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A B S T R A C T

Micromechanics theories such as Mori–Tanaka’s approximation and Herve-Zaoui’s layered-inclusion approx-
imation have been used extensively to predict homogenized stiffness, inclusion stresses, and matrix strains
in various composites. While these theories accurately predict homogenized properties, the accuracy of their
predictions of stresses and strains within individual phases of cementitious composites has not been assessed
with experimental measurements or used to infer phase properties. Here, we therefore use in-situ X-ray
tomography, 3D X-ray diffraction, and digital volume correlation to evaluate homogenized stiffness, inclusion
stresses, and matrix strains in two cementitious composites. We compare measurements with predictions of
Mori–Tanaka’s mean-field approximation and Herve-Zaoui’s layered-inclusion approximation. We provide some
of the first direct support that these micromechanics theories can accurately predict both homogenized sample
stiffness and individual phase responses. We also show that combining in-situ X-ray measurements with these
theories provides a novel route for inferring the properties of specific phases.
1. Introduction

Continuum micromechanics has been employed extensively to pre-
dict the homogenized properties of cementitious composites. Multi-
phase models of Hashin (1991), Mori and Tanaka (1973), Eshelby
(1957), and Tanaka (1972) have been used to derive the effective
elastic stiffness of cement and concrete from the volume fractions and
moduli of individual phases (Ramesh et al., 1998; Yang and Huang,
1996a,b; Ulm et al., 2004; Sorelli et al., 2008). More recently, the
Mori–Tanaka scheme (Li and Wang, 2008; Nemat-Nasser and Hori,
013; Benveniste, 1987) has been used to develop a multi-scale frame-
ork for predicting the elastic and inelastic responses of cementitious
omposites (Königsberger et al., 2014a,b, 2018; Pichler and Hellmich,
2011). In this context, Pichler and Hellmich employed the Mori–Tanaka
scheme to first upscale the properties of nanoscale phases (hydrate
foam) to the microscale, and then to upscale microscale properties to
the sample scale (Pichler and Hellmich, 2011). Subsequent work by
these authors and others employed similar Mori–Tanaka-based transi-
tions to predict stress and strain fields around aggregates (Königsberger
et al., 2014a), the onset of failure at inclusion–matrix interfaces (the
interfacial transition zone (ITZ)) (Königsberger et al., 2014b; Mihai
and Jefferson, 2011), failure at hydrate-paste interfaces (Königsberger
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E-mail address: rhurley6@jhu.edu (R.C. Hurley).

et al., 2018), and to further estimate homogenized properties using
random homogenization theory (Königsberger et al., 2020). Other mod-
els, such as Herve and Zaoui’s layered-inclusion approximation (Herve
and Zaoui, 1993; Christensen and Lo, 1979), rigorously capture the
behavior of layered inclusions such as aggregates surrounded by ITZ
and have also been used to predict elastic properties of cementitious
composites (Ramesh et al., 1996; Sun et al., 2007).

The first condition required for applicability of micromechanics
models is that a sufficiently large, ‘‘representative’’ volume of mi-
crostructure is sampled by the specimen – i.e., that the sample is large
enough to be considered a representative volume element (RVE) (Dru-
gan and Willis, 1996). By the analysis of Drugan and Willis (1996),
the RVE size required to obtain 5% error in effective modulus is only
twice the diameter of inclusions for any inclusion packing density in a
broad class of composites. This RVE size is significantly smaller than the
samples typically studied with micromechanics models, even in this pa-
per in which miniature cementitious composite samples are examined.
Other conditions related to the applicability of Mori–Tanaka models
have often been challenged in the literature, despite the accurate ho-
mogenized stiffness predictions of the models (see discussion in Königs-
berger et al. (2018)). For instance, the applicability of Mori–Tanaka’s
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model to some cementitious composites has been challenged because
of the large volume fractions and non-elliptical shapes of inclusions in
a typical cement or concrete (Königsberger et al., 2018). In the context
of such challenges. A critical evaluation of Mori–Tanaka’s approxima-
tion, the differential scheme, and Herve-Zaoui’s approximation (called
the generalized self-consistent method) has been undertaken (Chris-
tensen, 1990), with only Herve-Zaoui’s approximation providing a close
fit to diverse experimental data and showing reasonable behavior in
high inclusion concentration limit cases. While large inclusion volume
fractions may challenge the underlying assumption of a mean-field
inherent to Mori–Tanaka’s approximation (Li and Wang, 2008; Ferrari,
1991), motivating more advanced schemes (Nemat-Nasser and Hori,
2013), ample empirical evidence supports Mori–Tanaka’s accuracy for
large inclusion volume fractions realizable in cementitious compos-
ites (Klusemann et al., 2012; Königsberger et al., 2018; Sevostianov and
achanov, 2014). Furthermore, while non-elliptical inclusion shapes
iolate the elliptical shape requirement of Eshelby inclusion theories (Li
nd Wang, 2008), Mori–Tanaka’s approximation has been shown to
emain accurate for such cases (Klusemann et al., 2012; Königsberger
t al., 2018; Sevostianov and Kachanov, 2014).
Despite their macroscale accuracy for cementitious composites, di-

ect experimental validation of the microscale assumptions underlying
ori–Tanaka and Herve-Zaoui approximations in these materials has
een scarce. In this paper, we address three important questions related
o Mori–Tanaka’s mean field theory for cementitious composites: (1)
o Mori–Tanaka’s and Herve-Zaoui’s approximations provide accurate
redictions of homogenized sample stiffness? (2) do average inclusion
tresses and matrix strains match those predicted by concentration
perations used in Mori–Tanaka’s theory in cementitious composites?
3) can discrepancies between theory and measurement be used to infer
aterial damage? The prevailing challenge in addressing these ques-
ions has been experimental limitations which make characterization
f matrix strain and inclusion stress fields difficult. X-ray tomography
nd digital volume correlation for cementitious composites has only
ecently become common and developed to the extent that qualitative
nd possibly quantitative comparisons with theory are possible (Hild
t al., 2013; Mao et al., 2019; Stamati et al., 2019; Loeffler et al.,
018). Furthermore, in-situ measurements of stresses within crystalline
nclusions surrounded by a composite matrix have been inaccessible
ntil recent developments in 3D X-ray diffraction (3DXRD) (Odder-
hede et al., 2010; Poulsen, 2004; Bernier et al., 2011). The first
easurements of stresses within large crystalline aggregates similar to
hose typically found in granular materials and cement have only been
ade in the past few years (Hurley et al., 2016; Hurley and Pagan,
019; Nair et al., 2019)
In this paper, we discuss the three questions raised in the previous

aragraph and address the first two using data obtained from two
niaxial stress experiments performed on small samples of cemen-
itious composites. In the uniaxial stress experiments, we combine
n-situ X-ray computed tomography (XRCT) and 3D X-ray diffraction
3DXRD) measurements, along with digital volume correlation (DVC)
alculations, to examine inclusion stresses, cement paste strains, and
omogenized sample stiffness. In contrast to our prior work (Hurley
nd Pagan, 2019) which compared only average inclusion stresses
o Mori–Tanaka predictions, here we also examine average matrix
trains, sample stiffness, and both Mori–Tanaka’s and Herve-Zaoui’s ap-
roximation to investigate which of the assumptions underlying these
pproximations are accurate or inaccurate, and to exploit inaccuracies
o infer material properties or damage. We show that stiffness predic-
ions made using Mori–Tanaka’s and Herve-Zaoui’s approximation are
ccurate at the macroscale for one of our samples and inaccurate for the
ther. Despite the inaccuracy of the stiffness prediction for the second
ample, average inclusion stress calculations are very accurate for both
amples. This finding and measurements of inaccurate matrix strain
redictions for the same sample featuring inaccurate sample stiffness
2

redictions leads us to conclude that the deviation from theory likely p
rises from drying-induced micro-cracking or the use of elastic rather
han visco-elasto-viscoplastic moduli more representative of dissipative
rocesses occurring during stress–strain protocols. We use a simple
calar damage model to capture the effects of drying-induced micro-
racking and other dissipative processes. This work is intended to be a
irst step toward experimentally evaluating the applicability of contin-
um micromechanics and their underlying assumptions in cementitious
omposites. We therefore also provide a discussion of intended future
ork examining additional open problems.
The remainder of the paper is organized as follows. Section 2

escribes the experiments, XRCT and 3DXRD measurements, and DVC
alculations. Section 3 summarizes the main assumptions and equations
nderlying Mori–Tanaka’s and Herve-Zaoui’s approximations and dis-
usses comparisons between experimental measurements and theory.
ection 4 provides a discussion of results and proposed future work.
ection 5 provides concluding remarks and a summary.

. Experiment and data processing

This section describes the experiments and experimental data pro-
essing used for comparisons between micromechanics theories and
easurements made in Section 3.

