

1 **Abstract (350 words maximum)**

- 2 1. Animals compete in contests over limited resources. Contestants forfeit once they
3 ascertain that their opponent has greater resource holding potential (RHP) (mutual
4 assessment) or once they reach a threshold of costs (self assessment). Functional scaling
5 studies of contest behavior performance can inform how assessment signals, offensive
6 capacity, and endurance scale with RHP and thereby elucidate the mechanisms through
7 which each of these assessment types operates.
- 8 2. Here, we performed behavioral contest analyses to determine the assessment strategies
9 used in snapping shrimp (*Alpheus heterochaelis*) contests. Then, we used biomechanical
10 measurements of a common contest behavior to inform how assessment might operate.
11 We were specifically interested in the snapping behavior during which snapping shrimp
12 fire imploding cavitation bubbles – hereafter, “snaps” – at their opponents.
- 13 3. We showed that *A. heterochaelis* use mutual assessment early in contests. Then, when
14 they fire snaps, they switch to cumulative assessment – a type of self assessment where
15 contestants endure costs from their own behaviors (e.g. energy) and their opponent’s
16 (e.g. injury).
- 17 4. Because larger individuals tend to win contests, we then tested how the maximum
18 performance and endurance of snaps scaled with size. We measured the average
19 angular velocity of the snapping dactyl, cavitation bubble duration, and pressure of
20 snaps as metrics of performance. We measured 10 snaps per individual (n = 76
21 individuals). From this series of 10 snaps, we calculated the maximum of each metric as
22 the maximum performance and the attrition of each metric over the course of ten snaps
23 as a measure of endurance. Maximum performance increased with size, but endurance
24 did not.
- 25 5. This suggests that cumulative assessment in snapping shrimp is driven by opponent-
26 imposed costs. Our results are not consistent with self-assessment based on endurance;
27 however, the experiment could not fully replicate the quick succession of snaps fired in
28 real contests. Future experiments should better replicate the rapid firing of snaps to test
29 if endurance matters in a more ecologically relevant context.

30 6. Our framework of integrating biomechanics and behavioral ecology provides a pathway
31 to identify precise mechanisms of contest assessment and animal behavior more
32 broadly.

33 **Keywords:** weapons, performance, contests, scaling, crustaceans, endurance

34

35 **Introduction**

36 Animal contests are disputes over ownership of limited resources such as food,
37 territory, or mates (Andersson, 1994; Briffa and Hardy, 2013). On average, contestants with
38 greater fighting ability, or resource holding potential (RHP), win contests. Contestants either
39 forfeit when they ascertain that their opponent has greater RHP (i.e. by assessing signals in
40 mutual assessment, Enquist et al., 1990), or once they reach a threshold of accrued costs (i.e.
41 self assessment, Mesterton-Gibbons et al., 1996; Payne, 1998). In self assessment, costs can be
42 entirely self-imposed like through energy (i.e. pure self assessment, Mesterton-Gibbons et al.,
43 1996) or both self-imposed and imposed by the opponent like through injury (i.e. cumulative
44 assessment, Payne, 1998). Typically, assessment strategies are determined based on empirical
45 predictions derived from theoretical models (Arnott and Elwood, 2009). However, these
46 empirical tests often treat the behavioral mechanisms that facilitate assessment as a black box.
47 Nonetheless, functional studies of contest behaviors are essential because contests are
48 grounded in functional principles, such as the link between physiological state and signal
49 structure or intensity (Dougherty, 2021; Searcy and Nowicki, 2005). Thus, studying the
50 performance of contest behaviors alongside the behavioral contexts in which they are used can
51 elucidate the mechanisms of assessment (Green et al., 2021; Lailvaux and Irschick, 2006;
52 McCullough et al., 2016).

53 Disparate analyses of behavior and mechanics can lead to flawed evolutionary
54 inferences. For example, in fiddler crabs, it was long-thought that large claws are effective
55 signals but ineffective weapons because large claws sacrifice mechanical advantage at the claw
56 tip (Levinton and Allen, 2005); however, subsequent behavioral observations revealed that
57 fiddler crabs compensate for this tradeoff by pinching near the pivot of the claw, diminishing
58 the mechanical advantage tradeoff and allowing them to wield both effective signals and

59 weapons (Dennenmoser and Christy, 2013). Because behaviors and morphologies are the
60 evolutionary substrate on which selection acts, there is obvious value in studying behavior and
61 biomechanics in tandem.

62 In this study, we paired behavioral contest experiments with biomechanical scaling
63 studies of weapon performance to understand mechanisms of contest assessment.
64 Performance is defined as the ability to perform a physically challenging and ecologically
65 relevant behavior (Arnold, 1983; Byers et al., 2010). Performance has two components:
66 maximal performance, defined as the maximum magnitude of a behavior that an individual can
67 perform, and endurance, defined as an individual's ability to maintain maximal performance
68 over time (Byers et al., 2010; Mowles et al., 2010). Both components can shape mating signals
69 (e.g. Ballentine, 2009, Ballentine et al., 2004; reviewed in Byers et al., 2010), contest signals
70 (e.g. Mowles et al., 2010; reviewed in Palaoro and Briffa, 2017), and injurious contest behaviors
71 (Dennenmoser and Christy, 2013). The relative importance of maximal performance versus
72 endurance depends on the behavior. In contests, for example, high RHP individuals might have
73 greater endurance during energetic wars of attrition and cumulative assessment and therefore
74 persist longer in contests (Lailvaux and Irschick, 2006; Mowles et al., 2010; Payne, 1998; Payne
75 and Pagel, 1996). In injurious cumulative assessment contests, performing behaviors with
76 greater maximum performance could increase offensive capacity — a key determinant of
77 cumulative assessment defined as the capacity to damage an opponent (Palaoro and Briffa,
78 2017). In mutual assessment, performing behaviors with high endurance or high maximal
79 performance could signal contestant RHP (Briffa and Elwood, 2002; DuBois et al., 2011). Table 1
80 provides examples of how maximum performance and endurance can affect contest behaviors
81 used in each assessment type.

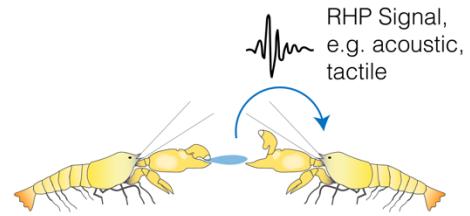
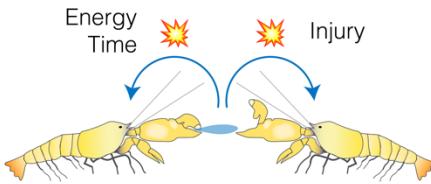
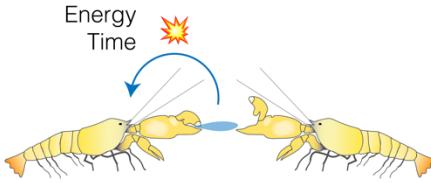
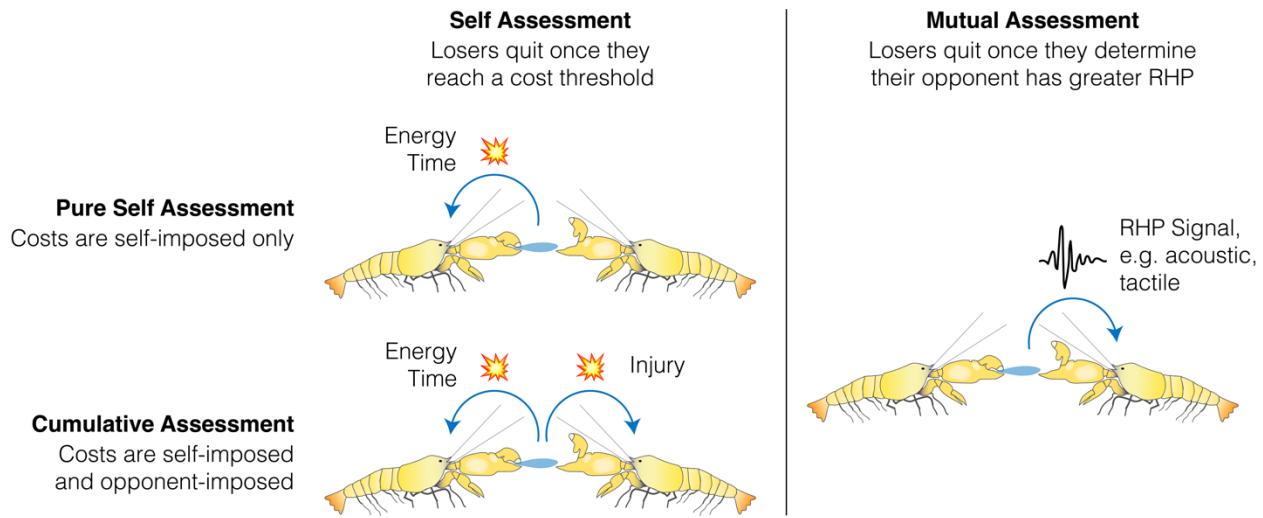
82
83 *Table 1: Examples of how maximum performance and endurance affect contest behaviors of*
84 *each assessment type.*

Assessment Strategy	Maximum Performance Example	Endurance Example
Pure Self Assessment	Not applicable; pure self assessment is driven by self-imposed costs (e.g. war of attrition, Mesterton-Gibbons et al., 1996; Payne and Pagel, 1996).	Hermit crabs attempting to overtake an opponent's shell perform shell raps that require oxygen and generate lactate. Shell-rapping power

		decreases as lactate accrues, and the decision to forfeit is based on accrued lactate (Briffa and Elwood, 2000, 2001, 2002).
Cumulative Assessment	Fiddler crabs pinch each other using enlarged chela during escalated territorial contests (Pratt et al., 2003). Peak claw closing force increases with size (Dennenmoser and Christy, 2013).	Fiddler crabs pinch each other using enlarged chela during escalated territorial contests (Pratt et al., 2003). Fiddler crabs that are able to maintain initial pinching forces for longer (i.e. greater endurance) are more likely to overtake burrows from opponents (McLain et al., 2019).
Mutual Assessment	Hermit crabs defending their shells assess the acoustic power of their opponent's shell-rapping behaviors. They are more likely to forfeit shells to crabs that perform high-powered shell raps (Briffa and Elwood, 2002).	In male side-blotched lizards (<i>Uta stansburiana</i>), the duration of the push-up, head-bobbing threat display is constrained by endurance (Brandt, 2003) (but note: mutual assessment hasn't been tested explicitly in this species).

85 Here, we tested how maximal weapon performance and endurance scales in the
 86 eponymous cavitation-based snap of the snapping shrimp. We then determined the assessment
 87 strategy used by snapping shrimp and interpreted our findings through the lens of assessment
 88 mechanisms. Snapping shrimp are typically found in size-assortative male-female pairs
 89 (Rahman et al., 2002). Both male and female snapping shrimp compete in sexually selected
 90 contests against same-sex conspecifics over territory and mates (Dinh et al., 2020; Nolan and
 91 Salmon, 1970). Both sexes have one enlarged claw that they use as a weapon to fire cavitation
 92 bubbles – hereafter, “snaps” – during contests (Versluis et al., 2000). In a congener snapping
 93 shrimp (*Alpheus angulosus*), snaps are used as weapons in cumulative assessment (Dinh et al.,
 94 2020). Larger shrimp have larger claws and tend to win contests; accordingly, previous work
 95 established carapace length as a convenient and reliable proxy for RHP (Dinh et al., 2020;
 96 Hughes, 2000). Furthermore, snapping shrimp fire snaps during pairing behaviors. In contrast to

97 contests, during which snaps are used as weapons aimed directly at the contest opponent,
98 females snap away from potential pair-mates during the pairing process (Hughes et al., 2014).
99 While the function of pairing snaps is not yet known, researchers have speculated that this
100 might be an acoustic signaling behavior (Hughes et al., 2014).





