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Abstract

In a novel approach employing implicit likelihood inference (ILI), also known as likelihood-free inference, we
calibrate the parameters of cosmological hydrodynamic simulations against observations, which has previously
been unfeasible due to the high computational cost of these simulations. For computational efficiency, we train
neural networks as emulators on ∼1000 cosmological simulations from the CAMELS project to estimate simulated
observables, taking as input the cosmological and astrophysical parameters, and use these emulators as surrogates
for the cosmological simulations. Using the cosmic star formation rate density (SFRD) and, separately, the stellar
mass functions (SMFs) at different redshifts, we perform ILI on selected cosmological and astrophysical
parameters (Ωm, σ8, stellar wind feedback, and kinetic black hole feedback) and obtain full six-dimensional
posterior distributions. In the performance test, the ILI from the emulated SFRD (SMFs) can recover the target
observables with a relative error of 0.17% (0.4%). We find that degeneracies exist between the parameters inferred
from the emulated SFRD, confirmed with new full cosmological simulations. We also find that the SMFs can break
the degeneracy in the SFRD, which indicates that the SMFs provide complementary constraints for the parameters.
Further, we find that a parameter combination inferred from an observationally inferred SFRD reproduces the
target observed SFRD very well, whereas, in the case of the SMFs, the inferred and observed SMFs show
significant discrepancies that indicate potential limitations of the current galaxy formation modeling and calibration
framework, and/or systematic differences and inconsistencies between observations of the SMFs.

Unified Astronomy Thesaurus concepts: Nonparametric inference (1903); Likelihood ratio test (1942);
Magnetohydrodynamical simulations (1966); Cosmological parameters (339); Neural networks (1933); Bayes’
Theorem (1924); Galaxy formation (595)

1. Introduction

The significant progress of cosmological simulations and
observations has greatly improved our understanding of a wide
variety of phenomena, such as the formation and evolution of the
large-scale structure. N-body simulations have successfully
simulated the formation and evolution of the large-scale structure
of the ΛCDM universe (Springel et al. 2005; Boylan-Kolchin
et al. 2009; Klypin et al. 2011, 2016). Furthermore, (magneto)
hydrodynamic simulations that include comprehensive subgrid
models such as star formation, stellar winds, and active galactic
nucleus (AGN) feedback have been performed in a cosmological
context and have made significant strides toward reproducing a
realistic galaxy population across a range of cosmic epochs (see
Vogelsberger et al. 2020 for a review). These include ILLUSTRIS
(Genel et al. 2014; Vogelsberger et al. 2014a, 2014b; Nelson
et al. 2015), cosmo-OWLS (Le Brun et al. 2014), MAGNETICUM
(Hirschmann et al. 2014; Ragagnin et al. 2017), HORIZON-AGN
(Dubois et al. 2014), MASSIVEBLACK-II (Khandai et al. 2015),

EAGLE (Schaye et al. 2015), BLUETIDES (Feng et al. 2016),
MUFASA (Dave et al. 2016), ROMULUS (Tremmel et al. 2017),
BAHAMAS (McCarthy et al. 2017), SIMBA (Dave et al. 2019),
ILLUSTRISTNG (Marinacci et al. 2018; Naiman et al. 2018;
Nelson et al. 2018; Pillepich et al. 2018a; Springel et al. 2018),
HORIZON RUN 5 (Lee et al. 2021), and ASTRID (Bird et al. 2022;
Ni et al. 2022).
Meanwhile, wide-field and deep surveys have identified samples

of many thousands of nearby and distant galaxies, respectively
(Aihara et al. 2018; Venhola et al. 2018; Kuijken et al. 2019;
Brunner et al. 2022). In addition, high-resolution imaging and
spectroscopy have enabled investigations into the structure and
kinematics of galaxies (Dey et al. 2019; Wang et al. 2021). These
observational breakthroughs have enabled not only access to a
plethora of galaxies from which to construct global distributions of
galaxy properties, such as cosmic star formation history (Madau &
Dickinson 2014) and galaxy stellar mass functions (SMFs) at
different redshifts (Baldry et al. 2012; Leja et al. 2020; McLeod
et al. 2021), but also the exploration of many dimensions of galaxy
properties, leading to scaling relationships such as the (baryonic)
Tully–Fisher relation (Tully & Fisher 1977; McGaugh et al.
2000, 2021), the mass–metallicity relation (Lequeux et al. 1979;
Gallazzi et al. 2005; Fontanot et al. 2021), the star-forming
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sequence (Noeske et al. 2007; Speagle et al. 2014; Leja et al.
2022), the size–mass relation (Shen et al. 2003; van der Wel et al.
2014; Mowla et al. 2019), and relations between galaxy properties
and the mass of the central massive black hole (Kormendy &
McClure 1993; Kormendy & Gebhardt 2001; Merritt &
Ferrarese 2001).

The remarkable progress of simulations and observations has
provided considerable insights into physical processes for galaxy
formation and evolution and has played a crucial role in
constraining theoretical models. However, simulations and
observations have not been fully reconciled. Contributing factors
include observational uncertainties, modeling uncertainties in the
simulations, and ad hoc comparisons. For instance, cosmological
simulations—specifically, subgrid models such as stellar winds
and black hole feedback—have generally been calibrated against
only a handful of observables through by-eye comparisons
between simulations and observations, along with educated
guesses or simple parameter-space search algorithms (Schaye
et al. 2015; Pillepich et al. 2018a; Oh et al. 2020). The limits of this
conventional calibration approach are as follows: (1) The
dimensions of the subgrid parameter space that one can cover
are significantly limited when using by-eye comparisons. In
addition, as the number of parameters of interest increases, it
becomes harder to provide educated guesses due to complex and
intertwined relations between physical models and observables. (2)
It is challenging to calibrate against numerous observables
simultaneously. (3) The accuracy of the calibrated parameters is
hard to determine due to the objective nature of the comparison
process. (4) The simulation uncertainty, due to such sources as
cosmic variance, is generally not taken into consideration.
Cosmological simulations suffer from uncertainty that comes from
various sources of randomness such as initial conditions (Genel
et al. 2014, 2019; Keller et al. 2019). This can lead to appreciable
bias in the calibration.

Similarly, semianalytical models (SAMs), which estimate
properties of the galaxy population using parameterized physical
models that include a number of free parameters, have rigorously
tuned those parameters to reproduce certain observational proper-
ties of the galaxy population using Bayesian inference together
with the Markov Chain Monte Carlo method (MCMC) (Lu et al.
2012, 2014; Benson 2014). Bayesian inference is a widely used
method of statistical inference that updates one’s knowledge—or
belief in the Bayesian sense—of the parameters by making new
observations. The majority of the problems of the conventional
calibration method for cosmological simulations can be alleviated
by the use of Bayesian inference. For instance, Bayesian inference
is conducted through the likelihood function, which can
mathematically guarantee the precision of calibration and enables
inference from numerous observations simultaneously. Also, the
probabilistic nature of Bayesian inference captures the uncertainty
of parameters through Bayes’s theorem. However, Bayesian
inference usually entails MCMC, which is computationally
expensive, for determining the posterior distribution. Moreover,
MCMC sometimes fails to retrieve a posterior distribution, usually
when the target posterior is complex and high-dimensional. In
contrast to SAMs, hydrodynamical cosmological simulations with
subgrid models are too computationally costly to be used to
perform hundreds of thousands of sequential simulations for
MCMC, rendering such an approach impossible in practice. This is
the primary reason why, despite all the merits, calibration of
cosmological simulations in the Bayesian framework has not been
conducted thus far. In addition, conventional Bayesian inference

has its limitations in terms of the need for an explicit (analytic)
likelihood. Since the likelihood should be explicitly formulated,
commonly used analytic likelihoods such as Gaussians are only an
approximation to the true unknown one.
The implicit likelihood inference approach (ILI)—also known

as likelihood-free inference or simulation-based inference—
provides a framework for performing rigorous Bayesian inference
in a computationally efficient way, especially for inferences on
computationally expensive simulations (Mohamed & Lakshmi-
narayanan 2016; Alsing et al. 2018; Papamakarios et al. 2018;
Cranmer et al. 2020; Durkan et al. 2020). In contrast to con-
ventional Bayesian inference, which requires an explicit (analytic)
formulation for the likelihood, ILI learns the likelihood—the
conditional distribution of observables given the parameters—
directly from simulated parameter–observable pairs using a
neural density estimator (NDE). NDEs are a flexible representa-
tion of the likelihood placing only mild assumptions on the
likelihood form.
On the computational cost side, the likelihood can be evaluated

through the trained NDE without performing further simulations.
The number of emulations required for the inference is equivalent
to the number of emulations for training the NDEs, which is
generally thousands of simulations (Alsing et al. 2019). In
conventional inference, although it generally depends on the
complexity of the problem, the convergent MCMC typically
requires at least 105 samples in cosmological applications (Feroz &
Hobson 2008; Trotta et al. 2011), which entails significantly more
simulations than the NDE requires. ILI has already been
vigorously exploited for inference and estimation of physical
quantities in astrophysics, for example for inference of the Hubble
constant from binary neutron star mergers (Gerardi et al. 2021),
constraints on the cosmological parameters from weak lensing
(Tam et al. 2022), mass estimations of the Milky Way and M31
(Lemos et al. 2021; Villanueva-Domingo et al. 2021), inference of
strong gravitational lensing parameters (Legin et al. 2021),
dynamical mass estimation of galaxy clusters (Kodi Ramanah
et al. 2021), and inference of reionization parameters from the
21 cm power spectrum and light cones (Zhao et al. 2022a, 2022b).
In this work, we adopt the sbi package (Tejero-Cantero

et al. 2020), the successor of the delfi package, which is
equipped with various NDEs for ILI, to calibrate cosmological
simulations against observations. We also exploit the suite of
cosmological simulations of the Cosmology and Astrophysics
with Machine Learning Simulations (CAMELS) project
(Villaescusa-Navarro et al. 2021), which includes the largest
data set designed to train machine-learning models and
provides more than a thousand simulations for exploring the
cosmological and astrophysical parameter space. Despite the
large number of simulations in the CAMELS project, it is still
not enough for directly employing our ILI technique, so we
build an emulator that is trained on the CAMELS simulations
to estimate the target observable taking the cosmological and
astrophysical parameters as input. This provides much
flexibility and reduces computational cost during inference,
which is in line with Elliott et al. (2021), who used an emulator
to calibrate a SAM. Using the emulator as a surrogate for the
actual cosmological simulations, we perform ILI using the
observed cosmic star formation history (Leja et al. 2022) and
the observed SMFs (Leja et al. 2020) to infer the parameters
that are varied in the CAMELS suite—two cosmological
parameters (Ωm and σ8) and four astrophysical parameters

2

The Astrophysical Journal, 944:67 (36pp), 2023 February 10 Jo et al.



(related to stellar wind feedback and kinetic black hole
feedback) (Figure 1).

The structure of this paper is as follows. In Section 2, we
describe the CAMELS simulations that we use to train the
emulators and the details of the target observables. In Section 3,
we give a brief review of the ILI method including the NDE
and our emulator design. In Section 4.1, we investigate the
performance and convergence of the posterior distributions of
the cosmological and astrophysical parameters inferred from an
emulated star formation rate density (SFRD) as the target
observable. In Section 4.2, we perform the inference from the
observed SFRD and study how the inferred SFRD matches the
observed one. In Section 5.1, we investigate the performance
and convergence of the posterior distributions from an
emulated SMF as the target observable and in Section 5.2,
we perform the inference from observed SMFs and study the
discrepancies between those and the inferred ones. In Section 6,
we discuss the properties of the inferred posteriors and any
mismatch between inferences and observations with respect to
the correlation between the parameter–observable pairs and
physical analysis of the cosmological simulations. In Section 7,
we present a summary of the results and findings.

2. Cosmological Simulations: The CAMELS Project

2.1. Overview

CAMELS10 is a suite of 4233 cosmological simulations:
2184 (magneto)hydrodynamic simulations with the AREPO and
GIZMO codes, and 2049 N-body simulations (Villaescusa-
Navarro et al. 2021). Each simulation contains 2563 dark matter
particles of mass 6.49× 107(Ωm−Ωb)/0.251 h

−1Me and 2563

gas cells with an initial mass of 1.27× 107 h−1Me in a
periodic box of a comoving volume of (25h−1 Mpc)3, which
results in a resolution comparable to but slightly lower than that
of the TNG300 simulation of the ILLUSTRISTNG project
(Marinacci et al. 2018; Naiman et al. 2018; Nelson et al.
2018; Pillepich et al. 2018a; Springel et al. 2018). The
CAMELS project has been exploring a wide cosmological and
astrophysical parameter space for applications of machine
learning in astrophysics. The cosmological and astrophysical
parameters of interest are Ωm, σ8, ASN1, ASN2, AAGN1, and
AAGN2 (refer to Equations (1)–(7) for details). The suite of
(magneto)hydrodynamic CAMELS simulations comprises
three different sets for each of the AREPO and GIZMO codes,
as follows: (1) the LH set consists of 1000 simulations with
different initial conditions varying all parameters sampled from
a Latin hypercube, (2) the 1P set consists of 61 simulations
with the same initial conditions varying only one parameter at a
time, and (3) the CV set consists of 27 simulations with fixed
cosmology and astrophysics that sample cosmic variance using
different initial conditions.

The simulations run with the AREPO and GIZMO codes use
the TNG and SIMBA models, respectively, and we refer to these
suites as the TNG and SIMBA runs. Throughout this work, we
adopt the TNG suites of the CAMELS simulations unless
specified otherwise. The LH set of the TNG suites is exploited
to train the emulator (Section 3.3). The CV set of the TNG
suites is used to model simulation uncertainty (Appendix B).
The 1000 simulations of the LH set are run with Ωm ä [0.1,
0.5], σ8ä [0.6, 1.0], Î [ ]A 0.25, 4.0SN1 , Î [ ]A 0.5, 2.0SN2 ,

AAGN1 ä [0.25, 4.0], and AAGN2 ä [0.5, 2.0] arranged in a
Latin hypercube. The 27 simulations of the CV set are run with
Ωm= 0.3, σ8= 0.8, and = = = =A A A A 1SN1 SN2 AGN1 AGN2
but with different initial conditions. Meanwhile, the following
cosmological parameters are fixed across all simulations:
Ωb= 0.049, h= 0.6711, ns= 0.9624, Mν= 0.0 eV, w=−1,
and ΩK= 0. The TNG suite of the CAMELS simulations
implements the subgrid physics models of ILLUSTRISTNG
(Weinberger et al. 2017; Pillepich et al. 2018a). These
simulations employ the AREPO code11 (Springel 2010;
Weinberger et al. 2020) to solve gravity (TreePM) and magneto-
hydrodynamics using a Voronoi moving-mesh approach. The
ILLUSTRISTNG physics includes various subgrid models:
radiative cooling and heating, star formation, stellar evolution,
feedback from galactic winds, the formation and growth of
supermassive black holes (SMBHs), and feedback from AGN.

2.2. Physics of Astrophysical Parameters

We have four astrophysical parameters that control the
strengths of star formation–driven galactic winds and SMBH
feedback. The star formation–driven galactic wind is isotropi-
cally injected in a kinetic form (see Pillepich et al. 2018b for
details). The winds are characterized by a mass loading factor
ηw, which is defined by

h tº = -

 ( ) ( )M

M v
e

2
1 , 1w

w

w
w w

SFR
2

where Mw and MSFR are the rate of gas mass to be converted
into wind particles and the instantaneous, local star formation
rate (SFR), respectively. With a fixed thermal energy fraction
τw, the mass loading factor is determined by the total energy
injection rate per unit star formation ew and the wind speed vw,
which involve ASN1 and ASN2, respectively, as follows:

= ´ +
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-
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-
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Details on the parameters ēw , fw,Z, Zw,ref, Z, γw,Z, NSNII, ESNII,51,
κw, σ8, and vw,min can be found in Pillepich et al. (2018a,
Table 1).
An SMBH particle with mass Mseed= 8× 105 h−1Me is

seeded on the fly at the center of any halo with mass
MFoF> 5× 1010 h−1Me that does not yet contain an SMBH.
To prevent the SMBH particles from artificially wandering
around the galaxy, they are kept close to the potential minimum
of their host dark matter halos using an ad hoc prescription.

ILLUSTRISTNG adopts Bondi–Hoyle–Lyttleton accretion
(Hoyle & Lyttleton 1939; Bondi & Hoyle 1944; Bondi 1952)
with the Eddington cap for the growth of SMBHs. The states of
the SMBHs are distinguished into high accretion (a classical
thin disk) and low accretion (hot accretion flow) based on a

10 https://www.camel-simulations.org 11 https://arepo-code.org
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threshold of
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in units of the Eddington accretion limit. According to the state
of accretion, the feedback mode is determined. For the high-
accretion state, the feedback energy is injected as pure thermal
energy into the vicinity of the SMBH (thermal mode). For the
low-accretion state, feedback energy is released kinetically in a
random direction (kinetic mode) as

=   ( )E A M c , 5low AGN1 f,kin BH
2

where

r
r

= ⎡
⎣⎢

⎤
⎦⎥

( )min
0.05

, 0.2 . 6f,kin
SFthresh

Here, ρ and ρSFthresh are the gas density around the SMBH and
the density threshold for star formation. The injection of kinetic
feedback occurs every time the accumulated energy reaches the
energy threshold from the last feedback. The energy threshold
for the kinetic feedback is parameterized as

s= ´ ( )E A f m
1

2
, 7inj,min AGN2 re DM

2
enc

where sDM
2 is the one-dimensional dark matter velocity

dispersion around the SMBH, menc is the enclosed gas mass
within the feedback sphere, and fre is a free parameter that is set
to 20 for the fiducial TNG model. AAGN2 controls the frequency
and speed of the SMBH feedback. The details of the
prescription for the SMBH physics in ILLUSTRISTNG are
described in Weinberger et al. (2017).

