Department: Head
Editor: Name, xxxx@email

Scalable Scientific Interactive
Research Computing with
Project Scinco

J. Stubbs
Texas Advanced Computing Center, Austin, TX, USA

A. Jamthe
Texas Advanced Computing Center, Austin, TX, USA

N. Freeman
Texas Advanced Computing Center, Austin, TX, USA

M. Packard
Texas Advanced Computing Center, Austin, TX, USA

G. Curbelo
Texas Advanced Computing Center, Austin, TX, USA

C. Hammock
Texas Advanced Computing Center, Austin, TX, USA

Abstract—Interactive computing with Jupyter notebooks has transformed the state-of-the-art of
scientific research computing. Users can perform a multitude of computational tasks in real time,
including data cleansing, analysis, visualization, and post-processing, with Jupyter notebooks.
Additionally, the ability to write and execute code and include supporting text and images in the
same document has made it popular for use in scholarly articles and teaching. These capabilities
complement the batch computing services provided by HPC centers exposed through traditional
science gateways. However, integrating Jupyter into science gateways and other advanced
computing ecosystems introduces new challenges related to scalability, collaboration, and
reproducibility. In this paper, we discuss Project Scinco (Scalable Interactive Computing), an
open-source platform for scalable, reproducible, interactive scientific computing, designed to be
run in academic computing centers and incorporated into science gateways. We describe the
prime features, architecture, deployment choices, and challenges of project Scinco.

May/June 2023

B Traditionally, web applications or science
gateways have enabled users to run analyses
asynchronously on remote systems. The Science
Gateways Community Institute’s Software Cat-
alog lists over 600 gateway projects [1]. More
recently, as the growing number of disciplines
bring big data techniques to bear on fundamental
problems, interactive computing modes such as
Jupyter Notebooks have gained tremendous pop-
ularity.

Interactive computing enables users to execute
code incrementally and analyze intermediate re-
sults before running the next steps in a program.
This paradigm simplifies many tasks, particu-
larly data analysis, which is often exploratory in
nature. With Jupyter notebooks, users can cre-
ate interactive documents that contain both code
and text, thus allowing for literate computing.
Providing explanations of program logic next to
executable code and the generated results can
make the analyses in scholarly articles more un-
derstandable and reproducible. Additionally, indi-
viduals can write Jupyter notebooks for classroom
learning or self-paced tutorials.

These interactive computing tools comple-
ment the traditional batch computing services
provided by academic computing facilities and
HPC centers, where programs are submitted to
a scheduler and executed in the future. While the
utility and popularity of projects such as Jupyter
necessitate their inclusion into research comput-
ing ecosystems, science gateways face several
challenges incorporating these tools into their
environment, including 1) scalability challenges
related to a fundamentally different resource uti-
lization profile; 2) identity, authorization and se-
curity challenges that impact collaboration; and
3) challenges related to the reproducibility of
the computations contained within the interactive
computing environment itself.

Project Scinco (Scalable Interactive Comput-
ing) aims to tackle these challenges by providing
the national research community with a hosted,
secured, scalable Jupyter service that augments
and complements the batch computing capabil-
ities that are provided by HPC centers and is
made available within science gateways. Scinco
builds on several open-source technologies, in-
cluding Docker, Kubernetes, JupyterHub, and

© 2023 IEEE

Published by the IEEE Computer Society

Tapis [2] to deliver a platform capable of sup-
porting thousands of users and dozens of projects
running across hundreds of servers. Scinco pro-
vides a flexible authentication and authorization
module based on Tapis and OAuth2, allowing
academic institutions to use their local identity
system. Scinco integrates with advanced storage
and computing resources available in existing
science gateways, allowing users to interactively
compute on the same personal and community
datasets used in batch compute jobs. Finally,
Scinco provides a powerful administrative portal
where project owners and their delegates can
configure many of the run-time aspects of the
Jupyter service.

The primary contributions of this paper are as
follows:

e We provide a high-level, qualitative description
of the requirements and desirable attributes of
a scalable interactive computing system which
could integrate into and complement the batch
computing capabilities provided by science
gateways.

e We provide architecture and implementation
details of the Scinco project, and show how
Scinco enables interactive computing capabil-
ities to be integrated into gateways platforms,
thus solving the three primary challenges faced
by science gateways when integrating interac-
tive computing listed above. With the archi-
tectural and design details of Scinco, science
gateways can either integrate with Scinco di-
rectly or build their own JupyterHub instances,
leveraging similar ideas as described in this
paper.

e We describe some existing use cases of the
Scinco project, establishing its viability in a
number of research domains.