101 Snaps are highly energetic; they generate temperatures that approach those at the
102 surface of the sun, flashes of light, and extreme sound pressures close to the physical limit of
103 underwater pressure, bested only by cetaceans 6 orders of magnitude larger in mass (Jakobsen
104 et al., 2021; Lohse et al., 2001; Versluis et al., 2000). Cavitation collapse is intense and
105 destructive. Mantis shrimp, for example, produce cavitation during their powerful snail-
106 smashing strikes (Patek and Caldwell, 2005). Interestingly, male and female mantis shrimp also
107 use their feeding appendages to strike opponents during territorial contests (Green and Patek,
108 2015, 2018). Patek & Caldwell (2005) demonstrated that cavitation force produced by mantis
109 shrimp, which was measured as a proxy for pressure, can exceed the already devastatingly
110 forceful impact of its hammer. Cavitation can even ravage human-engineered equipment. For
111 example, cavitation bubbles form on the tips of fast-spinning boat propellers and are a common
112 source of ship damage (Brennen, 1995). Because cavitation can impose such devastating forces,
113 the cavitation-based weapon of snapping shrimp is an excellent system with which to test how
114 performance scales with RHP and how performance could mediate assessment in contests.

115 We measured the two components of performance — maximal performance and
116 endurance — using three metrics: (1) cavitation bubble duration; (2) cavitation sound pressure
117 (i.e. force/area); (3) average angular velocity of the dactyl. This third metric is relevant to
118 performance, because greater energy invested by an individual in a snap should positively
119 correlate with dactyl velocity. Furthermore, given that greater dactyl velocity is achieved
120 through greater energy use by the snapping animal, dactyl velocity should also positively
121 correlate with cavitation bubble duration and sound pressure. Therefore, the three
122 performance metrics are not mutually exclusive and should be correlated with each other
123 through the common pathway of energetic input by the individual animal in each snap.
124 Maximal performance is measured as the maximum value for each of these metrics across ten

125 snaps by a given individual. Endurance is measured for each of these metrics as the slope of
126 performance across 10 snaps: a greater reduction in performance corresponds to greater
127 attrition in performance and, therefore, lower endurance. Note, however, that snapping shrimp
128 in this experiment had ample rest between snaps, which is uncommon in actual contests (see
129 methods for detailed discussion of this caveat).

130 These three metrics are also influenced by the claw mass of snapping shrimp (Au and
131 Banks, 1998; Harrison et al., 2021; McHenry et al., 2016; Pereira et al., 2014; Versluis et al.,
132 2000) (Table 2). We predicted that maximal bubble duration and sound pressure would
133 increase with claw mass because larger claws propel greater volumes of water, behind which
134 the cavitation bubbles form, and likely form larger cavitation bubbles; mathematical modeling
135 predicts that larger bubbles produce greater sound pressures (Au and Banks, 1998; Versluis et
136 al., 2000) (Table 2). However, we predicted that shrimp with more massive claws would
137 produce slower maximal angular velocities because angular velocities of rotating latch-
138 mediated spring-actuated systems tend to decrease with increasing mass (Harrison et al., 2021;
139 McHenry et al., 2016). Furthermore, we predicted that larger individuals would have greater
140 endurance than smaller individuals. Smaller organisms tend to have higher mass-specific
141 metabolic rates. Therefore, smaller individuals should expend proportionally more energy per
142 snap and have lower endurance than larger individuals (Schmidt-Nielsen, 1984; but see Glazier,
143 2005, 2009; Kotiaho et al., 1998). Positive scaling of endurance is also a foundational
144 assumption of self assessment models (e.g. wars of attrition and cumulative assessment
145 (Palaoro and Briffa, 2017; Payne, 1998; Payne and Pagel, 1996)) (Table 2). We therefore
146 expected larger individuals to show greater endurance than smaller individuals.

147 Finally, we performed behavioral experiments to determine assessment strategies used
148 by snapping shrimp (Arnott and Elwood, 2009). The behavioral analysis allowed us to determine
149 whether snaps are used as signals in mutual assessment or as cost-imposing armament in pure
150 self assessment or cumulative assessment (Fig. 1). Integrating behavioral context with
151 behavioral scaling allowed us to make inferences about the mechanisms of assessment used
152 during contests.

184 **Table 2:** Scaling predictions and justifications for each of the three maximal performance and
 185 endurance metrics. Negative signs mean that the performance metric decreases with size,
 186 whereas positive signs mean that the performance metric increases with size.
 187

Performance Metric	Maximal Performance Scaling	Maximal Performance Justification	Endurance Scaling	Endurance Justification
Average Angular Velocity of Dactyl	-	Low-mass objects accelerate more quickly and reach greater average angular velocity in spring-actuated movements (Harrison et al., 2021; Ilton et al., 2018; McHenry et al., 2016)	+	Smaller individuals use more energy per gram of body mass during exercise, so they should be less able to maintain high performance over time (Glazier, 2009; Schmidt-Nielsen, 1984)
Bubble Duration	+	Larger claws have larger dactyls that will accelerate larger volumes of water (Pereira et al., 2014)	+	Smaller individuals use more energy per gram of body mass during exercise, so they should be less able to maintain high performance over time (Glazier, 2009; Schmidt-Nielsen, 1984)
Sound Pressure Level	+	Larger claws produce larger bubbles, which should produce greater pressures upon collapse (Au and Banks, 1998; Versluis et al., 2000)	+	Smaller individuals use more energy per gram of body mass during exercise, so they should be less able to maintain high performance over time (Glazier, 2009; Schmidt-Nielsen, 1984)

188
 189
 190
 191
 192
 193
 194

195 **Materials and Methods**

196 *Animal collection and husbandry*

197 We collected 168 snapping shrimp (*Alpheus heterochaelis*) from Beaufort, North
198 Carolina, USA from March – September 2020 and March – June 2021 (NCDENR Scientific and
199 Education Permit no. 707075 to the Duke University Marine Laboratory). No ethical permit was
200 required for experiments. Snapping shrimp can live several years in captivity, and we performed
201 experiments within two months after capture. We used 76 individuals to determine weapon
202 performance scaling and 92 individuals to determine assessment mechanisms. No individuals
203 were used in both experiments to avoid confounds like motivation, prior experimentation, and
204 excessive handling. Snapping shrimp were collected from oyster reefs surrounding Piver's Island
205 at low tide by flipping oyster debris and excavating roughly 4 cm of mud. We transported all
206 snapping shrimp to Duke University (Durham, North Carolina, USA) in individual tubes filled
207 with seawater from their local environment, where they were immediately transferred into
208 individual 0.1 x 0.1 x 0.1 m polystyrene tanks filled with lab-made seawater. Water changes and
209 feedings of frozen krill and live brine shrimp nauplii were provided daily.

210

211 *Weapon performance*

212 We measured three metrics of weapon performance: average angular velocity,
213 cavitation bubble duration, and peak-to-peak sound pressure induced by bubble collapse. As
214 detailed below, we measured average angular velocity of the dactyl and cavitation bubble
215 duration using high-speed videos, and we measured peak-to-peak sound pressure using audio
216 recordings synchronized with the high-speed videos.

217 We filmed high speed videos of snapping shrimp in a 75 x 30 x 45 cm tank filled 40 cm
218 high with lab-made seawater (100,000 frames per second, 384 x 408 pixels, model SA-Z,
219 Photron U.S.A., Inc., San Diego, CA, U.S.A.). Snapping shrimp were suspended in the tank and
220 oriented towards the center of the tank. They were positioned at 23 cm depth by adhering a
221 toothpick to the dorsal surface of their carapace and mounting the toothpick on a custom-
222 designed 3-D printed stand. A mirror was positioned below the animal at 45° to obtain both a
223 ventral and lateral view. Typically, the claw was in plane in the ventral view. Snaps were

224 stimulated by probing the tip of the claw with forceps. In nature, snapping shrimp can snap
225 spontaneously or when aggravated by external stimuli and conspecifics; spontaneous snaps are
226 lower in intensity than aggressive ones, and artificially provoking animals elicits intense
227 aggressive snaps akin to those seen in contests (Rossi et al., 2016). We recorded 10 snaps for
228 each individual except for rare instances when the animal would not snap 10 times (see Figure
229 S1). In total, we recorded 736 videos.

230 We measured the average angular velocity of the dactyl following Kagaya & Patek
231 (2016). Briefly, we tracked two lines — one on the propodus and one on the dactyl — at the
232 beginning and the end of the strike using the Fiji distribution of ImageJ (version 2.0.0)
233 (Schindelin et al., 2012) (Fig. 2). We calculated the angle change between the two lines from the
234 beginning to the end of the snap, which is equivalent to the angular change between the two
235 rotating segments of the appendage around the center of rotation (Kagaya and Patek, 2016).
236 We divided this angle change by the strike duration (duration between the onset of dactyl
237 rotation to the end of dactyl rotation) to determine average angular velocity. We used 603
238 high-speed videos for angular velocity calculations because in the remaining videos, the claws
239 were not in the plane of recording, and angular change could not be measured reliably.

240 We measured bubble duration starting when the cavitation bubble formed to the time it
241 collapsed. We did not measure bubble diameter because claw orientations varied between
242 snaps, and minor changes in bubble directionality could introduce error in diameter
243 measurements.

244 We synchronized high speed imaging with acoustic pressure recordings. We recorded
245 audio using a B&K Type 8104 hydrophone (flat frequency range 0.1 Hz – 10 kHz; full frequency
246 range 0.1 Hz – 80 kHz; Brüel & Kjær, Nærum, Denmark) amplified with a B&K Type 2635 charge
247 amplifier (flat frequency range 0.1 Hz – 100 kHz; band-pass filter 1 Hz – 100 kHz Brüel & Kjær,
248 Nærum, Denmark). Audio was synchronized with high speed video using a National Instruments
249 data acquisition board such that for every frame of high-speed video there were ten data points
250 from the acoustic recording (NI USB-6251; sampling frequency = 1 MHz; National Instruments,
251 Austin, Texas, USA). The hydrophone was placed 9 cm from the recorded snapping shrimp at 23
252 cm depth. Because the hydrophone was placed only 9 cm from the sound source and 15 cm

253 from the nearest tank wall, and because we measured sound pressure at the initial onset of the
254 bubble collapse, sound arrived at the hydrophone before it could be reflected from the tank
255 walls. Therefore, pressure measurements of the initial bubble collapse were not distorted by
256 tank reverberations. All audio recordings were visually inspected to ensure that background
257 noise levels were low and flat. No audio recordings oscillated at low frequencies. We calculated
258 the peak-to-peak sound pressure level produced by the initial collapse of the cavitation bubble
259 and calculated a source level (dB re 1 μ Pa at 1 m) by subtracting geometric transmission loss
260 assuming spherical spreading from our received levels. This sound pressure level encompassed
261 the first peak positive and negative values upon bubble collapse and did not include any heavily
262 oscillating acoustic data following bubble collapse (Fig. 3).

263 We towel- and air-dried the claws and measured their mass on a microbalance
264 (resolution: $\pm 1 \mu$ g; XPE56, Mettler Toledo, Pleasant Prairie, WI, USA). To document scaling
265 relationships with the three metrics of weapon maximal performance and endurance (average
266 angular velocity, bubble duration, and acoustic source level), we constructed a series of linear
267 models. For each of the three metrics, we constructed log-transformed ordinary least squares
268 (OLS) linear regressions with $\log_{10}(\text{claw mass})$ as the explanatory variable and log-transformed
269 measures of weapon performance as the response variables (Kilmer and Rodríguez, 2017). We
270 used claw mass in this analysis because investment into growth and development of the
271 weapon is likely the best predictor of weapon performance. It's highly correlated with carapace
272 length — the best known morphological proxy for RHP — but more directly tied to weapon
273 performance than carapace length.