2.3. Target Observables: Cosmic SFRD and SMF

In this work, the observables from which the cosmological
and astrophysical parameters are inferred are the cosmic SFRD
and the SMFs. For a fair comparison between observations and
simulations, we take into consideration the consistency
between SFRD and SMFs. For instance, cosmological simula-
tions, by nature, can guarantee consistency between the
evolution of SFR and that of stellar mass. That is, the SFRD

= + ( ) ( )f z dM z dz Mreturn, where Må(z)= ∫Mf(M, z), f(M,
z) is the galaxy SMF, and Mreturn is the rate of mass return from
evolving stellar populations. On the observational side, the
consistency depends on, e.g., the modeling for each observable,
and it is not guaranteed that the SFRD and the SMFs at
different redshifts are consistent with each other (for more
details, refer to Section 5 of Leja et al. 2019).

To circumvent this, we adopt the SFRD of Leja et al. (2022)
ranging from z= 3 to 0.5 and the five SMFs of Leja et al.
(2020) at z= 0.5, 1, 1.5, 2.0, and 2.5, both of which are
inferred with Prospector-α (Leja et al. 2019) using
galaxies in the 3D-HST (Skelton et al. 2014) and COSMOS-
2015 (Laigle et al. 2016) catalogs in such a way that the SFRD
and SMFs are consistent with each other (Leja et al. 2019). The
galaxies are selected above the stellar mass completeness limit
taken from Tal et al. (2014) for 3D-HST and that from Laigle
et al. (2016) for COSMOS-2015. In the case of the SFR
estimation, the mass completeness limits are adjusted upward
by( )0.1 dex since red galaxies, which can have an impact on

SFR, are more likely to be excluded. However, Leja et al.
(2022) found that the resultant SFRD is not sensitive to these
adjustments. In addition, neither SFRD nor SMF has error bars
since the statistical uncertainties are negligible, and the true
uncertainties are systematic in nature.
On the simulation side, the SFRD is constructed from the

global SFR per unit comoving volume for 21 snapshots (21
redshifts), matching the redshifts between simulations and
observations. The SMFs are obtained from the stellar mass of
the galaxy catalog, binned into 13 bins in the range [108.9,
1011.4]Me, which Leja et al. (2020) aimed at.

2.4. Resolution Effects: Convergence and Rescaling

The resolution convergence and effects in the TNG
simulations have been extensively studied in Weinberger
et al. (2017, Appendix B), Pillepich et al. (2018a, Appendix
A), and Pillepich et al. (2018b, Section 3.3). In general,
observables such as the SMF at different resolutions are not
converged. Figure 18 shows that there is a shift of the order of
tens of percent in both SMFs and SFRDs between TNG100-1
and TNG100-2. Note that the fiducial parameters are calibrated
against observations for the TNG100 simulation of the
ILLUSTRISTNG project, and the CAMELS parameter variations
of the LH set are chosen around the fiducial values of the
TNG100 simulation. Hence, based on the approach of Pillepich
et al. (2018b, Appendix A), we rescale the SFRD and SMFs
with a mass-modulated rescaling factor. Since the resolution of
CAMELS simulations is comparable to that of TNG100-2, we
construct a rescaling factor using the SFR–halo mass relation
and the stellar mass–halo mass relation from TNG100-1 and
TNG100-2 (details in Appendix A). The rescaled CAMELS
simulations in Figure 18 demonstrate that this procedure
reduces the resolution effects at some level. One remark is that
we find that the rescaling depends on the cosmological and
astrophysical parameters. However, in this work, we ignore this
effect. Further details will be discussed in Section 6.5.1.

2.5. Uncertainties in Simulation: Cosmic Variance and
Butterfly Effects

In this section, we focus on simulation uncertainty that is
modeled as mock uncertainty and added to emulators in
Section 3.3. The simulation uncertainty is the intrinsic
uncertainty of cosmological simulations. In cosmological
simulations, randomness in the initial conditions that corre-
sponds to the density fluctuations of the early universe leads to
cosmic variance. The minute position differences of the initial
conditions owing to random seeds manifest as differences in
the large-scale structure that directly impact the galaxy
populations. On the observational side, cosmic variance can
be attributed to the limited volume of the surveys. Meanwhile,
the butterfly effect stems from the chaotic behaviors of
cosmological simulations. In dynamical systems, we can
quantify chaotic or stochastic behaviors using a quantity called
the Lyapunov exponent. If the Lyapunov exponent is positive,
the minute perturbations evolve exponentially with the
Lyapunov timescale and manifest as macroscopic differences.
The chaotic behavior of the galactic dynamical systems
amplifies minute fluctuations, seeded by randomness in
numerical computations such as stochasticity in subgrid models
and floating errors, into appreciable differences in later times
(Genel et al. 2019). Also, Keller et al. (2019) studied the
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stochasticity of galaxy properties using the particle-based code
GASOLINE and the grid-based code RAMSES. For the details
of the quantification of simulation uncertainty, refer to
Appendix B.

3. ILI with Emulator

ILI aims at identifying the regions of parameter space of
forward models to match observations (Cranmer et al. 2020;
Tejero-Cantero et al. 2020). In Bayesian terminology, ILI
retrieves the posterior distribution over the parameters given an
observation. In contrast to conventional Bayesian inference, ILI
requires no assumption or ansatz for likelihood p(x|θ) so that it
can also be applicable when analytical formulation for the
likelihood is not accessible. Here, x and θ generally stand for
observable and relevant parameters, respectively.

In this work, we adopt sbi12, a package designed to retrieve
the posterior distribution p(θ|x) (Tejero-Cantero et al. 2020).
Instead of analytical probability distributions such as the
Gaussian distribution, sbi employs a neural network to output
a probability distribution called an NDE. An NDE is a neural
network that takes data points x as input and returns a
conditional probability distribution qf̃ ( ∣ )xp over the simulation

parameters such that ò q =f̃ ( ∣ )x xp d 1, where f represents the
neural network parameters.

The sbi package also aims at training the NDE with the
lowest number of evaluations of forward models such as
cosmological simulations, which are in general computation-
ally expensive, by concentrating on the relatively small
parameter space around parameter values of interest. To this
end, we must choose the proposal distribution q(θ) from which
we draw the sets of parameters for the new simulations in the
next iteration. In general, the choice of the optimal proposal for
a specific problem is an open question. Since we are interested
in the highly probable regions of parameter space, it might be
natural to adopt the current approximate posterior density as a
proposal density (Papamakarios et al. 2018; Durkan et al.
2020). On the other hand, Alsing et al. (2018) adopted the
geometric mean of the prior and the current approximate
posterior density in the context of sequential approximate
Bayesian computation. It might increase the probability of
exploring the parameter space more broadly beyond the
posterior density.

Lastly, the sbi package provides three different ways of
computing an NDE: (1) sequential neural posterior estimation
(SNPE) trains an NDE to directly compute the posterior
distribution; (2) sequential neural likelihood estimation (SNLE)
trains an NDE to estimate the likelihood, which allows one to
evaluate the posterior distribution with the prior; and (3)
sequential ratio estimation (SRE) trains a binary classifier as an
NDE to estimate density ratios, which can be used to estimate
the posterior distribution (details will be discussed in
Section 3.2). Of the three, we adopt the ratio estimation
method because it generally requires a smaller amount of
computational resources for training an NDE than the others
do, without losing much accuracy (Durkan et al. 2020). We
have compared the performance of the three different methods
in our setup based on posteriors inferred from one of our
observables using all three methods, but any noticeable
differences cannot be found.

3.1. NDE: Learning the Density Ratio

The NDE estimates the posterior density p(θ|x) by
computing the density ratio q = =q q

q
( ) ( ∣ )

( )
( ∣ )

( )
xr , x

x
xp

p

p

p
, where

a simulator defines a valid probability density function p(x|θ)
over observations x (Sugiyama et al. 2012; Mohamed &
Lakshminarayanan 2016; Hermans et al. 2019).
Consider a binary random variable W  Y: where

Ωä {y= 0, y= 1} and each outcome is equally likely
a priori (i.e., p(y= 0)= p(y= 1)). Then,
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q q
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where the density ratio r(x, θ) is defined by q º( )xr ,
q
q

=
=

( ∣ )
( ∣ )
x
x

p y

p y

, 1

, 0
(refer to the derivation13). That is, the binary classi-

fier that computes p(y= 1|x, θ) or p(y= 0|x, θ) can be exploi-
ted to compute the ratio density r(x, θ).
In the case of the conditional probability density, the y= 1

class represents (x, θ)∼ p(x, θ), where θ is drawn from the
given prior p(θ) and x is obtained subsequently by the
simulations with the sampled parameters. The y= 0 class
consists of pairs (x, θ)∼ p(x)p(θ) with parameters and
observations sampled independently. By training the neural
classifier qf̃ ( )xp , to take (x, θ) as input and output the
probability p(y= 1|x, θ) or p(y= 0|x, θ), where f stands for
the hyperparameters (e.g., weights and biases) of the neural
network, we can compute the density ratio

q q
q

q q
q

= = =( ) ( )
( ) ( )
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x
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Therefore, if the prior p(θ) is known and can be evaluated, the
posterior density p(θ|x) can be obtained as p(θ|x)= r(x, θ)p(θ).

3.2. SRE

We employ and modify the SRE (Durkan et al. 2020)
implemented in sbi. The SRE retrieves a posterior density
using the NDE described in Section 3.1. The workflow of the
SRE is as follows (see also Algorithm 1): (1) The SRE samples
M sets of parameters θm from a prior p(θ) or a proposal density
q( n)(θ|x0) and generates M observables xm with the parameters
θm, where m= 1, K, M. (2) The SRE constructs a training set
 that consists of two classes of pairs: (xm, θm) for y= 1 and
(xk, θm) for y= 0 by permutations where k≠m, where y simply
represents a binary class (see Section 3.1). (3) The NDE

qf̃ ( )xp , is trained on  until it converges. (4) The structure of
the trained NDE is saved as an external file for future use. (5)
The posterior and proposal densities are updated as

q q qµ f( ∣ ) ˜ ( ∣ ) ( )( ) x xp p pn
0 0 and q( n)(θ|x0)∝ p( n)(θ|x0)p(θ),

respectively. (6) The SRE repeats from (1) with the newly
updated proposal. During the SRE, we use emcee14, an
MCMC package, for sampling parameters from the proposal
(Foreman-Mackey et al. 2013). However, for the final
production plots in this paper, parameters are drawn from the

12 https://github.com/mackelab/sbi

13 By definition of conditional probability, p(y = 1|x) = p(x|y = 1)p(y = 1)/p
(x). Using the law of total probability, we can rewrite it as p(y = 1|x) = p(x|
y = 1)p(y = 1)/(p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)). Since each class is
equally likely a priori, p(y = 1|x) = p(x|y = 1)/(p(x|y = 0) + p(x|y = 1)).
14 https://github.com/dfm/emcee
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externally saved NDE using zeus (Karamanis & Beutler
2020; Karamanis et al. 2021). The choice of an optimal
proposal density is a crucial element for the SRE. However,
this remains an open question. The posterior inferred in the
previous round is the most common for the proposal density
for the next round (Papamakarios et al. 2018; Durkan et al.
2020). In this work, we adopt the geometric mean of the prior
and the posterior density of the current epoch, inspired by
Alsing et al. (2018).

The SRE has two hyperparameters subject to optimization:
the number of simulations per iteration M and the number of
iterations N. Since M determines the amount of information
that the training set can carry, it can strongly affect the
accuracy of the posterior density. For instance, if M is biased,
the resultant posterior density can also be biased. M should be
set to a sufficiently large value that the sampled training set
can carry enough information about the trained posterior. We
set M empirically via many trials as follows: new 100 or 200
SFRDs that are generated by the emulator, with parameters
sampled from the proposal density, are added to the training
data set. N is directly related to the convergence and stability
of the inference. We perform the SRE without imposing a
definite N and stop it whenever there is no improvement in
training for 20 epochs—e.g., it has converged.

On the other hand, the structure of the NDE can be more
decisive and has critical hyperparameters in terms of
accuracy of the inferred posterior density. The residual
network (ResNet) is adopted as the baseline neural network
for the NDE. We determine the complexity of the NDE
depending on correlations between the parameters and
observables. Since the SMF–parameter pairs have more
strongly correlated behavior than the SFRD–parameter pairs
(Section 6.1), we adopt a deeper network for the SFRD than
for the SMFs as follows: the NDE, qf̃ ( )xp , , that we adopt for
the SFRD (SMF) is a feedforward residual network that
consists of two residual blocks of 250 (100) hidden units (for
the detailed structure of the NDE, refer to Appendix C).

Algorithm 1. Sequential Ratio Estimation

Input: Simulator q˜ ( ∣ )xp , prior q( )p , target observation x0, neural density
estimator qf̃ ( )xp , , iterations N, simulations per iteration M

Initialize: Proposal q q=( ∣ ) ( )( ) xq p1
0 , training set = {}

for n = 1 to N do
Draw q q~ ( ∣ )( ) xqm

n
0 , = ¼m M1, , ;

Simulate q~ ˜ ( ∣ )x xpm m , = ¼m M1, , ;

(Continued)

Construct È q= = ¼  {( )∣ }x m M, 1, , ;m m

while f̃p not converged do
Sample mini-batch q ~ {( )}x , ;b b

Optimize a neural density estimator qf̃ ( )xp , using stochastic gradient
descent;

end
 Save the neural density estimator qf̃ ( )xp ,

Update posterior q q qµ f( ∣ ) ˜ ( ∣ ) ( )( ) x xp p pn
0 0

Update proposal q q qµ( ∣ ) ( ∣ ) ( )( ) ( )x xq p pn n
0 0

end
Output: Posterior q q qµ f( ∣ ) ˜ ( ∣ ) ( )( ) x xp p pN

0 0

3.3. Emulator: Surrogate for Cosmological Hydrodynamic
Simulations

The number of simulations required to retrieve the posterior
density is highly correlated with the dimensions and complexity of
a problem. ILI generally requires more than( )1000 simulations
(Hermans et al. 2019; Durkan et al. 2020; Dalmasso et al. 2021;
Huppenkothen & Bachetti 2022; Figures 3 and 9 in this work),
which exceeds the total number of CAMELS simulations. We thus
circumvent this issue by adopting an emulator as a surrogate
simulation. The emulator is constructed upon a fully connected
neural network that is faster than hydrodynamic simulations by
several orders of magnitude. We split the LH set of the CAMELS
simulations into training (750), test (150), and validation (150) sets.
Six independent neural emulators are trained on the training sets to
estimate the SFRD and the five SMFs at five different redshifts
z= 0.5, 1.0, 1.5, 2.0, 2.5 as a function of six cosmological and
astrophysical parameters: sW( )A A A A, , , , ,m 8 SN1 SN2 AGN1 AGN2
(further details of the six emulators are discussed in
Appendix C). We use Optuna (Akiba et al. 2019), an automatic
hyperparameter optimization tool, to train and optimize the
emulators. The hyperparameters subject to optimization include
the learning rate, weight decay, the number of layers, and the
number of neurons. During training, both inputs (cosmological and
astrophysical parameters) and outputs (the SFRD and the SMFs)
are normalized, using linear scaling15 and the z-score16,
respectively. We measure the accuracy of the emulators with

Figure 1. Diagram for the pipeline of this work, which aims at calibrating cosmological simulations against observations. We use the CAMELS simulations
(Section 2) to train emulators (Section 3.3) that estimate SMFs and cosmic star formation history, x, taking cosmological and astrophysical parameters, θ, as input.
Using the emulators as a surrogate for cosmological simulations, we perform ILI (Section 3) from observations, x0 (Section 2.3), to retrieve the posterior distributions,
p(θ|x0), of the cosmological and astrophysical parameters given the observations.

15 ¢ = - -( ) ( )x x x x xmin max min , where ¢x is the normalized input, and xmin
and xmax are the minimum and maximum of the inputs, namely the edge values
of the parameter ranges (refer to Section 2).
16 m s¢ = -( )x x , where ¢x is the normalized output and μ and σ are the
mean and the standard deviation of the outputs, respectively.
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the mean square error (MSE) and the Pearson correlation
coefficient. The MSEs for the emulators are 0.0007 dex
(SFRD) and 0.0011 dex (SMF). The Pearson correlation
coefficients are 0.98 (SFRD) and 0.94 (SMF).