.1. Sample preparation

Two cementitious composite samples made primarily from Portland
ement and single-crystal quartz inclusions are described in this paper.
amples were prepared as follows and as previously described in Hurley
nd Pagan (2019). Single-crystal blocks (Sawyer Technical Materials,
LC) were first fragmented and ball-milled using a stainless-steel ball
ill and stainless-steel vial (SPEX SamplePrep Mixer/Mill 8000D ball
ill) for 30 s at room temperature. No processing control agents were
sed during ball milling. The resulting quartz particles were sieved to
etain those between mesh numbers 60 and 80 (177 - 250 μm). Quartz
articles were then combined with Type I Portland cement (Quikrete
ype I/II, ASTM C150 compliant) in a 1:2 weight ratio. Water was
hen added until a 1:3 water to solid weight ratio was reached, for
n initial water-to-cement ratio of approximately 0.5 by weight (not
ncluding the quartz particles in the weight calculation of the cement).
he resulting mixture formed a slurry that flowed sufficiently well
or the purpose of sample preparation. The slurry was poured into
cm3 cubic silicone molds. The molds were vibrated for 30 s at about
00 Hz before being covered by a thin polyethylene sheet for 24 h.
fter 24 h, the 1 cm3 cubes were removed from the silicone molds
nd submerged in a hydrated lime solution for 28 days. The hydrated
ime solution consisted of tap water mixed with lime (Type S masons
ydrated lime from Carmeuse, Rockwell Corporation). Finally, after 28
ays the concrete cubes were removed from the hydrated lime solution
nd cut with a diamond-tip blade into approximately 1 mm3 cubes. The
recise dimension of Sample 1 was 1.01×1.03×0.85 mm and the precise
imension of Sample 2 was 1.03×0.95×1.0 mm; these dimensions were
etermined after experiments were performed by inspecting the XRCT
mages. We note that controlling water to solids ratios was challenging
or the size of samples prepared in this work. All ratios should therefore
e assumed as approximate.
The first sample, referred to as Sample 1, was kept at room tem-

erature for five months after cutting and prior to being studied at
he Cornell High Energy Synchrotron Source (CHESS) beamline F2 as
reviously described in Hurley and Pagan (2019). Although our prior
ork described Sample 1 and some of its mechanical response, the
urrent paper describes the application of DVC to the sample and a
ore thorough study of its micromechanics for the first time. The
econd sample, referred to as Sample 2, was kept at room temperature
or approximately 12 months longer than the first sample. Sample
was studied at the Advanced Photon Source (APS) beamline ID-
-E. The experimental protocols for each sample are described in
ection 2.2. Additional details regarding image processing and resulting

hase fractions of each sample are provided in Section 2.3.
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2.2. Experimental procedure and macroscopic sample response

The experimental procedure for Sample 1 was described in Hurley
and Pagan (2019) and is briefly summarized here. Sample 1, which
measured 1.01×1.03×0.85 mm, was compressed in a state of unconfined
niaxial stress between 1.5 mm diameter stainless-steel platens in the
otation and Axial Motion System (RAMS) (Shade et al., 2015) load
frame at CHESS beamline F2. The sample was placed within a 1.5 mm
inner-diameter, 1 mm wall-thickness aluminum cylinder to capture any
fragments generated during compression, but the sides of the sample
remained traction-free throughout the experiment. While the interface
between the stainless-steel platens and sample may have featured fric-
tion for Samples 1 and 2, the effects of this friction were ignored in the
present work. An assumption of negligible friction is supported by our
modeling work with Sample 1 (Wei et al., 2020), which showed that
prescribing displacement boundary conditions to the top and bottom
of the sample, while allowing free lateral motion, yielded a close
comparison between experimental and simulated stiffness, aggregate
stress, and fracture patterns with experimental observations. We note,
however, that friction may not be fully absent and may enhance both
the uniaxial compressive strength and stress variance throughout our
samples, as suggested by prior work (Fischer et al., 2014).

Sample 1 was compressed by displacement-controlled downward
otion of the stainless-steel platen touching its top surface. Displace-
ent was imposed at approximately 0.1 μm∕s, yielding a strain rate

of approximately 10−4/s. At user-selected increments of macroscopic
sample strain chosen to coincide with a desired macroscopic stress,
the displacement of both platens were held constant and the sample
was rotated 180◦ and then 360◦ while illuminated with a 41.991
keV X-ray box-beam 1.2 mm tall by 2.5 mm wide. During the first
rotation, 1800 transmission radiographs were obtained at each 0.1◦
for X-ray computed tomography (XRCT) reconstruction. During the
second rotation, 1440 diffraction patterns were obtained on far-field
Dexela detectors located about 860 mm from the sample for 3D X-
ray diffraction (3DXRD) analysis. After both rotations, the sample was
further strained prior to the next set of measurements. Throughout the
experiment, the force applied to the sample was measured by a load
cell with a range of 1000 N and a nonlinearity of 5 N.

Sample 2, which measured 1.03 × 0.95 × 1.0 mm, was also sub-
jected to uniaxial stress between two 1.5 mm diameter stainless-steel
platens. The sample was also placed in a 1.5 mm inner-diameter, 1 mm
wall-thickness aluminum cylinder to capture any fragments generated
during compression, but its sides remained traction-free throughout the
experiment. The experiment performed on Sample 2 used a custom-
built load frame shown in Fig. 1(a) and described in Zhai et al. (2020).
The load frame features a linear actuator with encoder (Haydon Kerk
Size 34 Stepper Motor) and load cell (Futek LCM200 with a range
of 2224 N and a nonlinearity of 11.1 N) to compress samples to
a desired load level between stainless-steel platens. The load frame
was designed to permit ultrasound transmission measurements during
compression, as described in Zhai et al. (2020), and is operated fully
within a National Instruments (NI) Labview environment. The sample
was also compressed by displacement-controlled downward motion
of the stainless-steel platen touching its top surface. Displacement
was again imposed at approximately 0.1 μm∕s, yielding a strain rate
of approximately 10−4/s. At user-selected increments of macroscopic
sample strain, the displacement of the loading platen was held constant
and the sample was rotated 180◦ and then 360◦ while illuminated
with a 51.618 keV X-ray box-beam 1.2 mm tall by 2.0 mm wide.
The same number of transmission radiographs and diffraction patterns
were obtained during each rotation as for Sample 1. For Sample 2,
the far-field GE detector used for X-ray diffraction analysis was located
about 1200 mm from the sample. Throughout the experiment, the force
applied to the sample was measured by the load cell. A schematic of
the experimental setup is shown in Fig. 1(b) and provides a simpler
3

view of the important components of the experimental setup shown in
Fig. 1(a).

The load cell readings immediately after applying a sample strain
increment (labeled ‘‘(Pre)’’) and during 3DXRD measurements (labeled
‘‘Post’’) for each sample are shown in Fig. 2(b) as a function of load step.
A significant amount of relaxation without sample strain was observed
between the end of strain application and measurements. We attribute
this relaxation to slow sliding on internal micro-cracks and defects in
the samples and possible internal sliding of components within the load
frames. A majority of the observed relaxation occurred during the XRCT
scans at each load step, which were performed over the duration of
approximately 30 min. Prior research has found infinite creep com-
pliance upon changes in mechanical loading on concrete specimens,
with a reduction to slower creep over several minutes (Irfan-ul Hassan
et al., 2016), suggesting that much of the relaxation we observed likely
occurred immediately after straining on our samples. No motion blur
was observed in the XRCT images, which were reconstructed using
radiographs obtained over a period of 30 min. The presence of obvious
motion blur would suggest that the microstructure of the samples was
changing significantly (at least at the scale of the pixel size) during the
acquisition of radiographs at different angles. The absence of motion
blur suggests that material creep was insignificant at the length scale
of a of the pixel size (described in Section 2.3) in each experiment.
The macroscopic stress–strain curves calculated by dividing the load
cell readings during strain application (the ‘‘(Pre)’’ points) by initial
sample cross-sectional area are shown in Fig. 2(a). The macroscopic
strains were calculated by registration of XRCT images for the entire
sample in the open-source Software for Practical Analysis of Materials
(SPAM) (Stamati et al., 2020), which is also used for DVC and is
described in Section 2.4. The macroscopic stress in Fig. 2(a) is assumed
to be representative of the material state prior to relaxation and is
therefore not considered a representative of a visco-elastic material
response.

We note that for both Sample 1 and 2, mixed displacement–traction
boundary conditions were applied, with displacements applied to the
sample in the compression direction and stress-free boundary condi-
tions applied in the other directions. The instantaneous (‘‘Pre’’) and
relaxed (‘‘Post’’) stress measurements are both used to compare to our
calculations and measurements. For instance, we compare macroscopic
sample stiffness measurements with stresses calculated using load cell
measurements during strain application (‘‘Pre’’). This is similar to using
the steepest part of the stress–strain curve (often the initial points on
the unloading curve) to compute sample stiffness. On the other hand,
we compare aggregate stresses measured using 3DXRD (described in
Section 2.5) with micromechanics predictions that employ the far-
field stresses calculated using load cell measurements after relaxation
(‘‘Post’’).

2.3. X-ray computed tomography and phase segmentation

XRCT images were reconstructed for Sample 1 using the iterative
ASD-POCS algorithm in Livermore Tomography Tools (LTT) (Sidky and
Pan, 2008; Champley, 2016), as described in Hurley and Pagan (2019).
The resulting images had a pixel size of 1.48 μm per pixel. ASD-POCS
was used for Sample 1 because of the poor contrast between phase frac-
tions that occurred when using a traditional Filtered Back-Projection
(FBP) algorithm for reconstruction. XRCT images were reconstructed
for Sample 2 using the FBP algorithm in TomoPy (Gürsoy et al., 2014).
The resulting images had a resolution of 1.172 μm per pixel. All XRCT
images were 32-bit with grey-scale values corresponding to the local
X-ray attenuation coefficient calculated during reconstruction. 32-bit
images were converted to 16-bit images for ease of data processing by
manually selecting a minimum and maximum grey-scale value in 32-bit
images and linearly scaling this range to a 16-bit range: 0 to 65,535.
The same minimum and maximum grey-scale value was used for all
images for each sample to ensure that a grey-scale value in one load
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Fig. 1. (a) Sample tested at APS. (b) Schematic of experiment.
Fig. 2. (a) Stress versus strain. Stress was computed from the load cell readings after strain application (‘‘Pre’’ in (a)). Strain was computed from full-sample registration of XRCT
images, as described in Section 2.4. S1 refers to Sample 1 and S2 is Sample 2. (b) Load cell versus load step.
step corresponded to the same phase as a grey-scale value in another
load step for that sample. We note that although the XRCT image
resolution differed for Samples 1 and 2, we did not re-scale images from
the two samples to feature matching resolution. Such re-scaling would
introduce noise that would affect segmentation and DVC calculations.