274 Then, we tested how weapon performance scaled with carapace length. We used
275 carapace length as an RHP proxy because it has been previously established to predict contest
276 success (Dinh et al., 2020). To visualize the non-linearity of the relationship, we regressed
277 carapace length against the linear pressure measurement 1 meter from the source. To estimate
278 the scaling exponent, we regressed $\log_{10}(\text{pressure}) \sim \log_{10}(\text{carapace length})$ for males and
279 females.

280 To test if producing higher angular velocities generated longer bubble durations and
281 greater sound pressure levels through a common energetic pathway, we conducted a causal

282 mediation analysis with linear mixed effects models where individuals were assigned as random
283 effects. Causal mediation analysis allows us to test the extent to which the effect of an
284 independent variable (I) on a dependent variable (D) is mediated through a third mediating
285 variable (M) (Agler and De Boeck, 2017; Little, 2018; Tingley et al., 2014). Indirect effects of I on
286 D which are mediated through M are separated from direct effects of I on D using a series of
287 linear regressions: $D \sim I + M$, and $M \sim I$. The average direct effect (ADE) is determined as the
288 slope of $D \sim I$, and the average causally mediated effect (ACME) is the product of the slope of M
289 $\sim I$ and the slope of $D \sim M$. Using this analysis, we can determine how across the 10 snaps
290 performed by a single individual, producing greater average angular velocities increases bubble
291 duration and, in turn, increases sound pressure.

292 In our causal mediation analysis, we used source sound pressure as the dependent
293 variable, average angular velocity as the independent variable, and bubble duration³ as the
294 mediator. We also used individual as a random effect. This model allowed us to test whether
295 for any given individual, producing a greater angular velocity would produce a longer-lasting
296 cavitation bubble and therefore a greater sound pressure. We used linear sound pressure and
297 the cubed exponent of bubble duration because linear sound pressure increases proportionally
298 to bubble volume (Versluis et al., 2000). Cavitation bubbles expand in all three dimensions
299 during cavitation bubble formation, so bubble volume should scale roughly proportionally to
300 bubble duration³. Because the variables differed drastically in scale (e.g., bubble duration and
301 source pressure varied by 13 orders of magnitude) we standardized each parameter so that the
302 mean value was zero and each increment of 1 represented a change in 1 standard deviation.
303 Then, we constructed mediator and outcome models as described above and built 95%
304 confidence intervals for the average causally mediated effect (ACME), average direct effect
305 (ADE), total effect, and proportion of effect mediated through indirect causal pathways. We
306 performed causal mediation analysis using the mediation R package (Tingley et al., 2014).

307 To test if snap performance declined with repeated use, we constructed three linear
308 mixed effects models. These models used either $\log_{10}(\text{average angular velocity})$, $\log_{10}(\text{cavitation}$
309 $\text{bubble duration})$, or sound pressure level — a logarithmic pressure measurement — as the
310 response variable. We included snap number, where 1 is the first snap and 10 is the final snap,

311 as the explanatory variable. We allowed random slopes and intercepts for each individual. We
312 tested whether across all individuals, each measure of weapon performance worsened over the
313 10 snaps by removing snap number and its random slope from the model and performing a
314 likelihood ratio test comparing the full and reduced models. We also calculated evidence ratios
315 for the full and reduced models to quantify relative support for each model given the data. We
316 constructed linear mixed effects models using the lme4 package (Bates et al., 2022).
317 Then, to test if the attrition of weapon performance (i.e., endurance) scaled with size, we
318 extracted random slopes from each model and constructed the following linear model for
319 $\log_{10}(\text{average angular velocity})$, $\log_{10}(\text{cavitation bubble duration})$, and sound pressure level:
320 random slope \sim claw mass. In actual contests, snapping shrimp fire snaps in quick succession.
321 Here, however, we waited 1-2 minutes between snaps to save high speed videos. Thus, our
322 endurance metric may not be ecologically relevant.

323

324 *Assessment strategy*

325 We randomly paired 92 same-sex snapping shrimp and staged 46 dyadic contests. We
326 staged contests as described in detail in Dinh et al. (2020). Contests were staged in a 0.3 x 0.2 x
327 0.1 m plastic tank that had the interior coated in a spray-on rubber (Plasti Dip International,
328 Blaine, Minnesota, USA). Each tank was filled 0.07 m high with lab-made seawater and divided
329 using an opaque 3-D printed divider. We placed a 2.5 cm piece of transparent PVC on either
330 side of the divider as shelter. Once the divider was lifted, the two PVC pipes were nearly
331 touching, forming one continuous and limited shelter. PVC was placed on both sides to prevent
332 resident-effects during acclimation. We placed one individual on each side of the tank and
333 allowed them to acclimate for 30 minutes. Then, we removed the divider and filmed the
334 contest using a high-definition camcorder (30 frames/s, 1920 x 1080 pixel resolution, model
335 HDR-PJ790, Sony Corp., Tokyo, Japan). Contestants were monitored until one individual made a
336 clear and obvious retreat. Our previous work has established that initial retreat is clear sign of
337 dominance and subordinance (Dinh et al., 2020). The loser was the individual that retreated,
338 and the other individual was deemed the winner. We rinsed the inside of each tank with RO
339 water and changed seawater between each contest.

340 We determined whether contests progressed in phases using a behavioral network
341 analysis with the igraph R package (Csardi and Nepusz, 2006; Green and Patek, 2018). First, we
342 coded behaviors in all contests using the Behavioural Observation Research Interactive
343 Software (Friard and Gamba, 2016). We used previously established ethograms from the
344 snapping shrimp *Alpheus heterochaelis* (Nolan and Salmon, 1970) and *Alpheus angulosus* (Dinh
345 et al., 2020). We also added two previously undocumented behaviors: pincer snap and clicking
346 (see supplementary materials for ethogram and definitions)

347 We sorted behaviors by individual and ordered them in their temporal sequence. We
348 then used a permutation procedure to identify behavioral transitions that occurred more often
349 than would be expected if transitions were random. Details are available in Green & Patek
350 (2018), but briefly, we determined the total number of transitions for each possible behavioral
351 transition. Then, we resampled each behavior keeping the occurrence frequency of behaviors
352 the same but randomizing transitions. We repeated this random resampling process 10,000
353 times. This set of behavioral transitions was used as a distribution of expected transitional
354 frequencies of behavioral transitions were random. We determined that a behavioral transition
355 was significant if it occurred more commonly than the 99.142% percentile of this distribution (α
356 = 0.05 plus correction for false discovery rate with 190 parallel comparisons, Benjamini and
357 Yekutieli, 2001). Behavioral phases were points of significant transitions after which no
358 significant transitions backwards occurred.

359 For each behavioural phase, we discriminated between assessment strategies using
360 regression analyses between an RHP proxy and phase duration (Elwood and Arnott, 2012;
361 Taylor and Elwood, 2003) (Table 3). We used carapace length as our RHP proxy since this was
362 previously established as a convenient and reliable correlate of RHP (Dinh et al., 2020). Table 3
363 provides detailed rationale for each experimental prediction, which we briefly layout here. We
364 first built a multiple linear regression with each contest phase as the response variable and
365 winner carapace length, loser carapace length, and their interaction as explanatory variables.
366 Pure self assessment predicts a positive correlation with loser carapace length and a near-zero
367 positive relationship with winner carapace length, whereas mutual and cumulative assessment
368 predict a positive correlation with loser carapace length and a negative relationship with winner

369 carapace length (Elwood and Arnott, 2012). We also tested for sex differences by adding sex
370 and its interaction terms to the model and comparing AIC to the model without sex. Although
371 this analysis can differentiate pure self assessment, it cannot differentiate between mutual
372 assessment and cumulative assessment (Elwood and Arnott, 2012; Taylor and Elwood, 2003).
373 To differentiate between mutual and cumulative assessment, we considered only size-matched
374 contests ($n = 18$) and built a linear regression between the averaged carapace length of the two
375 contestants and phase duration for each phase (Elwood and Arnott, 2012; Taylor and Elwood,
376 2003). Cumulative assessment predicts a positive correlation, whereas mutual assessment
377 predicts no correlation. We also tested for sex differences by adding sex and its interaction with
378 averaged carapace length to the model and comparing AIC to the model without sex.