3.3.1. Connection between Emulator and Cosmological
Hydrodynamic Simulation

The emulator can be the best option for a surrogate simulation
with reasonable accuracy in terms of computational cost. However,
uncertainties of cosmological simulations such as cosmic variance

and butterfly effects are missing in our emulators since they are
based on a simple fully connected neural network that outputs
predictions in a deterministic way without having any randomness
(refer to Section 2.5 and Appendix B for details of the simulation
uncertainty). The simulation uncertainty can play a significant role
in a probabilistic inference such as ILI, especially in quantifying
uncertainty in the inferred parameters, which depends on the
uncertainty of observables. In this section, we focus on (1) how
emulators marginalize the simulation uncertainty and (2) the mock
uncertainty that is implemented in emulators to mimic the
simulation uncertainty.

Figure 2. Top right: Emulated cosmic SFRDs from the inference without the mock uncertainty. Shown are the inferred posterior (gray), the maximum of the posterior
(red dashed), and the emulator-based target SFRD (black solid). The emulator-based target SFRD is generated by the emulator taking as input one of the parameter
combinations from the LH set (details in Section 4.1.1). Bottom left: Two-dimensional distribution of the inferred posterior. The black and red crosshairs represent the
values of the target and maximum of the posterior, respectively. The marginal distributions are obtained by kernel density estimation. The black solid and red dashed
vertical lines indicate the true values and maximum values of the inferred posteriors, respectively. The inferred parameters (red dashed) and their true values (black
solid) are nearly on top of each other with small errors and variances (see Table 1 for details). The inferred SFRD and the target SFRD are also in good agreement with
a relative error of 0.17% (see Section 4.1.1).
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Table 1
Average Relative Errors d̄ , Standard Deviations σ, and Coefficients of Variation cv for Each Inference in Section 4.1

d̄ (%) σ cv
a (%)

Figure 2 Figure 3 Figure 4 Figure 6 Figure 2 Figure 3 Figure 4 Figure 6 Figure 2 Figure 3 Figure 4 Figure 6
Cnvg. U.C. S.C. Bmd. Uncrt. Cnvg. U.C. S.C. Bmd. Uncrt. Cnvg. U.C. S.C. Bmd. Uncrt.

Ωm 0.02 7.9 0.9 0.45 L 0.004 0.016 0.004 0.015 0.073 0.79 3.2 0.8 3.1 16.0
L 0.018 4.8

σ8 0.49 6.1 1.0 0.36 L 0.003 0.014 0.003 0.014 0.100 0.42 2.0 0.4 2.0 14.7
L 0.025 3.0

ASN1 1.36 18.8 6.3 0.55 L 0.014 0.043 0.015 0.042 0.353 2.33 7.1 2.5 7.0 60.7
L 0.046 4.9

AAGN1 49.8 52.1 52.1 30.8 L 0.105 0.138 0.072 0.090 1.158 40.5 53.0 27.5 26.5 450.6
L 0.039 13.1

ASN2 0.25 8.5 1.6 0.41 L 0.007 0.026 0.009 0.032 0.145 0.76 3.2 1.1 3.9 17.8
L 0.020 3.4

AAGN2 3.65 17.8 8.2 5.7 L 0.040 0.117 0.036 0.087 0.358 5.01 14.8 4.6 10.5 47.0
L 0.148 8.1

Notes. This table includes the values of the well-converged posterior (Cnvg.; see Figure 2), tests of convergence and stability of the ILI showing unstably convergent and stably convergent stages (U.C. and S.C.; see
Figure 3), the bimodal posterior (Bmd.; see Figure 4), and the posterior inferred with the mock uncertainty (Uncrt.; see Figure 6). Since the bimodal posterior has two peaks, the corresponding columns (Bmd.) include
two values.
a See footnote 18.
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First, to investigate how much the emulators marginalize the
simulation uncertainty, we use the deviation of the emulator f (θ)
from the uncertainty-marginalized ideal simulation q¯ ( )g , which
denotes the ideal, uncertainty-free, infinite-volume simulation,
defining the deviation Δ(θ)≡ q q-( ) ¯ ( )f g . We approximate
the deviation by taking an average over the ensembles of the
thousand simulations in the LH set (note that the uncertainty-
marginalized ideal simulation—e.g., the infinite-volume simula-
tion—is unobtainable). Here, two assumptions are made: (1) The
mean of the infinite number of simulation ensembles converges
to the uncertainty-marginalized ideal simulation. (2) The
simulation uncertainty is constant across the cosmological and
astrophysical parameter space. The details of the assumptions are
further described in Appendix D.

Using the deviation Δ(θ), we estimate the mean of the
deviations over the LH set that the emulators are trained on
(i.e., the bias q= áD ñ( )bLH LH) and the standard deviation over

the LH set ( qs = áD ñˆ ( )LH
2

LH ), where á ñ· LH averages over all
the parameters θ in the LH set. If bLH= 0 and s =ˆ 0LH , the
emulator perfectly marginalizes the simulation uncertainty and
the emulated prediction follows the uncertainty-marginalized
ideal simulation. In this work, the emulators have a bias of
bLH= 0.003 dex, which can indicate that the emulators predict

the observables with a relatively high accuracy on average.
However, given that the standard deviations from the emulators
(s =ˆ 0.066LH dex) and simulations (s = 0.057sim,sfr dex; refer
to Appendix D for details) are comparable, it is unlikely for the
emulators to marginalize the simulation uncertainty. In other
words, the emulator predictions are in agreement with the
uncertainty-marginalized ideal simulations on average but each
emulator prediction of a point in parameter space has a similar
variance to the simulation uncertainty with respect to the
uncertainty-marginalized ideal simulations as the actual
cosmological simulations have.
Without proper marginalization, the implementation of uncer-

tainty in the emulator leads to a greater uncertainty in the
parameters as well as in the observables. In addition, this weakens
the connection between the simulations and emulators to a large
extent in terms of physical interpretation of the parameters. Hence,
in this work, we treat an emulator as ground truth or the mean of
simulation uncertainty and implement a mock simulation
uncertainty on top of the emulator. We model the simulation
uncertainty using multivariate Gaussian noise with minor
modifications. Then, the mock simulation uncertainty—hereafter
the mock uncertainty—is added to the emulators manually (refer
to Appendix B for details of the implementation).

4. Inference from the History of the Cosmic SFRD

4.1. Inference from Emulated Histories of the Cosmic SFRD

In this section, we study the performance and properties of
ILI on the cosmic SFRD using an emulator-based SFRD rather
than an observationally driven SFRD. To this end, we use the
emulator to predict SFRDs as functions of the cosmological
and astrophysical parameters and adopt an emulated SFRD as a
target observation from which the cosmological and astro-
physical parameters can be inferred. As discussed in
Section 3.3, the emulators are adopted as surrogates for
hydrodynamic simulations and are considered to be the ground
truth throughout this work unless specified otherwise.
In contrast to deterministic approaches, probabilistic infer-

ence such as Bayesian inference and ILI has significant
flexibility in that the inferred posterior distributions can take on
versatile structures of probability distributions depending on
the nature of the problems. Probabilistic distributions have
three main beneficial aspects in our application: (i) the variance
of the posteriors can be interpreted as the error bars of the
inferred parameters (Section 4.1.1), (ii) the posterior can have
an appreciable volume of parameter space that reproduces the
same target observable within some accuracy (i.e., degeneracy;
refer to Section 4.1.2), and (iii) we can measure the confidence
interval of each parameter under the presence of uncertainty in
the observations (Section 4.1.3). Lastly, in Section 4.2, we
apply our ILI machinery to a measurement of an observation-
ally derived estimate of SFRD and study how well the inferred
posterior distribution can match the observations.

4.1.1. Performance of Inference

We first investigate the accuracy of our ILI and how stably the
inferred posterior density converges without the mock uncer-
tainty. The performance of ILI with the mock uncertainty will be
discussed in Section 4.1.3. Using the suite of CAMELS
simulations, we train an emulator that takes as input six
cosmological and astrophysical parameters θ and predicts the
SFRD x (for details, refer to Section 3.3). Then, we perform ILI to

Figure 3. The convergence of each parameter as a function of the number of
emulations used in the ILI on the emulator-based target SFRD used in Figure 2.
The red squares and gray error bars present the maximum and the standard
deviation of the posterior density. The black dashed lines show the true values.
The convergence of ILI from the SFRD is divided into an unstably convergent
stage (yellow region) and a stably convergent stage (green region) (see
Section 4.1.1). In the unstably convergent stage, the maxima of the inferred
posteriors jump around from the true values occasionally while the deviation of
the corresponding SFRDs from the target is relatively small, which leads to
degeneracy in Section 4.1.2. As the number of emulations for ILI exceeds
∼30,000, the inferred posteriors reach the stably convergent stage.
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retrieve the posterior density over the six cosmological and
astrophysical parameters θ given an emulator-based target SFRD
x0. Here, the emulator-based target SFRD x0 is generated by the
emulator with θ0 that is one of the data points in the LH set.

Shown in Figure 2 are two-dimensional projections of the
inferred posterior (bottom left) and an SFRD plot (top right)
that includes the corresponding SFRDs drawn from the
posterior as well as the emulator-based target SFRD. In this
example, a total of 40,000 emulations are used to retrieve the
posterior density p(θ|x0) (gray) given the SFRD x0 (black
solid). The location of the maximum of the posterior density17

(red dashed line or red crosshairs) matches the true value (black
solid line or black crosshairs) almost perfectly for all six
parameters with small relative errors (see Table 1 for the values
of the relative errors, standard deviations, and coefficients of
variation18). The values of the standard deviations imply that
the inferred posterior density has very small variances, in that
compared to the volume of parameter space covered by the
prior of ( )10 , the volume of the posterior density approx-
imates to -( )10 12 . In the top right panel, the SFRD from the

Figure 4. Top right: Emulated SFRDs from the inferred posterior (gray), two peaks of the posterior (red dashed and blue dotted), and the emulator-based target SFRD
used in Figure 2 (black solid). Bottom left: Two-dimensional contour projections of the inferred posterior. The inferred posterior contains two strong peaks, both of
which reproduce the SFRD well, with relative errors of 0.35% (red dashed) and 0.98% (blue dotted). This indicates a degeneracy in the SFRD (see Section 4.1.2).

17 The set of parameters giving the maximum value of the posterior density is
drawn from the MCMC samples, i.e., q q= q ( ∣ )xparg maxmax 0 .

18 The coefficient of variation, also known as the relative standard deviation, is
a standardized measure of dispersion of a probability distribution or frequency
distribution. It is usually defined as = ´s

m
c 100v , but in this work we adopt a

definition using the maximum of the posterior qmax instead of the mean μ,
namely = ´s

q
c 100v

max
.
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maximum of the posterior (red dashed line) coincides with the
target SFRD (black line) with a relative error of 0.17%. The
SFRDs from the full posterior (gray region) have an
exceedingly narrow distribution with a standard deviation of
0.003 dex.

Figure 3 illustrates the convergence of the ILI on the SFRD
and its stability. Each panel shows the maximum of the
posterior (red squares) and standard deviations (gray error bars)
of each parameter as a function of the (cumulative) number of
emulations used for training so far. The panel for ASN1 (third
row) shows that the ASN1 parameter converges to the truth
almost right after the beginning. The rest of the parameters
( sW A A A, , , ,m 8 AGN1 SN2 AGN2) can seemingly come to conv-
ergence after 10,000 emulations. However, the convergence
can be divided into two different stages: the “unstably
convergent stage” in [10,000, 33,500] emulations (yellow
region) and the “stably convergent stage” in [33,500, 50,000]
emulations (green region).

In the unstably convergent stage (yellow region), the
inferred parameters jump around occasionally without a
particular period (unstably) but rapidly return to the truth in
the next iteration (convergent). The average relative errors19,
standard deviations, and coefficients of variation over [10,000,
33,500] emulations can be found in Table 1 (first, third, and
fifth rows). All three measures above are an order of magnitude
greater than those of the converged posterior in Figure 2.
However, the mean of the relative errors of all the SFRDs,

including not only the maximum of the posteriors but also the
posteriors themselves, at the unstably convergent stage
approximates to 0.95%, which is clearly greater than that of a
single convergent SFRD (0.17%) but the value itself seems
acceptable. The most interesting feature of the stage is that
although the inferred parameters are jumping around, the
corresponding SFRDs are relatively well converging to the
truth. This is attributed to the weak correlation between the
parameters and the SFRD (see Section 6.1 for a discussion).
More importantly, this implicitly indicates the possibility of a
multimodal distribution that can reproduce the same observable
from different sets of the parameters, as further discussed in
Section 4.1.2.

On the other hand, the posterior distributions are stably
convergent with relatively small variances after ∼30,000
emulations (green region). All six maxima (red squares) for
the six parameters stably converge to the truth (black dashed
line) with the average relative errors (see footnote 10) and their
standard deviations over [33,500, 50,000] emulations. The
variances of the posterior density (gray error bars) are
convergent as well (refer to the S.C. columns of Table 1).
These values are an order of magnitude lower than the values at
the unstably convergent stage, which can be a clear sign of
transition. Also, in comparison to the values for the posterior in
Figure 2, the average relative errors of the stably convergent
posteriors are somewhat greater but the standard deviations and
coefficients of variation are comparable. That is, the peaks or
the maxima of the posteriors have appreciable scatter as
compared to the truth at the stably convergent stage, whereas
the widths of the posteriors are consistent. As for the variances,
the convergence properties not only depend on the number of

Figure 5. (a) Cosmic SFRD from the emulator, representing the posterior and its two peaks. (b) Cosmic SFRD from cosmological simulations using the points in
parameter space that are the peaks of the posterior. (c)–(h) One-dimensional projections of the inferred posterior (gray) based on Figure 4. The two peaks are drawn
with the red dashed and blue dotted lines consistent between Figure 4 and panels (c)–(h). However, the marginals of the degenerate posterior distribution in panels (c)–
(h) are reconstructed with a modified probability density, namely that which is limited to only the region within ζdegen = 0.9 in Figure 4. The gray and light gray
regions in panel (b) indicate the σ and 3σ confidence regions of the simulation uncertainty. Given that both simulated SFRDs from the two peaks lie within the 3σ
region of the simulation uncertainty, we conclude that these cosmological simulations themselves are degenerate in terms of the SFRD (see Section 4.1.2).

19 The average relative error of a parameter θ is defined as
d q q qº å - ´q q¯ ( ( ∣ ))( ) xparg max 100

N n
n1

truth 0 truth , where n enumerates over
a range of emulations in the ILI process (e.g., Figure 3) and N = ∑n1. x0 is the
target observation.

11

The Astrophysical Journal, 944:67 (36pp), 2023 February 10 Jo et al.



emulations but also differ by parameter. In the convergence of
AAGN1, there is no evident transition from unstably convergent
to stably convergent in terms of the relative errors, standard
deviations, or coefficients of variation. On the other hand,
the stellar feedback parameters (ASN1 and ASN2) converge
rapidly as soon as the training begins, leading to a seamlessly
smooth transition to the unstably convergent stage. However,
the transition to the stably convergent stage takes place
drastically both visually and quantitatively. Meanwhile, the
AGN feedback parameters (AAGN1 and AAGN2) have notable
scatter even in the stably convergent stage (green region)
as compared to the other four parameters. Hence, we can
conclude that the strengths of the correlations between each

parameter and the SFRD are in the following order: ASN1
s> W > A A AmSN2 8 AGN1 AGN2. An indication for such

correlations can also be found in Villaescusa-Navarro et al.
(2021, Figures 11 and 12).
Thus far, we have not implemented any uncertainties in the

inferences. Therefore, assuming that the emulators are injective
(one-to-one functions), a negligible variance is expected for all
six parameters, i.e., p(x, θ)= δ(x− f (θ)) and θ is unique.
However, a tiny amount of variance exists in both the posterior
and the inferred SFRDs (gray in Figure 2). This can be
attributed to (1) physical degeneracy, which is discussed in
Section 4.1.2, and (2) inaccuracy of the NDE. In both Figures 2
and 3, Ωm, σ8, ASN1, and ASN2 show high convergence and

Figure 6. Bottom left: Two-dimensional projections of the posteriors (blue) inferred from the emulator-based target SFRD used in Figure 2 with the mock uncertainty.
Top right: Cosmic SFRD from the inferred parameters (gray) and the truth (black solid). The red vertical lines indicate the maximum values of the inferred posteriors.
The mock uncertainty in ILI leads to large variances in the inferred marginal distributions compared to the sharp marginal distributions of Figure 2 inferred without the
mock uncertainty (see Section 4.1.3 and for a quantitative comparison see Table 1).
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precision for both maxima and variances whereas AAGN1 and
AAGN2 have larger variances on average. The magnitude of the
variance indicates how strongly the observable can constrain
each parameter, or how intimately each parameter and
observable correlates with the other. The greater the variance,
the weaker the correlation. Due to the weak correlations, AAGN1

and AAGN2 require more simulations to converge stably and tend
to have a larger variance than the other parameters. Never-
theless, the relative errors of both parameters and SFRDs are
less than 1% on average with a total of 34,000 emulations.

