
Department: Head
Editor: Name, xxxx@email

Scalable Scientific Interactive
Research Computing with
Project Scinco

J. Stubbs

Texas Advanced Computing Center, Austin, TX, USA

A. Jamthe

Texas Advanced Computing Center, Austin, TX, USA

N. Freeman

Texas Advanced Computing Center, Austin, TX, USA

M. Packard

Texas Advanced Computing Center, Austin, TX, USA

G. Curbelo

Texas Advanced Computing Center, Austin, TX, USA

C. Hammock

Texas Advanced Computing Center, Austin, TX, USA

Abstract—Interactive computing with Jupyter notebooks has transformed the state-of-the-art of

scientific research computing. Users can perform a multitude of computational tasks in real time,

including data cleansing, analysis, visualization, and post-processing, with Jupyter notebooks.

Additionally, the ability to write and execute code and include supporting text and images in the

same document has made it popular for use in scholarly articles and teaching. These capabilities

complement the batch computing services provided by HPC centers exposed through traditional

science gateways. However, integrating Jupyter into science gateways and other advanced

computing ecosystems introduces new challenges related to scalability, collaboration, and

reproducibility. In this paper, we discuss Project Scinco (Scalable Interactive Computing), an

open-source platform for scalable, reproducible, interactive scientific computing, designed to be

run in academic computing centers and incorporated into science gateways. We describe the

prime features, architecture, deployment choices, and challenges of project Scinco.

May/June 2023 1



Traditionally, web applications or science

gateways have enabled users to run analyses

asynchronously on remote systems. The Science

Gateways Community Institute’s Software Cat-

alog lists over 600 gateway projects [1]. More

recently, as the growing number of disciplines

bring big data techniques to bear on fundamental

problems, interactive computing modes such as

Jupyter Notebooks have gained tremendous pop-

ularity.

Interactive computing enables users to execute

code incrementally and analyze intermediate re-

sults before running the next steps in a program.

This paradigm simplifies many tasks, particu-

larly data analysis, which is often exploratory in

nature. With Jupyter notebooks, users can cre-

ate interactive documents that contain both code

and text, thus allowing for literate computing.

Providing explanations of program logic next to

executable code and the generated results can

make the analyses in scholarly articles more un-

derstandable and reproducible. Additionally, indi-

viduals can write Jupyter notebooks for classroom

learning or self-paced tutorials.

These interactive computing tools comple-

ment the traditional batch computing services

provided by academic computing facilities and

HPC centers, where programs are submitted to

a scheduler and executed in the future. While the

utility and popularity of projects such as Jupyter

necessitate their inclusion into research comput-

ing ecosystems, science gateways face several

challenges incorporating these tools into their

environment, including 1) scalability challenges

related to a fundamentally different resource uti-

lization profile; 2) identity, authorization and se-

curity challenges that impact collaboration; and

3) challenges related to the reproducibility of

the computations contained within the interactive

computing environment itself.

Project Scinco (Scalable Interactive Comput-

ing) aims to tackle these challenges by providing

the national research community with a hosted,

secured, scalable Jupyter service that augments

and complements the batch computing capabil-

ities that are provided by HPC centers and is

made available within science gateways. Scinco

builds on several open-source technologies, in-

cluding Docker, Kubernetes, JupyterHub, and

Tapis [2] to deliver a platform capable of sup-

porting thousands of users and dozens of projects

running across hundreds of servers. Scinco pro-

vides a flexible authentication and authorization

module based on Tapis and OAuth2, allowing

academic institutions to use their local identity

system. Scinco integrates with advanced storage

and computing resources available in existing

science gateways, allowing users to interactively

compute on the same personal and community

datasets used in batch compute jobs. Finally,

Scinco provides a powerful administrative portal

where project owners and their delegates can

configure many of the run-time aspects of the

Jupyter service.

The primary contributions of this paper are as

follows:

• We provide a high-level, qualitative description

of the requirements and desirable attributes of

a scalable interactive computing system which

could integrate into and complement the batch

computing capabilities provided by science

gateways.

• We provide architecture and implementation

details of the Scinco project, and show how

Scinco enables interactive computing capabil-

ities to be integrated into gateways platforms,

thus solving the three primary challenges faced

by science gateways when integrating interac-

tive computing listed above. With the archi-

tectural and design details of Scinco, science

gateways can either integrate with Scinco di-

rectly or build their own JupyterHub instances,

leveraging similar ideas as described in this

paper.