After all XRCT images for both samples were reconstructed, im-
age processing and phase segmentation was performed using Matlab.
Phases observable by eye in all XRCT images include voids or fractures,
single-crystal quartz inclusions sometimes referred to here as quartz ag-
gregates, a low-density cement paste, and a high density cement paste
phase. The XRCT images for both samples and two horizontal cross-
sections are shown in Fig. 3, with each phase labeled. Variations in
grey-scale intensity exist for each phase, but voids, low-density cement
paste phases, and high-density cement paste phases can generally be
separated by simply isolating pixels with a grey-scale value between
certain ranges, as described in Hurley and Pagan (2019). Voids on
he scale of several microns were more-easily segmented for Sample
than for Sample 1 because the reconstruction algorithm for Sample 1
ffectively filtered-out features smaller than a certain length scale (see
.4 for a discussion of feature sizes for DVC).
Quartz inclusions could only be isolated by applying a standard

eviation filter to the XRCT images, as described in our prior work
nd by others (Hurley and Pagan, 2019; Stamati et al., 2019, 2018;
hakur et al., 2023). The standard deviation filter is only useful in
isolating quartz inclusions because X-ray attenuation coefficients within
4

inclusions are homogeneous, in contrast to the heterogeneous attenua-
tion coefficients found throughout the matrix. The standard deviation
filter involved calculating the standard deviation of grey-scale values
in 17 × 17 × 17 cubic windows of pixels (erroneously defined as
18 × 18 × 18 in Hurley and Pagan (2019)) of pixels around each pixel
in each XRCT image (25.16 μm side-length cubic region for Sample 1
and 19.92 μm side-length cubic region for Sample 2). If the standard
deviation of grey-scale values in these windows was less than 1850
for Sample 1 and less than 2000 for Sample 2, the center point of
the window was labeled an inclusion pixel. 52 quartz inclusions were
found in Sample 1 and 15 were found in Sample 2 using this approach.
In Sample 1, quartz inclusions had an average equivalent diameter of
approximately 140 μm with a standard deviation of 66 μm. In Sample 2,
quartz inclusions had an average equivalent diameter of 247 μm with
a standard deviation of 102 μm. We note that although care was taken
to fully mix quartz particles with other ingredients during the sample
preparation process described in Section 2.1, the difference in inclusion
sizes in Samples 1 and 2 reflects poor mixing. Nevertheless, both
samples are of an appropriate size for application of homogenization
schemes, as described in Section 3, and will be analyzed in the context
of their respective phase fractions in subsequent sections.

After inclusion pixels were identified for each XRCT image, the
pixels were dilated with a 13 × 13 × 13 cubic structuring element - a
size found by trial and error to give a very close visual reconstruction
of the inclusion sizes and shapes. Size and shape analysis of inclusions
was then performed using a connected-components algorithm in Matlab
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Fig. 3. (a) XRCT image of Sample 1. (b) Segmented image of the sample shown in (a) with individual phases distinguished by greyscale intensity and manually labeled. (c) XRCT
image of sample 2. (d) Segmented image of the Sample shown in (c) with individual phases distinguished by greyscale intensity and manually labeled.
Table 1
Phase fractions for Samples 1 and 2. LD stands for low-density. CM stands for cement paste. HD stands for high-density.
Sample Inclusions (𝑓𝑎𝑔𝑔) LD CM (𝑓𝑐𝑝) ITZ (𝑓𝑖𝑡𝑧) Void (𝑓𝑣) HD CM (𝑓ℎ𝑑 ) CM Total

1 0.18 0.56 0.10 0.01 0.15 0.71
2 0.15 0.55 0.06 0.03 0.21 0.76
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that assigned pixels to a single inclusion if they were connected to one
another by their face, edge, or corner (the ‘‘26-connected’’ structuring
element). The standard deviation thresholds (1850 and 2000) were
selected by trial and error: thresholds were gradually increased until
segmented and dilated quartz inclusions appeared nearly identical to
those discernible by eye in XRCT images. Because voids were identified
as inclusion pixels by the standard deviation filter, care was taken to
assemble segmented XRCT images by assigning pixels first to quartz
inclusions, and then to voids, mortar, and hydration products, over-
writing pixel assignments for quartz inclusions as needed. We note that
XRCT images for Sample 2 featured minor phase contrast (Mayo et al.,
003), increasing grey-scale values at inclusion-mortar boundaries. All
egmented XRCT images for Sample 2 were therefore post-processed to
onvert any pixel within 5 pixels of a quartz inclusion that was initially
ound to be a high-density phase into a low-density phase.
For the micromechanics calculations using the Herve-Zaoui approxi-
ation in Section 3, phase fractions of interfacial transition zones (ITZ)
re also considered. ITZs could not be identified by our image analysis
ecause they did not feature a consistent reduction in grey-scale value.
or micromechanics calculations in which we consider ITZ as a separate
hase from cement paste, we therefore adopt the findings of prior work
uggesting that the ITZ is approximately 15 μm thick (Scrivener et al.,
004; Mondal et al., 2009). A sensitivity study of the influence of the
TZ thickness on our analysis in this paper may be performed in the
uture but is not expected to significantly affect our results in this paper
ecause ITZ is assigned a stiffness equal to 85% of the cement paste.
o find the phase fraction of ITZ, we therefore further dilate inclusions
ith spherical structuring elements with radii of 10 pixels (14.8 μm)
5

t

or Sample 1 and 13 pixels (15.2 μm) for Sample 2. The resulting phase
ractions of Samples 1 and 2 calculated using the XRCT image at load
tep 0 are shown in Table 1.

.4. Digital volume correlation (DVC)

To calculate strain fields in the microstructures of each sample
hroughout the experiments, we performed DVC in SPAM (Stamati
t al., 2020) between the initial 16-bit XRCT image for each sample and
ach subsequent 16-bit XRCT image. DVC in SPAM involves tessellating
he 16-bit XRCT images into cubic correlation windows within which
he Lucas and Kanade approach is employed in determining window
isplacement and rotation (Lucas and Kanade, 1981). DVC was used to
alculate the strain throughout the entirety of both samples, with the ex-
eption of any regions in which correlation windows overlapped quartz
nclusions or void space. Correlation windows overlapping quartz inclu-
ions and voids were excluded from DVC analysis because such regions
id not feature appropriate speckle or contrast. DVC requires a speckle
attern within each correlation window and a window size that over-
amples that pattern sufficiently to avoid bias or error in displacement
alculations (Sutton et al., 2009). The speckle pattern in our DVC was
he natural heterogeneity present in the cement paste: the high-density
hases and voids visible in Figs. 4(b) and (c). Typically, a correlation
indow size of 3-6 times the average feature size of the speckle pattern
s suggested to ensure over-sampling (Sutton et al., 2009). To assess
he average feature size for each sample, we first manually-selected
D correlation windows from the initial XRCT image of each sample
hat did not contain quartz aggregates or large voids. We selected
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Fig. 4. (a) XRCT image of Sample 2 at load step 0 with only quartz inclusions rendered. (b) XRCT image of Sample 2 at load step 0 with only voids rendered. (c) XRCT image
of Sample 2 at load step 0 with only high-density phases rendered. (d)–(e) Two-dimensional planes through (a)–(c) showing a horizontal cross-section of quartz inclusions, voids,
and high-density phases, respectively, at the location of lines shown in (a)–(c). Similar figures are available for Sample 1 in Hurley and Pagan (2019).
indows of a sufficient size to ensure that our results did not depend on
indow size; this was verified by trial and error. We then computed the
ormalized autocorrelation of each correlation window. For instance,
o calculate the normalized autocorrelation 𝐴 of an window (or image),
, centered at coordinates (𝑥, 𝑦, 𝑧), we calculated

(𝑖) =
∑𝑁

𝑖=−𝑁
∑

𝑥,𝑦,𝑧 𝐼(𝑥, 𝑦, 𝑧) ∶ 𝐼(𝑥 − 𝑖, 𝑦, 𝑧)
∑

𝑥,𝑦,𝑧 𝐼(𝑥, 𝑦, 𝑧) ∶ 𝐼(𝑥, 𝑦, 𝑧)
, (1)

where 𝑖 is an offset of the image in pixels, ranging from −𝑁 to 𝑁 pixels.
We performed this calculation for offsets in the 𝑥, 𝑦, and 𝑧 direction.
The feature size is found to be the full-width-at-half-max (FWHM) of
the normalized autocorrelation function (Sutton et al., 2009).

Fig. 5(a) shows cubic regions of the XRCT images or segmented
hases of the XRCT images for Samples 1 and 2. The cubic regions
easure 80-pixels per side, large enough to evaluate characteristic
izes of features that can serve as speckles for DVC but small enough
o prevent the regions from overlapping aggregates or large voids.
hese cubic regions were used only to assess feature and correlation
indow sizes for each sample. DVC was subsequently performed in all
orrelation windows tessellating the volume of the samples, with the
xception of those overlapping quartz inclusions and voids. Figs. 5(b)–
f) show autocorrelation calculations obtained by translating these
indows by integer pixel values and using Eq. (1). The width-at-half-
ax is approximately 8 pixels in Fig. 5(b) for Sample 1 and 7 pixels in
ig. 5(d) for Sample 2, suggesting that a correlation window size of 24
48 pixels for Sample 1 and 21 - 42 pixels for Sample 2 is sufficiently
arge (Sutton et al., 2009). For simplicity, we chose a cubic correlation
window of 36-pixels side length for all analysis in this paper. Figs. 5(c),
(e), and (f) are provided to illustrate the feature sizes of high-density
phases and voids, both of which furnish a ‘‘speckle’’ used by DVC
algorithms.

Strain fields in the 𝑧 direction (𝜖𝑧𝑧) are shown for a select num-
ber of DVC calculations in Fig. 6 for Samples 1 and 2. The vertical
sample cross-sections shown in this figure correspond to the dashed
line shown in Fig. 3 on the XRCT image of each sample. Strains are
6

not calculated in correlation windows overlapping aggregates in XRCT
images because such windows do not feature appropriate speckle for
DVC; strains were therefore not rendered in aggregates. Dark colors and
color variations seen at the boundary of the aggregates are an artifact
of rendering a microstructure with missing data and should not be
interpreted as strains. In Fig. 6, we observe an increase in compressive
strain as loading of each sample progresses, with strain concentrations
observed at the top and bottom of some aggregates and highlighted
with blue arrows. Strains will be analyzed quantitatively in relation to
micromechanics theories in Section 3. We note that visualizing strain
invariants in figures analogous to Fig. 6 is also insightful for observing
strain concentrations; however, we do not use these strain invariants
and therefore do not render them here.

