∗)LR − (H−

L −H∗)LL, (4a)

MHHt = SE+(E−
R −E∗)LR − (E−

L −E∗)LL, (4b)

where ME and MH are the mass matrices for equations (2a) and (2b) receptively. The

numerical fluxes are E∗ = {{E}}− [H] and H∗ = {{H}}− [E], where the {{·}} and

[·] denotes the usual average and jump. The − superscript indicates that the value is

taken from the solution on the current element, and the subscripts indicate evaluation

at the left and right end points of the element. The left and right lift vectors, LLLL and

LLLR, are composed of Legendre polynomials up to the q-th order evaluated at the left

and right boundaries.

We refer to the modal coefficients as degrees of freedom of the problem. Then

Eqn (4a) and (4b) is rewritten as

ut = Au, (5)

where û contains all the degrees of freedom from both E and H. The matrix A is the

differentiation matrix for the entire system. It is observed that A is block-tridiagonal

if the degrees of freedom in u are ordered by variables. If the degrees of freedom in

u are ordered by elements, A is block-diagonal. For the rest of the paper, the former
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ordering of degrees of freedom is used. Since the system is autonomous, the exact

numerical time-stepping solution is given by

u(n+1) = exp(∆ tA)u(n) = Qu(n), (6)

where ∆ t is the time step size, u(n) is the numerical solution at time tn, and Q is

the matrix representing the exponential time integrator. All matrix exponentiation in

our numerical examples are computed using the MATLAB built-in function expm.

With the proposed local exponentiation construction in Section 2, stability of time-

stepping with the local exponentiation matrix Q̃ is investigated and the convergence

of error is compared with nTaylor-stage Taylor time-stepping method. We also com-

pare the performance of Q̃col , which is constructed using column degrees of freedom

of A, to that of Q̃row, which is constructed using rows degrees of freedom of A. While

Q̃col is more physically intuitive in terms of matrix-vector multiplication, however,

we will show that Q̃row demonstrates better approximation.

The parameters in the tests are the number of elements, denoted by n, time step

size ∆ t, the highest degree of Legendre polynomial q, and the number of neigh-

bor elements (dependent element(s)) denoted by d.e. taken on each side of the k-th

element. For the base case, the parameters take the values shown in Table 1.

Parameter Value Parameter (cont’d) Value

n 20 # of d.e. 3

q 3 # of quadrature points q+4

t f inal 20 nTaylor 4

ht , uniform 0.05hnTaylor/q

Table 1 Base testing parameter values for 1D Maxwell’s equations.

(a) (b) (c)

1 2 3 4 5

0

2

4

6
10
-3

1 2 3 4 5

-1

0

1
10
-5

1 2 3 4 5

0

5

10

15
10
-5

Fig. 1 Eigenvalue discrepancy of Q̃row v.s. # of d.e. for different (a) ∆ t/h, (b) n, (c) q. Note that

∆ t = ht in the figure.
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3.1 Comparison of Spectra

In this section, we investigate the stability of the local exponentiation time-stepping

based on the eigenvalue of the time-stepping operator Q̃. Eigenvalues with modulus

greater than 1 will lead to instability during time-stepping. Figure 1 shows ξ (.d.e) =
(|λ (Q̃)|max − 1) as a function of d.e. in the construction of Q̃ using row degree of

freedom.

The eigenvalues with imaginary part falling in (−0.01,0.01) are excluded from

the plot as those eigenvalues are not computed accurately numerically. Except for

the varying parameters, all other parameters take the base values listed in Table 1.

By varying different parameters, we also justify that our choices of base parameter

values construct a stable local exponential time integrator Q̃ with minimum cost in

its computation. In particular, Fig. 1(b) shows that the number of d.e., independent

of the refinement of the spatial discretization, is the key variable for the stability of

Q̃. Overall, the function ξ is small for high-order polynomial basis and relaxed CFL

condition. Thus the local exponentiation time stepper is expected to be stable with

appropriate combinations of d.e., ∆ t, and q.

When only one d.e. is taken on each side of each element in the construction of

Q̃, Figure 2 shows that Q̃row, in general, is a better approximation to Q than Q̃col .

The latter clearly would lead to an unstable scheme in this case but that also Q̃col

will become stable if d.e. is large enough.

-0.5 0 0.5
0.99

0.995

1

1.005

Fig. 2 Distribution of eigenvalues whose modulus is close to 1.
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3.2 Convergence Properties of the Method

The convergence of error for both row neighbors and column neighbors is investi-

gated in this section and is compared to fourth-order Taylor time-stepping. Fig. 3

shows that, compared to column degree of freedom, row degree of freedom gives

smaller error and and the error converges to the 4−stage Taylor time-stepping error

on a coarser grid. Fig. 4 shows that while both row-neighbor- and column-neighbor-

constructed local exponential time integrators show advantage in stability, the errors

are smaller with row degrees of freedom. In general, the local exponential time in-

tegrator demonstrates the possibility to take much larger time step size than that

is allowed by other numerical time-stepping methods and the method is robust so

high-order spatial approximation can be adopted.

10
1

10
2

10
-10

10
-5

10
0

Row d.e.

10
1

10
2

10
-10

10
-5

10
0

(a)

10
1

10
2

10
-10

10
-5

10
0

Column d.e.

10
1

10
2

10
-10

10
-5

10
0

(b)

Fig. 3 Error convergence with respect to n on the uniform grid: (a) L∞ errors, row degree of

freedom; (b) L∞ errors, column degree of freedom.

Base on the above observations, we conclude that in the construction of Ã(k),

rows should be taken as dependent degrees of freedom in the assembly of Q̃. In

Fig. 5, we display the error convergence versus the number of d.e. for different CFL

numbers to demonstrate the efficiency of the local exponentiation time integrator

in taming the CFL restriction which is inherited from the DG discretization. The

number of elements used is n = 100 for more prominent effect. With less than 20%

of total degrees of freedom, the local exponentiation time stepper is able to achieve

the same or smaller error compared to the explicit 4-stage Taylor time-stepping but

with 10 times larger CFL number than permitted by the Taylor time-stepping.
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0

Column d.e.(b)

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-2
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0

Fig. 4 Error convergence with respect to ht/h on the uniform grid: (a) L∞ errors, row degree of

freedom; (b) L∞ errors, column degree of freedom.

1 2 3 4 5 6 7 8 9 10

# of d.e.

10
-6

10
-4

10
-2

1 2 3 4 5 6 7 8 9 10

# of d.e.

10
-6

10
-4

10
-2

Fig. 5 Error convergence with respect to the number of d.e. with row degree of freedom on a

uniform grid.
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4 Conclusion

An approximate exponential time integrator is proposed and tested for Maxwell’s

equation in 1D. The construction of this approximate is local, leading to cheaper

computation compared to the exponential integrator and potential parallel imple-

mentations. The size and structure of the domain of dependency in constructing the

local exponential time integrator will be determined specifically based on different

physical settings. Our numerical experiments have shown that this local exponenti-

ation time-stepper is robust to high-order spatial discretization and is stable with at

least 10 times larger the CFL number required by explicit time-stepping methods.
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