379

380

381

382

383

384

385

386

387

388

389

390

391

392

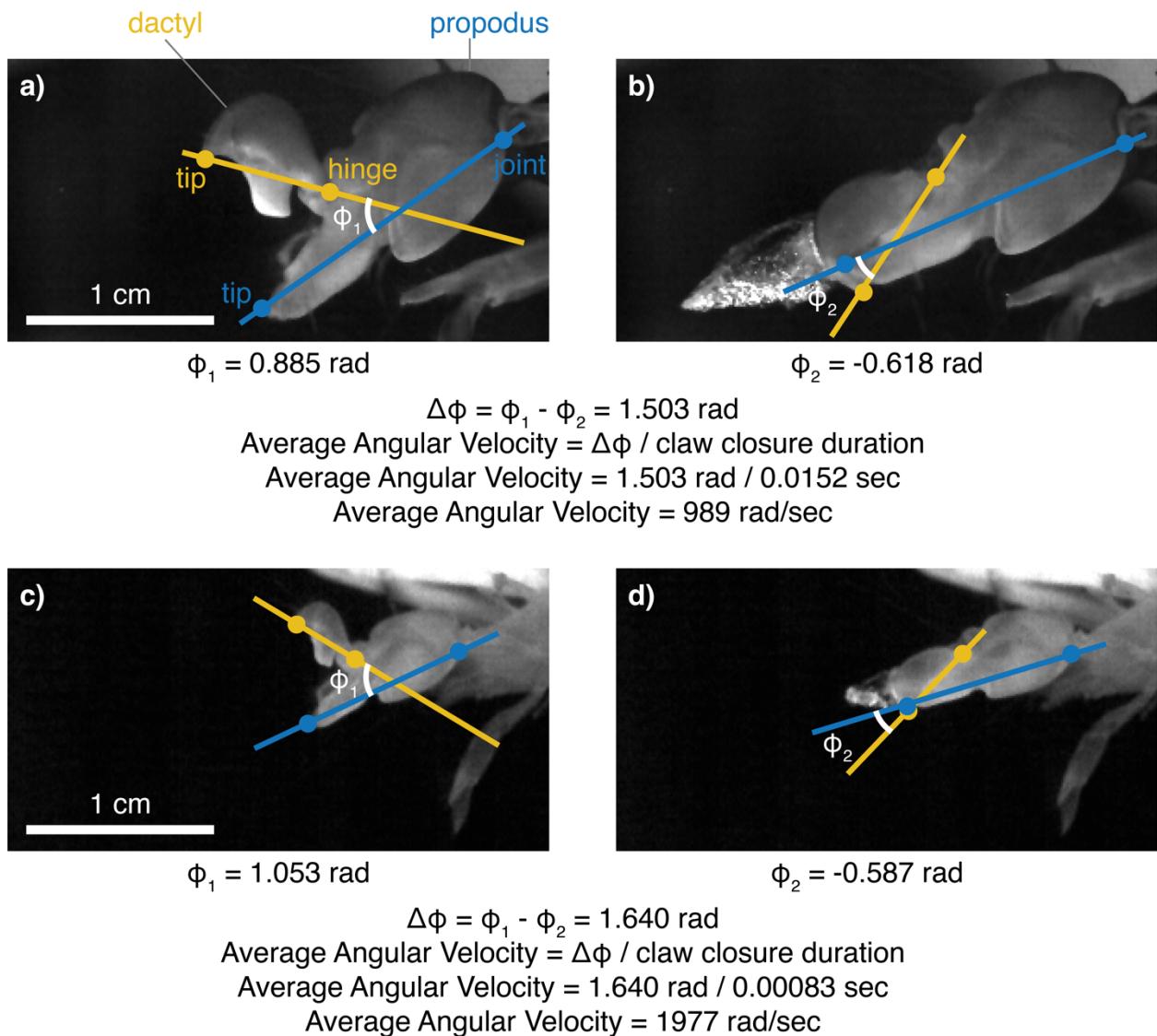
393

394

395

396

397

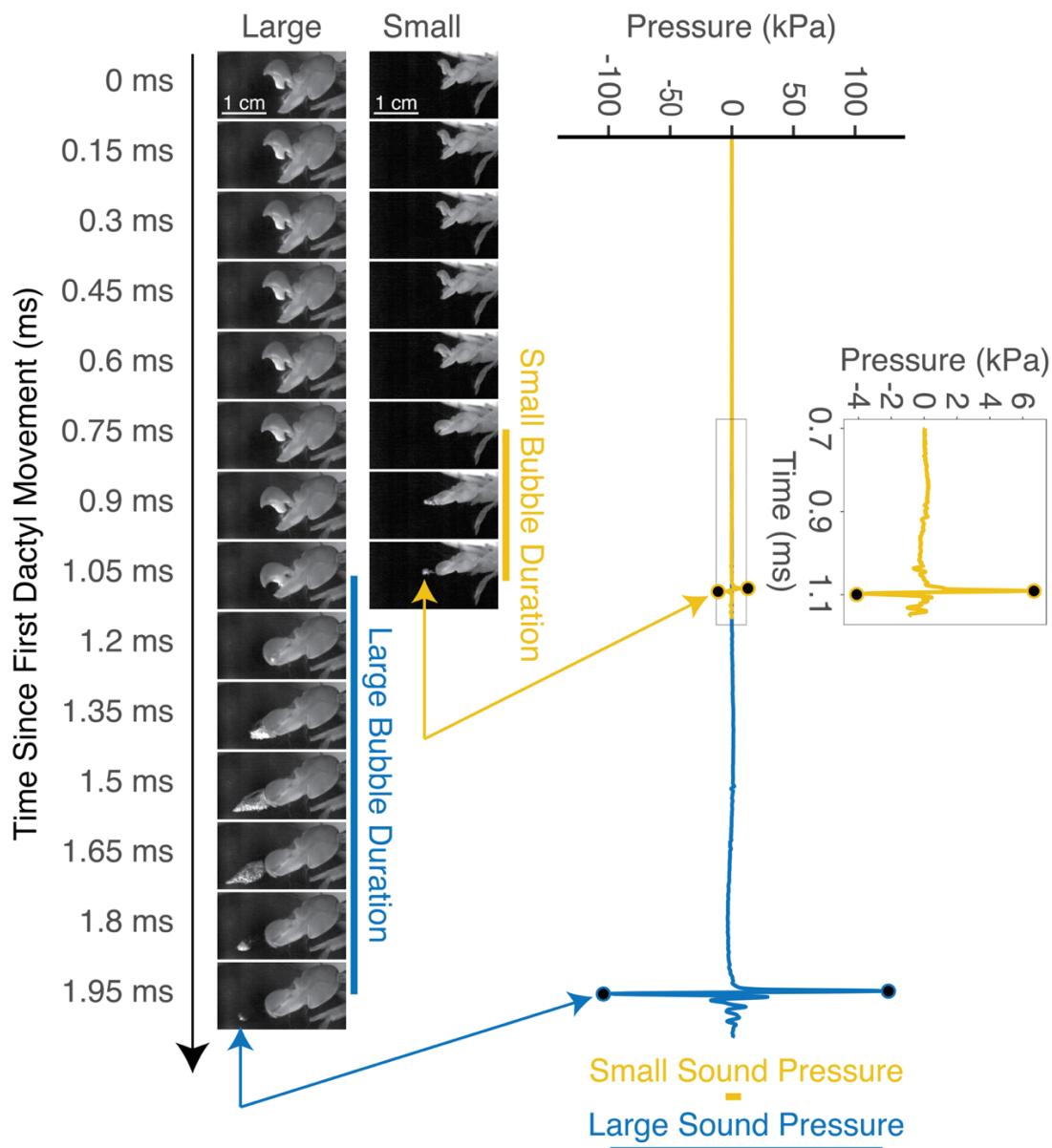

Table 3: Contest predictions and rationale based on each assessment type (reviewed in Arnott & Elwood, 2009).

Assessment Strategy	Contest Duration ~ Loser RHP	Contest Duration ~ Winner RHP	Size Matched Contest Duration ~ Averaged RHP
Pure Self Assessment	Positive correlation: Larger individuals can sustain greater costs and endure longer in contests.	Weak positive correlation: As RHP increases, the average RHP of possible subordinate opponents increases as well. Therefore the average duration that those opponents would persist also increases.	Positive correlation: Larger individuals can sustain greater costs and endure longer in the contests.
Cumulative Assessment	Positive correlation: Larger individuals can sustain greater costs and endure longer in contests.	Negative correlation: Larger individuals impose greater costs and push losers past cost thresholds more quickly.	Positive correlation: Larger individuals can sustain greater costs and endure longer in contests.
Mutual Assessment	Positive correlation: High RHP individuals only lose to other formidable opponents. The average RHP difference between the two is usually small, so contests tend to be long. By contrast, low RHP individuals can lose to a wide range of opponents. When they lose to opponents much stronger than them, contests are short. Therefore, contests with high RHP losers tend to be longer on average than contests with low RHP losers.	Negative correlation: Low RHP individuals only defeat other low RHP opponents. The average RHP difference between the two is usually small, so contests tend to be long. By contrast, high RHP individuals can defeat to a wide range of opponents. When they defeat opponents much weaker than them, contests are short. Therefore, contests with low RHP winners tend to be longer than contests with high RHP winners.	No correlation: The absolute RHP of two equally matched competitors doesn't matter; the RHP difference does. As long as the two competitors are RHP-matched, contests will be long regardless of whether they are formidable or weak.

401 **Results**402 *Weapon performance*

403 Snapping shrimp weapon performance increased as claw mass increased. As predicted,
 404 larger claws produced lower average angular velocities, longer lasting cavitation bubbles, and
 405 higher sound pressure levels (Figs 2 — 4). Furthermore, the pressure generated by a snap
 406 increased supralinearly with carapace length (Fig. 5). Log-log relationships between pressure
 407 and carapace length had a scaling exponent of 3.212 for females (95% confidence interval
 408 [2.160 – 4.263]) and 5.536 for males (95% confidence interval [4.370 – 6.702]).

409


410

411 **Figure 2:** Larger individuals (a, b) had lower average angular velocities than smaller individuals
 412 (c, d)). Two lines were traced before claw closure (a, c) and after claw closure (b, d). The yellow
 413 line tracks the dactyl tip and the dactyl hinge, whereas the blue line tracks the propodus tip and
 414 the propodus joint. The change in angle between these two lines was divided by the duration of
 415 claw closure to calculate average angular velocity. For these two exemplars, the small individual
 416 had an average angular velocity two times greater than the large individual.

417

418

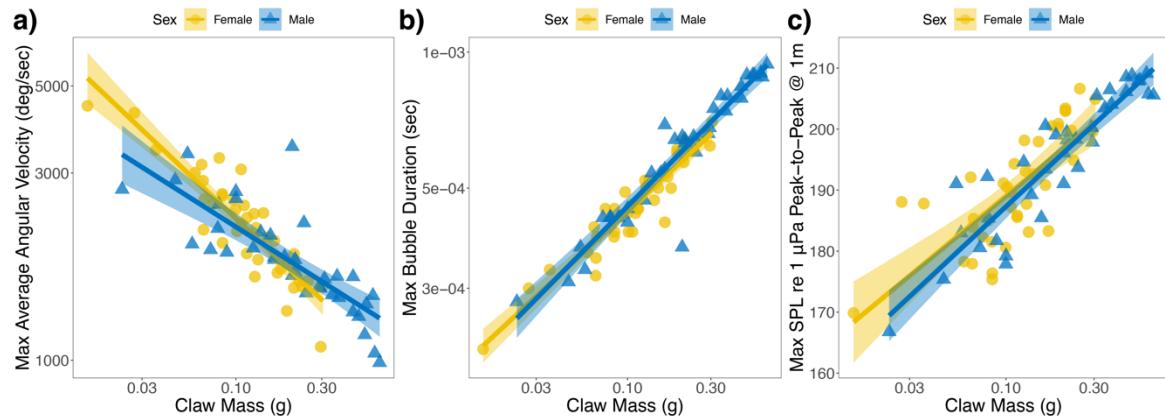
419

420

421

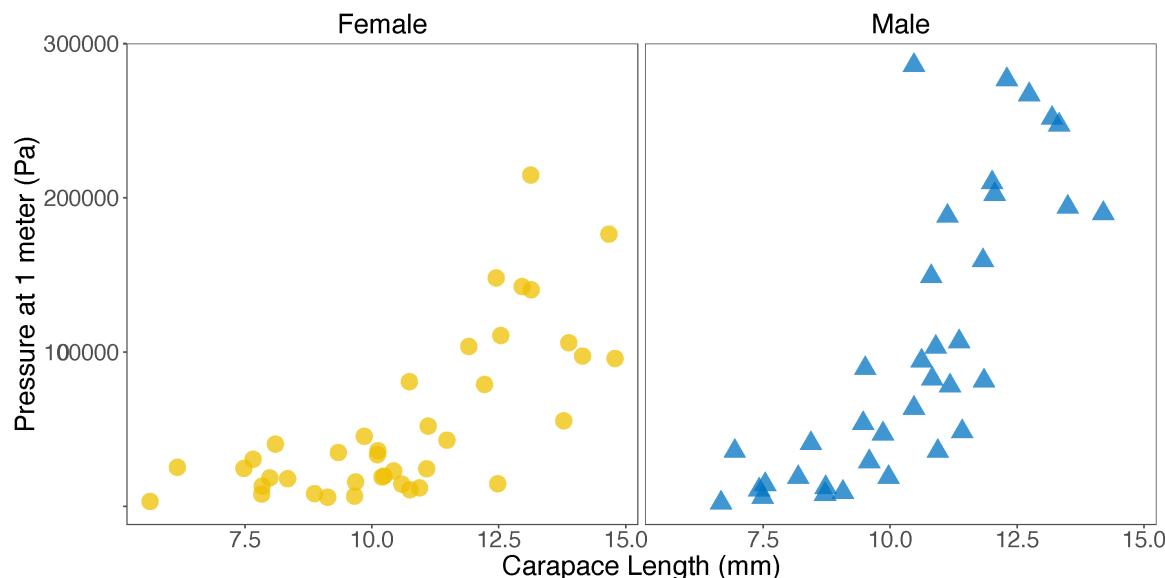
422 **Figure 3:** Large individuals take longer to fully shut their claws, generate longer lasting
423 cavitation bubbles, and produce greater pressures than small individuals. Representative stills
424 from high speed videos and audio recordings for a small and large individual. Frames that
425 encompass the cavitation bubble duration are marked with vertical lines to the right of high
426 speed video stills. Peak-to-peak sound pressure is marked with horizontal lines below the
427 pressure trace. Inset pressure trace shows the small individual's pressure trace with a zoomed-in
428 y-axis to better note the pressure scale. Arrows mark the initial collapse of the cavitation bubble
429 and the corresponding time point in the pressure trace. Black points on the pressure trace mark
430 the maximum and minimum sound pressures produced during initial bubble collapse that were
431 used to calculate peak-to-peak sound pressure levels. In these two examples, the large shrimp
432 produced a peak-to-peak pressure of 103.4 kPa, whereas the small snapping shrimp produced a
433 peak-to-peak pressure at 9.8 kPa — 10.5 times lower than the pressure produced by the large
434 individual. Reported pressures are received levels from the hydrophone 9 cm from the shrimp.