In addition to calculating strain fields using DVC, we also performed
full-sample registration using DVC, treating the entire XRCT image of
each sample as correlation windows and once again using the Lucas and
Kanade approach in SPAM (Stamati et al., 2020). The result of these
registration calculations was the sample strain at each load step. This
sample strain was found to be more accurate than the strain calculated
using either the encoder in the actuator or manual observation of the
distance between stainless-steel platens in the XRCT images. The latter
approach for calculating strain has an accuracy limited by the pixel size
whereas the DVC approach has sub-pixel resolution.

2.5. 3D X-ray diffraction and grain stresses

3DXRD analysis was performed for Sample 1 using HEXRD (Bernier
et al., 2011) and for Sample 2 using MIDAS (Park et al., 2015). The
objective of 3DXRD for each sample was to determine the average
stress tensor in each of the 52 quartz aggregates of Sample 1 and 15
quartz aggregates of Sample 2 at each load step of the experiments.
For each sample, we calibrated detector orientation, tilt, and distance
by using an X-ray powder diffraction pattern obtain from cerium oxide
(CeO2) immediately prior to testing our sample. Further refinements
to detector orientation, tilt, and distance were also performed using
the diffraction pattern obtained at load step 0 for each sample, when
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Fig. 5. (a) 80-voxel per side cubic correlation windows from XRCT images used in DVC for Sample 1 and 2 with high-density phases (HD phase) and voids isolated (the latter
only for Sample 2). The correlation windows shown were isolated from the full XRCT images at load step 0 for each sample (Figs. 3(a) and (c)). (b)–(f) show the autocorrelation
coefficients obtained by translating the correlation windows by integer pixels in 𝑥, 𝑦 and 𝑧 and using Eq. (1). The inset text conveys the sample and whether the full XRCT image
was used in cross-correlation or 3D images with only the HD phases or voids rendered.

Fig. 6. Strains calculated by DVC in Sample 1 (a)–(c) between XRCT images at load steps 0 and 1 (a), 0 and 2 (b), and 0 and 3 (c). Strains calculated by DVC in Sample 2
(d)–(g) between XRCT images at load steps 0 and 1 (d), 0 and 4 (e), 0 and 7 (f) and 0 and 10 (g).
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the sample was not subjected to macroscopic strain. We then applied
a threshold to remove background noise from each diffraction pattern
and employed the unit cell parameters of single-crystal alpha quartz
(space group 154, a = 4.9411 Å, c = 5.4071 Å) to locate Bragg
peaks produced by the quartz crystals. HEXRD and MIDAS performed
indexing on Bragg peaks to associate them with orientations of distinct
quartz particles, yielding centers-of-mass locations, quartz particle ori-
entations, and average per-particle strain tensors 𝝐̄𝑝, with 𝑝 as a particle
ndex, with assumed resolutions of several microns, 0.05◦, and 10−4 per
train tensor component, respectively. We have confirmed the assumed
ocation, orientation, and strain resolutions in prior work (Hurley et al.,
018; Hurley, 2021). Quartz particles were only assigned locations,
rientations, and strains if their completeness – the ratio of number
f found to predicted diffraction peaks – exceeded 0.7 in HEXRD and
.6 in MIDAS.
The average stresses in each quartz particle were calculated from the

nown fourth-order stiffness tensor of alpha-quartz, 𝐶11 = 87.16 GPa,
33 = 106.00 GPa, 𝐶44 = 58.14 GPa, 𝐶12 = 6.64 GPa, 𝐶13 = 12.09 GPa,
14 = −18.15 GPa (in Voigt notation) and Hooke’s law 𝜎̄𝑝𝑖𝑗 = 𝐶𝛺

𝑖𝑗𝑘𝑙𝜖
𝑝
𝑘𝑙,

here 𝐶𝛺
𝑖𝑗𝑘𝑙 is the fourth-order stiffness tensor for alpha-quartz in index

otation. We note that an isotropic stiffness is assumed for quartz
articles later in this paper to simplify the application of Mori–Tanaka’s
nd Herve-Zaoui’s approximations. Stresses were calculated in each
article’s crystal reference frame and then transformed to the sample
oordinate frame for further analysis. Particles were tracked across
oad steps by finding the nearest particle center-of-mass (usually within
bout 30 μm) in sequential load steps. When no particle center-of-
ass is within 30 μm in subsequent load steps, we conclude that Bragg
eaks for the particle in the load step in which it is missing could
ot be reliably fit by HEXRD or MIDAS. Missing a particle in a single
oad step may occur for a number of reasons, including fracture or if
he number of Bragg peaks falls below the completeness criterion due
o noise, overlap with other peaks, or particle motion after during a
ample rotation (i.e., due to prior debonding of the particle from the
urrounding matrix). Prior to tracking particles between load steps,
auphíne-twinned quartz particles were identified and their stresses
erged as described in our previous work (Hurley et al., 2018; Hurley
nd Pagan, 2019).
Fig. 7(a) shows the fraction of tracked grains for Samples 1 (of

2 grains) and 2 (of 15 grains) across all load steps of each experi-
ent. Figs. 7(b)–(c) show the evolution of volume-averaged particle
tresses across all load steps. The volume-averaged particle stresses
ere calculated by

̄ = 1
∑𝑁𝑝

𝑋𝑅𝐷
𝑝=1 𝑉𝑝

𝑁𝑝
𝑋𝑅𝐷
∑

𝑝=1
𝝈̄𝑝𝑉𝑝 (2)

where𝑁𝑝
𝑋𝑅𝐷 is the number of particles for which 3DXRD measurements

are available at a given load step, 𝝈̄𝑝 is the average stress tensor for
particle 𝑝 and 𝑉𝑝 is the volume of particle 𝑝.

The stresses for Samples 1 and 2 in Fig. 7 generally follow the
macroscopic load–displacement trends shown in Fig. 2. Average ver-
tical stresses, 𝜎̄𝑧𝑧, had the greatest magnitude, with horizontal and
shear stresses having significantly lower stresses, consistent with the
uniaxial stress boundary conditions. For both samples, peak volume-
averaged inclusion stresses in the loading direction immediately prior
to catastrophic sample stresses reached approximately −60 MPa. For
Sample 2, horizontal stresses are significantly lower than those in
Sample 1. Based on our findings of Section 3, we conclude that this is
likely due to drying-induced in the matrix of Sample 2, which reduces
the ability of the sample to transfer lateral tensile stresses to inclusions,
or other dissipative processes which arise but are not properly captured
by interpreting sample response through classical elastic moduli.

Fig. 8 shows 3D renderings of only the quartz inclusions for each
sample, with colors representing the stress tensor component 𝜎̄𝑝𝑧𝑧. The
volume rendered in this figure is the same as that in Fig. 6. Inclusions
8

for which no matching 3DXRD measurement is available for all load
steps of the experiments are highlighted in Fig. 8(a) and (e) by black
arrows and given a color corresponding to 𝜎̄𝑝𝑧𝑧 = 0. Fig. 8 illustrates
the growing compressive stress present within many of the inclusions
as each experiment progresses. It also highlights the heterogeneity of
inclusion stresses throughout the samples, a point that will be addressed
quantitatively in analysis of a Mori–Tanaka estimates of inclusion
stress.

3. Micromechanics analysis and discussion

One of the most popular homogenization schemes for estimating the
homogenized properties of cementitious composites is the Mori–Tanaka
approximation (Königsberger et al., 2014a; Hurley and Pagan, 2019;
Yang and Huang, 1996a,b; Mihai and Jefferson, 2011). This approxima-
tion has been employed extensively to predict macroscopic moduli and
to perform multiple ‘‘downscaling’’ calculations, whereby the effects
of macroscopic stress on aggregate or hydrate interfacial failure is
quantified (Königsberger et al., 2014a,b, 2018). The approximation is
appropriate for a composite containing elliptical inclusions embedded
in a matrix (Li and Wang, 2008; Mori and Tanaka, 1973). The intro-
duction of this paper summarizes some of the debate surrounding the
applicability of Mori–Tanaka’s approximation in a medium containing
a high concentration of possibly-interacting non-elliptical inclusions.
Several studies support the notion that Mori–Tanaka approximations
of homogenized sample stiffness are accurate, even when high con-
centrations of interacting inclusions are present in a matrix. Other
studies have shown that the Mori–Tanaka approximation provides an
accurate estimate for homogenized properties when inclusions are not
elliptical and potentially concentrated at a high density within the
matrix (Klusemann et al., 2012). Only one study to-date has confirmed
that the aggregate stresses used within the Mori–Tanaka approximation
are accurate (Hurley and Pagan, 2019), although only on average; the
variance in aggregate stresses suggests significant aggregate interac-
tion. With the addition of DVC measurements and more thorough
microscale analysis in the present paper, we can also examine the
accuracy of other micromechanical quantities used within the Mori–
Tanaka approximation and exploit those quantities to infer material
properties and damage. In particular, we examine the accuracy of
average matrix strains – the ‘‘mean-field’’ that gives Mori–Tanaka the
classification as a ‘‘mean-field theory’’ – and average inclusion stresses
using Eshelby’s single inclusion solution. Examining these quantities
addresses the questions posed in the introduction to this paper and will
provide insight into the microscale stress and strain heterogeneity in
cementitious composites.

The Herve-Zaoui layered inclusion model has also been proposed
for predicting the homogenized properties of composites containing
layered inclusions, such as an aggregate inclusion surrounded by an
ITZ (Ramesh et al., 1996; Sun et al., 2007). To-date, there has been
favorable comparison of Herve-Zaoui’s model predictions with a broad
range of composites containing layered inclusions (Christensen, 1990).

In this section, we first introduce Mori–Tanaka’s and Herve-Zaoui’s
approximations and related aspects of inclusion problems. We then
compare experimental results to theoretical quantities. We note that
the size of our samples, approximately 1 mm3 cubes, is assumed to be
sufficiently large for the samples to be considered representative vol-
ume elements by the definition provided in Drugan and Willis (1996):
both samples are more than twice the size of the largest inclusion.