In the eight years since the original system
was developed, thousands of researchers have
authored tens of thousands of Python notebooks
on Scinco as part of research efforts across a
broad range of science and engineering disci-
plines, including astronomy, machine learning,
neuroscience, oceanography, synthetic design and
more. Numerous university-level courses across
several institutions have been taught using Scinco,
helping to train thousands of students making up
the next generation work force and guaranteeing

IT Professional

a lasting impact for the project.

SCINCO USE CASES

Scinco builds upon the experience and lessons
learned from developing a custom JupyterHub at
the Texas Advanced Computing Center beginning
in 2015. Today, high-profile projects such as
DesignSafe-CI [3] and the Hobby Eberly Tele-
scope Dark Energy Experiment (HETDEX) [4]
depend on Scinco for interactive computing func-
tionality.

As part of the initial release of the DesignSafe
Natural Hazards Engineering Cyberinfrastructure
project in 2015, TACC deployed a customized
version of JupyterHub to provide users with in-
teractive computing capabilities that integrated
with and enhanced the capabilities of the core
DesignSafe-CI portal. To date, DesignSafe-CI re-
searchers leverage JupyterHub at TACC to easily
share, manage, and access their critical natural
hazards datasets and computational workflows.

Scinco’s JupyterHub instance for project
HETDEX, the first major experiment to search
for dark energy, is extensively used. HETDEX
leverages a giant Hobby-Ebberly Telescope at
McDonald Observatory and a set of spectro-
graphs to map the three-dimensional positions
of millions of galaxies. Scinco offers a quick
and easy way for HETDEX to access a complex
data model. Many visualizations and interactive
widgets used for data analysis for HETDEX are
developed using Scinco.

Several other projects including the Synergis-
tic Discovery and Design Environment (SD2E),
Estimating the Circulation and Climate of the
Ocean (ECCO), and 3-D Electron Microscopy
have used Scinco in the recent past.

BACKGROUND

Interactive Computing: State of the Art
Interactive computing with Jupyter has gained
popularity among data analysts, scientists, ma-
chine learning developers, instructors, and stu-
dents. It has become the de facto standard for
teaching computer science courses across numer-
ous universities and institutions. The total number
of Jupyter notebooks available in public reposito-
ries on GitHub has increased exponentially over
the last several years, and at the time of this

May/June 2023

writing, there are more than 8.6 million Jupyter
notebooks in such repositories [5].

A number of academic and industrial projects
offer web-based, interactive computing capabili-
ties. These include Pangeo cloud for geoscience
research, MyBinder, Google Colaboratory, Kag-
gle, etc. Various competitions hosted on Kaggle
provide solutions to challenging real-world prob-
lems in the form of Jupyter Notebooks. However,
most web-based interactive computing platforms,
particularly those developed by commercial cloud
companies, tend to stand alone and lack easy
integration into science gateways and academic
HPC ecosystems.

Gateway Integration Challenges

Although interactive computing tools such as
Jupyter notebooks have become extremely popu-
lar due to the ease with which one can perform
a range of analysis tasks in real-time, science
gateways must address several challenges to in-
corporate the technology into their platforms.

First, resource utilization in interactive com-
puting differs fundamentally from that of tra-
ditional batch computing where the goal is to
maximize the utilization of the available CPU.
With interactive computing, investigators execute
bits of code and then analyze the results before
proceeding. This usage mode produces spikes
of CPU usage in between long idle periods. At
the same time, unlike batch compute jobs, users
expect notebook servers to start up quickly and to
be available throughout the workday. As a result,
JupyterHub requires entirely different resource
utilization and scaling properties to those avail-
able to gateways from traditional HPC centers.

Secondly, academic computing facilities and
science gateways rely on identity and access
management systems for authentication and to
authorize users for access to data and compute
resources. Ideally, an interactive computing plat-
form would easily integrate with these existing
systems to allow the same authorization schemes
to be applied.