435

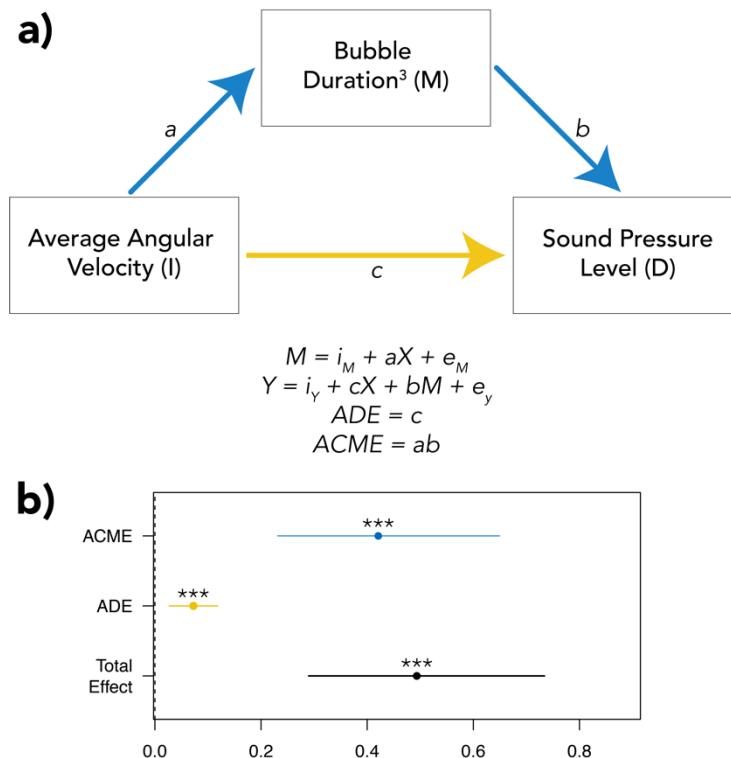

436 Within individuals, greater angular velocities were associated with greater sound
437 pressure levels, and this effect was mediated predominantly through producing longer-lasting
438 cavitation bubbles (Fig. 6). The average causally mediated effect of the bubble duration
439 accounted for 88.8% of the total effect (average causal mediation effect = 0.4889; total effect =
440 0.5500).

441 Across a series of 10 snaps, as snapping shrimp produced more snaps, they generated
442 lower average angular velocities, smaller cavitation bubbles and lower sound pressure levels
443 (range of ΔAIC after removing snap number as predictor = 17 – 62.1; likelihood-ratio test $p <$
444 0.005 for all three metrics; see Tables S7 and S8). By calculating evidence ratios between full
445 and reduced models, we found that the empirical support for the full model was 5.40×10^5 times
446 that of the reduced model for average angular velocity, 9.79×10^{17} times that of the reduced
447 model for bubble duration, and 1.08×10^9 that of the reduced model for sound pressure level.
448 This suggests that on average, individuals produce snaps with lower average angular velocity,
449 lower bubble duration, and lower sound pressure level as they produce more snaps. Contrary

450 to our predictions, there was no relationship between random slopes and claw mass for
451 \log_{10} (average angular velocity), \log_{10} (bubble duration), or sound pressure level (F-test $p > 0.05$),
452 suggesting that there was no relationship between size and endurance as measured here.


453

454


456 **Figure 4:** Claw mass is a) negatively correlated with maximum average angular velocity of the
457 dactyl during a snap, b) positively correlated with maximum bubble duration, c) positively
458 correlated with maximum sound pressure level. All x-axes are shown on log scales. Maximum
459 average angular velocity (a) and maximum bubble duration (b) y -axes are on log scales, but
460 maximum sound pressure level (c) is not because the unit (dB re 1 μ Pa) is already a logarithmic
461 scale. $n = 76$ individuals for each regression.

462

464 **Figure 5:** Scaling of sound pressure with carapace length is non-linear. Carapace length is a
 465 known proxy for resource holding potential (RHP) (Dinh et al., 2020). These sound pressure data
 466 are the same as shown in Figure 4c, except that they have been transformed to Pascals. In
 467 contrast to the non-linear relationship shown here, when these data are log-transformed, they
 468 indicate a scaling exponent of 3.212 (95% confidence interval [2.160 – 4.263]) for females and
 469 5.536 (95% confidence interval [4.370 – 6.702]) for males. $n = 40$ for females and $n = 36$ for
 470 males.

471

472

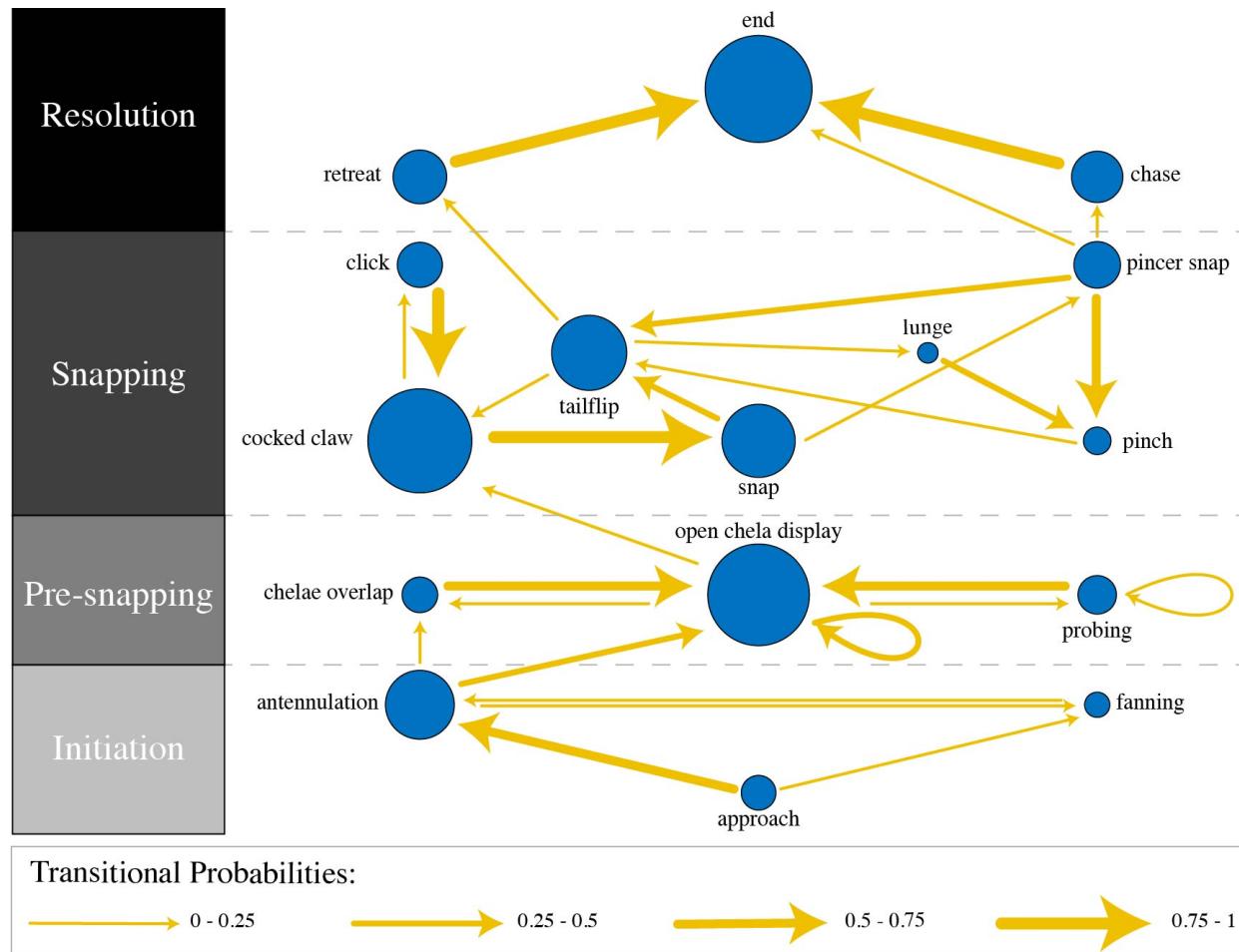
473 **Figure 6:** Within individuals, greater average angular velocity of the dactyl during the snap was
 474 associated with greater sound pressure, and this effect was primarily mediated through
 475 increased bubble duration. a) We tested how average angular velocity influenced sound
 476 pressure level both directly and through a mediated effect of bubble duration³. b) The averaged
 477 cumulative mediated effect (ACME) was 88% of the total effect, whereas the averaged direct
 478 effect (ADE) was only 12% of the total effect. Points represent mean estimates, and bars
 479 represent 95% confidence intervals. *** $p < 0.0005$.

480

481

482 *Assessment strategies*

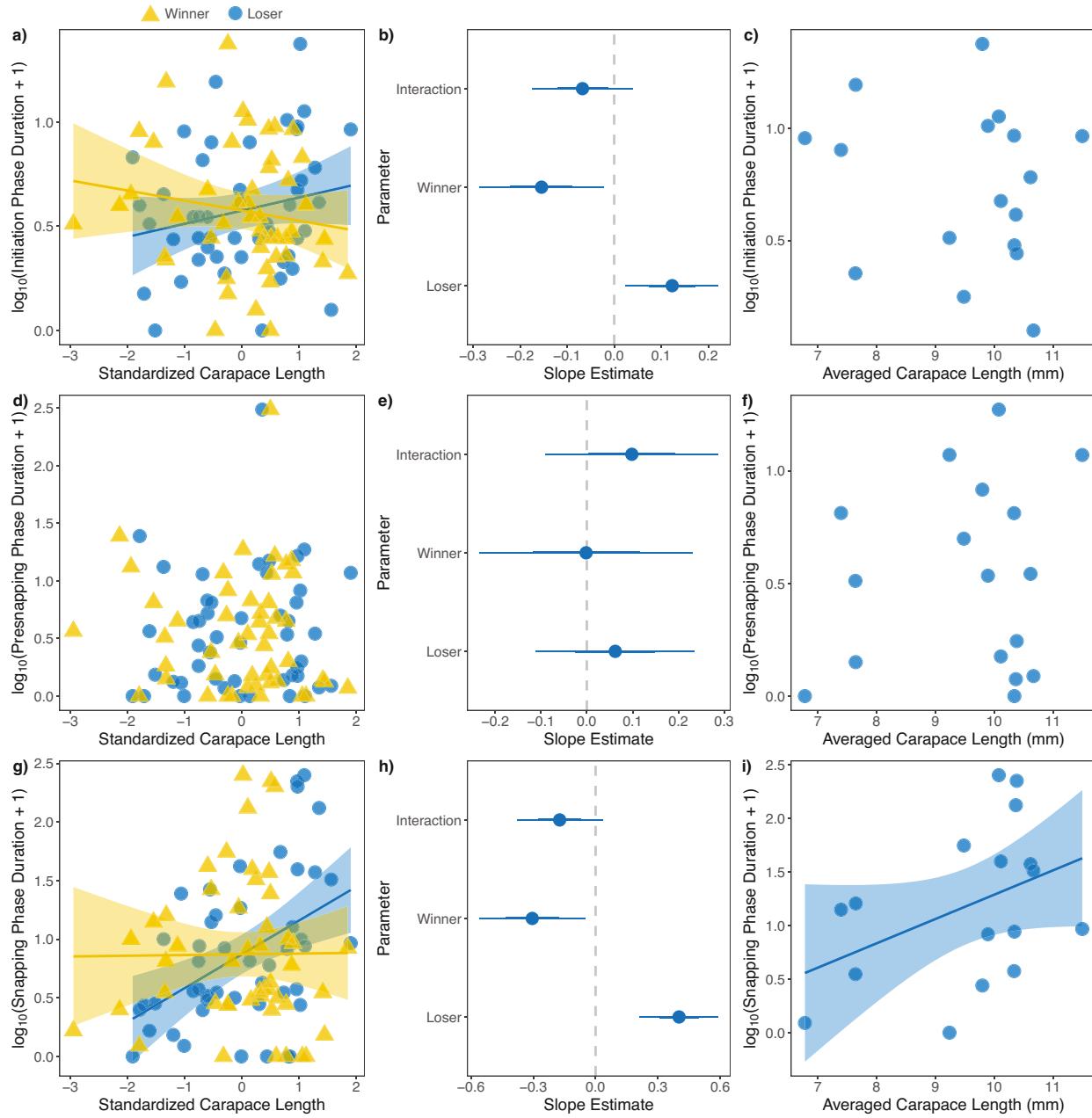
483 Snapping shrimp contests progressed through escalating phases, and de-escalation was
484 uncommon (Fig. 7). This is consistent with mutual assessment or a switching assessment
485 strategy.