3.1. Description of Mori–Tanaka’s approximation for homogenized proper-
ties

We begin with a brief description of the salient components of the
Mori–Tanaka approximation that have been derived elsewhere (Nemat-
Nasser and Hori, 2013; Li and Wang, 2008). In the Mori–Tanaka
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Fig. 7. (a) Fraction of inclusions observed in XRCT for which 3DXRD measurements were accurately made, as described in the main text. (b) Average stress in inclusions for
Sample 1, calculated using Eq. (2). (c) Average stress in inclusions for Sample 2, calculated using Eq. (2).
Fig. 8. Aggregate stresses for (a)–(d) Sample 1 and (e)–(h) Sample 2. Arrows in (a) and (e) highlight the visible aggregates in each sample for which no 3DXRD measurements are
available throughout the entirety of the experiments. Aggregates with no 3DXRD measurements are given a color corresponding to 𝜎̄𝑧𝑧 in each load step that 3DXRD measurements
are missing. The aggregates, if visible in the subfigures, are also noted with arrows. All subfigures share the same colorbar.
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approximation, a composite volume composed of a matrix and inclu-
sions is subjected to far-field displacements or tractions, or equivalently
to a far-field strain, 𝝐∞, or stress, 𝝈∞. When far-field strain is applied
to an infinite homogeneous medium, Mori and Tanaka showed that
the integral of disturbance strains induced by the introduction of an
inclusion into the matrix is zero (Tanaka, 1972). If the matrix is
assumed to be the dominant phase and the introduction of an additional
inclusion does not significantly alter the phase fraction of the matrix
and inclusion, one can then assume 𝝐̄𝑀 = 𝝐∞. Equivalently, one can
also assume 𝝈̄𝑀 = 𝝈∞ (Nemat-Nasser and Hori, 2013; Li and Wang,
008). This is the critical assumption of Mori–Tanaka’s approximation:
hat there is a mean-field stress or strain surrounding inclusions with
roperties of the matrix. This assumption makes calculations tractable
ut is often a point of criticism (e.g., Königsberger et al. (2018)) and
differentiates Mori–Tanaka approximations from differential schemes
and others in which incremental additions of inclusions do in fact alter
the strains, stresses, and compliances of the effective medium in which
inclusions are embedded (Nemat-Nasser and Hori, 2013; Zaoui, 2002;
Pichler and Dormieux, 2008).

When far-field strains are applied to the composite, average matrix
strain can be related to the average inclusion strain through

𝝐̄ = A ∶ (A − S )−1 ∶ 𝝐̄ , (3)
9

𝛺 𝛺 𝛺 𝛺 𝑀 T
where A𝛺 = (C𝑀 − C𝛺)−1 ∶ C𝑀 is a stiffness misfit tensor of the
inclusion of phase 𝛺, with C𝑀 the matrix stiffness tensor and C𝛺 the
stiffness tensor of phase 𝛺, and S𝛺 is the infinite-domain Eshelby tensor
for the inclusion of phase 𝛺. The quantity 𝛺 = A𝛺 ∶ (A𝛺 − S𝛺)−1

is also called the strain concentration tensor. For spherical inclusions,
S𝛺 is given by (in index notation, with the subscript 𝛺 written as a
superscript) (Nemat-Nasser and Hori, 2013; Li and Wang, 2008)

S𝛺𝑖𝑗𝑘𝑙 =
5𝜈 − 1

15(1 − 𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 +

(4 − 5𝜈)
15(1 − 𝜈)

(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙), (4)

where 𝜈 is the Poisson’s ratio of the matrix phase. Similarly, when far-
field stresses are applied to the composite, inclusion stresses are given
by (Benveniste, 1987; Li and Wang, 2008)

̄𝛺 = B𝛺 ∶ (B𝛺 − T𝛺)−1 ∶ 𝝈̄𝑀 , (5)

here B𝛺 = (D𝑀 − D𝛺)−1 ∶ D𝑀 is a compliance misfit tensor of the
nclusion phase 𝛺, with D𝑀 the matrix compliance tensor and D𝛺 the
ompliance tensor of phase 𝛺. The quantity 𝛺 = B𝛺 ∶ (B𝛺 − T𝛺)−1 is
lso called the stress concentration tensor. T𝛺 is the conjugate Eshelby
ensor defined through the relation

(4𝑠)

𝛺 = I − C𝑀 ∶ S𝛺 ∶ D𝑀 . (6)
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When far-field stresses are applied to the composite, one can also relate
average matrix strain to far-field stress simply by

𝝐̄𝑀 = C−1
𝑀 ∶ 𝝈̄𝑀 = C−1

𝑀 ∶ 𝝈̄∞. (7)

It has been shown that using the infinite-domain Eshelby tensors for
pherical inclusions yields comparable results to using more accurate
ensors for elliptical inclusions (Klusemann et al., 2012). We note that
here are no length scales in Eq. (5) that would make 𝝈̄𝛺 vary as
function of inclusion size. Thus, even if individual inclusions are
epresented by the index 𝛺, inclusion stresses only vary if S𝛺 or C𝛺
ary.
Using the volumetric decomposition of average composite stress or

train, where 𝑓 is the inclusion phase volume fraction,

𝝐̄ =(1 − 𝑓 )𝝐̄𝑀 + 𝑓 𝝐̄𝛺 and
̄ =(1 − 𝑓 )𝝈̄𝑀 + 𝑓 𝝈̄𝛺 ,

(8)

he relations 𝝈̄𝑀 = C𝑀 ∶ 𝝐̄𝑀 and 𝝈̄𝛺 = C𝛺 ∶ 𝝐̄𝛺, and Eqs. (3) and
5), we arrive at two expressions for the composite stress, 𝝈̄. These two
xpressions are

̄ =((1 − 𝑓 )C𝑀 + 𝑓C𝛺 ∶ 𝛺) ∶ 𝝐̄𝑀 , and
̄ =C̄ ∶ ((1 − 𝑓 )I(4𝑠) + 𝑓𝛺) ∶ 𝝐̄𝑀 .

(9)

ori–Tanaka’s approximation of homogenized stiffness involves using
hese two expressions to derive

̄ =
(

(1 − 𝑓 )C𝑀 + 𝑓C𝛺 ∶ 𝛺
)

∶
(

(1 − 𝑓 )I(4𝑠) + 𝑓𝛺
)−1 . (10)

or 𝑛 distinct phases 𝛺, this expression becomes

̄ =

( 𝑛
∑

𝛺=0
𝑓𝛺C𝛺 ∶ 𝛺

)

∶

( 𝑛
∑

𝛺
𝑓𝛺𝛺

)−1

. (11)

n the following subsections in which the Mori–Tanaka approximation
s used, the phases which we will homogenize will include the matrix,
hich includes the cement paste and voids, and the entire composite,
hich includes the matrix and quartz aggregates.
We note that the Mori–Tanaka approximation is self-consistent:

̄ −1 = D̄, where D̄ is the homogenized compliance tensor of the
omposite. Therefore, while we will take care in evaluating aggregate
tresses using Eq. (5) and the knowledge that mixed boundary condi-
ions are applied in our experiments, we may use Eq. (11) to evaluate
omogenized sample stiffness, rather than an equivalent expression for
̄ , because the two should provide self-consistent results.

.2. Description of Herve-Zaoui’s approximation for homogenized proper-
ies

A rigorous method for homogenizing the properties of composites
ontaining layered inclusions (i.e., inclusions composed of more than
ne concentric phase) was proposed by Herve and Zaoui (1993). The
erve-Zaoui homogenization approach is derived by calculating the
verage stress and strain in individual phases of a layered-inclusion
omposite as a function of far-field stresses or strains. The effective bulk
nd shear moduli of a composite in which an (𝑛 − 1)-layer inclusion
s embedded in a matrix with bulk and shear moduli 𝑘𝑛 and 𝜇𝑛,
espectively, can then be calculated and written 𝑘𝑒𝑓𝑓 and 𝜇𝑒𝑓𝑓 . The
ffective bulk modulus is given by

𝑒𝑓𝑓 = 𝑘𝑒𝑓𝑓𝑛 = 𝑘𝑛 +
𝑅3
𝑛−1∕𝑅

3
𝑛

1
𝑘𝑒𝑓𝑓𝑛−1−𝑘𝑛

+
3(𝑅3

𝑛−𝑅3
𝑛−1)

𝑅3
𝑛

1
3𝑘𝑛+4𝜇𝑛

, (12)

where 𝑘𝑒𝑓𝑓𝑛 is computed recursively beginning with 𝑛 = 2. The phase
fraction of each layer, 𝑖, of the inclusion is given by 𝑅3

𝑖 ∕𝑅
3
𝑛, where

𝑛 is the number of layers of the inclusions. For a two-phase model
(𝑛 = 2), the effective bulk modulus is equal to the lower (upper)
Hashin–Shtrikman bound if the bulk modulus of the matrix is less
than (greater than) that of the inclusion (Torquato and Haslach, 2002).
10
Christensen and Lo have also proposed the three-phase version of
Eq. (12), equivalent to the result of Eq. (12) when 𝑘𝑒𝑓𝑓𝑛 is computed
ecursively until 𝑛 = 3, to predict the properties of inclusions with
ne layered embedded within a matrix (Christensen and Lo, 1979). The
ffective shear modulus in the Herve-Zaoui approach is given by
(

𝜇𝑒𝑓𝑓

𝜇𝑛

)2

+ 𝐵
(

𝜇𝑒𝑓𝑓

𝜇𝑛

)

+ 𝐶 = 0, (13)

here 𝐴,𝐵, and 𝐶 are constants described in Appendix.