Finally, given the prominent use of notebooks
for data analysis, an interactive computing re-
source must integrate into the same storage re-
sources made available to users via the academic
facility or science gateway. However, such an
integration is a nontrivial task, requiring a com-

Department Head

mon identity system as previously mentioned, but
also requiring the interactive computing service to
provide direct access to data the way that an HPC
system does for a batch job.

Reproducibility Challenges

While Jupyter notebooks simplify some as-
pects of the computational reproducibility chal-
lenges, they also suffer from similar issues in-
herent in all software and, to some extent, in-
troduce new problems. Like all programs, code
executed in a notebook often depends on specific
versions of programming languages, libraries and
other software packages. Unless the notebook
service makes this larger computing environment
available with the notebook, computational repro-
ducibility will be hard to achieve.

Additionally, notebooks commonly depend
critically on datasets contained in files that are
separate from the notebook document itself. To
reproduce results contained within a notebook,
the same datasets must be made available. Track-
ing whether the datasets are available in each
notebook becomes challenging for the science
gateway or the resource provider.

In this paper, we will discuss how Scinco
addresses these issues to provide an open-source,
production-grade, scalable interactive computing
solution integrated deeply with an academic cy-
berinfrastructure ecosystem.

SCINCO ARCHITECTURE

Scinco architecture utilizes a customized
JupyterHub, an open-source, cloud-based Jupyter
project that allows users to access notebook
servers running on remote machines. Scinco in-
corporates multitenancy or logically separated in-
stances of the platform so that individual projects
can configure various aspects of the notebook
servers and data made available to the users
based on their individual project needs. The basic
subsystems of Scinco are as shown in Figure 1.

Notebook Server and JupyterHub

Jupyter notebook server implements a client-
server architecture in which a user makes HTTP
requests via their browser to a server, which
could be running on a separate machine. Jupyter-
Hub provides user notebook servers as-a-service
by managing authentication and user accounts

and coordinating a single-user notebook server
spawning on-demand. The authentication and
notebook spawning mechanisms of JupyterHub
can be customized via a plugin’s architecture.

OAuth-based Authenticator Plugin

Scinco implements a custom JupyterHub au-
thenticator plugin to utilize the Tapis OAuth2-
based authentication module. This flexible frame-
work allows projects to configure various types of
identity stores, including LDAP, Active Directory,
third-party OAuth solutions such as Google and
GitHub, and even identity federations such as
Globus Auth. Scinco’s implementation builds on
top of Tapis with an additional function, which
can be customized per tenant, to assign each user
a unique Unix UID and one more of the GIDs.

Custom Kubespawner Plugin

Once authenticated, the spawner plugin
launches a notebook server for the user on the
available resources. Scinco’s spawner builds on
top of the open-source Kubespawner project to
launch notebook servers as Docker containers
on a Kubernetes cluster. Unlike batch sched-
ulers, Kubernetes launches containers instantly
and scales to hundreds of nodes. Scinco’s spawner
executes the container using the UID and GIDs
associated with the user described previously,
ensuring that permissions on shared file systems
will be honored by all actions taken by the user
within the notebook server container.

Kubespawner Hooks

Scinco further extends the community Kube-
spawner with additional notable features by im-
plementing two “hooks” as shown in 1. The first
and most notable hook supports the Spawner Op-
tions screen, which allows users to select differ-
ent container images for their notebook servers.
These images come pre-loaded with different
types of software (e.g., libraries for astronomy,
biology, civil engineering, machine learning, etc.)
and are versioned, allowing Scinco to maintain
support for older notebooks while simultaneously
being able to provide access to the latest versions
of libraries.

To support the Spawner Options screen, the
Scinco hook determines the images available to
the user by retrieving its “dynamic configuration”;

IT Professional

KubeSpawner Hooks

Authenticator :
« x I :

_—
jupyter

KubeSpawner

Tapis authenticator
service

Tapis Metadata
service

'

S 2

Dynamic Proxy

tapis

' Notebook Server

B Community Provided

m Community Provided,
modified by TACC

Provided by TACC

| jupyter notebooks |

Figure 1. Scinco Architecture

i.e., JSON data stored with the Tapis Metadata
API describing various configurable run-time as-
pects of Scinco. Each Scinco project (or “tenant™)
maintains its own dynamic configuration, which
can be updated at any time via a simple Tapis
API call. Because the Scinco spawner retrieves its
metadata before spawning each notebook server,
the latest metadata configuration gets applied
each time a user starts a new server. Therefore,
users see changes to the configuration by simply
stopping and restarting their notebook server;
in general, redeployment of the cluster is not
necessary.