486 For both the initiation and snapping phases, winner carapace length was negatively
487 correlated with phase duration, and loser carapace length was positively with phase duration (t-
488 test, $p < 0.05$; see Tables S2 and S4). The pre-snapping phase regression was highly zero-
489 inflated and difficult to interpret. We therefore refrain from presenting further analyses of this
490 phase.

491 The same trends arose in information AIC model analysis. In both the initiation and
492 snapping phases, a model containing winner carapace length and loser carapace length was the
493 most supported model. In the snapping phase, the full model with winner carapace length,
494 loser carapace length, and their interaction was the best-fitting model, and in the initiation
495 phase, the model with winner carapace length and loser carapace length without the
496 interaction was the best-fitting model. In both cases, the slope for loser carapace length was
497 positive and the slope for winner carapace length was negative (Fig. 8). This is consistent with
498 cumulative assessment or mutual assessment, but it is not consistent with pure-self
499 assessment. In both the initiation phase and snapping phase, adding sex and any interaction
500 terms increased model AIC, suggesting no sex difference (ΔAIC for initiation phase range: 2.68 –
501 8.24; ΔAIC for snapping phase range: 1.09 – 9.67). AIC importance for each predictor is
502 presented in Tables S2 – S5.

503 To differentiate between mutual assessment and cumulative assessment, we
504 considered only size-matched contests and tested correlations between the phase durations
505 and the averaged carapace lengths of the contestants. The initiation phase durations and pre-
506 snapping phase durations were not correlated with the averaged carapace length of
507 contestants (Fig. 8). This is consistent with mutual assessment. However, the snapping phase
508 durations were positively correlated with the averaged carapace length of contestants,
509 consistent with cumulative assessment (F-test, $F_{1,16} = 5.402$, $p = 0.03$, $R^2 = 0.2524$) (Fig. 4).

510 Adding sex and its interaction with averaged carapace length to the model increased AIC,
511 suggesting no sex difference. Taken together, snapping shrimp switch assessment strategies
512 from mutual assessment during the initiation and pre-snapping phases to cumulative
513 assessment during the snapping phase.


514

515

516 **Figure 7: Contests escalated through phases, and de-escalation was uncommon. Circles**
517 **represent contest behaviors, and the diameter of the circle is proportional to the frequency that**
518 **the behavior was used such that larger circles represent behaviors more commonly used. Arrows**
519 **represent behavioral transitions that occur more often than predicted if transitions were**
520 **random, and arrow width represents transitional probabilities.**

521

522

523 **Figure 8: Assessment type determination for the initiation phase (a-c), pre-snapping phase (d-f),**
 524 **and snapping phase durations (g-i). In randomly matched contests, (a, d, g), the b) initiation**
 525 **phase duration and h) snapping phase durations were negatively correlated with winner**
 526 **carapace length and positively correlated with loser carapace length. No trends were evident in**
 527 **the pre-snapping phase. In size-matched contests, the averaged carapace length of contestants**
 528 **was not correlated with c) initiation and f) pre-snapping phase duration but i) positively**
 529 **correlated with snapping phase duration (F-test, $p = 0.03$). These results suggest that snapping**

530 *shrimp use mutual assessment in the initiation and pre-snapping phase but switch to cumulative*
531 *assessment in the snapping phase. In the middle column, points show slope estimates, thick*
532 *lines show the estimate ± 1 standard error, thin lines show the estimate ± 2 standard errors.*
533 *Note that panels a, d, and g show single linear regressions between phase duration and either*
534 *winner carapace length and loser carapace length, not the slopes calculated in the multiple*
535 *regression used to determine contest assessment type (b, e, h).*

536

537 Discussion

538 The correlation between RHP and performance can mediate assessment in animal
539 contests. For example, performing behaviors with high maximal performance can signal RHP in
540 mutual assessment or impose greater damage in cumulative assessment. Furthermore, in pure
541 self assessment and cumulative assessment, individuals with greater endurance can persist
542 longer in a contest. We determined assessment strategies and measured weapon performance
543 of a high-acceleration cavitation-inducing snapping behavior in the snapping shrimp. Snapping
544 shrimp switch assessment strategies from mutual assessment in the initiation and pre-snapping
545 phases to cumulative assessment during the snapping phase. This switching assessment
546 strategy is identical to another species of snapping shrimp, *Alpheus angulosus* (Dinh et al.,
547 2020). Maximal performance of snaps scaled positively with carapace length — a convenient
548 proxy for RHP — but endurance did not. In cumulative assessment, performing snaps with
549 greater maximal performance could increase offensive capacity by imposing greater pressure
550 on contest opponents. This suggests that in snapping shrimp, the mechanism of cumulative
551 assessment likely derives at least partially from positive scaling of offensive capacity. By
552 contrast, our results are not consistent with cumulative assessment mediated by scaling of
553 endurance. However, because our metric for endurance may not have been ecologically
554 germane, we cannot reject the possibility entirely.

555 Between individuals, the maximal cavitation bubble duration and sound pressure level
556 increased with claw mass (Fig. 4). By contrast, maximum average angular velocity decreased
557 with claw mass (Fig. 4a). Although seemingly counterintuitive, this matches expectations for

558 spring-actuated systems and comparative analyses of spring-actuated movements (Harrison et
559 al., 2021; Ilton et al., 2018; Longo et al., 2019; McHenry et al., 2016).

560 For any given individual, producing snaps with greater average angular velocity led to
561 increased pressure, and this effect was mediated primarily through increasing cavitation bubble
562 duration. Across a series of 10 snaps, individuals produced slower velocities, briefer cavitation
563 bubbles, and lower sound pressure levels. Surprisingly, however, endurance as quantified as
564 the slopes of attrition did not scale with carapace length or claw mass. Because shrimp with
565 larger carapaces tend to win contests, our results are not consistent with cumulative
566 assessment driven by endurance.

567 It is entirely plausible that our quantification of endurance is not the most relevant
568 measure of endurance for snapping shrimp. We measured 10 snaps in our biomechanical
569 analysis, but in our sample of contests, individuals rarely snapped 10 times (mean \pm SD = 2.675
570 \pm 2.2117; range = 0 – 12). Furthermore, snapping shrimp typically snap in quick succession,
571 whereas in our measurements, we waited 1-2 minutes between snaps to save videos files. A
572 more ecologically relevant measure of endurance would be the attrition of several snaps in
573 quick succession, but limitations in our recording system precluded this experimental design. In
574 future studies, measuring the sound pressure level of snapping shrimp that are directly
575 competing with a conspecific could better inform whether endurance in a naturalistic context
576 could be correlated with RHP.

577 Interestingly, in another crustacean that uses latch-mediated spring-actuated strikes,
578 the mantis shrimp (*Neogonodactylus oerstedi*), strikes did not decrease in peak force after
579 repeated use (Franklin et al., 2019). Mantis shrimp contests are strikingly similar to snapping
580 shrimp contests in that both sexes compete in contests, they progress through escalating
581 phases, and in escalated contests, strikes are exchanged in sparring bouts (Green and Patek,
582 2018). However, in mantis shrimp, sparring bouts are used in mutual assessment. One
583 purported benefit of mutual assessment compared to self assessment and cumulative
584 assessment is that contestants need not reach a threshold of costs before forfeiting a contest.
585 This could mean that mantis shrimp using mutual assessment do not strike until exhaustion,
586 whereas snapping shrimp using cumulative assessment do.

587 In addition to maximal offensive capacity and endurance, as measured in terms of
588 performance, cumulative assessment contests are also influenced by damage endurance,
589 defined as the amount of damage an individual can endure (Palaoro and Briffa, 2017).
590 Thickening a defensive exoskeleton could increase damage endurance. For example, mantis
591 shrimp exchange strikes to the telson in ritualized fighting. Large mantis shrimp have thicker
592 telsons, dissipate more energy, and can withstand greater forces than small mantis shrimp
593 (Taylor and Patek, 2010). In snapping shrimp, the exoskeleton of the weapon scales with
594 positive allometry (Dinh, 2022). Previous work has suggested that snapping shrimp shield their
595 body from incoming snaps using their snapping claw, so positive allometry of claw exoskeleton
596 could reflect scaling of defensive capacity (Herberholz and Schmitz, 1998).

597 Additionally, snapping shrimp have orbital hoods that protect their eyes from
598 barotraumatic damage from cavitation bubbles (Anker et al., 2006; Kingston et al., 2021, 2022).
599 Without these protective structures, snapping shrimp suffer severe neurotrauma from snaps,
600 losing sense of balance and direction (Kingston et al., 2022). Not only does a snapping shrimp's
601 hood protect it from incoming fire — but it also dampens shockwaves returning from its own
602 snaps. Because larger individuals produce greater pressures, they might also require more
603 efficient shock dissipation to reduce the risk of injuring themselves. Future studies should
604 therefore test how the shock dissipation of orbital hoods scales to protect the snapping shrimp
605 from self-imposed friendly fire and incoming enemy snaps.

606 Finally, in addition to morphological defenses, snapping shrimp defend themselves by
607 evading cavitation bubbles. They tailflip immediately after snapping to create distance prior to
608 their retaliating opponent's snaps (Fig. 7). In crayfish, larger individuals can perform faster
609 tailflips (Hunyadi et al., 2020). If snapping shrimp tailflip kinematics also scales positively, then
610 higher RHP individuals might be better equipped to evade incoming cavitation bubbles than
611 smaller ones.

612 In addition to elucidating mechanisms of assessment, functional scaling studies of
613 contest behavior can refine theoretical models. The theoretical contest models used to
614 generate empirical predictions about assessment types often assume linear scaling of RHP-
615 associated traits. However, non-linear scaling can alter or even upend the predictions that

616 models make (Palaoro and Briffa, 2017). We demonstrated that maximum offensive capacity,
617 as measured by the pressure produced by snaps, increases supralinearly with carapace length
618 — a known proxy for RHP (Fig. 5). This supralinear trendline is likely commonplace in animal
619 contests because offensive weapons often scale with positive allometry (Eberhard et al., 2018).
620 By determining how RHP-related traits scale, we can accurately parameterize the assumptions
621 of contest models and generate empirically grounded predictions for future studies.

622 Although pressure scaled supralinearly with size, it is unclear how supralinear scaling of
623 pressure is sensed in snapping shrimp and in marine invertebrates more broadly. The ability for
624 sensory systems to discriminate between two stimuli often depends on their proportional
625 difference rather than their absolute difference (i.e. Weber's law, reviewed in Akre and
626 Johnsen, 2014). This means that high-magnitude stimuli require greater absolute differences in
627 magnitude to be distinguishable. However, most studies of proportional processing focus on
628 humans or other vertebrates which have entirely different sensory architecture and
629 environments compared to marine invertebrates (Akre and Johnsen, 2014). For snapping
630 shrimp, the relevant stimulus of a snap during contests could be water flow that deflects tactile
631 mechanosensory surface hairs (Mellon, 1963). However, there has not been any research on
632 the proportional processing of flow information. Additionally, snaps could be detected through
633 pressure detectors in the cuticle (Laverack, 1962). In humans, pressure-based touch is sensed
634 proportionally, but again, there is no comparative research in invertebrates (Akre and Johnsen,
635 2014; Weber, 1978).