• We describe some existing use cases of the

Scinco project, establishing its viability in a

number of research domains.

In the eight years since the original system

was developed, thousands of researchers have

authored tens of thousands of Python notebooks

on Scinco as part of research efforts across a

broad range of science and engineering disci-

plines, including astronomy, machine learning,

neuroscience, oceanography, synthetic design and

more. Numerous university-level courses across

several institutions have been taught using Scinco,

helping to train thousands of students making up

the next generation work force and guaranteeing

2 © 2023 IEEE Published by the IEEE Computer Society IT Professional



a lasting impact for the project.

SCINCO USE CASES
Scinco builds upon the experience and lessons

learned from developing a custom JupyterHub at

the Texas Advanced Computing Center beginning

in 2015. Today, high-profile projects such as

DesignSafe-CI [3] and the Hobby Eberly Tele-

scope Dark Energy Experiment (HETDEX) [4]

depend on Scinco for interactive computing func-

tionality.

As part of the initial release of the DesignSafe

Natural Hazards Engineering Cyberinfrastructure

project in 2015, TACC deployed a customized

version of JupyterHub to provide users with in-

teractive computing capabilities that integrated

with and enhanced the capabilities of the core

DesignSafe-CI portal. To date, DesignSafe-CI re-

searchers leverage JupyterHub at TACC to easily

share, manage, and access their critical natural

hazards datasets and computational workflows.

Scinco’s JupyterHub instance for project

HETDEX, the first major experiment to search

for dark energy, is extensively used. HETDEX

leverages a giant Hobby-Ebberly Telescope at

McDonald Observatory and a set of spectro-

graphs to map the three-dimensional positions

of millions of galaxies. Scinco offers a quick

and easy way for HETDEX to access a complex

data model. Many visualizations and interactive

widgets used for data analysis for HETDEX are

developed using Scinco.

Several other projects including the Synergis-

tic Discovery and Design Environment (SD2E),

Estimating the Circulation and Climate of the

Ocean (ECCO), and 3-D Electron Microscopy

have used Scinco in the recent past.

BACKGROUND

Interactive Computing: State of the Art

Interactive computing with Jupyter has gained

popularity among data analysts, scientists, ma-

chine learning developers, instructors, and stu-

dents. It has become the de facto standard for

teaching computer science courses across numer-

ous universities and institutions. The total number

of Jupyter notebooks available in public reposito-

ries on GitHub has increased exponentially over

the last several years, and at the time of this

writing, there are more than 8.6 million Jupyter

notebooks in such repositories [5].

A number of academic and industrial projects

offer web-based, interactive computing capabili-

ties. These include Pangeo cloud for geoscience

research, MyBinder, Google Colaboratory, Kag-

gle, etc. Various competitions hosted on Kaggle

provide solutions to challenging real-world prob-

lems in the form of Jupyter Notebooks. However,

most web-based interactive computing platforms,

particularly those developed by commercial cloud

companies, tend to stand alone and lack easy

integration into science gateways and academic

HPC ecosystems.

Gateway Integration Challenges

Although interactive computing tools such as

Jupyter notebooks have become extremely popu-

lar due to the ease with which one can perform

a range of analysis tasks in real-time, science

gateways must address several challenges to in-

corporate the technology into their platforms.

First, resource utilization in interactive com-

puting differs fundamentally from that of tra-

ditional batch computing where the goal is to

maximize the utilization of the available CPU.

With interactive computing, investigators execute

bits of code and then analyze the results before

proceeding. This usage mode produces spikes

of CPU usage in between long idle periods. At

the same time, unlike batch compute jobs, users

expect notebook servers to start up quickly and to

be available throughout the workday. As a result,

JupyterHub requires entirely different resource

utilization and scaling properties to those avail-

able to gateways from traditional HPC centers.

Secondly, academic computing facilities and

science gateways rely on identity and access

management systems for authentication and to

authorize users for access to data and compute

resources. Ideally, an interactive computing plat-

form would easily integrate with these existing

systems to allow the same authorization schemes

to be applied.

Finally, given the prominent use of notebooks

for data analysis, an interactive computing re-

source must integrate into the same storage re-

sources made available to users via the academic

facility or science gateway. However, such an

integration is a nontrivial task, requiring a com-

May/June 2023 3



Department Head

mon identity system as previously mentioned, but

also requiring the interactive computing service to

provide direct access to data the way that an HPC

system does for a batch job.