Another hook implemented in the Scinco
spawner retrieves a list of remote data sources
available to the authenticated user. Each data
source corresponds to a directory on a file system
available via a network protocol (e.g., NES, Lus-
ter, etc.) as well as an access level — either read-
only or read-write. The Scinco spawner mounts
each data source into the user’s container using
Kubernetes persistent volume claims (PVCs) as it
gets spawned at the access level indicated.

An Administrative portal developed recently
supports modifying some of these image and

May/June 2023

storage configurations on-the-fly by project ad-
mins, which we will discuss in detail in the later
sections.

DEPLOYMENT

The Scinco design builds on top of the Ku-
bernetes orchestration platform and utilizes a cus-
tomized Kubespawner plugin as discussed in the
previous section. A Scinco instance can be de-
ployed to Kubernetes within a single unprivileged
namespace, using a few YAML files that define
Kubernetes Deployment and Service objects. One
of the primary ways to deploy these to the cluster
is the kubectl apply —-f =*.yml method.

Scinco itself has no persistent storage require-
ments within Kubernetes. The JupyterHub server
configuration is handled during deployment using
the YAML files. The additional configurations
that control aspects such as the available con-
tainer images for notebook servers, the amount
of memory and CPU resources available to each
user and the available file mounts for each user
are managed using the Tapis Metadata service.
Each Scinco instance must be configured with a
Tapis tenant that has been set up with the Scinco

Department Head

metadata schema and permissions. Each Scinco
instance identifies a set of project admins that
are authorized to modify this metadata as per
their project requirements, using either the Scinco
Admin Portal or by making API calls to Tapis
directly.

Deployment Considerations

Sizing the cluster resources can be a chal-
lenge. Variables like the total number of users,
amount of memory/CPU per user, and variances
in use between users may not be known at the
time of deployment. Total CPU and RAM re-
quirements depend entirely on the nature of work
the users are doing in the notebooks. For example,
projects performing data curation or visualization
tend to consume significantly fewer resources
than projects training and utilizing heavy ML/AI
models.

As of today, TACC Scinco Kubernetes clusters
contains approximately 220 CPU cores and 1,200
GB of memory across 20 servers. The use of
dynamic metadata and Kubernetes allows the
cluster to be scaled and modified as resource
needs change.

Kubernetes has an optional metrics server
(which must be installed by the cluster adminis-
trator) [6] that collects CPU and memory statistics
for nodes and pods. CPU usage is measured
in milliunits of a CPU core. Scinco administra-
tors and/or Kubernetes cluster administrators can
monitor the number of resources consumed by the
users using the kubectl top pod command,
and they can add or remove resources from the
cluster to accommodate usage. Administrators
may also choose to periodically shut down con-
tainers that have been running for a long time
and/or appear to be idle.

Persistent Storage for Notebooks

Each user notebook running in the cluster
is a single container with no inherent persistent
storage. In the event of a container restart, files
or data created within the container will be lost
permanently. In a Kubernetes environment, there
is no assumption of up-time or that the container
will continue to run until the user no longer needs
it. Therefore it is highly beneficial to have a
shared or long-running storage space where users
can save their critical work. Two out of several

ways to achieve this are described below.

Kubernetes presents objects called Persistent
Volume Claims (PVCs), which are data volumes
managed by Kubernetes and mounted into con-
tainers at run time. Scinco can be configured to
use the underlying PVC system to create data
volumes for each user and mount them at run
time.

Cluster administrators may also have exist-
ing shared storage systems (for example, NFS
servers). These servers may export directories to
the Kubernetes cluster that may mount inside
individual user containers. A common way to
setup is to have one “work” directory per user,
so each user may have their own personal space
to store files. In the event of a notebook restart,
files within that directory will be retained and re-
mounted on the next notebook server startup.

Another approach is to use the NFS file sys-
tem and simultaneously present Read-Only data
directories to many users. If there is a large
dataset that many users wish to analyze, it may
be exported simultaneously to every running con-
tainer in the Scinco instance.