636 Although snapping shrimp do not signal using the sound of snaps during contests, they
637 may do so during mate choice. Female snapping shrimp fire snaps during pairing interactions
638 with males that are directed away from the males. It's possible that these snaps are acoustic
639 signals (Hughes et al., 2014). In insects, sound pressure is processed proportionally
640 (Wyettenbach and Farris, 2004). However, snapping shrimp and underwater crustaceans detect
641 sound as acoustic particle motion, not sound pressure (Dinh and Radford, 2021). In the acoustic
642 near field, within the range of snapping shrimp contests and courtship, acoustic particle motion
643 dominates acoustic sound pressure (Larsen and Radford, 2018). The supralinear scaling of snap
644 pressure could therefore be amplified in the particle motion regime. Still, it is not clear if

645 snapping shrimp discriminate acoustic particle motion proportionally. We encourage future
646 work to move beyond sensory detection thresholds and into sensory discrimination thresholds,
647 choosing measurement devices that carefully consider the sensory modality relevant to the
648 animals in their behavioral context (e.g., flow versus pressure) to better elucidate the role of
649 non-linear scaling of performance during contests and signaling.

650 The scaling of behaviors is essential to assessment, contests, and sexual selection. For
651 example, during mate choice, signal receivers are often incentivized to mate with large, high-
652 quality mates. For female snapping shrimp who snap during pairing, for example, the snap is
653 probably a signal of quality rather than injurious armament. Nonetheless, higher RHP females
654 would still benefit from producing longer-lasting cavitation bubbles and greater pressures if
655 potential mates tune into these metrics to discriminate between suitors. Similarly, during
656 mutual assessment contests, signal receivers are incentivized to avoid fighting formidable
657 opponents. Signal receivers might be able to assess these RHP differences based on signal
658 scaling. Even in self assessment and cumulative assessment contests, offensive behaviors that
659 impose costs on opponents should scale such that high-RHP individuals impose greater costs
660 than low-RHP ones. Moreover, an individual's ability to endure costs could scale such that high-
661 RHP individuals are better able to endure costs than low-RHP ones.

662 We showed that in snapping shrimp contests, snapping bouts operate under cumulative
663 assessment, during which individuals are not signaling but using high-pressure snaps as
664 armament. The decision to leave a contest is based on self-imposed costs and injurious
665 opponent-imposed costs. Maximum offensive capacity, as measured by the cavitation bubble
666 duration and the pressure produced upon bubble collapse, scaled positively and supralinearly
667 with claw mass. However, endurance, a proxy for self-imposed energetic costs, did not scale as
668 predicted. Our findings are not consistent with endurance-mediated cumulative assessment
669 contests, but importantly, our experimental design didn't fully replicate how these snapping
670 shrimp rapidly fire snaps during contests. Taken together, the behavioral and biomechanical
671 analyses suggest that cumulative assessment in this species is driven at least partially by scaling
672 of offensive capacity, but we could not rule out the role of endurance entirely.

673 Functional studies of contest behaviors not only inform the mechanisms of assessment
674 in a single taxon, but they can also refine the general predictions made by theoretical contest
675 models. Non-linear scaling of offensive capacity generates nonlinear relationships between
676 body size and contest duration — the key predictive metric of contest assessment. These
677 predictive relationships depend on the scaling exponents of RHP-associated traits (Palaoro and
678 Briffa, 2017). We showed here that maximum pressure increases supralinearly with carapace
679 length. By integrating this finding with future work identifying the scaling relationship of
680 defensive capacity, we can test and refine the assumptions made by theoretical models to
681 improve the empirical predictions made by different assessment strategies.

682

683 **References**

684 Agler, R., and De Boeck, P. (2017). On the Interpretation and Use of Mediation: Multiple
685 Perspectives on Mediation Analysis. *Frontiers in Psychology*, 8:1984
686 <https://doi.org/10.3389/fpsyg.2017.01984>

687 Akre, K.L., and Johnsen, S. (2014). Psychophysics and the evolution of behavior. *Trends in
688 Ecology and Evolution*, 29, 291–300. <https://doi.org/10.1016/j.tree.2014.03.007>

689 Andersson, M. (1994). *Sexual selection*. Princeton University Press

690 Anker, A., Ahyong, S.T., Noel, P.Y., and Palmer, A.R. (2006). Morphological phylogeny of alpheid
691 shrimps: parallel preadaptation and the origin of a key morphological innovation, the snapping
692 claw. *Evolution*, 60, 2507–2528. <https://doi.org/10.1111/j.0014-3820.2006.tb01886.x>

693 Arnold, S.J. (1983). Morphology, performance and fitness. *American Zoologist*, 23, 347–361.
694 <https://doi.org/10.1093/icb/23.2.347>

695 Arnott, G., and Elwood, R.W. (2009). Assessment of fighting ability in animal contests. *Animal
696 Behaviour*, 77, 991–1004. <https://doi.org/10.1016/j.anbehav.2009.02.010>

697 Au, W.W.L., and Banks, K. (1998). The acoustics of the snapping shrimp *Synalpheus parneomeris*
698 in Kaneohe Bay. *Journal of the Acoustical Society of America*, 103, 41–47.
699 <https://doi.org/10.1121/1.423234>

700 Ballentine, B. (2009). The ability to perform physically challenging songs predicts age and size in
701 male swamp sparrows, *Melospiza georgiana*. *Animal Behaviour*, 77, 973–978.
702 <https://doi.org/10.1016/j.anbehav.2008.12.027>

703 Ballentine, B., Hyman, J., and Nowicki, S. (2004). Vocal performance influences female response
704 to male bird song: an experimental test. *Behavioral Ecology*, 15, 163–168.
705 <https://doi.org/10.1093/beheco/arg090>

706 Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., Dai, B.,
707 Scheipl, F., Grothendieck, G., Green, P., et al. (2022). lme4: Linear mixed-effects models using
708 “Eigen” and S4

709 Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
710 under dependency. *The Annals of Statistics*, 29, 1165–1188.
711 <https://doi.org/10.1214/aos/1013699998>

712 Brandt, Y. (2003). Lizard threat display handicaps endurance. *Proceedings of the Royal Society B*,
713 270, 1061–1068. <https://doi.org/10.1098/rspb.2003.2343>

714 Brennen, C.E. (1995). Cavitation and bubble dynamics. Oxford University Press

715 Briffa, M., and Elwood, R.W. (2000). Cumulative or sequential assessment during hermit crab
716 shell fights: effects of oxygen on decision rules. *Proceedings of the Royal Society B*, 267, 2445–
717 2452. <https://doi.org/10.1098/rspb.2000.1304>

718 Briffa, M., and Elwood, R.W. (2001). Decision rules, energy metabolism and vigour of hermit-
719 crab fights. *Proceedings of the Royal Society B*, 268, 1841–1848.
720 <https://doi.org/10.1098/rspb.2001.1752>

721 Briffa, M., and Elwood, R.W. (2002). Power of shell-rapping signals influences physiological
722 costs and subsequent decisions during hermit crab fights. *Proceedings of the Royal Society B*,
723 269, 2331–2336. <https://doi.org/10.1098/rspb.2002.2158>

724 Briffa, M., and Hardy, I.C.W. (2013). Introduction to animal contests. In I.C.W. Hardy, and M.
725 Briffa (Eds.), *Animal Contests*, (pp. 1–4). Cambridge University Press

726 Byers, J., Hebets, E., and Podos, J. (2010). Female mate choice based upon male motor
727 performance. *Animal Behaviour*, 79, 771–778. <https://doi.org/10.1016/j.anbehav.2010.01.009>

728 Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network research.
729 *Complex Systems*, 1695.

730 Dennenmoser, S., and Christy, J.H. (2013). The design of a beautiful weapon: compensation for
731 opposing sexual selection on a trait with two functions. *Evolution*, 67, 1181–1188.
732 <https://doi.org/10.1111/evo.12018>

733 Dinh, J.P. (2022). Large and exaggerated sexually selected weapons comprise high proportions
734 of metabolically inexpensive exoskeleton. *Biology Letters*, 18, 20210550.
735 <https://doi.org/10.1098/rsbl.2021.0550>

736

737 Dinh, Jason; Patek, S.N. (2022). Weapon performance and contest assessment strategies of the
738 cavitating snaps in snapping shrimp, Dryad, Dataset, <https://doi.org/10.5061/dryad.qz612jmjx>

739

740 Dinh, J.P., and Radford, C. (2021). Acoustic particle motion detection in the snapping shrimp
741 (*Alpheus richardsoni*). *Journal of Comparative Physiology A*, 207, 641–655.
742 <https://doi.org/10.1007/s00359-021-01503-4>

743 Dinh, J.P., Azza, J., and Patek, S.N. (2020). Winner effects and switching assessment strategies
744 facilitate fast and frugal decisions in territorial contests. *Animal Behaviour*, 170, 189–205.
745 <https://doi.org/10.1016/j.anbehav.2020.09.012>

746 Dougherty, L.R. (2021). Meta-analysis shows the evidence for context-dependent mating
747 behaviour is inconsistent or weak across animals. *Ecology Letters*, 24, 862–875.
748 <https://doi.org/10.1111/ele.13679>

749 DuBois, A.L., Nowicki, S., and Searcy, W.A. (2011). Discrimination of vocal performance by male
750 swamp sparrows. *Behavioral Ecology and Sociobiology*, 65, 717–726.
751 <https://doi.org/10.1007/s00265-010-1073-2>

752 Eberhard, W.G., Rodríguez, R.L., Huber, B.A., Speck, B., Miller, H., Buzatto, B.A., and Machado,
753 G. (2018). Sexual selection and static allometry: the importance of function. *The Quarterly
754 Review of Biology*, 93, 207–250. <https://doi.org/10.1086/699410>

755 Elwood, R.W., and Arnott, G. (2012). Understanding how animals fight with Lloyd Morgan's
756 canon. *Animal Behaviour*, 84, 1095–1102. <https://doi.org/10.1016/j.anbehav.2012.08.035>

757 Enquist, M., Leimar, O., Ljungberg, T., Mallner, Y., and Segerdahl, N. (1990). A test of the
758 sequential assessment game: fighting in the cichlid fish *Nannacara anomala*. *Animal Behaviour*,
759 40, 1–14. [https://doi.org/10.1016/S0003-3472\(05\)80660-8](https://doi.org/10.1016/S0003-3472(05)80660-8)

760 Franklin, A.M., Donatelli, C.M., Culligan, C.R., and Tytell, E.D. (2019). Meral-spot reflectance
761 signals weapon performance in the mantis shrimp *Neogonodactylus oerstedi* (Stomatopoda).
762 *The Biological Bulletin*, 236, 43–54. <https://doi.org/10.1086/700836>

763 Friard, O., and Gamba, M. (2016). BORIS: a free, versatile open-source event-logging software
764 for video/audio coding and live observations. *Methods in Ecology and Evolution*, 7, 1325–1330.
765 <https://doi.org/10.1111/2041-210X.12584>

766 Glazier, D.S. (2005). Beyond the '3/4-power law': variation in the intra- and interspecific scaling
767 of metabolic rate in animals. *Biological Reviews*, 80, 611–662.
768 <https://doi.org/10.1017/S1464793105006834>

769 Glazier, D.S. (2009). Activity affects intraspecific body-size scaling of metabolic rate in
770 ectothermic animals. *Journal of Comparative Physiology B*, 179, 821–828.
771 <https://doi.org/10.1007/s00360-009-0363-3>

772 Green, P.A., and Patek, S.N. (2015). Contests with deadly weapons: telson sparring in mantis
773 shrimp (Stomatopoda). *Biology Letters*, 11, 20150558. <https://doi.org/10.1098/rsbl.2015.0558>

774 Green, P.A., and Patek, S.N. (2018). Mutual assessment during ritualized fighting in mantis
775 shrimp (Stomatopoda). *Proceedings of the Royal Society B*, 285, 20172542.
776 <https://doi.org/10.1098/rspb.2017.2542>

777 Green, P.A., McHenry, M.J., and Rico-Guevara, A. (2021). Mechanoethology: the physical
778 mechanisms of behavior. *Integrative & Comparative Biology*,
779 <https://doi.org/10.1093/icb/icab133>