.3. Other aspects of the inclusion problem

Another aspect of the inclusion problem not needed in deriving
omogenized properties but often used in predicting micro-crack initi-
tion (Mihai and Jefferson, 2011) is the matrix strain field. The matrix
train surrounding an inclusion can be calculated using the exterior
oint Eshelby tensor, S𝛺,𝐸 , by (Mihai and Jefferson, 2011)

𝑚𝛺(𝒙) =
[

I(4𝑠) + S𝛺,𝐸 (𝒙) ∶ L𝛺
]−1 ∶ 𝝐∞, (14)

here L𝛺 = −[S𝛺 + (D𝛺 − D𝑀 )−1 ∶ D𝑀 ]−1. The matrix strain field
round inclusions is expected to play an important role in the onset of
nelasticity because the stress concentrations generated by the elastic
ismatch of inclusions and cement paste or hydrates and cement paste
re thought to drive macroscopic fracture nucleation (Königsberger
t al., 2014b, 2018). We found the evaluation of these strain fields
hallenging due to the moderately high density of inclusions and their
on-spherical shape. Fig. 9 shows theoretical calculations of matrix
train in a composite subjected to a vertical strain (𝜖𝑧𝑧 = −0.001, 𝜖𝑥𝑥 =
̄𝑦𝑦 = 0.001𝜈, with 𝜈 = 0.23 and other strain tensor values equal
o zero) using Eq. (14), matrix properties equal to the properties of
ement paste (see Table 3), and a 100 μm radius spherical quartz
nclusion. Strains are shown as a function of vertical, 𝑑𝑧, (Fig. 9(a))
nd horizontal, 𝑑ℎ, (Fig. 9(b)) distance away from the inclusion center.
n future work, we plan to employ spherical inclusions with varying
acking fractions and the same DVC procedure employed in this paper
o evaluate how closely these theoretical curves match measurements
rom experiments. This analysis will elucidate the accuracy of theories
redicting matrix failure based on exterior Eshelby tensor calcula-
ions (Mihai and Jefferson, 2011), will shed light on the role of the
lastic mismatch of hydrates and other high-density phases in making
train fields deviate from theoretical values shown in Fig. 9, and may be
sed to examine inclusion–matrix interfacial properties by comparison
o Eshelby theories with interphase effects (e.g., Duan et al. (2007)).

.4. Experimental comparisons

In this subsection, we compare experimental measurements with
redictions of homogenized properties and phase stresses by Mori–
anaka’s and Herve-Zaoui’s approximations. Table 2 lists the quantities
we compare, their theoretical values, and some details of their ex-
perimental computation. We generally assume that far-field tractions
were applied to each sample, and employ expressions using 𝝈̄𝑀 or 𝝈̄∞

in our micromechanical calculations, where values for 𝝈̄𝑀 or 𝝈̄∞ are
those shown in Fig. 2. Further details are described in the subsequent
subsections.

3.4.1. Mori–Tanaka’s and Herve-Zaoui’s prediction of homogenized stiff-
ness

This subsection compares Mori–Tanaka’s and Herve-Zaoui’s approx-
imation of homogenized sample stiffness using with experimental mea-
surements of sample stiffness calculated from the stress–strain curves
in Fig. 2(a) (before sample relaxation) (see Table 2, row 1). Both
approximations employ phase moduli and phase fractions. Phase frac-
tions are available for each sample from XRCT images and are listed
in Table 1. Phase moduli are taken from their values used in prior
studies and are shown in Table 3 (Königsberger et al., 2014b; Hurley
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Fig. 9. Matrix strain calculation using Eq. (14) with far-field strains and inclusion sizes described in the text.
Table 2
List of quantities whose theoretical values will be compared with experimental computations.
Quantity Theory Input for Theory &

Experimental Data to Compare

Mori–Tanaka homogenized stiffness Eq. (11) Theory: phase fractions from Table 1 and phase moduli
from Table 3 (Königsberger et al., 2014b; Hurley and
Pagan, 2019).
Data: stiffness from Fig. 2(a), (‘‘Pre’’) relaxation load cell
measurements.

Herve-Zaoui homogenized stiffness Eqs. (12) and
(13)

Theory: phase fractions from Table 1 and phase moduli
from Table 3 (Königsberger et al., 2014b; Hurley and
Pagan, 2019).
Data: stiffness from Fig. 2(a), (‘‘Pre’’) relaxation load cell
measurements.

Mori–Tanaka average aggregate stress Eq. (5) Theory: 𝝈̄𝑀 = 𝝈∞ from post-relaxation load cell reading.
Data: stresses from 3DXRD.

Mori–Tanaka average matrix strain Eq. (7) Theory: 𝝈̄𝑀 = 𝝈∞ from post-relaxation load cell reading
or 𝝐∞ from full-sample DVC registration. Data: average of
point-wise DVC in matrix.
a
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Table 3
Moduli of each phase fraction from Königsberger et al. (2014b, 2018). The high
density phases are assumed to be part of cement paste and are already reflected in
the corresponding elastic properties.
Quantity Bulk modulus, 𝑘 (GPa) Shear modulus, 𝑔 (GPa)

Quartz inclusions 𝑘𝑎𝑔𝑔 =38.1 𝜇𝑎𝑔𝑔 = 44.4
Cement paste 𝑘𝑐𝑒𝑚 = 9.88 𝜇𝑐𝑒𝑚 = 6.5
ITZ 𝑘𝑖𝑡𝑧 = 8.4 𝜇𝑖𝑡𝑧 = 5.53
Void 𝑘𝑣 = 0 𝜇𝑣 = 0

and Pagan, 2019). A more accurate approach would be to use the
hase moduli obtained from nano-indentation experiments performed
n each specimen at approximately the same time as the experiments
escribed in Section 2.2 . However, such nano-indentation measure-
ents were not performed and experiments on the two samples were
erformed at times separated by 12 months. We therefore use the phase
oduli from prior studies, acknowledging that homogenization results
ay be only approximate due to drying-induced micro-cracking that
ay occur over time. In later subsections, we employ the differences
etween calculated and measured stiffness to infer the amount of
amage induced by dry-induced micro-cracking and the effects of other
issipative phenomena. Isotropic linear elastic behavior was assumed
or all phases in Table 3, even though minor anisotropy may be present,
s is the case for the quartz aggregates (see Section 2.5). The high
density phases observed in XRCT images were assumed to be part of the
cement paste. The homogenized properties for cement paste in Table 2
are assumed to account for the presence of high-density phases and
11

nano-scale porosity (Königsberger et al., 2014b). T
Mori–Tanaka’s calculation of homogenized stiffness (called MT) for
each of the two samples proceeded as follows. First, we assumed that
each sample was composed of two dominant phases, a matrix and
quartz inclusions. The matrix was assumed to be composed of cement
paste – inclusive of any nano-scale porosity and high-density phases –
and large voids. We ignored the presence of ITZ because Mori–Tanaka’s
theory does not rigorously account for coated inclusions. We therefore
added the ITZ volume in Table 1 to that of the cement paste, bringing
the total cement paste volume fraction to 0.81 for Sample 1 and 0.82
for Sample 2. The homogenized matrix properties were calculated using
Eq. (11) assuming two phases: cement paste and voids. The cement
paste volume fraction of the matrix was taken as 𝑓 (𝑀𝑇 )

𝑐𝑝 = 𝑓𝑐𝑝∕(𝑓𝑐𝑝+𝑓𝑣)
nd the large void volume fraction was taken as 𝑓 (𝑀𝑇 )

𝑣 = 𝑓𝑣∕(𝑓𝑐𝑝 + 𝑓𝑣).
ollowing homogenization for matrix stiffness, homogenized sample
roperties were calculated using Eq. (11) assuming two phases, matrix
nd quartz inclusions. The matrix volume fraction was assumed to be
he sum of the cement paste, ITZ, and large voids in Table 1: 0.82 for
ample 1 and 0.85 for Sample 2. The inclusion volume fraction was
.18 for Sample 1 and 0.15 for Sample 2. The procedure for calculating
he MT approximation is summarized in Table 4.
Herve-Zaoui’s calculation of homogenized stiffness (called HZ) for

ach of the two samples proceeded as follows. First, we assume that
ach sample is a four-phase composite: a two-layer inclusion, composed
f a quartz aggregate surrounded by a layer of ITZ, embedded in a
atrix that is itself embedded in a mean field. The radii, 𝑅1, 𝑅2, and
3 of the inclusion, ITZ, and matrix, respectively, are taken such that
𝑅1∕𝑅𝑛)3 represents the inclusion volume fraction of each sample in
able 1 and (𝑅 ∕𝑅 )3 represents the ITZ volume fraction of each sample
2 3
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Table 4
Mori–Tanaka and Herve-Zaoui approximations for Young’s modulus, 𝐸, for Samples 1 and 2. 𝑓𝑝 is the phase
fraction of phase 𝑝, where 𝑝 = 0 is for cement paste, 𝑝 = 1 is for void, 𝑝 = 2 is for quartz inclusions, and
𝑝 = 3 is for the homogenized matrix. C𝑝 is the stiffness tensor of phase 𝑝. 𝑝 is the concentration tensor
for phase 𝑝.
Approx. Description

MT Matrix: cement paste and void C𝑚 =
(

∑1
𝑝=0 𝑓𝑝C𝑝 ∶ 𝑝

)

∶
(

∑1
𝑝=0 𝑓𝑝𝑝

)−1
;

Inclusion: aggregate and ITZ, C𝑖𝑛𝑐 =
(

∑3
𝑝=2 𝑓𝑝C𝑝 ∶ 𝑝

)

∶
(

∑3
𝑝=2 𝑓𝑝𝑝

)−1
.

Each homogenized using phase fractions from Table 1. Final homogenization with
Eq. (11),
C̄ =

(

𝑓𝑚C𝑚 ∶ 𝑚 + 𝑓𝑖𝑛𝑐C𝑖𝑛𝑐 ∶ 𝑖𝑛𝑐
)

∶
(

𝑓𝑚𝑚 + 𝑓𝑖𝑛𝑐𝑖𝑛𝑐
)−1.

HZ Matrix: cement paste and void C𝑚 =
(

∑1
𝑝=0 𝑓𝑝C𝑝 ∶ 𝑝

)

∶
(

∑1
𝑝=0 𝑓𝑝𝑝

)−1
,

homogenized as described in the text.
Inclusion: quartz inclusion with layer of ITZ.
Final homogenization with Eqs. (12) and (13).
Fig. 10. A comparison of the Mori–Tanaka and Herve-Zaoui approximations for sample stiffness, described in the text, and the experimental results for Samples 1 (a) and 2 (b).
he Exp. S1 and Exp. S2 labels refer to experimental results for Samples 1 (S1) and 2 (S2).
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Table 5
Mori–Tanaka and Herve-Zaoui approximations for Young’s modulus, 𝐸, for Samples 1
and 2.
Sample Exp. Mean ± Std. (GPa) MT (GPa) HZ (GPa)

1 15.75 ± 4.16 21.86 17.84
2 12.02 ± 2.87 20.95 17.12

in Table 1. The quartz inclusion and ITZ properties used in the Herve-
Zaoui calculation are taken from Table 3. The matrix properties are
assumed to be those homogenized by a Mori–Tanaka calculation similar
to the one described in the previous paragraph, taking into account
the presence of cement paste (now without ITZ added to its volume
fraction) and large voids. Eqs. (12) and (13) are then employed to
render the HZ approximation, as summarized in Table 4.