Reproducibility Challenges

While Jupyter notebooks simplify some as-

pects of the computational reproducibility chal-

lenges, they also suffer from similar issues in-

herent in all software and, to some extent, in-

troduce new problems. Like all programs, code

executed in a notebook often depends on specific

versions of programming languages, libraries and

other software packages. Unless the notebook

service makes this larger computing environment

available with the notebook, computational repro-

ducibility will be hard to achieve.

Additionally, notebooks commonly depend

critically on datasets contained in files that are

separate from the notebook document itself. To

reproduce results contained within a notebook,

the same datasets must be made available. Track-

ing whether the datasets are available in each

notebook becomes challenging for the science

gateway or the resource provider.

In this paper, we will discuss how Scinco

addresses these issues to provide an open-source,

production-grade, scalable interactive computing

solution integrated deeply with an academic cy-

berinfrastructure ecosystem.

SCINCO ARCHITECTURE
Scinco architecture utilizes a customized

JupyterHub, an open-source, cloud-based Jupyter

project that allows users to access notebook

servers running on remote machines. Scinco in-

corporates multitenancy or logically separated in-

stances of the platform so that individual projects

can configure various aspects of the notebook

servers and data made available to the users

based on their individual project needs. The basic

subsystems of Scinco are as shown in Figure 1.

Notebook Server and JupyterHub

Jupyter notebook server implements a client-

server architecture in which a user makes HTTP

requests via their browser to a server, which

could be running on a separate machine. Jupyter-

Hub provides user notebook servers as-a-service

by managing authentication and user accounts

and coordinating a single-user notebook server

spawning on-demand. The authentication and

notebook spawning mechanisms of JupyterHub

can be customized via a plugin’s architecture.

OAuth-based Authenticator Plugin

Scinco implements a custom JupyterHub au-

thenticator plugin to utilize the Tapis OAuth2-

based authentication module. This flexible frame-

work allows projects to configure various types of

identity stores, including LDAP, Active Directory,

third-party OAuth solutions such as Google and

GitHub, and even identity federations such as

Globus Auth. Scinco’s implementation builds on

top of Tapis with an additional function, which

can be customized per tenant, to assign each user

a unique Unix UID and one more of the GIDs.

Custom Kubespawner Plugin

Once authenticated, the spawner plugin

launches a notebook server for the user on the

available resources. Scinco’s spawner builds on

top of the open-source Kubespawner project to

launch notebook servers as Docker containers

on a Kubernetes cluster. Unlike batch sched-

ulers, Kubernetes launches containers instantly

and scales to hundreds of nodes. Scinco’s spawner

executes the container using the UID and GIDs

associated with the user described previously,

ensuring that permissions on shared file systems

will be honored by all actions taken by the user

within the notebook server container.

Kubespawner Hooks

Scinco further extends the community Kube-

spawner with additional notable features by im-

plementing two “hooks” as shown in 1. The first

and most notable hook supports the Spawner Op-

tions screen, which allows users to select differ-

ent container images for their notebook servers.

These images come pre-loaded with different

types of software (e.g., libraries for astronomy,

biology, civil engineering, machine learning, etc.)

and are versioned, allowing Scinco to maintain

support for older notebooks while simultaneously

being able to provide access to the latest versions

of libraries.

To support the Spawner Options screen, the

Scinco hook determines the images available to

the user by retrieving its “dynamic configuration”;

4 IT Professional





Department Head

metadata schema and permissions. Each Scinco

instance identifies a set of project admins that

are authorized to modify this metadata as per

their project requirements, using either the Scinco

Admin Portal or by making API calls to Tapis

directly.

Deployment Considerations

Sizing the cluster resources can be a chal-

lenge. Variables like the total number of users,

amount of memory/CPU per user, and variances

in use between users may not be known at the

time of deployment. Total CPU and RAM re-

quirements depend entirely on the nature of work

the users are doing in the notebooks. For example,

projects performing data curation or visualization

tend to consume significantly fewer resources

than projects training and utilizing heavy ML/AI

models.

As of today, TACC Scinco Kubernetes clusters

contains approximately 220 CPU cores and 1,200

GB of memory across 20 servers. The use of

dynamic metadata and Kubernetes allows the

cluster to be scaled and modified as resource

needs change.