780 Harrison, J.S., Porter, M.L., McHenry, M.J., Robinson, H.E., and Patek, S.N. (2021). Scaling and
781 development of elastic mechanisms: the tiny strikes of larval mantis shrimp. *Journal of*
782 *Experimental Biology*, 224, jeb235465. <https://doi.org/10.1242/jeb.235465>

783 Herberholz, J., and Schmitz, B. (1998). Role of Mechanosensory Stimuli in Intraspecific Agonistic
784 Encounters of the Snapping Shrimp (*Alpheus heterochaelis*). *The Biological Bulletin*, 195, 156–
785 167. <https://doi.org/10.2307/1542823>

786 Hughes, M. (2000). Deception with honest signals: signal residuals and signal function in
787 snapping shrimp. *Behavioral Ecology*, 11, 614–623. <https://doi.org/10.1093/beheco/11.6.614>

788 Hughes, M., Williamson, T., Hollowell, K., and Vickery, R. (2014). Sex and weapons: contrasting
789 sexual dimorphisms in weaponry and aggression in snapping shrimp. *Ethology* 120, 982–994.
790 <https://doi.org/10.1111/eth.12270>

791 Hunyadi, J., Currier, T., Modarres-Sadeghi, Y., Flammang, B.E., and Clotfelter, E.D. (2020).
792 Morphology, performance and fluid dynamics of the crayfish escape response. *Journal of*
793 *Experimental Biology*, 223. <https://doi.org/10.1242/jeb.219873>

794 Ilton, M., Bhamla, M.S., Ma, X., Cox, S.M., Fitchett, L.L., Kim, Y., Koh, J., Krishnamurthy, D., Kuo,
795 C.-Y., Temel, F.Z., et al. (2018). The principles of cascading power limits in small, fast biological
796 and engineered systems. *Science*, 360. <https://doi.org/10.1126/science.aa01082>

797 Jakobsen, L., Christensen-Dalsgaard, J., Juhl, P.M., and Elemans, C.P.H. (2021). How loud can
798 you go? Physical and physiological constraints to producing high sound pressures in animal
799 vocalizations. *Frontiers in Ecology and Evolution*, 9. <https://doi.org/10.3389/fevo.2021.657254>

800 Kagaya, K., and Patek, S.N. (2016). Feed-forward motor control of ultrafast, ballistic
801 movements. *Journal of Experimental Biology*, 219, 319–333.
802 <https://doi.org/10.1242/jeb.130518>

803 Kilmer, J.T., and Rodríguez, R.L. (2017). Ordinary least squares regression is indicated for studies
804 of allometry. *Journal of Evolutionary Biology*, 30, 4–12. <https://doi.org/10.1111/jeb.12986>

805 Kingston, A.C.N., Chappell, D.R., Koch, L., Johnsen, S., and Speiser, D.I. (2021). The orbital hoods
806 of snapping shrimp have surface features that may represent tradeoffs between vision and
807 protection. *Arthropod Structure & Development*, 61, 101025.
808 <https://doi.org/10.1016/j.asd.2020.101025>

809 Kingston, A.C.N., Woodin, S.A., Wethey, D.S., and Speiser, D.I. (2022). Snapping shrimp have
810 helmets that protect their brains by dampening shock waves. *Current Biology*, 32, 3576–
811 3583.e3. <https://doi.org/10.1016/j.cub.2022.06.042>

812 Kotiaho, J.S., Alatalo, R.V., Mappes, J., Nielsen, M.G., Parri, S., and Rivero, A. (1998). Energetic
813 costs of size and sexual signalling in a wolf spider. *Proceedings of the Royal Society B*, 265, 2203.
814 <https://doi.org/10.1098/rspb.1998.0560>

815 Lailvaux, S.P., and Irschick, D.J. (2006). A functional perspective on sexual selection: insights and
816 future prospects. *Animal Behaviour*, 72, 263–273.
817 <https://doi.org/10.1016/j.anbehav.2006.02.003>

818 Larsen, O.N., and Radford, C. (2018). Acoustic conditions affecting sound communication in air
819 and underwater. In H. Slabbekoorn, R.J. Dooling, A.N. Popper, and R.R. Fay (eds.) *Effects of*
820 *Anthropogenic Noise on Animals* (pp. 109–144). Springer

821 Laverack, M.S. (1962). Responses of cuticular sense organs of the lobster, *Homarus vulgaris*
822 (crustacea)—II. Hair-fan organs as pressure receptors. *Comparative Biochemistry and*
823 *Physiology*, 6, 137–145. [https://doi.org/10.1016/0010-406X\(62\)90160-3](https://doi.org/10.1016/0010-406X(62)90160-3)

824 Levinton, J.S., and Allen, B.J. (2005). The paradox of the weakening combatant: trade-off
825 between closing force and gripping speed in a sexually selected combat structure. *Functional*
826 *Ecology*, 19, 159–165. <https://doi.org/10.1111/j.0269-8463.2005.00968.x>

827 Little, A.F.H. (2018) Introduction to mediation, moderation, and conditional process analysis: a
828 regression-based approach. The Guilford Press

829 Lohse, D., Schmitz, B., and Versluis, M. (2001). Snapping shrimp make flashing bubbles. *Nature*,
830 413, 477–478. <https://doi.org/10.1038/35097152>

831 Longo, S.J., Cox, S.M., Azizi, E., Ilton, M., Olberding, J.P., Pierre, R.S., and Patek, S.N. (2019).
832 Beyond power amplification: latch-mediated spring actuation is an emerging framework for the
833 study of diverse elastic systems. *Journal of Experimental Biology* 222.
834 <https://doi.org/10.1242/jeb.197889>

835 McCullough, E.L., Miller, C.W., and Emlen, D.J. (2016). Why sexually selected weapons are not
836 ornaments. *Trends in Ecology and Evolution*, 31, 742–751.
837 <https://doi.org/10.1016/j.tree.2016.07.004>

838 McHenry, M.J., Anderson, P.S.L., Van Wassenbergh, S., Matthews, D.G., Summers, A.P., and
839 Patek, S.N. (2016). The comparative hydrodynamics of rapid rotation by predatory appendages.
840 *Journal of Experimental Biology*, 219, 3399–3411. <https://doi.org/10.1242/jeb.140590>

841 McLain, D.K., Pratt, A.E., Logue, J., and Barke, R. (2019). The importance of strength and
842 stamina varies with ownership status in sand fiddler crab contests for breeding burrows.
843 *Behavioral Ecology and Sociobiology*, 73, 29. <https://doi.org/10.1007/s00265-019-2635-6>

844 Mellon, D., JR. (1963). Electrical responses from dually innervated tactile receptors on the
845 thorax of the crayfish. *Journal of Experimental Biology*, 40, 137–148.
846 <https://doi.org/10.1242/jeb.40.1.137>

847 Mesterton-Gibbons, M., Marden, J.H., and Dugatkin, L.A. (1996). On wars of attrition without
848 assessment. *Journal of Theoretical Biology*, 181, 65–83. <https://doi.org/10.1006/jtbi.1996.0115>

849 Mowles, S.L., Cotton, P.A., and Briffa, M. (2010). Whole-organism performance capacity
850 predicts resource-holding potential in the hermit crab *Pagurus bernhardus*. *Animal Behaviour*,
851 80, 277–282. <https://doi.org/10.1016/j.anbehav.2010.05.004>

852 Nolan, B.A., and Salmon, M. (1970). The behavior and ecology of snapping shrimp (Crustacea:
853 *Alpheus heterochelis* and *Alpheus normanni*). *Forma et Functio*, 2, 289–335. .

854 Palaoro, A.V., and Briffa, M. (2017). Weaponry and defenses in fighting animals: how allometry
855 can alter predictions from contest theory. *Behavioral Ecology*, 28, 328–336.
856 <https://doi.org/10.1093/beheco/arw163>

857 Patek, S.N., and Caldwell, R.L. (2005). Extreme impact and cavitation forces of a biological
858 hammer: strike forces of the peacock mantis shrimp *Odontodactylus scyllarus*. *Journal of
859 Experimental Biology*, 208, 3655–3664. <https://doi.org/10.1242/jeb.01831>

860 Payne, R.J.H. (1998). Gradually escalating fights and displays: the cumulative assessment model.
861 *Animal Behaviour*, 56, 651–662. <https://doi.org/10.1006/anbe.1998.0835>

862 Payne, R.J.H., and Pagel, M. (1996). Escalation and time costs in displays of endurance. *Journal
863 of Theoretical Biology*, 183, 185–193. <https://doi.org/10.1006/jtbi.1996.0212>

864 Pereira, A., Tracey, E., Cooney, P.C., Korey, C.A., and Hughes, M. (2014). Post-autotomy claw
865 regrowth and functional recovery in the snapping shrimp *Alpheus angulosus*. *Marine and
866 Freshwater Behaviour and Physiology*, 47, 147–159.
867 <https://doi.org/10.1080/10236244.2014.928460>

868 Pratt, A.E., McLain, D.K., and Lathrop, G.R. (2003). The assessment game in sand fiddler crab
869 contests for breeding burrows. *Animal Behaviour*, 65, 945–955.
870 <https://doi.org/10.1006/anbe.2003.2152>

871 Rahman, N., Govind, and Dunham (2002). Size-assortative pairing in the big-clawed snapping
872 shrimp, *Alpheus heterochaelis*. *Behaviour*, 139, 1443–1468.
873 <https://doi.org/10.1163/15685390260514717>

874 Rossi, T., Connell, S.D., and Nagelkerken, I. (2016). Silent oceans: ocean acidification
875 impoverishes natural soundscapes by altering sound production of the world's noisiest marine
876 invertebrate. *Proceedings of the Royal Society B*, 20153046.
877 <https://doi.org/10.1098/rspb.2015.3046>

878 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
879 Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-
880 image analysis. *Nature Methods*, 9, 676–682. <https://doi.org/10.1038/nmeth.2019>

881 Schmidt-Nielsen, K. (1984). Scaling, why is animal size so important? Cambridge University
882 Press.

883 Searcy, W.A., and Nowicki, S. (2005). The evolution of animal communication: reliability and
884 deception in signaling systems. Princeton University Press.

885 Taylor, J.R.A., and Patek, S.N. (2010). Ritualized fighting and biological armor: the impact
886 mechanics of the mantis shrimp's telson. *Journal of Experimental Biology*, 213, 3496–3504.
887 <https://doi.org/10.1242/jeb.047233>

888 Taylor, P.W., and Elwood, R.W. (2003). The mismeasure of animal contests. *Animal Behaviour*,
889 65, 1195–1202. <https://doi.org/10.1006/anbe.2003.2169>

890 Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for
891 causal mediation analysis.

892 Versluis, M., Schmitz, B., Heydt, A. von der, and Lohse, D. (2000). How snapping shrimp snap:
893 through cavitating bubbles. *Science* 289, 2114–2117.
894 <https://doi.org/10.1126/science.289.5487.2114>

895 Weber, E.H. (1978). The sense of touch. Academic Press for Experimental Psychology Society.

896 Wyttenbach, R.A., and Farris, H.E. (2004). Psychophysics in insect hearing. *Microscopy Research
897 & Technology*, 63, 375–387. <https://doi.org/10.1002/jemt.20054>

898

899 **SUPPORTING INFORMATION**

900 Additional supporting information may be found in the online version of this article

901 Figure S1 Sample size breakdown of high-speed videos

902 Figure S2 Correlations between total contest duration and contestant carapace length

- 903 Figure S3 Relative carapace length predicts contest outcome
- 904 Figure S4 No correlation between random slopes of snap attrition and carapace length
- 905 Table S1 Ethogram
- 906 Table S2 Summary table for initiation phase duration model
- 907 Table S3 Summary table for pre-snapping phase duration model
- 908 Table S4 Summary table for snapping phase duration model
- 909 Table S5 Summary table for total contest duration model
- 910 Table S6 Model summary tables for maximum weapon performance scaling relationships
- 911 Table S7 Model summary tables for endurance scaling relationships
- 912 Table S8 Likelihood ratio tests for endurance relationships