Results of the MT and HZ calculations are shown in Table 5 and
ig. 10. Experimental Young’s moduli are calculated by dividing the
hange in stress before relaxation (see Fig. 2) by the strain between
hose load steps. The resulting moduli are plotted at the second of the
equential strains across which they are calculated in Fig. 10.
For Sample 1, the MT and HZ approximations provide stiffness pre-

ictions that agree reasonably-well with experimental measurements
uring the first two load steps of the experiment, as shown in Fig. 10(a).
he HZ approximation agrees with experimental measurements more
losely. Neither the MT nor the HZ approximations match experimental
easurements well for the third load step of the experiment on Sample
. Fracture nucleation is visible in this third load step upon careful
12

nspection of XRCT images, as discussed in Hurley and Pagan (2019). e
his fracturing explains the significant reduction in sample stiffness and
ver-prediction of MT and HZ calculations.
For Sample 2, the MT and HZ approximations over-predict sample

tiffness for all load steps except for load step 8. We believe this discrep-
ncy may arise from several factors: (1) inaccurate matrix properties
ue to drying-induced micro-cracking in the cement paste; (2) the use
f elastic moduli rather than more complex and possibly more accurate
isco-elasto-viscoplastic loading moduli (Irfan-ul Hassan et al., 2016);
3) a change in representative length scale because Sample 2 contains
ewer and larger inclusions. We rule out the third of these factors
ecause, although there are fewer and larger inclusions in Sample 2,
he 1 mm side-length of the sample remains greater than twice the
argest inclusion dimension, which is the minimum size determined by
rior studies to constitute an RVE exhibiting 5% error in modulus (Dru-
an and Willis, 1996). We therefore conclude that the discrepancy
s due to either drying-induced micro-cracking or the use of elastic
oduli rather than visco-elasto-viscoplastic loading moduli. As noted
y other authors, such visco-elasto-viscoplastic loading moduli are rele-
ant whenever moduli are derived from stress–strain protocols (Irfan-ul
assan et al., 2016). These visco-elasto-viscoplastic moduli are asso-
iated with dissipative phenomena, potentially including sliding on
icro-cracks. The distinction between the effects of micro-cracks and
he use of elastic rather than visc-elasto-viscoplastic moduli is therefore
ot particularly meaningful in the absence of additional information
ecause they are related. Nevertheless, we exploit the discrepancy be-
ween theory and measurements in Section 3.4.4 to derive an effective

mpirical damage constant.
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Fig. 11. A comparison of individual quartz inclusion stresses (thin curves) and average inclusion stresses (thick solid lines) with Mori–Tanaka predictions (thick dashed lines,
abeled MTA) using Eq. (3) for Sample 1 (a) and Sample 2 (b), as described in the text.
(
u

.4.2. Mori–Tanaka prediction of average inclusion stress
This subsection compares Mori–Tanaka’s prediction of average in-

lusion stresses using Eq. (5) with experimental measurements of quartz
inclusion stresses made using 3DXRD and shown in Figs. 7 and 8.
ar-field traction boundary conditions were assumed, with the 𝜎∞𝑧𝑧
omponent of far-field stress being the macroscopic stress measured
uring 3DXRD scans (‘‘Post’’ symbols in Fig. 2(b)). This is the natural
tress to use in theoretical calculations as this is the far-field stress on
he sample when the 3DXRD measurements are made. All other far-
ield stress tensor components were taken to be zero, consistent with
he lateral surfaces of samples being unconfined.
Average inclusion stresses, shown in Fig. 7, are reproduced in

ig. 11. The thin curves in Fig. 11 convey the stresses in each aggregate
s a function of macroscopic strain while thick solid curves convey the
verages to be compared with the calculations using Eq. (5). The Mori–
anaka prediction, labeled MTA, is shown in dashed lines. For both
amples 1 and 2, the individual aggregate stresses vary significantly
hrough the elastic stage of the experiments, as also discussed in our
rior work (Hurley and Pagan, 2019). The volume-average stresses, on
he other hand, increase smoothly and are closely predicted the Mori–
anaka approximation. For both samples, the Mori–Tanaka predictions
atch the average aggregate stresses very closely. The close agreement
etween theory and experiments in Fig. 11 leads us to conclude with
irect measurements that the average aggregate stresses underlying the
ori–Tanaka homogenization process are very accurate for cemen-
itious composites. Further discussion of this finding is provided in
ection 3.4.4, when we recalculate these average aggregate stresses
nder the assumption of a damaged matrix.

.4.3. Mori–Tanaka prediction of average matrix strain
We next compare Mori–Tanaka predictions of average cement paste

train using Eq. (7) with DVC calculations made on XRCT images. To
ake this comparison, we first calculate the average strain throughout
he matrix of each sample using DVC measurements made at each
oad step. We do not consider strains for which any portion of a DVC
orrelation window overlaps an aggregate particle, large voids, the top
r bottom piston contacting the sample, or the void space outside of
he sample. In practice, this is accomplished by ignoring DVC results
entered on points within about 31 μm of quartz inclusions, or about
8
√

3 μm, where 18 is the DVC half-window size and
√

3 accounts
for the cubic shape of correlation windows. The average matrix strain
calculated from DVC is compared to theoretical predictions of 𝝐̄𝑀 .
Because we assumed far-field stress boundary conditions in prior sub-
sections, we first calculate the Mori–Tanaka approximation for 𝝐̄𝑀 by
̄ −1 ̄∞ ̄∞
13

𝑀 = C𝑀 ∶ 𝝈 , where 𝝈 is the sample stress after sample strain
‘‘Pre’’ in Fig. 2) and C𝑀 is the homogenized matrix stiffness calculated
sing Eq. (11) and described in Section 3.4.1. We call the result
MTM1. Using 𝝈̄∞ as the sample stress during 3DXRD measurements
yielded similar results. Because we could also have assumed far-field
displacement boundary conditions, we can also calculate the Mori–
Tanaka approximation for 𝝐̄𝑀 by 𝝐̄𝑀 = 𝝐̄∞, where 𝝐̄∞ is the value of
strain calculated from full-image XRCT registration, the 𝑧𝑧 component
of which is shown in Fig. 2. We call this result MTM2.

A comparison of average matrix strains calculated through Mori–
Tanaka’s approximation and from experimental data is shown in Fig. 12.
The MTM2 calculation provides a closer match to the experimental data
than the MTM1 calculation for both Samples 1 and 2 for all load steps.
It is noteworthy that MTM1 provides a particularly poor prediction
for matrix strains in Sample 2, suggesting that the assumption of a
mean field with stiffness C𝑀 is particularly poor for this sample. This
motivates our attempt to degrade the stiffness of the matrix using a
scalar damage value in the next subsection.

3.4.4. Estimation of damage from drying-induced micro-cracking
In this subsection, we use the discrepancy between MT and HZ

approximations and experimental stiffness measurements from Sec-
tion 3.4.1 to estimate the damage in Samples 1 and 2 from drying-
induced micro-cracking. In particular, after calculating the homoge-
nized matrix stiffness C𝑀 using the nominal properties of the cement
paste provided in Table 2, as described in Section 3.4.1, we use a
simple scalar damage variable 𝐷, ranging from 0 to 1, and adjust C𝑀
according to

C̃𝑀 = (1 −𝐷)C𝑀 . (15)

𝐷 is found by simple trial and error by adjusting 𝐷 until the MT and HZ
approximations visually match the majority of the experimental stiff-
ness measurements. A value of 𝐷 = 0.05 was found to be appropriate
for Sample 1 and a value of 𝐷 = 0.35 was found to be appropriate for
Sample 2. The resulting MT and HZ macroscopic stiffness predictions,
calculated as described in Section 3.4.1 using C̃𝑀 rather than C𝑀 ,
are shown in Fig. 13. The relative values of 𝐷 in Samples 1 and 2
is consistent with increasing apparent matrix damage due to drying-
induced micro-cracking. We note that more complex procedures may
be employed, which make use of crack density parameters within
homogenization procedures to capture stiffness degradation due to
damage (e.g., Pensée et al., 2002; Deude et al., 2002; Jagsch et al.,
2020; Scheiner et al., 2016). We choose not to pursue these approaches
here because, as noted at the end of Section 3.4.1, it is likely not
possible to distinguish between the presence of micro-cracks and other
effects that give rise to visco-elasto-viscoplastic moduli that emerge
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Fig. 12. A comparison of (a) 𝜖𝑥𝑥, (b) 𝜖𝑦𝑦, and (c) 𝜖𝑧𝑧 predicted by Mori–Tanaka assumptions MTM1 and MTM2 (described in the main text) and DVC results (called ‘‘Mean’’ in the
legend) for Sample 1 (S1) and Sample 2 (S2) as a function of macroscopic far-field sample stress, 𝜎𝑧𝑧. Note: strain is plotted on the 𝑥-axis for consistency with Fig. 2 and typical
tress–strain curves, even though 𝜎𝑧𝑧 is not the dependent variable of interest in the plot.
Fig. 13. MT and HZ approximations for sample stiffness using a reduced matrix stiffness to reflect the effects of drying-induced micro-cracking.
from analysis of stress–strain curves. We therefore associate damage
and 𝐷 with a combination of micro-cracking and any other dissipative
phenomena.

It is interesting to note that damage effects do not noticeably
influence the MTA prediction of average inclusion stress. In Fig. 14 we
reproduce the comparison of individual average inclusion stresses with
Mori–Tanaka predictions, with the latter computed using C̃𝑀 rather
than C𝑀 . The significant stiffness mismatch between the matrix and
inclusions, present in both the damaged and undamaged cases, likely
accounts for the almost indiscernible change in the MTA prediction
between Figs. 14 versus 11.