4.1.2. Bimodality in the Posterior Distribution

In this section, we present one of the bimodal posterior
distributions that can be found in the unstably convergent stage
(yellow region) in Figure 3. Figure 4 illustrates two-dimen-
sional projections of the inferred posterior (bottom left) as well
as the corresponding SFRDs from the posterior and the
(emulator-based) target SFRD (top right). The most intriguing
feature in Figure 4 is the bimodal peaks (red and blue) in the
posterior density. Not only do the two peaks exist in the

Figure 7. Top right: The inferred cosmic SFRDs (red dashed) and the observationally driven target SFRD (Leja et al. 2022) (black solid). Bottom left: Two-
dimensional projections of the inferred posteriors (gray) from the observationally driven target SFRD. The red dashed vertical lines indicate the maximum values of
the inferred posteriors in the six-dimensional parameter space. For comparison, the SFRD of the TNG100-1 simulation and the emulated fiducial SFRD of the CAMELS
simulations are drawn in the top right panel (green dotted–dashed and red dotted, respectively). The inferred SFRD matches the observed SFRD with a relative error of
4.1% and a deviation of 0.04 dex, whereas the deviation of the fiducial CAMELS SFRD from the observed SFRD is ∼0.15 dex (see Section 4.2). The inferred
cosmological parameters are quite off from common sense due to, e.g., resolution effects and degeneracies with the astrophysical parameters (see Section 6.4).
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posterior density, but they also reproduce the target observa-
tions within a barely appreciable margin of error.

We use k-means clustering to divide the posterior density
into two unimodal distributions. The k-means clustering
partitions samples into k clusters in which each sample
belongs to the cluster with the nearest mean. Each peak is
defined by the center of each cluster. The relative errors of the
two SFRDs with respect to the true SFRD are 0.35% for peak
1 and 0.98% for peak 2. Peak 2 has slightly larger errors than
peak 1 but they are still less than 1%. Furthermore, peak 1 (red
dashed) accurately coincides with the truth (black solid) with
small relative errors (see Table 1). We measure the standard

deviations and coefficients of variation with respect to each
peak by using the result of the k-means clustering (see
Table 1). There is no marked difference between the variances
of peak 1 and peak 2. The level of deviation is slightly higher
than that of the stably convergent posterior in Figure 2 but
similar to those of the unstably convergent ones shown in
Figure 3.
Having two strong peaks in the posterior distribution is the

result of a physical degeneracy, namely a situation where more
than a single set of parameters reproduces the same observable.
To study this, we propose a definition of degeneracy in a
mathematically consistent way using a given posterior

Figure 8. Top right: Emulated SMFs from five different redshifts from the inferred posterior (gray), the maximum of the posterior (red dashed), and the emulator-
based target SMFs (black solid). Here, the emulator-based target SMFs are generated by the emulator with the same set of parameters that is used in Section 4.1 and
Figure 2. Bottom left: Two-dimensional projections of the inferred posterior. The black and red crosshairs represent the values of the target and the maximum of the
posterior, respectively. The black solid and red dashed vertical lines indicate the true values and the maximum values of the inferred posterior, respectively. The
inferred parameters (red dashed) and true values (black solid) are nearly on top of each other with small errors and variances (see Table 2 for details). The inferred
SMF and the target SMF are also in good agreement with a relative error of 0.4% (see Section 5.1).
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distribution. The set of degenerate points in parameter space,
Θdegen, is defined such that it satisfies ò q q z=

qÎQ
( )p d thres

degen
,

where p(θäΘdegen)> p(θ∉Θdegen), assuming that the inferred
posterior distribution p(θ) is normalized. Here, zthres is a free
parameter, and the degenerate parameter set Θdegen collects
parameters according to their probability density in descending

order until the integration of the probability over the degenerate
set becomes equal to ζdegen (refer to Appendix E for a precise
and detailed definition). In this work, we set ζdegen to 0.9. Also,
every two-dimensional projection of posterior distributions in
this paper includes a contour line for ζdegen= 0.9.
Shown in Figure 5(c) are the marginals of the degenerate

posterior distribution that is reconstructed with the probability
density only enclosed within ζdegen= 0.9 through the Gaussian
kernel density estimation. On the other hand, the two peaks
(red dashed and blue dotted) are identical to the ones in
Figure 4, which illustrates details of the posterior distribution
with z = 0.9thres (black dotted contour) in the two-dimensional
projection plot (bottom left). The two emulated SFRDs that
correspond to the two peaks of the posterior distribution (red
dashed and blue dotted) in panel (a) are approximately on top
of each other. The distribution of SFRDs (gray) is also
sufficiently concentrated with a variance of 0.003 dex that is
similar to that of the SFRDs from the stably convergent
posterior in Figure 2. Hence, we can conclude that the two
peaks are degenerate in terms of the emulated SFRDs.
However, the presence of degeneracy in the emulated SFRD

does not necessarily demand that a degeneracy exists in the
actual cosmological simulations as well. Therefore, we test this
with new simulations. Panel (b) in Figure 5 shows the
simulated SFRDs obtained with each set of parameters from
the two peaks (red dashed and blue dotted). Here, we
investigate whether the two sets of parameters are also
degenerate in the simulations given the simulation uncertainty
(see Section 2.5). We use ±1σ (gray) and ±3σ (light gray)
regions that correspond to 68.1% and 99.7% confidence levels
assuming that the simulation uncertainty follows the Gaussian
distribution, respectively. The standard deviations of the
Gaussian distribution are directly calculated from the suite of
simulations in the CV set along the redshift (refer to
Appendix B). In panel (b), the simulated SFRDs from the
parameter combinations corresponding to the degenerate peaks
are consistent within 1σ. Thus, the two simulated SFRDs are
highly likely to be degenerate, sharing the same parameters,
while having small discrepancies originating from the simula-
tion uncertainty.
Above all, the emulator result demonstrates clear signs of

degeneracy in the SFRD having two approximately identical
SFRDs from two different sets of parameters. On the

Table 2
Average Relative Errors d̄ , Standard Deviations σ, and Coefficients of Variation cv for Each Inference in Section 5.1

d̄ (%) σ cv (%)

Figure 8 Figure 9 Figure 8 Figure 9 Figure 8 Figure 9

Cnvg. Stb. Cnvg. Stb. Cnvg. Stb.

Ωm 0.15 1.4 0.006 0.007 0.9 0.2

σ8 0.01 0.3 0.002 0.002 0.2 0.1

ASN1 0.08 1.2 0.024 0.022 2.7 2.6

AAGN1 4.9 34.1 0.076 0.076 17.7 4.9

ASN2 0.72 0.6 0.006 0.006 0.6 0.7

AAGN2 0.12 1.9 0.018 0.028 2.3 20.2

Note. This table includes the values of the well-converged posterior (Cnvg.; see Figure 8) and of tests of the convergence and stability of ILI (Stb.; Figure 9).

Figure 9. The convergence of each parameter as a function of the number of
emulations for ILI from emulator-based target SMFs. The red squares and gray
error bars represent the maximum and the standard deviation of the posterior
density. The black dotted lines show the true values. The posteriors inferred
from the SMFs rapidly and stably converge (see Section 5.1 and Table 2).
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simulation side, cosmological simulations with the two sets of
parameters also produce two SFRDs that are close to each
other, though the simulation uncertainty leads to small but
notable differences in the simulated SFRDs, which are
nevertheless not statistically significant. The SFRD lies
approximately inside the 64.8% (1σ) confidence regions and
is completely enclosed within the 99.7% (3σ) confidence
regions of the simulation uncertainty. This is strong evidence
that both emulator and cosmological simulations have
degeneracies in the SFRD, in spite of the emulator not being
a perfect representation of the simulations.

4.1.3. Response to Mock Uncertainty

Thus far, we have performed ILI without including any
uncertainty in the forward model, namely the emulator, but
such uncertainties do exist in full cosmological simulations, as
discussed in Section 2.5. In this section, we include the
simulation uncertainty that originates from various sources of
randomness in the cosmological simulations using the mock
uncertainty on top of the emulators (refer to Section 3.3.1 and
Appendix B for a technical description of the mock
uncertainty).

Shown in Figure 6 are two-dimensional projections of the
posterior density inferred from the emulated SFRD (bottom
left) with the mock uncertainty. The mock uncertainty that we
impose is modeled to have the same standard deviation as the
simulation uncertainty (see Appendix B). In comparison to the
inferences without the mock uncertainty, the posterior densities
inferred with the uncertainty cover much larger regions of
parameter space (see Table 1). In comparison to Figure 4, the
bimodal peaks are merged to a single oval or banana-shaped
distribution (bottom left). Although the deviations of the
inferred AAGN1 and AAGN2 become notable, the relative error of

SFRD is 1.0%, and the deviation is only 0.0044 dex. The
variance of the inferred SFRDs (0.057 dex) is comparable to
the variance of the mock uncertainty (0.061 dex). This
demonstrates that the inferred posterior densities and the
corresponding observables successfully reproduce the mock
uncertainty in terms of the variances. Thus, concerning the
uncertainty propagation from observation to parameters, the
variance of the inferred parameters can be reliable. On the other
hand, the inclusion of the mock uncertainty has led to an
increase in the standard deviation of the posterior as well as in
the relative errors of the inferred observables with respect to the
truth. However, given the size of the standard deviations, the
inferred parameters are still accurate. We can relate it to the
stochasticity of sampling of the mock uncertainty. In every
iteration of the ILI, additional training data (x, θ) is generated
from the proposal density. Here, the observable x is emulated
as a function of the sampled parameters together with the mock
uncertainty Z(η). Due to the finite size of sampling, the mean of
observables há + ñ( )x Z samples cannot be the same as the ideal
(theoretical) mean há + ñ = á ñ( )x xZ , leading to a bias in the
sampled data. Notice that for an infinite number of samples (the
ideal case), há ñ =( )Z 0 since Z(η) is a Gaussian noise that has a
mean of zero. The bias in the newly generated training data is
highly likely to result in the inaccuracy of the inferred posterior
density.

4.2. Inference from the Observed SFRD

We now apply our framework to actual observational data.
Here, we perform ILI from the observationally driven SFRD of
Leja et al. (2022) with an identical setup to that in the previous
section, which includes the mock uncertainty. Figure 7
illustrates two-dimensional projections of the posterior density
inferred from the observed SFRD. Note that we do not include

Figure 10. Comparison between the true values and the corresponding inferred values from the posteriors for 100 SMFs generated by the emulator using 100 different
combinations of parameters without mock uncertainty. Each red square represents the maximum value of the inferred posterior against its true value. Each gray bar
represents the standard deviation of the inferred posterior. The black solid line represents “inferred equals true.” ILI can infer parameters from SMFs accurately with a
relative error of ∼1% on average across the parameter space (see Section 5.1).
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the uncertainty of the observation data (see Section 2.3); rather,
only the mock uncertainty is adopted. The observed SFRD
(black solid) lies completely within the region of the inferred
SFRDs (gray), and also the SFRD from the maximum of the
posterior (red dashed) matches it with a relative error of 4.1%.
The standard deviations and the coefficients of variation are
(0.040, 0.039, 0.224, 1.475, 0.078, 0.181) and (8.3%, 5.6%,
37.1%, 566.9%, 9.7%, 23.0%), respectively (for comparison,
see Table 1).

This can be thought of as a successful inference given that
the emulated fiducial SFRD in Figure 7 (red dotted) shows
entirely different trends from the target observation over all
redshifts, with an average deviation of ∼0.1 dex and a relative

error of 22.8%. Here, the emulated fiducial SFRD is an SFRD
generated by the emulator from the fiducial parameters. Despite
the huge discrepancy between the fiducial SFRD and the target
observation, the inferred SFRD follows the observation
relatively well with a mean deviation less than 0.02 dex
(relative error of 4.1%) and even matching the observed peak
precisely. That being said, not only do the inferred parameters
(red crosshairs) have significant discrepancy with the standard
values (e.g., standard cosmology), but also the posterior
distribution itself hardly includes the standard values. This
inconsistency mostly stems from several reasons such as
resolution effects and degeneracy between the cosmological
and astrophysical parameters, but not from the inference

Figure 11. Top right: The SMFs from the inferred posteriors (gray and red) and the observationally driven target SMFs (black). Bottom left: Two-dimensional
projections of the inferred posteriors for the observationally driven target SMFs from five different redshifts (z = 2.5, 2.0, 1.5, 1.0, and 0.5) (Leja et al. 2020). The red
vertical lines indicate the maximum values of the inferred posterior. The inferred SMFs and the target SMFs show considerable discrepancy with a relative error of
41.1% (see Section 5.2.1).
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procedure (see Section 6.4 for details). In short, the fiducial
astrophysical parameters of the CAMELS simulations were
obtained by calibrating the TNG100-1 simulation to the
observations. However, the fiducial CAMELS simulation and
TNG100-1 simulation show nonnegligible discrepancy due to

the resolution effect and simulation box size (Section 6.5.1).
This would inevitably lead to a discrepancy between the
inferred parameters and the standard values even in the
hypothetical case of inference from the same observations
against which TNG100-1 was calibrated. In addition, our target

Figure 12. Two-dimensional projections of the posteriors inferred from the individual (observationally driven target) SMFs (Leja et al. 2020) at three different
redshifts: z = 0.5 (top left, sky blue), z = 1.5 (bottom left, violet), and z = 2.5 (bottom right, red). The top right panel shows three inference results from the
observationally driven target SMFs (thick black solid) at different redshifts z = 2.5 (left), 1.5 (middle), and 0.5 (right). Here, the thin black solid lines are the observed
SMFs that are not involved in the inferences at a particular redshift. The dashed, dotted–dashed, and dotted lines are the emulated SMFs at z = 0.5, 1.5, and 2.5 from
the maximum of the posteriors inferred from the observed SMFs at z = 0.5 (dark blue), 1.5 (dark violet), and 2.5 (dark red), respectively. The relative errors of each
SMF with respect to each observationally driven target SMF are 17.7% for z = 2.5, 10.3% for z = 1.5, and 10.3% for z = 0.5. Compared to that of the inference from
the concatenated SMFs, the accuracy is increased, but still, the inferred SMFs cannot precisely match the observationally driven target SMFs compared to the SFRD
case (see Section 5.2.2).
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SFRD and SMFs (Leja et al. 2020, 2022) are different from
those used for calibrating TNG100-1. Lastly, inconsistency of
cosmological parameters can be attributed to the compensatory
reaction to lack of some astrophysics (e.g., Sections 5.2.2
and 6.4.1).
In the case of inference from observations, the intrinsic limit

of the emulators should also be accounted for. The most
significant difference between the inferences from the emulated
SFRD and observed SFRD is that any emulated SFRD can be
predicted precisely by the emulator for sure, whereas we cannot
ensure whether there exists a data point in parameter space that
can reproduce the observation perfectly. We can define the
image of the emulator as the set of all SFRDs and SMFs it can
produce (and similarly for simulation predictions). The image
of an emulator might not coincide with the set of all physically
possible SFRDs, including observed SFRDs: it is a codomain
of the SFRDs. In other words, emulators and simulations might
not be able to reproduce any possible universe. A necessary
condition for successful precision inference is that the observed
SFRD is a member of the image of the emulator. Concerning
the limit of the emulator and the simulations that the emulator
is trained on, there are fundamental issues, e.g., (1) the limited
dimensions of the parameter space (domain), (2) the gap
between the emulators and the simulations, and (3) the limits of
physical models in simulations. The above will be discussed in
Section 6.4.

5. Inference from SMFs

We now turn to inference on SMFs as the target observable.
We study the dependence of the properties of the ILI and the
inferred posteriors on the choice of observable with a
comparison to the cosmic SFRD. The latter covers the
evolutionary history of the universe ranging from z= 3 to
z= 0.5 whereas a single SMF contains information of only one
iteration. To be consistent with the SFRD, we concatenate five
SMFs at z= 0.5, 1.0, 1.5, 2.0, and 2.5 and each SMF is binned
with 13 bins in the mass range [108.9, 1011.4]Me (refer to
Section 2.3). Hereafter, “SMFs” denote the five concatenated
SMFs from the five different redshifts throughout the paper
unless specified otherwise. In Section 5.1, we first investigate
the performance and convergence of the inference on the

emulator-based target SMFs compared to those of the SFRDs.
Then, we perform ILI from observationally driven five
concatenated SMFs (Section 5.2.1). Finally, in Section 5.2.2,
we study ILI from one individual observationally driven SMF
(at a single redshift) at a time.