Custom Notebook Images to Cater to Specific
Research Use Cases

One of the significant advantages of deploying
stand-alone JupyterHub environments for differ-
ent groups is that we can exercise control over the
packages users can access. This paradigm allows
us to customize JupyterHub deployments to cater
to each scientific use case. Projects within Scinco
can also choose to organize users into groups
and subgroups. Each group can provide access
to different resources, including notebook server
images with pre-installed packages, CPU and
memory resources, and remote data sources that
will appear as mounts within their running note-
book servers. Users can choose from the available
docker images that best suit their use case and
make their experiments more reproducible.

SCINCO FEATURES

CI/CD with Tapis Workflows

Project Scinco enables its projects and in-
dividual users to define and deploy their own
custom notebook server images. Manually man-
aging the build, verification, and release of note-
book images with standard command line utilities

IT Professional

is labor-intensive and time-consuming. Addition-
ally, the large size of the notebook images makes
it difficult and cost-ineffective to use traditional
continuous integration tools (CI) such as GitHub
Actions or GitLab CI. For this reason, this project
has chosen to leverage Tapis Workflows as the
primary CI technology for its users.

Tapis Workflows is an official Tapis API and
workflow executor that enables users to build and
execute research computing pipelines in the Tapis
ecosystem. Users can configure source control
platforms (e.g., GitHub, GitLab, etc.) to send
webhook notifications to the Tapis Workflows
API to trigger their workflows. This API was
initially designed to facilitate continuous inte-
gration efforts. Since then it has been adapted
to serve more generic computing workflow use
cases, enabling users to execute arbitrary code in
the language and runtime environment of their
choice, run containerized applications, and send
HTTP requests. Figure 2 demonstrates a typical
workflow for the SCINCO project.

The fundamental unit of execution in a Tapis
workflow is called a task. A single image build
task is required for continuous integration-based
workflows, such as those of the Scinco project.
This task is defined in four parts; the image
builder, context, destination, and archive.

The image builders available with Tapis
Workflows are Singularity and Kaniko [7]—a
container-based software, which is capable of
container-in-container image construction without
the need for root access on the host machine,
ensuring a more isolated and secure build envi-
ronment.

The context is the origin or source of the
image to be built. This could be a DockerHub reg-
istry or source code in a GitHub repository. When
defining a task with a source code context, users
specify the path to the build file—Singularity or
Dockerfile—and the path to the build context.
If these contexts are private, users can provide
the credentials in the task definition. These cre-
dentials are stored securely in the Tapis Security
Kernel—a role-based authentication and secrets
management Tapis service— and only fetched for
the Workflow Executor when their workflow is
triggered.

The destination of an image build task is the
specific location of the image, where it will be

May/June 2023

sent after the build completes. Examples of des-
tinations include image registries such as Dock-
erHub, or local storage in the workflow executor
file system. Just as with the context, users can
provide the credentials required to push to pri-
vate registries. Users can also store the resultant
Singularity (SIF) or compressed (tar.gz) file in
the local file system of the Workflow Executor.
However, this is an ephemeral storage solution
intended only for storing images and files for the
duration of the execution of a workflow. Once the
workflow terminates, all artifacts produced during
its execution gets deleted. Tapis Workflows allows
us to define archives as a permanent storage
solution.

Archives are permanent storage mediums to
which the results, files, and images produced dur-
ing the run of a workflow are persisted. Currently,
the only supported archive is a Tapis System; a
server or set of servers—virtual or physical—that
are part of a Tapis deployment.

Reproducibility Features

To ensure that the results computed in Jupyter
notebooks created on the Scinco platform are
reproducible, the project implemented an on-save
hook mechanism that stores two custom attributes
within an individual notebook file’s metadata the
first time it gets saved. The first attribute contains
the container image name and tag used for the
notebook server in which the notebook file gets
saved. Scinco injects the image name and a tag
as environment variables at the notebook server
startup. The on-save hook reads them and saves
them to the notebook file metadata. With this
attribute saved in the notebook file itself, a future
process — including one independent of Scinco
— can determine the correct container image to
use to open the file. The second attribute is a
unique identifier attached to a notebook file when
created. We use a UUID v4 for the identifier.
The UUID attribute gets created when one does
not already exist, providing a way to track which
notebooks are copies of other notebooks. If a
notebook is a copy, it will have the same UUID.