Damage effects do have a noticeable influence on the MTM1 pre-
dictions of average matrix strain shown in Fig. 9. We reproduce these
results in Fig. 15, which conveys that MTM1 approaches MTM2 predic-
tions for most load steps for both samples, except the third load step
for Sample 1. This implies that the matrix properties captured in C̃𝑀
are now more representative of the mean field in both samples.

4. Discussion

We quantitatively examined three aspects of Mori–Tanaka’s and
Herve-Zaoui’s approximation using experimental data from two sam-
ples of cementitious composites made with Portland cement and quartz
inclusions. The first aspect of the approximations we examined, the
homogenized stiffness itself, was accurate for one sample and inaccu-
rate for another (Fig. 10), despite using nearly identical methods for
14
experimental data analysis and the same phase moduli Mori–Tanaka
calculations. Ruling out a change in representative length scale for
Sample 2, we concluded that the likely cause of the inaccuracy was
drying-induced micro-cracking or other dissipative processes which
tend to cause discrepancies between predictions made with elastic
moduli and stiffness derived from stress–strain curves (the latter relates
more to visco-elasto-viscoplastic moduli (Irfan-ul Hassan et al., 2016)).

Inclusion stresses were the second aspect of Mori–Tanaka’s ap-
proximation that we examined with our experimental data (Fig. 11).
It was remarkable that predictions of inclusion stresses for the both
samples were accurate despite the inaccuracy of the stiffness predic-
tion for the second sample. This likely arises because predictions of
inclusion stresses are insensitive to changes in matrix stiffness when
the contrast between matrix and inclusion stiffness is large, as in our
samples. This claim was supported by the observation in Section 3.4.4
that reducing the matrix stiffness by 35% to capture the effect of
drying-induced micro-cracking and other dissipative effects did not
significantly influence average inclusion stress predictions.

The third aspect of Mori–Tanaka’s approximation that we examined
was the average matrix strain. The average matrix strain in the first
sample we examined was predicted well with Mori–Tanaka’s assump-
tion that 𝝐̄𝑀 = 𝝐∞, i.e., that the mean-field surrounding inclusions
has the properties of the matrix, at least in the first two load steps
in which the sample remained largely free of fractures. However, the
average matrix strain in the second sample was not predicted well with

Mori–Tanaka’s assumption. Widespread drying-induced micro-cracking
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Fig. 14. A comparison of individual quartz inclusion stresses (thin curves) and average inclusion stresses (thick solid lines) with Mori–Tanaka predictions (thick dashed lines,
abeled MTA) using Eq. (3) for Sample 1 (a) and Sample 2 (b), as described in the text. A damaged matrix was assumed, with damage values provided in the plots and described
n the text.
Fig. 15. A comparison of (a) 𝜖𝑥𝑥, (b) 𝜖𝑦𝑦, and (c) 𝜖𝑧𝑧 predicted by Mori–Tanaka assumptions MTM1 and MTM2 (described in the main text) and DVC results (called ‘‘Mean’’ in
he legend) for Sample 1 (S1) and Sample 2 (S2) as a function of macroscopic far-field sample stress, 𝜎𝑧𝑧. Note: strain is plotted on the 𝑥-axis for consistency with Fig. 2 and
typical stress–strain curves, even though 𝜎𝑧𝑧 is not the dependent variable of interest in the plot. A damaged matrix is assumed for both samples, with 𝐷 = 0.05 for Sample 1 and
𝐷 = 0.35 for Sample 2. The damaged matrix properties are computed using Eq. (15).
for this sample, which aged at room temperature 12 months longer than
the first sample, as well as other dissipative phenomena upon loading
was assumed to be the cause for this discrepancy.

A simple calculation revealed that a scalar damage variable could
be used to capture the drying-induced micro-cracking and other dis-
sipative effects in both samples studied in this paper. The increase in
damage from the first to second sample is consistent with a longer aging
time at room temperature. To more definitively validate our conclusion
that micro-cracking is the cause of reduced stiffness for the second
sample we studied, we propose future experiments that incorporate
nano-indentation immediately prior to mechanical testing (Ulm et al.,
2004). We further propose for future work the investigation of whether
an analytical or numerical model of drying-induced micro-cracking
may quantitatively explain the observed reduction in sample stiffness
and changes in average matrix strains.

5. Conclusion

We used theoretical calculations and in-situ X-ray measurements
made on two cementitious composite samples to examine continuum
micromechanics theories for these materials. By combining XRCT,
3DXRD, and DVC, we were able to quantitatively examine sample stiff-
ness, inclusion stresses, and matrix strain. Sample stiffness predicted
by Mori–Tanaka’s approximation matched experimental measurements
15
for one of the two samples. For the sample that did not match,
further analysis of 3DXRD and DVC data revealed that the linear-elastic
micromechanics models are not elaborate enough to reproduce results
from a test in which time-dependent and inelastic deformation took
place. Interestingly, inclusion stresses in both samples were predicted
accurately, as long as uniform stress boundary conditions were used
and the associated stress was assumed to be the macroscopic sample
stress measured during 3DXRD scans.

Our analysis and discussion lead to several conclusions:

• Continuum micromechanics theories like Mori–Tanaka’s approx-
imation can accurately predict the homogenized stiffness of ce-
mentitious composites with millimeter length scales and inclu-
sions measuring several hundred microns in dimension.

• The inclusion stresses predicted by Mori–Tanaka’s approximation
can be accurate for cementitious composites even when homog-
enized stiffness predictions are inaccurate because of a damaged
matrix phase or inaccurate matrix moduli.

• The assumption of a mean-field surrounding inclusions with prop-
erties furnished by the matrix may be inaccurate for some ce-
mentitious composites featuring drying-induced micro-cracking
or other dissipative phenomena. A mean-field with more accurate
properties can be obtained with a simple scalar damage vari-
able accounting for micro-cracking and dissipative phenomena in
some cases.
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(A.4)

Box I.
t

• The measurements and analysis presented here provide future op-
portunities for studying the micromechanics of cementitious com-
posites and assessing the microscale causes for their deviations
from experimental measurements. This information can be used
to provide insight into predictions of elasticity and inelasticity.
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ppendix. Herve-zaoui’s approximation for shear modulus

In the main text, the effective shear modulus in the Herve-Zaoui
pproach is given by

(

𝜇𝑒𝑓𝑓

𝜇𝑛

)2

+ 𝐵
(

𝜇𝑒𝑓𝑓

𝜇𝑛

)

+ 𝐶 = 0, (A.1)

where 𝐴, 𝐵, and 𝐶 are constants. We direct the reader to Herve and
Zaoui (1993) for a full derivation and explanation of the constants.
16
Here, we simply show them for the 𝑛 = 3 model described in the main
ext for completeness. The constants 𝐴, 𝐵, and 𝐶 are given by

𝐴 =4𝑅10
3 (1 − 2𝜈3)(7 − 10𝜈3)𝑍12 + 20𝑅7

3(7 − 12𝜈3 + 8𝜈23 )𝑍42

+12𝑅5
3(1 − 2𝜈3)...

× (𝑍14 − 7𝑍23) + 20𝑅3
3(1 − 2𝜈3)2𝑍13 + 16(4 − 5𝜈3)(1 − 2𝜈3)𝑍43,

𝐵 =3𝑅10
3 (1 − 2𝜈3)(15𝜈3 − 7)𝑍12 + 60𝑅7

3(𝜈3 − 3)𝜈3𝑍42 − 24𝑅5
3(1 − 2𝜈3)...

× (𝑍14 − 7𝑍23) − 40𝑅3
3(1 − 2𝜈3)2𝑍13 − 8(1 − 5𝜈3)(1 − 2𝜈3)𝑍43,

𝐶 = −𝑅10
3 (1 − 2𝜈3)(7 + 5𝜈3)𝑍12 + 10𝑅7

3(7 − 𝜈23 )𝑍43 + 12𝑅5
3(1 − 2𝜈3)...

× (𝑍14 − 7𝑍23) + 20𝑅3
3(1 − 2𝜈3)2𝑍13 − 8(7 − 5𝜈3)(1 − 2𝜈3)𝑍43,

(A.2)

with 𝑅3 described in the main text, 𝜈3 the Poisson’s ratio of the matrix,
𝑍𝑖𝑗 given by

𝑍𝑖𝑗 = 𝑃 (3)
𝑖1 𝑃 (3)

𝑗2 − 𝑃 (3)
𝑗1 𝑃 (3)

𝑖2 , (A.3)

and 𝑷 (3) = 𝑴 (1)𝑴 (2), where 𝑴1 and 𝑴2 are defined in Eq. (A.4) given
in Box I. The constants in Eq. (A.4) are given by

𝑎𝑘 =
𝜇𝑘
𝜇𝑘+1

(7 + 5𝜈𝑘)(7 − 10𝜈𝑘+1) − (7 − 10𝜈𝑘)(7 + 5𝜈𝑘+1),

𝑏𝑘 =4(7 − 10𝜈𝑘) +
𝜇𝑘
𝜇𝑘+1

(7 + 5𝜈𝑘),

𝑐𝑘 =(7 − 5𝜈𝑘+1) + 2
𝜇𝑘
𝜇𝑘+1

(4 − 5𝜈𝑘+1),

𝑑𝑘 =(7 + 5𝜈𝑘+1) + 4
𝜇𝑘
𝜇𝑘+1

(7 − 10𝜈𝑘+1),

𝑒𝑘 =2(4 − 5𝜈𝑘) +
𝜇𝑘
𝜇𝑘+1

(7 − 5𝜈𝑘),

𝑓𝑘 =(4 − 5𝜈𝑘)(7 − 5𝜈𝑘+1) −
𝜇𝑘
𝜇𝑘+1

(4 − 5𝜈𝑘+1)(7 − 5𝜈𝑘),

𝛼𝑘 =
𝜇𝑘
𝜇𝑘+1

− 1,

(A.5)

where 𝜇𝑘 is the shear modulus of phase 𝑘.
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