5.1. Inference from Emulated SMFs

We first investigate the performance of ILI and how stably
the inferred posterior converges in terms of the SMFs. As in
Section 4.1.1, we train emulators that take as input six
cosmological and astrophysical parameters θ and predict the
SMFs x (for details, refer to Section 3.3). Using the emulators,
we perform ILI to retrieve the posterior density for six
cosmological and astrophysical parameters θ given the
emulator-based target SMFs x0.
Shown in Figure 8 are two-dimensional projections of the

inferred posterior (bottom left) and emulated SMFs from the
posterior along with the emulator-based target SMFs (top
right). Here, the emulator-based target SMFs x0 are generated
by the emulator with the parameters that we use to generate the
emulated SFRD in Section 4.1. A total of 6000 emulations are
used to retrieve the posterior density p(θ|x0) given the
emulator-based target SMFs x0. The maximum of the posterior
density (see footnote 8) (red dashed line or red crosshairs)
matches the true value (black solid line or black crosshairs)
nearly perfectly for all six parameters (see Table 2 for details).
In the top right panel, the SMFs from the maximum of the
posterior (red dashed) coincide with the true SMFs (black
solid) with a relative error of 0.4%. The SMFs from the full
posterior (gray region) have an exceedingly narrow distribution
with a mean standard deviation of 0.007 dex. In comparison to
those of the SFRD in Section 4.1.1, the relative errors of the
SMFs are slightly better except for ASN2, whereas the standard
deviations of the SMFs are comparable to those of the SFRD.
In general, the error of inference—e.g., relative errors—and the
size of the uncertainty region—e.g., standard deviations—can
be related to the correlation between the parameters and the
observable. We discuss why ASN2 can be more precisely
predicted from the SFRDs in Section 6.1, where we show how
surprisingly the errors presented here are well explained by the
correlations.

Table 3
The Maximum of the Posteriors, qmax, in Figures 11 and 12 and the Standard

Deviations σ with Respect to the Maximum of the Posteriors

Ωm σ8 ASN1 AAGN1 ASN2 AAGN2

qmax ALLa 0.18 0.64 0.26 0.27 0.73 1.50

z = 0.5 0.22 0.97 0.41 1.50 0.51 0.52

z = 1.5 0.10 1.00 0.47 0.25 0.58 1.63

z = 2.5 0.11 1.00 0.72 2.77 0.83 0.61

σ ALLa 0.02 0.01 0.03 0.31 0.10 0.22

z = 0.5 0.02 0.04 0.11 1.32 0.18 0.71

z = 1.5 0.01 0.03 0.04 1.38 0.04 0.35

z = 2.5 0.05 0.03 0.11 1.02 0.06 0.82

Note.
a The parameters are inferred from all five redshifts simultaneously (red
crosshairs in Figure 11).

Table 4
The MI between the Parameters and Observables (First–Fourth Rows)

Ωm σ8 ASN1 AAGN1 ASN2 AAGN2

SimSFR 1.19 0.62 0.54 0.29 2.11 1.43

SimSMF 12.5 9.27 36.9 1.17 4.69 0.41

EmuSFR 11.4 6.82 30.0 0.7 17.1 0.85

EmuSMF 14.6 12.8 41.4 1.49 5.79 0.30

δsfr (%) 0.20 0.49 1.36 49.8 0.25 3.65

δsmf (%) 0.15 0.01 0.08 4.9 0.72 0.12

Note. The relative errors δ of the convergent SFRD and SMFs are from
Sections 4.1.1 and 5.1, respectively (fifth and sixth rows). Sim and Emu stand
for “simulated” and “emulated.” The values of the MI are multiplied by 100 for
convenience and the unit for the relative error is percentage. Note that the
higher the MI is, the more strongly the parameter–observable pairs are
correlated, whereas the MI is zero when they are independent.
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Figure 9 illustrates the convergence and its stability for the
inference from the emulated SMFs. Each panel shows the
maxima (red squares) and variances (gray error bars) of the
posterior for a given parameter as a function of the
(cumulative) number of emulations used for training so far.
All six maxima (red squares) stably converge to the true values
(black dotted lines) over [4800, 8000] emulations (see Table 2
for details). Hence, the convergence of the inference requires at
least ∼4000 emulations.

In contrast to the case of the SFRD, an unstably convergent
stage is absent in the SMFs. To be stably convergent, the SMFs
require only 4000 emulations whereas ∼40,000 emulations are
needed for the SFRD, an order-of-magnitude difference.
Moreover, the average variances at the stably convergent
stage, s ~ ¯ ( )1smf for the SMFs and s ~ ¯ ( )10sfrd for the
SFRD, demonstrate that the SMFs converge with less
fluctuation. Hence, we conclude that the SMFs converge far
more rapidly and stably to the truth compared to the SFRD.
Furthermore, the NDE of the SFRD has more hidden units
(Nhid,sfrd= 250) than that of the SMFs (Nhid,smf= 100). Given
that the more neurons there are, the more easily a parameter
converges, we can conclude that the SMF–parameter pairs are
more easily and tightly mapped than the SFRD–parameter
pairs. This indicates that the degree of correlation between the
SMFs and the parameters is stronger than that between the
SFRD and the parameters (as discussed further in Section 6.1).

We also investigate the accuracy of the inference for various
SMFs over the parameter space. Figure 10 shows the maxima
(red squares) and variances (gray error bars) of 100 posterior
densities inferred from 100 emulated SMFs. Here, the 100
SMFs are generated by the emulators with 100 randomly
sampled sets of parameters from the LH set (refer to Section 2).
We consistently perform the ILI with a total of 4800 emulations
over all 100 SMFs without any further convergence tests. Due
to computational cost, the minimal (necessary but perhaps not
sufficient) number of emulations for convergence is adopted20,
deduced from the previous convergence test in Figure 9. Most

maxima (red squares) are on top of the ideal prediction
line (black solid line) or are indistinguishably close to it.
The average relative errors (see footnote 10) of the maximum
are (1.1± 1.2, 0.2± 0.2, 1.3± 2.2, 4.0± 8.5, 0.6± 0.8,
1.8± 3.4)%. These values are in line with the relative errors
from the convergence test. Thus, the ILI can be performed on
the SMFs stably with relatively small, constant errors
regardless of the choice of parameters.

5.1.1. No Response to Uncertainty

We perform ILI on the SMFs with the mock uncertainty (for
details of the mock uncertainty for the SMFs, refer to
Section 3.3 and Appendix B). However, unlike the case of
the SFRD in Section 4.1.3, which shows appreciable variances
in the inferred posterior, the posterior density inferred from the
SMFs with the mock uncertainty is essentially identical to the
posterior density inferred without the mock uncertainty. Since
we cannot tell any difference both visually and quantitatively,
the corresponding figure for the with-uncertainty case is not
presented. In Section 6.3, we explain this result by studying in
detail how the inferred posteriors respond to various types of
uncertainties and which type of uncertainty is suitable for ILI.

5.2. Inference from Observed SMFs

5.2.1. Five Concatenated SMFs

Figure 11 shows two-dimensional projections of the poster-
ior density inferred from the observationally driven target
SMFs (Leja et al. 2020) (bottom left) and the corresponding
SMFs (top right). The discrepancy between the observation
(black solid) and the maximum of the posterior (red dashed) is
considerable with a mean relative error of 41.1% over all mass
ranges. The discrepancy of the high-mass end of the SMFs is
dominant with the relative error for stellar masses 1011Me
being ∼80.9% versus 13.7% at the lower-mass end. The high-
mass end (8× 109Me) of the observed SMFs is located
completely outside the region of the SMFs from the full
posterior (gray) across all five redshifts. The size of the
population of massive galaxies in the observed SMF is far
greater than that in the inferred SMFs.
At the low-mass end, even though the observed SMFs lie

within the gray region, the emulated and observed SMFs have
different, distinct characteristics: (1) different slopes at high
redshift and (2) different evolutionary rates. At z= 2.5 and
z= 2.0, the slopes of the inferred SMFs are notably steeper
than those of the observed SMFs. The observed SMFs do not
show appreciable differences in slope across the redshifts,
whereas the slopes of the inferred SMFs become less steep as
redshift decreases. Also, there is a significant difference in the
evolutionary rates of the SMFs. The evolution of the inferred
SMFs is barely notable, but apparent growth can be seen in the
observation. For example, the differences between the SMFs at
Må= 108.9Me at z= 2.5 and z= 0.5 are 0.20 dex for the
inference and 0.47 dex for the observation.

5.2.2. Three Individual SMFs

To isolate the problem, we perform inferences from one
SMF at a time for each selected redshift (z= 0.5, 1.5, and 2.5)
separately. Figure 12 illustrates the three posterior densities
inferred from the observed SMFs (thick solid lines) at z= 0.5
(sky blue), z= 1.5 (violet), and z= 2.5 (red) and the

Figure 13. MI of the SMF at z = 0.5 (solid) and 2.5 (dotted) and each
parameter as a function of stellar mass. Each colored line indicates the MI
between one parameter and the SMF.

20 For the same reason, we cannot produce this plot for the SFRD since the
SFRD requires significantly more simulations than the SMFs and owing to the
numerous hidden units of the NDE for the SFRD, the computational time is at
least 10 times greater than that of the SMFs.
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corresponding SMFs (top right). The separate inferences lead to
significantly higher accuracy than the previous inference, with
relative errors of the SMFs of 17.7% for z= 2.5, 10.3% for
z= 1.5, and 10.3% for z= 0.5 (the relative error of the previous
inference is 31.4%). In comparison to that in the previous
inference (Figure 11), the loci of the posterior densities are
notably different, especially in σ8 and ASN1 (refer to Table 3).
The standard deviations of the AGN parameters in Figure 12
are notably larger than those from the inference based on the
five concatenated SMFs in Figure 11, whereas the standard
deviations of the inferred SMFs are similar. This might indicate
that the impact of the AGN parameters on the SMFs is trivial.
In general, the impact of the AGN parameters on the SMFs is
negligible in this analysis, given the extensive variances that
cover almost the entire parameter space. The average variances
of AAGN1 and AAGN2 over the three redshifts are 1.23 and 0.62,
whereas the variances of the other parameters are less than 0.01
on average.

The σ8 values from the separate inferences are considerably
higher than those from the combined-SMF inference in
Section 5.2.1, whereas Ωm shows relatively small changes. In
both emulators and simulations, the AGN parameters only have
a minor effect on the stellar populations of galaxies
(Section 6.1). As a compensatory action, the emulated
universes exploit the cosmological parameters, especially σ8,
to control the populations of massive galaxies in the context of
structure formation. Meanwhile, to sustain the density of low-
mass galaxies, stronger supernova feedback is required, which
we can see in Figure 12 as increases in ASN1.

In the top right panel of Figure 12, each of the three
subpanels corresponds to the inference based on an observed
SMF from a different redshift, zobs = (0.5, 1.5, 2.5) (thick black
curves). The SMFs generated by the emulators for zemu= (0.5,
1.5, 2.5) with the maximum of the corresponding posteriors are
drawn as dashed, dashed–dotted, and dotted curves, respec-
tively, and in each panel the presented SMFs for the
corresponding redshift sample the full posterior in thin colored
curves that appear largely as continuous shaded regions. Note
that we have three independent emulators that estimate the
SMFs at three different redshifts. For example, the emulated
SMF at z= 0.5 from the maximum of the z= 1.5 based
posterior (bottom left, violet) is drawn with a dark violet
dashed line in the middle subpanel. Each subpanel exhibits the
discrepancies of the slope and evolution of the SMFs across
different redshifts from a single posterior. Notice that although
the separate inferences can predict observations with much
improved accuracy as compared to the inference from the
combined SMFs, the discrepancies are not resolved. Further
discussion of the discrepancies between inferred SMFs and
observed SMFs can be found in Section 6.4.1.
On the simulation side, the significant mismatch between

the inference and observation can be attributed to the
following: (1) the limited volume of simulations, (2) the
low resolution of the simulations and the failure of rescaling,
(3) limitations of the physical models of the simulations, and
(4) inaccuracy of the emulators. The size of the simulation is
directly linked to the level of simulation uncertainty that we fail
to realize in the SMFs (refer to Sections 5.1.1 and 6.3 for
details). Since we cannot account for the simulation uncertainty,

Figure 14. Simulated SMFs at z = 0.5 from the 1P set (higher parameter values with bluer curves and lower values with redder curves), from the fiducial parameter
combination (black solid), and without AGN feedback (black dashed). The light gray region indicates the 3σ region of the simulation uncertainty. The variations of
Ωm, σ8, ASN1, and ASN2 (left and middle panels) lead to considerable changes in the SMFs, whereas the variations of AAGN1 and AAGN2 (right panels) have a negligible
impact on the SMFs. However, the inclusion of kinetic AGN feedback obviously has an impact on the SMF by comparison between the weakest AGN feedback
(reddest) and no AGN kinetic feedback (black dashed) (see Section 6.1.1 for details).
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the inference results suffer from sampling bias. Also, lack of
massive galaxies is prevalent in low-resolution simulations
(Appendix A in Pillepich et al. 2018a, 2018b; Appendix A in
this paper). Even though we apply rescaling to alleviate the
resolution effects, the rescaled SMFs are still subject to
resolution convergence (refer to Appendix A). Inside the
parameter space that we adopt in this work, there might not
exist a set of parameters that can reproduce the observations
simultaneously across redshifts. Lastly, since we use the
emulators as a surrogate for cosmological simulations, the
inference results are also limited by the accuracy of the
emulators. Note that observational uncertainties, such as
systematic biases and physical limits, can also be crucial factors
for the mismatch but will not be discussed in this paper.

6. Discussion

6.1. Correlations between Observables and Parameters

Correlations that measure how dependent two variables are
on each other play a significant role in mapping between the
domain (input) and codomain (output). The accuracy of
machine learning can be proportional to the degree of
correlation between input and output features. For example,
the less correlated they are, the larger the variances are and
vice versa. In this work, we have already encountered several
trails of the correlation between parameters and observables in
the inference results. One of the most evident examples is that
the SFRD requires ( )104 simulations to reach stable
convergence, whereas only ( )103 simulations are sufficient
for the SMFs (see Sections 4.1.1 and 5.1 for the SFRD and the
SMFs, respectively). In other words, with the same size of
training data, i.e., the same number of emulations, the SMF

would have attained a more accurate posterior with a smaller
variance.
For a quantitative analysis, we measure the correlation

between parameters and observables using mutual information
(MI), which is a fundamental measure of the interdependence
or relationship between two variables. In contrast to linear
correlation coefficients, such as the Pearson correlation
coefficient, MI captures nonlinear statistical dependencies
(Kinney & Atwal 2014). MI is defined by

= Ä( ) ( ) ( )I X Y D P P P, , 10XY X YKL

where DKL( · ∥ · ) is the Kullback–Leibler divergence21, and
PXY and PX are the joint and marginal distributions,
respectively. Here, ⊗ denotes the outer product that spans the
probability space from X and Y to (X, Y). I(X, Y) quantifies the
statistical distance between the joint probability and the product
of marginals. The MI is zero if and only if X and Y are
independent.
However, the estimation of MI is challenging and only

tractable for discrete variables or when probability distributions
are known (Paninski 2003). Thus, we adopt the MI regression
function in the sklearn package (Kraskov et al. 2004;
Pedregosa et al. 2011; Ross 2014). Using the package, we
estimate the MI for (1) simulated observables and parameters
from the LH set, and (2) emulated observables and parameters
from the LH set. Here, the observables and the parameters are
normalized to reduce the effects of the difference in magnitude
of values in the same way that is used to train the emulator
(Section 3.3).

Figure 15. (a) SMFs from the emulator. (b) SMFs from the cosmological simulation. (c) One-dimensional projections of the inferred posterior based on Figure 4. The
two peaks that produce nearly identical SFRDs that are degenerate in Figure 4 are drawn with red dashed and blue dotted lines consistently. For details, refer to
Section 4.1.2. Note that there exists an offset between the emulated SMFs and simulated SMFs. This is because the emulated SMFs are rescaled, whereas the
simulated SMFs come right from the cosmological simulations. Given that both simulated and emulated SMFs from the two peaks lie outside the 3σ region of the
simulation uncertainty, the degeneracy can be broken with the SMFs (see Section 6.2).

21 The Kullback–Leibler divergence is defined as DKL(P∥Q) ≡
å Î ( ) ( ( ) ( ))P x P x Q xlogx or ò-¥

¥
( ) ( ( ) ( ))p x p x q x dxlog . This is also referred

to as the statistical distance between Q(x) and P(x).
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Figure 16. The upper six panels show the SMFs at z = 0.5 with six different types of uncertainties. The middle six panels show the inferred SMFs at z = 0.5 with six
different types of uncertainties. The lower six panels show six marginal distributions of the inferred posteriors from the SMFs with six different types of uncertainties.
The marginals are color coded as follows: mock uncertainty, uniform, asymmetric white noise (all three shown in orange), Gaussian Ωm (green), Gaussian Ωm with
white noise (blue), and Gaussian Ωm and σ8 (red). In the zoomed-in panels, the Gaussian distributions implemented in uncertainties (d), (e), and (f) are shown as black
solid lines.
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Table 4 shows the estimated MI of each observable–
parameter pair. In the simulations, the MI of the SMFs
(SimSMF) is significantly higher than that of the SFRD
(SimSFR) over all parameters except AAGN2. Interestingly, the
gap is drastically reduced in the emulators (EmuSMF and
EmuSFR): the MI goes up for both, but more so for the SFRD,
resulting in the narrowing of the gap. The increase of MI in the
emulators (especially in the SFRD) can be attributed to the
training of the emulators. During training, the emulator (neural
network) naturally suppresses noise in the data, making the
correlations stronger (Goldfeld et al. 2018; Gabrié et al. 2019).
As a result, input and emulated output pairs can attain overall
more correlation via the emulator than input and simulated
output pairs. Note that the correlation of the emulated pairs
should depend on the precision of training. Nonetheless, the
relative magnitudes of MI among the six parameter–observable
pairs remain the same in terms of order. For instance, the MI of
the SMF–parameter pairs is still higher than that of the SFRD–
parameter pairs except for ASN2 and AAGN2.