Administrative Portal

Supporting five JupyterHub clusters with
more than 1600 total users running at TACC
has required about two to three full-time devel-

Department Head

‘" "[Context] "
2 :
pushes code
—— forcustom P
notebook image

5

| «— pulls and builds
custom notebook

Workflow Executor

: | Image builder | : - :
| | e . ;

image F B
. . s builds custom - .
"""""" i .| Jupyter Notebook Image * i
1 ; . . and pushes to :
creates CI/CD workflow 3 } Gends webook . : Dockerhub : .
for custom Jupyter Notebook notification | rrrereseeeesn 2 u
image A = sesscecgeccss
4
TAPIS Workflows API triggers workflow— 7 pulls new
@ Jupyter Notebook

Figure 2. Tapis Workflows and SCINCO

opers, working directly with the project teams,
to define requirements, configure options and
preferences, and evolve the Jupyter cluster to
meet the needs of each project. In order to make
this process scale to hundreds of independent
projects, with project Scinco, we developed an
administrative portal that is a one-stop shop for
all configuration, reporting, and administrative
matters. The administrative portal empowers ad-
ministrators from each project to manage their
own JupyterHub clusters without direct support
from TACC’s Jupyter staff. The Scinco adminis-
trator portal allows project (i.e., “tenant”) admin-
istrators to dynamically modify user and identity
management configuration. They can customize
resource utilization on a per-project/user basis
by submitting basic HTML forms, which in turn
make corresponding POST requests to the Tapis
Metadata service, where the project metadata
is stored as a MongoDB document. They can
create different user groups and allow particular
notebook images to be used per user group.

Within the portal, project administrators can
configure and manage the available storage lo-
cations and the corresponding path names that
will appear in the notebook server, such as “My-
Data”, “MyProjects”, “PublishedData”, “Commu-
nityData”, etc. Users can be assigned to specific
groups and associated with specific GIDs as well.
At the time of starting the notebook server, Scinco
will use these configurations to determine which
directories to mount for a user notebook server.
Additionally, the admin portal provides a graph-
ical user interface for managing the available
notebook images.

Image

SCINCO Project
N

Metrics and Monitoring

Scinco supports monitoring metrics such as
CPU utilization and memory usage for individual
users, as illustrated in Figure 3. Scinco leverages
the following open-source projects for its moni-
toring functionality: Prometheus [8], a time series
database to scrape the instantaneous CPU and
memory usage of each notebook server; Thanos
[9] to provide long-term storage for metrics col-
lected by Prometheus; Grafana [10] for visual-
izing the monitoring data in a dashboard and
cAdvisor [11], a container advisor that provides
metrics for resource usage and performance of the
running containers. Scinco also generates high-
level project usage data such as how many unique
users have logged in during a specified time
window, median notebook server launch time and
run time, total daily user count, etc. These per-
formance and usage metrics are good indicators
of system reliability and can be leveraged by
project administrators to generate annual reports
for their projects. A new feature to generate and
email automated weekly usage reports to project
administrators is implemented receently and will
be available to all the Scinco admins in early
Summer 2023.

CONCLUSION

Jupyter notebooks enable investigators to ef-
ficiently tackle tasks common to computational
research projects, compelling academic comput-
ing facilities and science gateways to incorporate
them into their offerings. Yet, integrating Jupyter
into existing ecosystems presents challenges with
respect to scalability, collaboration and repro-

IT Professional

Pod Memory for allusers

31668

17968

23368

18668

14068

= ysert
liser?
= lserd

= Userd
= (j5erh
= |j5erb
= e

= (serB

466088

. = ugserd
/\ usert0
| = gertt
\\ - Userl?
‘\ = userld
/N \//—— = (serld
\ - Useis
93168 \ \
‘ \U = serp
usert?
< userip
\ n usertd
Oﬁﬁﬁﬁ S— Userld
(301600 03202000 032010000 0310400 320800 037200 QGO0 0202000 03220000 QY2000 03220800 03221200 user
Figure 3. Memory utilization per user
ducibility. Project Scinco addresses these chal- [l REFERENCES
lenges b roviding an interactive computin
g y P g P g 1. “SCGI Software Catalog,” [Online]. Available:

platform based on open-source technologies such
as JupyterHub, Docker, Kubernetes and Tapis.
Scinco is utilized by several major cyberinfras-
tructuxre projects spanning a number of scientific
domains. Scinco staff at TACC is working on
exciting features for usage metrics reporting that
came in as a requirement from project admin-
istrators. An update to Scinco’s JupyterHub was
recently completed to provide users with Jupyter-
Hub 3.0 version and keep up with the JupyterHub
releases.