Kubernetes has an optional metrics server

(which must be installed by the cluster adminis-

trator) [6] that collects CPU and memory statistics

for nodes and pods. CPU usage is measured

in milliunits of a CPU core. Scinco administra-

tors and/or Kubernetes cluster administrators can

monitor the number of resources consumed by the

users using the kubectl top pod command,

and they can add or remove resources from the

cluster to accommodate usage. Administrators

may also choose to periodically shut down con-

tainers that have been running for a long time

and/or appear to be idle.

Persistent Storage for Notebooks

Each user notebook running in the cluster

is a single container with no inherent persistent

storage. In the event of a container restart, files

or data created within the container will be lost

permanently. In a Kubernetes environment, there

is no assumption of up-time or that the container

will continue to run until the user no longer needs

it. Therefore it is highly beneficial to have a

shared or long-running storage space where users

can save their critical work. Two out of several

ways to achieve this are described below.

Kubernetes presents objects called Persistent

Volume Claims (PVCs), which are data volumes

managed by Kubernetes and mounted into con-

tainers at run time. Scinco can be configured to

use the underlying PVC system to create data

volumes for each user and mount them at run

time.

Cluster administrators may also have exist-

ing shared storage systems (for example, NFS

servers). These servers may export directories to

the Kubernetes cluster that may mount inside

individual user containers. A common way to

setup is to have one “work” directory per user,

so each user may have their own personal space

to store files. In the event of a notebook restart,

files within that directory will be retained and re-

mounted on the next notebook server startup.

Another approach is to use the NFS file sys-

tem and simultaneously present Read-Only data

directories to many users. If there is a large

dataset that many users wish to analyze, it may

be exported simultaneously to every running con-

tainer in the Scinco instance.

Custom Notebook Images to Cater to Specific

Research Use Cases

One of the significant advantages of deploying

stand-alone JupyterHub environments for differ-

ent groups is that we can exercise control over the

packages users can access. This paradigm allows

us to customize JupyterHub deployments to cater

to each scientific use case. Projects within Scinco

can also choose to organize users into groups

and subgroups. Each group can provide access

to different resources, including notebook server

images with pre-installed packages, CPU and

memory resources, and remote data sources that

will appear as mounts within their running note-

book servers. Users can choose from the available

docker images that best suit their use case and

make their experiments more reproducible.

SCINCO FEATURES

CI/CD with Tapis Workflows

Project Scinco enables its projects and in-

dividual users to define and deploy their own

custom notebook server images. Manually man-

aging the build, verification, and release of note-

book images with standard command line utilities

6 IT Professional



is labor-intensive and time-consuming. Addition-

ally, the large size of the notebook images makes

it difficult and cost-ineffective to use traditional

continuous integration tools (CI) such as GitHub

Actions or GitLab CI. For this reason, this project

has chosen to leverage Tapis Workflows as the

primary CI technology for its users.

Tapis Workflows is an official Tapis API and

workflow executor that enables users to build and

execute research computing pipelines in the Tapis

ecosystem. Users can configure source control

platforms (e.g., GitHub, GitLab, etc.) to send

webhook notifications to the Tapis Workflows

API to trigger their workflows. This API was

initially designed to facilitate continuous inte-

gration efforts. Since then it has been adapted

to serve more generic computing workflow use

cases, enabling users to execute arbitrary code in

the language and runtime environment of their

choice, run containerized applications, and send

HTTP requests. Figure 2 demonstrates a typical

workflow for the SCINCO project.

The fundamental unit of execution in a Tapis

workflow is called a task. A single image build

task is required for continuous integration-based

workflows, such as those of the Scinco project.

This task is defined in four parts; the image

builder, context, destination, and archive.

The image builders available with Tapis

Workflows are Singularity and Kaniko [7]—a

container-based software, which is capable of

container-in-container image construction without

the need for root access on the host machine,

ensuring a more isolated and secure build envi-

ronment.

The context is the origin or source of the

image to be built. This could be a DockerHub reg-

istry or source code in a GitHub repository. When

defining a task with a source code context, users

specify the path to the build file—Singularity or

Dockerfile—and the path to the build context.

If these contexts are private, users can provide

the credentials in the task definition. These cre-

dentials are stored securely in the Tapis Security

Kernel—a role-based authentication and secrets

management Tapis service— and only fetched for

the Workflow Executor when their workflow is

triggered.

The destination of an image build task is the

specific location of the image, where it will be

sent after the build completes. Examples of des-

tinations include image registries such as Dock-

erHub, or local storage in the workflow executor

file system. Just as with the context, users can

provide the credentials required to push to pri-

vate registries. Users can also store the resultant

Singularity (SIF) or compressed (tar.gz) file in

the local file system of the Workflow Executor.