In addition to the gap between simulations and the emulator,
the MI among the parameters shows considerable differences in
magnitude. ASN1 is found to be the most relevant parameter to
both SFRD and SMFs, whereas the AGN feedback parameters
(AAGN1 and AAGN2) have MI that is 1 or 2 orders of magnitude
lower than that of the other parameters. That is, ASN1 can
precisely be inferred or estimated in terms of inference and
machine learning. On the other hand, not only are the AGN
parameters hardly constrained but also the AGN physics
themselves have a negligible impact on the SFRD and the
SMFs in the TNG suite of CAMELS simulations that have low
resolution and limited volume (refer to Section 6.1.1 for the
SMFs and to Figure 9 of Villaescusa-Navarro et al. 2021 for the
SFRD). Such impact of relative magnitudes among parameter–
SFRD pairs can also be found in Villaescusa-Navarro et al.
(2021, Figure 9), which demonstrates that the SFRD is only
sensitive to Ωm, σ8, ASN1, and ASN2, and not to AAGN1 or AAGN2.

The values of the MI are also in line with the performance of
inference with respect to the parameters. For instance, the MI
between ASN2 and the SFRD, which is an exceptional case, is
larger than that between ASN2 and the SMFs, which is in line
with the relative error of ASN2 in the SFRD (fifth row) being
also smaller than that of the SMFs (sixth row). The ratio among
the MI of each parameter is inversely proportional to that of the
relative error and/or the variance for all inferences presented in
this work. In addition, convergence depends on the degree of
correlation of the pairs, implying that more training data—i.e.,
simulations—are required to converge in the SFRD (compare
Figures 3 and 9). Lastly, this is also in agreement with previous
work. The CAMELS introduction paper (Villaescusa-Navarro
et al. 2021) builds a fully connected neural network to predict
cosmological and astrophysical parameters taking the SFRD as
input. With the neural network, Ωm, σ8, ASN1, and ASN2 are
predicted relatively well compared to AAGN1 and AAGN2

(Villaescusa-Navarro et al. 2021).
Figure 13 shows the MI between each parameter and the

SMF at z= 0.5 (solid) and 2.5 (dotted) as a function of the
stellar mass of each bin. At z= 0.5, ASN1 is dominant over other
parameters especially for Må 1010.8Me, while Ωm also has
appreciable MI. In the higher-mass end (Må 1010.8Me), ASN2
is the most effective, followed by σ8 and ASN1, whereas the MI
of AAGN1 and that of AAGN2 are negligible across the entire
stellar mass range. In the case of the higher redshift (z= 2.5),

the order of the relative magnitudes of the MI among the
parameters changes. ASN1 is still the most dominant parameter
in the low-mass end, but the gap with Ωm is smaller. The MI of
σ8 is drastically larger overall and dominates the high-mass
end, whereas ASN2 becomes negligible. Compared to those at
z= 0.5 (solid), Ωm (red dotted) remains approximately the
same and σ8 (yellow dotted) is significantly increased, while
ASN1 (green dotted) and ASN2 (blue dotted) are appreciably
decreased, which, overall, leads to an increase in the ratio of the
MI of the cosmological parameters to that of the astrophysical
parameters. This can be indicative that cosmology is more
influential at early times than at late times compared to
astrophysical phenomena.
The MI can be an indirect but crucial measure of the degree

of relative impact of parameters on observables. We can extract
physical insights from Figure 13 as follows: (1) The impact of
cosmology (Ωm and σ8) diminishes at lower redshift in terms of
the SMF. (2) The energy budget of supernova-driven winds
(ASN1) is of paramount importance in galaxies of stellar mass
1010.8Me. (3) For massive galaxies (Må 1010.8Me), the
stellar wind’s velocity (ASN2) has more effect than its energy
budget (ASN1). (4) The portion of dark matter (Ωm) in the
universe has more impact on lower-stellar-mass galaxies than
on higher-mass galaxies, (5) whereas density fluctuation (σ8) is
more significant in massive galaxies. (6) The kinetic feedback
of black holes (AAGN1 and AAGN2) is weakly related to the SMF
regardless of both the redshift and stellar mass of the galaxies.
In the following section, the impact of the AGN parameters on
the SMFs is discussed further.

6.1.1. Negligible Impact of AGN Kinetic Feedback on Galactic
Stellar Mass

We have seen the weak correlation between the observables
and AGN feedback parameters from both the variances of the
posteriors and the MI. In this section, we directly investigate
the impact of AGN parameters on the SMFs, compared with
that of other parameters. The AGN parameters control the
energy budget of the low-accretion mode (kinetic feedback) of
black holes (AAGN1) and its burstiness (AAGN2) (refer to
Section 2). The kinetic wind from black holes can play a more
crucial role in quenching massive galaxies than thermal
feedback can, since the kinetically injected energy is less
vulnerable to gas (over)cooling, especially for dense gas, for
which the cooling time is short (Bower et al. 2006; Croton et al.
2006; Fabian 2012; Dubois et al. 2013; Rosas-Guevara et al.
2015; Anglés-Alcázar et al. 2017; Zinger et al. 2020;
Piotrowska et al. 2022; Wellons et al. 2022). Furthermore,
Terrazas et al. (2020) found that in the TNG model, the galaxy
can be quenched whenever the cumulative kinetic feedback
energy of the central black hole exceeds the gravitational
binding energy of the gas within the galaxy. In this regard, the
lack of correlation between the AGN parameters and the SMFs
in CAMELS-TNG22, even at the higher-mass end, seems
puzzling.
Shown in Figure 14 are the SMFs at z= 0.5 from the

simulations in the 1P set and the SMFs from the simulations
with no kinetic feedback (AAGN1= 0= AAGN2, black dashed)
and the fiducial parameter combination (black solid). Note that
the 1P set consists of 61 simulations varying only one

22 Note that CAMELS-SIMBA shows more variations with respect to the
AGN parameters.
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parameter at a time (Villaescusa-Navarro et al. 2021, Section
3.3.2) and all the simulations presented in this section are
performed with the same initial conditions. In each panel, the
bluer the SMF, the higher the parameter value, and the redder
the SMF, the lower the parameter value. In comparison to the
simulation uncertainty (light gray region), four parameters (Ωm,
σ8, ASN1, and ASN2) excluding the AGN parameters show
significant changes of the SMFs in response to variations of
their values, which is in line with the previous section. One
interesting feature is that the impact of ASN2 is applied
conversely to the low-mass end and the high-mass end of the
SMFs. For instance, an increase in the supernova-driven wind
speed (ASN2) effectively suppresses the massive population
while keeping the lower-mass population similar or increas-
ing it.

In contrast, the changes in the AGN parameters (right
panels) have a negligible impact on the SMFs. However, this
does not imply that AGN kinetic feedback lacks any effect at
all, since even the weakest AGN feedback in the 1P set (the
reddest line in the right panels) suppresses the massive
population compared to our new simulation that lacks kinetic
feedback altogether (AAGN1= 0= AAGN2)

23, as expected in
many papers (Page et al. 2012; Dubois et al. 2013; Terrazas
et al. 2020; Su et al. 2021). In addition, Figure 8 of Pillepich
et al. (2018a) shows the clear impact of black hole kinetic
feedback on the stellar masses of massive galaxies. The
negligible effects of the AGN parameters in the CAMELS
simulations can be explained by a combination of the
following: (1) Due to the small box size ∼(25Mpc h–1)3, the
CAMELS simulations usually lack massive galaxies subject to
AGN kinetic feedback. (2) The impact of the weakest AGN
feedback parameters of the CAMELS simulations is already so
effective that further increases of these parameters cannot lead
to significant changes in the SMFs.

6.2. Degeneracy Broken with SMFs

We have seen the bimodality of the inferred posterior density
and degeneracy in SFRD in Section 4.1.2 and Figures 4 and 5.
In this section, we discuss how degeneracy in the SFRD can be
broken with both the emulated SMF and the simulated SMF.
Figure 15 illustrates the marginal distributions (bottom) that are
exactly the same marginals as those in Figure 5, derived by
inference on the SFRD, and the corresponding emulated SMFs
(top left) and the simulated SMFs (top right). In contrast to the
case of the SFRD, where the two emulated SFRDs from the
two peaks of the posteriors (red dashed and blue dotted) are
nearly on top of each other, the corresponding emulated SMFs
for the two separate sets of parameters are clearly different, as
shown in panel (a). The standard deviation of the SMFs (gray)
in panel (a), which is 0.081, is an order of magnitude higher
than that of the SMFs from the convergent posterior in
Figure 8, which is only 0.007. In addition, the relative error of
the SMFs from peak 2 (blue dotted) with respect to the SMFs
from peak 1 (red dashed) is 59%, which is far higher than the
0.79% from the SFRDs in Figure 5. Therefore, we can
conclude that the SMFs can break the degeneracy of the SFRDs
in terms of the emulators.

Also, we perform new simulations with parameter combina-
tions of peak 1 (red dashed) and peak 2 (blue dotted) to study
whether the SMFs can break the degeneracy even under the

simulation uncertainty. In Figure 15(b), the red dashed and blue
dotted lines indicate the simulated SMFs from the two peaks.
Similar to the emulated SMFs, the two simulated SMFs do not
coincide with each other. However, since the simulation is
affected by simulation uncertainty, such as cosmic variance and
butterfly effects (refer to Section 2.5), we include the
confidence regions (gray in panel (b)) of the simulation
uncertainty. We use ±1σ (gray) and ±3σ (light gray) regions
that correspond to 68.1% and 99.7% confidence levels for the
Gaussian distribution, respectively. The standard deviations of
the SMFs are directly calculated from the simulations in the CV
set as a function of stellar mass. The confidence regions are
drawn with respect to the red dashed curves. Panel (b) (top
right) demonstrates that the low-mass ends of the blue dotted
SMFs noticeably fall outside the 3σ regions at z� 1.5. By the
definition of 3σ regions as corresponding to a 99.7%
confidence level, the blue dotted SMFs have only a 0.3%
chance that they share the same origin of the red dashed SMFs.
Both the emulated and simulated results support two main

conclusions: (1) there exist degeneracies in the SFRD (refer to
Section 4.1.2), and (2) the SMFs can break the degeneracies in
the SFRD (Figure 15). Taken together with the correlation
analysis in Section 6.1, these conclusions further support the
notion that the higher the correlation between an observable
and other parameters, the more strongly the observable
constrains the parameters; here, the SMF is shown to be a
stronger constraint than the SFRD.

6.3. Uncertainty in ILI

We have briefly discussed that the mock uncertainty applied
to the SMFs has negligible impact on the variance of posteriors
in Section 5.1.1 unlike the case of the SFRD in Section 4.1.3.
To elucidate the origin and implications of these results, and
what type of uncertainty should be adopted for ILI, here we
perform tests of ILI using various types of uncertainties. We
adopt six different uncertainties as follows: (a) Mock
uncertainty (that which we have used throughout this paper)
is modeled to mimic the simulation uncertainty from the CV set
in Appendix B. (b) Uniform uncertainty is made of a univariate
Gaussian distribution. Random variables are drawn from the
Gaussian and added to the SMF uniformly with respect to the
stellar mass, leading to overall shifts in normalization. (c)
Asymmetric uncertainty is simply modeled as the modulus of
the mock uncertainty such that the uncertainty only goes in the
positive direction. (d) For Gaussian Ωm uncertainty, given a set
of parameters sW( )A A A A, , , , ,m

0
8
0

SN1
0

AGN1
0

SN2
0

AGN2
0 , we gener-

ate the SMFs out of W ¢( ,m s ,8
0 A ,SN1

0 A ,AGN1
0 A ,SN2

0 )AAGN2
0 ,

where W ¢m ∼ W( ,m
0 sW )m . Here, sWm is set to 0.04. (e) We

model Gaussian Ωm uncertainty with white noise by adding
white Gaussian noise directly to the SMFs with Gaussian Ωm

uncertainty. (f) Gaussian Ωm and σ8 uncertainty is modeled
similarly to Gaussian Ωm uncertainty except that we addition-
ally vary σ8 as s ¢8 ∼ s ss( ),8

0
8 with ss8 of 0.04. A visual

description of the above six uncertainties is shown in the top
panels of Figure 16.
We perform ILI from the emulated SMF at z= 0.5 that is

generated with the same parameters that are used in
Section 5.1, together with the six uncertainties. Figure 16
shows the marginals of the inferred posteriors (bottom) and the
corresponding SMFs (middle). The corresponding posterior
(middle) inferred from each implemented uncertainty (top)
((a)–(f)) is shown in panels (a′)–(f′), respectively. Also, the23 The new simulation does include thermal AGN feedback.
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Figure 17. Top: SMFs and the marginal posterior densities that are inferred from the SMFs with the six fiducial parameters and a longer star formation timescale.
Middle: Same, but with a shorter star formation timescale. Bottom: SMFs and the marginal posterior densities that are inferred from the average SMFs out of the CV
set of the SIMBA, rather than the IllustrisTNG, suite.
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inferred SMFs (middle) and marginal densities (bottom) are
consistently color coded as follows: orange solid (a′)–(c′),
green dotted–dashed (d′), blue dashed (e′), and red dotted (f′).
We color (a′)–(c′) with the same color since the implemented
uncertainties (a)–(c) share the same property of the uncertainty
injected to the SMFs being uncorrelated with the parameters.

In the case of (a)–(c), the standard deviations of the
inferred SMFs ((a′)–(c′)) (first row of the middle panel of
Figure 16) are an order of magnitude smaller than those of the
implemented uncertainty (first row of the top panel). The
marginal distributions ((a′)–(c′)) (orange) are nearly on top of
each other (see Table 5). Most importantly, the standard
deviations of both the SMFs and the marginals are close to
those of the inference from the SMFs without uncertainty in
Figure 8 of Section 5.1, which are s =¯ 0.007smf dex and
s sW( )A A A A, , , , ,m 8 SN1 AGN1 SN2 AGN2 = (0.006, 0.002, 0.024, 0.076, 0.006,
0.018). This leads us to the proposition that uncorrelated
uncertainty has essentially no impact on inference.

In the case of the uncertainties directly injected to Ωm and σ8,
the inferred SMFs in (d′) and (f′) and the implemented
uncertainties in (d) and (f) have approximately the same
standard deviations (see Figure 16). On the other hand, the
standard deviations of the inferred SMFs in (e′) are completely
different from those of the implemented uncertainty in (e),
since the white noise that is uncorrelated with SMFs in (e) is
canceled out during the inference. Shown in the zoomed-in
panels are the analytic Gaussian distributions (black solid) that
are used to generate the uncertainties ((d)–(f)). In Ωm, the three
inferred marginals—green dotted–dashed, blue dashed, and red
dotted—are in relatively good agreement with the analytic lines
(black solid). Note that the marginal (e′) is not affected by the
white noise. Due to the range limit of Ωm, the inferred
marginals are skewed such that the probability density near
Ωm= 0.5 drops sharply as compared to the analytic line,
whereas in the σ8 panel, the marginal (f′) (red dotted) precisely
matches the analytic line (black solid) (see Table 5).
The implemented uncertainties ((d)–(f)) are correlated since

the uncertainty is directly injected to the parameter such that
there exists q¢ satisfying q q h¢ = +( ) ( ( ))Zf f for q¢ Î .
However, the uncertainty (e) is only a partially correlated
uncertainty since it includes the uncorrelated part as well. In
contrast to that of the uncorrelated uncertainties ((a)–(c)), the
variance of the correlated uncertainties ((d) and (f)) can
successfully be captured in the posteriors ((d′) and (f′)). In the
case of the partially correlated uncertainty (e), the uncorrelated
part is canceled out, leaving only the variance of the correlated
uncertainty in the posterior distribution. This is strong evidence
that uncorrelated uncertainty has negligible impact on ILI and

highlights the importance of a well-established mock uncer-
tainty that can reproduce the correlation between the simulation
uncertainty and the parameters. From another point of view, if
the simulation uncertainty is not correlated with the parameters,
performing ILI using cosmological simulations can naturally
eliminate the effects of the simulation uncertainty. Note that it
is not yet proven that the simulation uncertainty is correlated
with the parameters.