ACKNOWLEDGMENT

This material is based upon work supported
by the National Science Foundation Office of
Advanced Cyberlnfrastructure, the Tapis Frame-
work:[1931439 and 1931575]

May/June 2023

https://catalog.sciencegateways.org/#/home. [Accessed:
10-Dec-2022].

. J. Stubbs et al., “Tapis: An API Platform for Repro-

ducible, Distributed Computational Research,” In: Arai, K.
(eds) Advances in Information and Communication. FICC
2021. Advances in Intelligent Systems and Computing,
vol. 1363. Springer, Cham. https://doi.org/10.1007/978-
3-030-73100-7_61

E.M.

Rathje et al.,” DesignSafe: New cy-
berinfrastructure for natural hazards engi-
neering,” Natural Hazards Review, 18(3),

06017001.https://doi.org/10.1061/(asce)nh.1527-
6996.0000246

[Online]. Available: https:/govtribe.com/opportunity/federal-
contract-opportunity/shade-darpapa210403 [Accessed:
20-Jun-2022].

“Hobby Ebberly Telescope Dark Energy Experiment,”
[Online]. Available: https://hetdex.org [Accessed: 20-Jun-

10

Department Head

2022].

5. Parente P, “Estimate of Public Jupyter
Notebooks on GitHub,” [Online]. Available:
https://nbviewer.jupyter.org/github/parente/nbestimate
/blob/master/estimate.ipynb. [Accessed: 20-Jun-2022]

6. “Metrics For Kubernetes System Components,” [Online].
Available: https://kubernetes.io/docs/concepts/cluster-
administration/system-metrics/. [Accessed: 2-Dec-2022].

7. “Kaniko: Containerized Image Builder, ” [Online]. Avail-
able: https://github.com/GoogleContainerTools/kaniko
[Accessed: 29-Nov-2022]

8. “Prometheus,” [Online]. Available: https://prometheus.io.
[Accessed: 20-Jun-2022].

9. “Thanos,” [Online]. Available: https://thanos.io. [Ac-
cessed: 20-Jun-2022].

10. “Grafana,” [Online]. Available: https://grafana.com [Ac-
cessed: 20-Jun-2022].

11. “Container Advisor,” [Online]. Available:
https://github.com/google/cadvisor ~ [Accessed: 20-
Jun-2022].

Dr. Joe Stubbs is a Research Associate and
leads the Cloud and Interactive Computing (CIC)
group at the Texas Advanced Computing Center
at the University of Texas at Austin. Dr. Stubbs
is the Principal Investigator of two NSF-funded
projects- Tapis and Abaco and has played a funda-
mental role in developing numerous national-scale
cyberinfrastructure systems for various scientific
and engineering communities used by thousands
of researchers.

Dr. Anagha Jamthe is a Research/Engineering
Scientist Associate in the Cloud and Interactive
Computing group (CIC) at the Texas Advanced
Computing Center at the University of Texas at
Austin. Dr. Jamthe is one of the technical contribu-
tors to the NSF funded Tapis Project and manages
the JupyterHub project at TACC.

Nathan Freeman is an Engineering Scientist As-
sociate in the the Cloud and Interactive Computing
(CIC) group at the Texas Advanced Computing
Center at the University of Texas at Austin. Nathan
manages the development of the Tapis Workflows
APl and related services, libraries, and Ul.

Mike Packard is a System Administrator at the
Texas Advanced Computing Center at the Univer-
sity of Texas at Austin. He provides devops and
automation support for several cloud infrastructure
and research projects.

Gilbert Curbelo is a Software Developer at the
Texas Advanced Computing Center at the Uni-
versity of Texas at Austin. Gilbert is in charge of
updating different components of the JupyterHub
project and contributes to the Tapis project.

Cody Hammock is a System Administrator at
the Texas Advanced Computing Center at the Uni-
versity of Texas at Austin. He provides monitoring
support for the Scinco Project, and manages or
contributes to several cloud infrastructure projects
at TACC.

IT Professional