However, this is an ephemeral storage solution

intended only for storing images and files for the

duration of the execution of a workflow. Once the

workflow terminates, all artifacts produced during

its execution gets deleted. Tapis Workflows allows

us to define archives as a permanent storage

solution.

Archives are permanent storage mediums to

which the results, files, and images produced dur-

ing the run of a workflow are persisted. Currently,

the only supported archive is a Tapis System; a

server or set of servers—virtual or physical—that

are part of a Tapis deployment.

Reproducibility Features

To ensure that the results computed in Jupyter

notebooks created on the Scinco platform are

reproducible, the project implemented an on-save

hook mechanism that stores two custom attributes

within an individual notebook file’s metadata the

first time it gets saved. The first attribute contains

the container image name and tag used for the

notebook server in which the notebook file gets

saved. Scinco injects the image name and a tag

as environment variables at the notebook server

startup. The on-save hook reads them and saves

them to the notebook file metadata. With this

attribute saved in the notebook file itself, a future

process – including one independent of Scinco

– can determine the correct container image to

use to open the file. The second attribute is a

unique identifier attached to a notebook file when

created. We use a UUID v4 for the identifier.

The UUID attribute gets created when one does

not already exist, providing a way to track which

notebooks are copies of other notebooks. If a

notebook is a copy, it will have the same UUID.

Administrative Portal

Supporting five JupyterHub clusters with

more than 1600 total users running at TACC

has required about two to three full-time devel-

May/June 2023 7







Department Head

2022].

5. Parente P., “Estimate of Public Jupyter

Notebooks on GitHub,” [Online]. Available:

https://nbviewer.jupyter.org/github/parente/nbestimate

/blob/master/estimate.ipynb. [Accessed: 20-Jun-2022]

6. “Metrics For Kubernetes System Components,” [Online].

Available: https://kubernetes.io/docs/concepts/cluster-

administration/system-metrics/. [Accessed: 2-Dec-2022].

7. “Kaniko: Containerized Image Builder, ” [Online]. Avail-

able: https://github.com/GoogleContainerTools/kaniko

[Accessed: 29-Nov-2022]

8. “Prometheus,” [Online]. Available: https://prometheus.io.

[Accessed: 20-Jun-2022].

9. “Thanos,” [Online]. Available: https://thanos.io. [Ac-

cessed: 20-Jun-2022].

10. “Grafana,” [Online]. Available: https://grafana.com [Ac-

cessed: 20-Jun-2022].

11. “Container Advisor,” [Online]. Available:

https://github.com/google/cadvisor [Accessed: 20-

Jun-2022].

Dr. Joe Stubbs is a Research Associate and

leads the Cloud and Interactive Computing (CIC)

group at the Texas Advanced Computing Center

at the University of Texas at Austin. Dr. Stubbs

is the Principal Investigator of two NSF-funded

projects- Tapis and Abaco and has played a funda-

mental role in developing numerous national-scale

cyberinfrastructure systems for various scientific

and engineering communities used by thousands

of researchers.

Dr. Anagha Jamthe is a Research/Engineering

Scientist Associate in the Cloud and Interactive

Computing group (CIC) at the Texas Advanced

Computing Center at the University of Texas at

Austin. Dr. Jamthe is one of the technical contribu-

tors to the NSF funded Tapis Project and manages

the JupyterHub project at TACC.

Nathan Freeman is an Engineering Scientist As-

sociate in the the Cloud and Interactive Computing

(CIC) group at the Texas Advanced Computing

Center at the University of Texas at Austin. Nathan

manages the development of the Tapis Workflows

API and related services, libraries, and UI.

Mike Packard is a System Administrator at the

Texas Advanced Computing Center at the Univer-

sity of Texas at Austin. He provides devops and

automation support for several cloud infrastructure

and research projects.

Gilbert Curbelo is a Software Developer at the

Texas Advanced Computing Center at the Uni-

versity of Texas at Austin. Gilbert is in charge of

updating different components of the JupyterHub

project and contributes to the Tapis project.

Cody Hammock is a System Administrator at

the Texas Advanced Computing Center at the Uni-

versity of Texas at Austin. He provides monitoring

support for the Scinco Project, and manages or

contributes to several cloud infrastructure projects

at TACC.

10 IT Professional