6.4. Physical Limitations of Simulations

6.4.1. Mismatch between Inferred SMFs and Observed SMFs

We have seen the significant mismatch between the inferred
SMFs and the observed SMFs in Section 5.2. There are four
primary issues in the SMFs inferred from the observed SMFs
shown in Figure 11: (1) The population of massive galaxies
(Må 1010Me) in the inferred SMFs are located far below the
observed SMFs across all redshifts. (2) The inferred SMFs
have a “shoulder” at Må= [1010.5, 1011]Me, which does not
appear in the observations. (3) The evolution of the emulated
SMFs with respect to redshift df(M, z)/dz in the low-mass end
is smaller than that of the observed SMFs. (4) The SMF–stellar
mass slope changes in time are appreciably different between
simulations and observations.
The mismatch in the high-mass end has been a crucial

problem in the inference from the five concatenated observed
SMFs in Section 5.2.1. The difference between the inferred
SMFs and the observed SMFs is approximately 0.3 dex on
average (or a relative error of 41%). Concerning physical
models in cosmological simulations, there can be two physical
mechanisms that can control the populations of massive
galaxies: (1) large-scale structure formation and evolution
and (2) astrophysical feedback. In the context of structure
formation, a sufficient amount of matter (Ωm) and large density
fluctuations (σ8) can lead to a high abundance of massive halos
and galaxies. On the other hand, it is well known that AGN
feedback is a dominant factor in quenching star formation in
massive galaxies (for a seminal review, see Fabian 2012;
Somerville & Dave 2015), whereas stellar feedback is more
effective in low-mass galaxies. However, since AGN feedback
is ineffective as we have seen in Section 6.1.1, the dependence
of the massive-galaxy population on cosmology should
considerably increase. The compensation of cosmology can
be found in Section 5.2.2. In short, the inferences from the
individual SMFs in Figure 12 have recovered the population of
massive galaxies by having significantly larger σ8 compared to
the posteriors inferred from the concatenated SMFs in
Figure 11. That being said, the inferences cannot find a set of
parameters that can reproduce the evolution of SMFs as seen in
the observations.
In addition, Figure 12 exhibits several notably different

properties for observations and emulators. The emulated SMFs
tend to have a “shoulder” at Må= [1010.5, 1011]Me, which
does not appear in the observed SMFs at all. Although we can
find this property in the actual hydrodynamic simulation, the
rescaling might enhance such properties (refer to Section 2.4
and Appendix A). Figure 18 demonstrates that the rescaled
SMFs (red solid) have more notable shoulders than the SMFs
without rescaling (red dashed). Thus, such shoulders can be
attributed to the rescaling and/or resolution effects.
The rate of evolution of the SMFs in cosmological

simulations is relatively low compared to the rate of evolution

Table 5
The Standard Deviations of the Inferred Marginal Distributions in Figure 16

sWm ss8 sASN1 sAAGN1 sASN2 sAAGN2
a′ 0.005 0.001 0.006 0.084 0.006 0.010

b′ 0.007 0.002 0.012 0.056 0.008 0.023

c′ 0.002 0.001 0.006 0.027 0.004 0.011

d′ 0.025 0.001 0.001 0.055 0.006 0.027

e′ 0.030 0.001 0.005 0.042 0.004 0.012

f′ 0.028 0.036 0.007 0.030 0.003 0.019
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in observations. In addition, the slope of the SMFs with respect
to stellar mass at the low-mass end hardly changes across
redshift in the observations, whereas the slope in the
simulations tends to decrease as time goes by. Such
discrepancies between simulations and observations can be
evidence for the limits of physical models in hydrodynamic
simulations and/or the limited dimensions of parameter space.
We anticipate that this problem can be at least partially
alleviated by introducing additional dimensions in the para-
meter space.

6.4.2. An Extra Parameter: Star Formation Timescale

In this section, we investigate whether the parameters can
be successfully inferred from a simulated observable that
comes from a higher-dimensional parameter space that has an
extra dimension. Thus far, we have performed ILI on six
parameters from observables—SFRD or SMFs—that are
obtained either by a specific set of six parameters, or from
actual observations. Here, we perform ILI on the same six
parameters from SMFs that are simulated from the six fiducial
parameters while varying one additional subgrid model
parameter, the star formation timescale. Two simulations are
performed with longer (twice the fiducial) and shorter (half of
the fiducial) star formation timescales than the fiducial run
(hereafter, LT and ST denote the longer and shorter star
formation timescale simulations, respectively). In LT and ST,
the same random seed as that in the fiducial run is adopted to
minimize the effect of simulation uncertainty through cosmic
variance. Lastly, to approximate the emulator counterparts of
the SMFs for LT/ST, we calculate the ratios of the SMFs bin
by bin from LT/ST to the simulated fiducial SMFs, and then
apply them to the emulated SMFs of the fiducial parameters to
obtain emulated SMFs for LT/ST. Here, we assume that
changes of the star formation timescale do not lead to any
significant changes in other physical properties and obser-
vables except the SMFs.

Figure 17 shows the marginal posterior densities and SMFs
inferred from the emulated SMFs from LT and ST (top and
middle panels, respectively). In the case of LT, the peaks of the
marginal densities of the inferred posteriors (red dashed)
considerably deviate from the fiducial parameters (black solid),
except for σ8. The low-mass end of the inferred SMFs (red
dashed) at z= 2.5, 2.0, and 1.5 is in relatively good agreement
with the SMFs from LT (black solid), whereas at z= 1.0 and
0.5, the inferred SMFs and the SMFs of LT show a complete
mismatch. In addition, LT has a high evolutionary rate of the
SMFs and tends to have steeper slopes as redshift decreases,
which the inferred SMFs fail to match as in the inference from
observations (see Figure 11). Similar to those in LT, the
inferred SMFs are in good agreement with the SMFs of ST at
z= 2.5, 2.0, and 1.5, whereas the high-mass end of the inferred
SMFs at low redshifts is clearly lacking as compared to the
SMFs of ST, which we have also seen in the inference from the
observation in Figure 11.

We have found that the SMFs from the seven-dimensional
parameter space including an extra parameter—star formation
timescale—are not necessarily reproduced by points in the
conventional six-dimensional parameter space that we have
used throughout this work. LT and ST have intrinsic properties
that cannot be reproduced from points in the six-dimensional
parameter space (e.g., higher rates of evolution in the SMFs,
slope evolution in the SMFs, and large populations of massive

galaxies). The results indicate that the introduction of extra
dimensions or parameters has the potential to resolve the
problem of significant mismatch between the five concatenated
observed SMFs and observations.

6.4.3. Inference from SIMBA

In addition to the ILI with an extra parameter, we perform
ILI from the SMFs that are obtained by the fiducial simulation
from the CV set of the SIMBA suite (refer to Section 2 or
Villaescusa-Navarro et al. 2021). Likewise, we rescale the
SIMBA SMFs to obtain emulated SIMBA SMFs in the same
way as we have in Section 6.4.2, assuming that the same
rescaling relation is applicable. Note that although we make
inference from a SIMBA-derived observable, we use the same
emulators that we have used so far, which are trained on the
TNG suite of the CAMELS simulations.
The bottom row of Figure 17 illustrates the inferred SMFs

(red dashed and gray) and the emulated SIMBA SMFs (black
solid). The inferred SMFs from the maximum of the posteriors
(red dashed) seem to match the SIMBA SMFs relatively well
even though the relative error is ∼21%. Unlike those of LT and
ST in Section 6.4.2, the inferred SMFs reasonably follow the
trends of the SMFs, such as the slopes and rates of evolution.
Still, the difference between the inferred parameters and
fiducial parameters has not been narrowed. Such deviations
between the inferred and fiducial parameters can be attributed
to differences of the physical models between TNG and
SIMBA.

6.5. Caveats and Physical Interpretation of Inference

This section discusses how the inferred parameters can be
interpreted in an astrophysical sense. We defer the physical
interpretation of the inference to the last section because the
inferred parameters contain very little meaningful physics at
this time. Prior to the physical interpretation, it is imperative to
understand the key factors that influence inferences on
parameters, e.g., the emulator, simulation uncertainty, resolu-
tion convergence, and a limited parameter space.
First, we have employed the emulators for computational

efficiency, paying the price of discrepancies between the
simulations and emulators. The discrepancies inevitably
propagate to the inferred posterior and lead to deviations
from the posterior that would be inferred if actual cosmolo-
gical simulations were employed in the inference. Assuming
that we can replace the emulators with actual cosmological
simulations, the next question shall be, “Will the posterior
inferred from the actual cosmological simulations contain
robust information on physics?” Or, more specifically, “Will
the cosmological parameters inferred from the cosmological
simulations, not the emulators, be physical and comparable to
preexisting estimations?” To answer these questions, resolu-
tion convergence and the limited dimensions of parameter
space, along with simulation uncertainty, should be taken into
consideration.

6.5.1. Resolution Effect

Resolution effects in hydrodynamic simulations have been
discussed in many papers (Lia et al. 2000, 2002; Ceverino &
Klypin 2008; Nagamine 2010; Hubber et al. 2013; Anglés-
Alcázar et al. 2014; Regan et al. 2014; Pillepich et al.
2018a, 2018b; Snaith et al. 2018; also see Sections 2.4 and
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Appendix A in this paper). In general, it is believed that
hydrodynamic simulations are sensitive to (spatial and mass)
resolution. On the other hand, pure hydrodynamic simulations
themselves without subgrid models, such as radiative cooling,
are highly likely to be convergent at some level (refer to
Hubber et al. 2013 for the resolution convergence of both
smoothed particle hydrodynamics and adaptive mesh refine-
ment codes). This implicitly indicates that the resolution effect
can likely be attributed to the response of subgrid models to
different resolutions. In addition, cosmological hydrodynamic
simulations with subgrid models can become convergent once
they reach a certain resolution and beyond (Lia et al.
2000, 2002; Ceverino & Klypin 2008; Hopkins et al. 2018).
The above arguments suggest that resolution effects can
generally be incorporated into subgrid models—as astrophysi-
cal parameters. This is often called weak convergence, which
requires recalibration for each resolution of simulations,
whereas strong convergence requires that the simulation results
not change once the subgrid models are fixed (Schaye et al.
2015).

We turn our attention to the resolution effect in this work.
As discussed in Section 2.4, we rescale the observables—
SFRD and SMF—to minimize the resolution effect according
to Pillepich et al. (2018b). However, aside from its inaccuracy,
there is another problem with rescaling. We find that the
resolution effect has a significant dependence on the position
in parameter space, which is in line with the above arguments.
In principle, the rescaling must be a function of the parameters
θ, whereas we construct the rescaling function only based on
the fiducial parameters in this work. Due to computational
cost, it is not realistically possible to obtain the full rescaling
relation as a function of the parameters by running high-
resolution simulations over the entire parameter space (Ho
et al. 2022). Hence, the inference results near the fiducial
parameters are physically comparable to those of TNG100-1,
whose resolution is the target resolution of the rescaling,
but other regions of the parameter space may be difficult to
grasp.

6.5.2. Limited Parameter Space

In this work, we have seen the limits of the six-dimensional
model parameter space, e.g., weak correlation between the
AGN parameters and observables in Section 6.1.1, failure of
inference from the observed SMF in Section 6.4.1, and the
potential of the extended parameter space in Section 6.4.2. The
limits of the parameter space can affect not only the
performance or accuracy of inference but also the physical
interpretation of the inferred posterior. In addition, the
limitations of the subgrid model and the limited dimensions
of the parameter space can lead to overfitting or over-fine-
tuning of the parameters to the target observable, even if the
inferred physics is not realistic. For instance, since our
emulators (or simulations) are insensitive to AGN feedback,
the cosmological and stellar feedback parameters should be
adjusted to control the population of the high-mass end in
Section 5.2.2. The parameter space of the TNG universe or the
SIMBA universe is likely to be insufficient to describe the real
universe. Thus, we will ultimately move toward extending the
parameter space beyond the current TNG universe so that we
can resolve the problems of inference failure and secure the
physical meaning of the posteriors.

6.5.3. Physics of Inferred Parameters

The posterior distributions inferred from the observations
have shown appreciable discrepancy with what researchers
usually expect, especially in cosmological parameters. The
discrepancies mostly stem from the physical limitations of the
simulations on which the emulators are built, but not from the
inference procedure itself. Considering that inference is a
procedure that finds the best combinations of parameters that
can match a target observable, we can find some problems in
(the diversity of) the “combinations,” but not in the “finding.”
For instance, in Section 6.4.2, we directly observe how the
limits of parameter space or an additional dimension can have
an impact on the inference. Also, the lack of physics in one part
can lead to an (unwanted) compensatory reaction to another
part, in Section 6.4.1. Hence, the inferred parameters in this
work are largely affected by intrinsic features of the
imperfection of simulations such as a limited parameter space
volume, resolution effects, subgrid models, and the simulation
box size.

7. Summary

In order to calibrate cosmological simulations against
observations, we have employed ILI that enables rigorous
Bayesian inference in a computationally efficient way by
adopting NDEs that evaluate the likelihood instead of the
explicit analytic likelihood used in conventional Bayesian
inference (Section 3). In addition, for computational efficiency,
we have adopted emulators that are trained on ∼1000
cosmological simulations from the CAMELS project (specifi-
cally, those based on the IllustrisTNG framework) to predict
simulated observables, taking as input the cosmological and
astrophysical parameters, and used these emulators as surro-
gates for the cosmological simulations (Section 3.3). Using the
emulators, we have conducted ILI on the cosmological and
astrophysical parameters (Ωm, σ8, stellar wind feedback, and
kinetic black hole feedback) from the cosmic SFRD and SMFs
at different redshifts and retrieved six-dimensional posterior
distributions of the parameters.
We summarize our results as follows:

1. The posteriors inferred from the emulated SFRD and
SMFs converge to their true values with relative errors of
less than 1% in either the SFRD or the SMFs
(Sections 4.1.1 and 5.1, respectively). However, the
SFRD requires an order of magnitude more training data
to converge than the SMFs do, having two convergent
stages—an unstably convergent stage and a stably
convergent stage (Figure 3).

2. In the unstably convergent stage, the posterior distribu-
tion is bimodal with two degenerate peaks
(Section 4.1.2). However, the degeneracy in the SFRD,
which is also confirmed with new cosmological simula-
tions (i.e., it is not an artifact of the emulator), is broken
with the SMFs in both the emulator and the cosmological
simulations (Section 6.2). This indicates that the SMFs
provide stronger constraints for the parameters.

3. In inferences with the mock uncertainty that we add
to the emulators to mimic the simulation uncertainty
(Appendix B), the posterior inferred from the emulated
SFRD successfully captures the variance of the mock
uncertainty in the parameters, whereas the SMFs cannot
capture any variances in the posterior. In Section 6.3, we
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show that uncorrelated uncertainties have a negligible
impact on ILI. More work will be required to build a
robust model that can precisely reproduce the simulation
uncertainty (note that the actual simulation uncertainty
might be also uncorrelated with the parameters). In
addition, an emulator or theoretical model that can be
used to marginalize the simulation uncertainty will be
another direction to future work (refer to Appendix D).

4. Employing ILI on the observationally driven SFRD and
SMFs of Leja et al. (2020, 2022), we find the inferred
SFRD that matches the target observation with a relative
error of only 4.1% (Section 4.2). However, the inferred
parameters show notable discrepancy with the fiducial
values. Moreover, the posterior distribution for the
cosmological parameters barely includes the values of
the standard cosmology. Meanwhile, the similarly
inferred SMFs show significant discrepancies with the
target observed SMFs (Section 5.2).

5. The inconsistency between the inferred parameters and
standard values could potentially originate from several
causes: the limited simulation box size, the resolution
effect, the limited parameter space, and the intrinsic
physical limits of cosmological simulations with the TNG
framework (Sections 6.4 and 6.5).

6. Using MI, we measure the correlation between para-
meter–observable pairs and find that the performance of
inference for each observable largely depends on the
correlation between the parameters and the observable
(Section 6.1). Also, we confirm that the amount of
information in the SMFs is relatively higher than that in
the SFRD, which is in line with our inference results.

7. In both correlations and inferences, we find that the AGN
parameters (black hole kinetic feedback) are most weakly
correlated with both the SFRD and SMFs. This can be
attributed to the relatively insignificant impact of the
black hole kinetic feedback parameters, within the range
varied in CAMELS, on both the formation of galaxies
with high stellar mass and star formation in massive
galaxies compared to cosmological parameters and stellar
wind feedback (Section 6.1.1).

8. In this work, we refrain from conducting physical
interpretations of the inferred parameters because the

inference result is sensitive to emulator accuracy,
resolution effects, simulation uncertainty, and inaccuracy
from a limited parameter space (Sections 6.5).

9. This work is only a cornerstone of calibrating cosmolo-
gical simulations against observations and provides
considerable insights into future directions. In future
work, we will focus on resolution convergence, simula-
tion uncertainty, extension of the parameter space as well
as of the number of target observables, and inference
(only) with cosmological simulations without emula-
tor bias.
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Appendix A
Rescaling

In Section 2.4, we have discussed the rescaling of
observables to account for the incomplete resolution conv-
ergence of our simulations. We adopt the rescaling method
introduced in Pillepich et al. (2018b, Appendix A). There, the
SMFs of TNG300-1 were rescaled using the ratio between
TNG100-2 and TNG100-1. The rescaling was based on the
resolutions of TNG100-2 and TNG300-1 being essentially the
same, and the SMFs of the two simulations being in good
agreement despite the difference in simulation volumes. As a
result, the rescaled SMF of TNG300-1 (rTNG300-1) coincides
with that of TNG100-1 with high accuracy.
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Figure 18 shows the resolution effects in each observable in
comparison between TNG100-1 (black dashed–dotted) and
TNG100-2 (blue dotted). The fiducial CAMELS (red dashed),
computed as the average of the CV set, is overall slightly lower
than TNG100-2 in both SMF and SFRD. This is because the
resolution of the CAMELS simulations is lower than that of
TNG100-2. For dark matter particles, the mass and spatial
resolution in CAMELS are ∼9.67× 107Me h−1 and ∼2 kpc
comoving, whereas TNG100-2 has a mass resolution of
∼5.97× 107Me and a spatial resolution of ∼1.48 kpc comov-
ing. In this work, we ignore the discrepancies between the
CAMELS simulations and TNG100-2. We rescale the SMF by
estimating stellar mass (Må) as a function of each bin of halo
mass (Mhalo) as follows:
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á ñ
á ñ
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M M
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where á ñ· stands for the average over all halos in each bin to
which Mhalo belongs. We multiply the stellar mass of each
CAMELS halo by the corresponding rescaling factor (the last
fractional term) for that halo mass. The rescaled SMF of the
CAMELS simulations (red solid in Figure 18) at z= 2.5 (left)
is in good agreement with TNG100-1 (black dashed–dotted),
whereas the rescaled SMF at z= 0.5 (center) deviates
appreciably from TNG100-1, especially in the low-mass end.
The discrepancy is attributed to the resolution limit that leads to
the lower bounds for both the dark matter mass (∼108Me) and
the stellar mass (∼107Me) of the halos. Since the mass
resolution limits of the halos cause a lack of galaxy populations
in the vicinity of the limits, construction of the rescaling factor
becomes unfeasible in the halo mass range of [108, 109]Me,
which largely affects the low-mass end of SMFs. This results in
the significant discrepancy between the SMFs of rescaled
CAMELS and TNG100-1 in the low-mass end at z= 0.5. In
this work, we do not employ any post-processing for the zero-
stellar-mass galaxies whose stellar mass is not resolved due to
the mass resolution limit.

Similarly, we rescale the SFRD by multiplying the SFR of
the CAMELS simulations by the rescaling factor as a function

of the bin of halo mass as follows:
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where dMå/dt is the SFR of the galaxy. The rescaled SFRD in
Figure 18 (right, red solid) has a consistent offset from
TNG100-1 (black dashed–dotted), which is simply attributed to
the difference between TNG100-2 (blue dotted) and CAMELS
(red dashed).

Appendix B
Simulation Uncertainty and Mock Uncertainty

In Sections 2.5 and 4.1.3, we have discussed the simulation
uncertainty that originates from various sources of randomness
of cosmological simulations. In this section, we study the
simulation uncertainty quantitatively using the CV set and
model the mock uncertainty. Figure 19 illustrates 27 SFRDs
(top left, (a)) and 27 SMFs at z= 0.5 (top right, (c)) from 27
cosmological simulations in the CV set, which represents the
simulation uncertainty (refer to Section 2 for details of the CV
set). We measure the standard deviations of the 27 SFRDs and
27 SMFs as s = 0.057sim, sfr dex and s = 0.111sim, smf dex,
respectively.
We model the mock uncertainty of the SFRD and SMF using

a modified six-dimensional Gaussian noise of the form

m m
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with C= I for the SFRD and [0.3, 0.34, 0.38, 0.43, 0.47, 0.51,
0.56, 0.6, 0.7, 0.9, 1.5, 1.7, 0.5] for the SMF, μ= 0, and
Σ= σe γΓ, where
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Figure 18. Left and middle: SMFs at z = 2.5 and 0.5. Right: Cosmic SFRDs. The difference between TNG100-1 (black dashed–dotted) and TNG100-2 (blue dotted)
illustrates the resolution effect of the TNG simulations. The fiducial CAMELS simulation (red dashed) is rescaled with the ratio between TNG100-1 and TNG100-2.
The rescaled CAMELS simulation is shown in red solid lines.
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Here, (σ, γ) are (0.02, 0.2) for the SFRD and (0.02, 2) for the
SMF. Note that the parameters are empirical. The parameters
of the mock uncertainty are tuned such that it can have a
visually similar form and similar standard deviations to the
simulation uncertainty. In Figure 19, panels (b) and (d)
exhibit the 27 SFRDs and 27 SMFs with mock
uncertainty. Here, the 27 SFRDs and 27 SMFs are generated
by adding the mock uncertainty to the mean of the 27 SFRDs
and 27 SMFs from the CV set, respectively. The mock-
uncertainty-implemented SFRDs and SMFs are visually in
good agreement with the SFRDs and SMFs from the
simulation uncertainty. The standard deviations of the mock
uncertainty of the SFRD and SMFs are σmock,sfr= 0.061 dex
and σmock,smf = 0.096 dex, which approximate those of
the simulation uncertainty. Note that in principle, the
mock uncertainty depends on the cosmological and astro-
physical parameters. Nevertheless, we model the mock
uncertainty as if the simulation uncertainty were consistent
over the entire parameter space since it is computationally
impossible to perform simulations across parameter space to

obtain the simulation uncertainty as a function of the
parameters.

Appendix C
Architecture of Emulators

In this section, we describe the details of the neural network
architectures used for the emulators (Tables 6–11). The
structures and hyperparameters of the emulators are auto-
matically optimized using Optuna.

Figure 19. (a) Cosmic SFRDs from 27 simulations of the CV set. (b)Mean of the 27 cosmic SFRDs from the CV set + mock uncertainty. (c) SMFs at z = 0.5 from 27
simulations of the CV set. (d) Mean of the 27 SMFs at z = 0.5 from the CV set + mock uncertainty. Each panel consists of 27 different curves.

Table 6
SFRD

Layer Number of Neurons Dropout Activation Functions

Input 6

Fully connected 871 0.25 Leaky ReLU

Fully connected 100 0.26 Leaky ReLU

Output 21

Note. The learning rate and weight decay are 0.0028 and 1.25e-06.
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Appendix D
Marginalization of Simulation Uncertainty in Emulator

This section discusses how emulators marginalize the
simulation uncertainty in the LH set that the emulators are
trained on. The LH set, consisting of 1000 cosmological
simulations, suffers from simulation uncertainty since the initial
conditions of the 1000 simulations are all different—that is, it
is dominated by cosmic variance, since the scale of our box size
is 25Mpc h−1. The simulation uncertainty plays the role of
intrinsic noise in the simulated data in the training of the
emulators, which potentially degrades the accuracy of the
emulators. Thus, we study whether the emulators can margin-
alize the noise during training or how much the emulator
suffers from the simulation uncertainty. If the emulators can
marginalize the simulation uncertainty completely, then the
emulator prediction should be equivalent to the mean of the
results of a hypothetical suite with a large number of
emulations for each point in parameter space—hereafter the
uncertainty-marginalized ideal simulation.
We first describe the simulated observable g (SFRD or SMF)

as follows:

q qd l= ( ( )) ( )g g , , , D1

where θ is the set of parameters and δ(λ, θ) describes the initial
conditions with a random seed λ for cosmological simulations.
Here, the marginalization of simulation uncertainty—i.e., the
case where the emulator prediction is equivalent to the
uncertainty-marginalized ideal simulation—can be written as
q q qd l= á ñl¯ ( ) ( ( ))g g , , by averaging g over the sources of

randomness λ. The physical analog of the mean of the
simulation uncertainty is the mean of the cosmic variance
obtained by performing an infinite-volume simulation (only if
we ignore the effects of the long-wave limit in the power
spectrum in the cosmic variance).
The emulator prediction f can be written with respect to the

ideally marginalized prediction—the uncertainty-marginalized
ideal simulation—in the form

q q q q= = + +( ) ¯ ( ) ( ) ( ) ( )f f g m . D2

Here, we separate the inaccuracy of the emulator into the
training error ò(θ) and the marginalization error m(θ). Then, the

Table 10
SMFs at z = 1.0

Layer Number of Neurons Dropout Activation Functions

Input 6

Fully connected 244 0.78 Leaky ReLU

Fully connected 626 0.22 Leaky ReLU

Output 21

Note. The learning rate and weight decay are 0.00040 and 0.00013.

Table 11
SMFs at z = 0.5

Layer Number of Neurons Dropout Activation Functions

Input 6

Fully connected 890 0.20 Leaky ReLU

Fully connected 298 0.23 Leaky ReLU

Fully connected 836 0.31 Leaky ReLU

Fully connected 600 0.62 Leaky ReLU

Output 21

Note. The learning rate and weight decay are 4.3e-05 and 3.9e-07.

Table 7
SMFs at z = 2.5

Layer Number of Neurons Dropout Activation Functions

Input 6

Fully connected 451 0.31 Leaky ReLU

Fully connected 727 0.76 Leaky ReLU

Fully connected 851 0.69 Leaky ReLU

Fully connected 890 0.31 Leaky ReLU

Fully connected 825 0.61 Leaky ReLU

Output 21

Note. The learning rate and weight decay are 0.00015 and 0.00013.

Table 8
SMFs at z = 2.0

Layer Number of Neurons Dropout Activation Functions

Input 6

Fully connected 283 0.28 Leaky ReLU

Fully connected 738 0.32 Leaky ReLU

Output 21

Note. The learning rate and weight decay are 0.00051 and 0.00031.

Table 9
SMFs at z = 1.5

Layer Number of Neurons Dropout Activation Functions

Input 6

Fully connected 828 0.26 Leaky ReLU

Fully connected 845 0.25 Leaky ReLU

Fully connected 567 0.27 Leaky ReLU

Output 21

Note. The learning rate and weight decay are 2.4e-05 and 5.7e-05.
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bias of the emulator with respect to the simulations in the LH
set, bLH, can be written as

where θLH denotes θäΘLH and ΘLH is a set of 1000
parameters in the LH set. Here, we write λ as λθ because in the
LH set, λ is already determined depending on θ. Assuming
that the average of the simulations over the LH set can
not only average the simulations from different parameters
but also marginalize their simulation uncertainties such
that it can be approximately equal to the average of the un-
certainty-marginalized ideal simulations over the LH set, i.e.,

q q q q qd l d lá ñ ~ áá ñ ñ º á ñq q q ql( ( )) ( ( )) ¯ ( )g g g, , , ,LH LH LH, we
obtain

q q-á ñ - á ñq q ( ) ( ) ( )b m . D4LH LH LH

The empirical biases bLH for the SFRD and SMFs are 0.0026
dex and −0.0014 dex, respectively. Compared to the standard
deviations of the simulation uncertainty for the SFRD and
SMFs (∼0.06 dex and ∼0.1 dex), the emulators have relatively
small bias, which indicates that the mean of the emulators and
the mean of the simulations are in good agreement.

Second, we estimate the variance of emulator prediction with
respect to the uncertainty-marginalized ideal simulation in
terms of the LH set as follows:

q q
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With the definitions q q qd lº - q¯ ( ) ( ( ))A g g , , , B≡ g(θ,
δ(λθ, θ))− f (θ), and q qº -¯ ( ) ( )C g f , we obtain

s = á ñ = á ñ + á ñ + á ñ

= á ñ + á ñ + á - ñ

= -á ñ + á ñ + á ñ

-á ñ + á ñ

q q q q

q q q

q q q

q q

˜
( )

( )

C A B AB

A B A C A

A B AC

A B

2

2

2

. D6

LH
2 2 2 2

2 2

2 2

2 2

LH LH LH LH

LH LH LH

LH LH LH

LH LH

In the third line, á ñqAC LH is the covariance of A and C, where A
and C are the simulation uncertainty and the deviation of the
emulator from the ideally marginalized prediction, respectively.
Since the error of the emulator and the simulation uncertainty
are, in principle, fully independent, we assume that á ñqAC LH

approximately vanishes. á ñqA2 LH is the variance of the
simulation uncertainty and á ñqB2

LH is the variance of the
emulator with respect to the simulation in the LH set, both of
which are measurable quantities. á ñqA2 LH

and á ñqB2
LH

for the
SFRD are 0.036 dex2 and 0.004 dex2, and á ñqA2 LH

and á ñqB2
LH

for the SMFs are 0.369 dex2 and 0.035 dex2. Thus, the ŝLH
2 for

the SFRD and SMFs are 0.032 dex2 and 0.334 dex2,
respectively. As a result, the emulators have negligibly small
biases but deviate from the mean of the simulation uncertainty
at a similar level to the variance of the simulation uncertainty.

Therefore, we can conclude that the emulators cannot properly
marginalize the simulation uncertainty.

Appendix E
Definition of Degeneracy

We have encountered degeneracy in Section 4.1.2, which
discusses the bimodality of the SFRD. In this section, we
probabilistically discuss the relation between uncertainty and
degeneracy and mathematically define degeneracy for our
purposes. In terms of parameter–observable pairs, degeneracy
originates from indistinguishability among these pairs. Given
an arbitrary observation x0, if there exists a set of parameters
Θdegen such that q =q QÎ( )∣f x0degen , where f(θ) is, e.g., a
theoretical model, a simulation, or a fast approximation method
that predicts observable x as a function of the parameters θ,
then one cannot pinpoint the parameters θ from which the
given observation x0 comes. In this case, the pairs {(θ,
x0)|θäΘdegen} are said to be degenerate with respect to
observation x0. This can be usually seen in quantum systems
such as the spin triplet state under no magnetic field. In
consideration of an arbitrary uncertainty Z(η) in the observa-
ble24, the pairs can be written as either (θ, x+ Z(η)) or
(θ+ ò(η), x),25 where η is a random seed (Section 4.1.3 and
Appendix B). One can notice that Z and ò are basically random
variables that require a probabilistic treatment. In the following
section, degeneracy will be discussed in a probabilistic manner.
The ideal probabilistic inference naturally traces the

propagation of uncertainty in the observation onto each
parameter (see footnote 16). However, consistent, robust
confinement for the posterior density is necessary to define a
finite region of the degenerate parameter space since an
arbitrary inferred posterior density is generally well defined
over the entire parameter space.
We define degeneracy as follows.
Given an arbitrary probability density p(θ) and zthres, there

exist pthres and Θdegen satisfying q qQ = { ∣ ( ) }p pdegen thres
such that

ò

ò

q q

q q
z=

q

q

QÎ

Î

( )
( )

( )
( )

p d

p d
continuous E1thres

degen

or

å

å

q q

q q
z

D

D
=

q

q

QÎ

Î

( )

( )

( )
( )

p

p
discrete , E2thres

degen

q q q q q q q qd l d l= á - ñ = á ñ - á ñ - á ñ - á ñq q q q q q q( ( )) ( ) ( ( )) ¯ ( ) ( ) ( ) ( )b g f g g m, , , , , D3LH LH LH LH LH LH

24 For example, the cosmological simulations f reproduce different output x
depending on the initial conditions η even with the same set of physical and
free parameters θ, i.e., f(θ) = x + Z(η), where Z(η) stands for cosmic variance.
25 Given a model f(θ) that predicts observable x taking parameters θ as input,
the uncertainty in observable Z(η) can be propagated onto parameters θ as
follows: qh h+ +q

q
=
= ( ) ( )( )

( )x Z x f
xg , where η is a random seed. Here, g(x)

can be a set of locally defined functions that satisfy x = f (θ).
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where z< <0 1thres and  stands for the entire parameter
space. Here, the parameters θ in Θdegen are said to be
degenerate. Note that the threshold value zthres is a free
parameter.

In the case of a high-dimensional problem with an intractable
probability distribution, it is practically impossible to numeri-
cally integrate the probability distribution p(θ) over  orΘdegen

even if Θdegen is known. In low-dimensional problems, simple
quadrature methods can work. For example, we can evaluate a
function on a fixed grid of points, then apply the trapezoid rule.
However, in high dimensions, the number of grid points grows
exponentially.26 Hence, MCMC methods are widely adopted to
integrate high-dimensional functions.

We utilize the MCMC sampling to estimate the degenerate
parameter space. MCMC provides millions of parameter sets
such that the ratio of the number of parameter sets in each bin,
N(Δθbin), to the total number of samplings, Ntotal, represents
the approximate probability of that bin. In other words,
p(θ)Δθbin; N(Δθbin)/Ntotal, where Δθbin is the size of each
bin. We can rewrite the left-hand side of Equation (E2) into the
form

å
å

åq q

q q

qD

D
=

Dq

q

qQ QÎ

Î

Î



( )

( )

( )
( )

p

p

N

N
. E3

bin

total

degen degen

Then,

å q zD =
q QÎ

( ) ( )N N . E4bin thres total

degen

Together with q qQ = { ∣ ( ) }p pdegen thres , we can write Q =degen

q q q= > " Î =Î  { ∣ ˜( ) ( )p D p p D n Darg max ; ; ,D thres thres
z QÌ }N D,thres total MCMC , where ΘMCMC, p̃, and n( · ) are the set
of sampled parameters from MCMC; an arbitrary surrogate
posterior function, such as the NDE or kernel density estimation;
and the cardinality of the set. The set of degenerate points in the
parameter space,Θdegen, is a subset ofΘMCMC such that the sum of
the probability of the parameters in the subset is equal to zthres (refer
to Equation (E2)). In practice, we identify Θdegen among ΘMCMC

as follows: (1) estimate q˜ ( )p for all θäΘMCMC; (2) pair θ and
q˜ ( )p into q q( ˜ ( ))p, ; (3) sort q q( ˜ ( ))p, in descending order along
q˜ ( )p ; and (4) identify the first z Nthres total of θ of the sorted pairs as

Θdegen.
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