

1 **Tradeoffs Explain Scaling, Sex Differences, and Seasonal Oscillations in the Remarkable**
2 **Weapons of Snapping Shrimp (*Alpheus* spp.)**

3 Jason P. Dinh, S.N. Patek

4 Biology Department, Duke University

5
6 **Abstract**

7 Evolutionary theory suggests that individuals should express costly traits at a magnitude that
8 optimizes the cost-benefit difference for the trait-bearer. Trait expression varies across a species
9 because costs and benefits vary among individuals. For example, if large individuals pay lower
10 costs than small individuals, then larger individuals should reach optimal cost-benefit differences
11 at a greater magnitude of trait expression. Using the remarkable cavitation-shooting weapons
12 found in the big claws of male and female alpheid snapping shrimp, we test whether size- and
13 sex-dependent expenditures explain the scaling of weapon size relative to body size and why
14 males have larger proportional weapon size than females. We found that males and females from
15 three snapping shrimp species (*Alpheus heterochaelis*, *Alpheus angulosus*, and *Alpheus*
16 *estuariensis*) show patterns consistent with resource allocation tradeoffs between weapon and
17 abdomen size. For male *A. heterochaelis*, the species for which we had the greatest sample size
18 and statistical power, the smallest individuals showed the steepest tradeoff. Our extensive dataset
19 in *A. heterochaelis* also included data about pairing, breeding season, and egg clutch size.
20 Therefore, we could test for reproductive tradeoffs and benefits in this species. Female *A.*
21 *heterochaelis* exhibited additional tradeoffs between weapon size and egg count, average egg
22 volume, and total egg mass volume. For average egg volume, the smallest females exhibited the
23 steepest tradeoff relative to weapon size. Furthermore, in males but not females, large weapons
24 were positively correlated with the probability of being paired and the relative size of their pair
25 mate. In conclusion, we establish that size-dependent tradeoffs underlie reliable scaling
26 relationships of costly traits. Furthermore, we show that males and females differ in weapon
27 investment, suggesting that weapons are especially beneficial to males and especially
28 burdensome to females.

29

30

31

32 **Introduction**

33 Weapons, ornaments, and other secondary sexual traits often scale with the trait-bearer's
34 quality. Larger weapons can better deter or damage competitors, and more intense ornaments can
35 better attract mates. By first approximation, one might expect that all individuals should express
36 these traits to arbitrarily high magnitudes because greater expression yields fitness benefits.
37 However, fitness costs and physical limitations ensure that traits are expressed honestly instead
38 of arbitrarily (reviewed in Searcy & Nowicki, 2005). Despite decades of research, the costs that
39 maintain reliable scaling relationships remain hotly debated.

40 One hypothesis called the handicap principle suggests that sexual traits are costly, and
41 these costs ensure that trait expression is not arbitrary. Costly traits lower fitness by reducing
42 survival (Kotiaho et al., 1998; Møller & de Lope, 1994; Mappes et al., 1996) or reproduction
43 (Cavender et al., 2021; Joseph et al., 2018; Moczek & Nijhout, 2004; Somjee et al., 2018).
44 Individuals should therefore express traits at a level that maximizes their benefits relative to their
45 unit of cost (Grafen, 1990a, 1990b; Nur & Hasson, 1984; Zahavi, 1977). For example, the
46 handicap principle posits that sexually selected traits scale with quality because low-quality
47 individuals pay more for, or benefit less from, costly traits compared to high-quality individuals.
48 These differential costs set the optimal trait expression at a lower value for lower-quality
49 individuals compared to higher-quality ones (Grafen, 1990a, 1990b; Nur & Hasson, 1984;
50 Zahavi, 1977). Even though this is a widely accepted explanation for honest scaling of sexual
51 traits, empirical evidence is scarce (Kotiaho, 2001; Penn & Számadó, 2020).

52 In addition to scaling relationships, costly traits can also differ depending on sex and
53 season. For example, some secondary sexual traits are expressed in both sexes but at greater
54 magnitudes in males than females (Heuring & Hughes, 2019; Nolazco et al., 2022). Moreover,
55 costly traits might be expressed more intensely during the breeding season compared to the
56 nonbreeding season, such as the annual shedding and regeneration of deer antlers (Brockes et al.,
57 2004; Clements et al., 2010; Price et al., 2005). Snapping shrimp offer a particularly tractable
58 system with which to test these classic questions about scaling, sex, and seasonality in the
59 expression of costly traits.

60 Snapping shrimp live in size-assortative male-female pairs. Both males and females in
61 the pair defend territory, maintain shelter, and forage (Hughes et al., 2014; Mathews, 2002a).
62 Size-matched pairs form via intraspecific contests and intersexual mate choice, but the exact

63 dynamics of pair formation differ depending on the species (Heuring & Hughes, 2020; Rahman
64 et al., 2002, 2004). The eggs in a female's clutch are sired predominantly by the male in the size-
65 matched pair; in other words, extra-pair paternity is rare (Mathews, 2007). Furthermore, egg
66 clutch size is a function of female body length, while all reproductively active males can fertilize
67 even the most bountiful of egg clutches (Knowlton, 1980). Female snapping shrimp are only
68 reproductively receptive for several hours after each molt, which occurs once every 16 to 20 days
69 (Govind et al., 1986; Knowlton, 1980; Mathews, 2002b; Rahman et al., 2003). Meanwhile, males
70 are not limited to this molt-related breeding cycle. The estimated longevity for snapping shrimp
71 ranges from 13 to 16 months (Costa-Souza et al., 2018; Mossolin et al., 2006).

72 Individuals of both sexes bear one enlarged claw that they use as weapons during fights
73 with same-sex conspecifics (Nolan & Salmon, 1970). They assess weapons as visual signals
74 (Hughes, 1996, 2000a) and use them as armament to injure or damage opponents (Dinh et al.,
75 2020; Dinh & Patek, 2023; Kingston et al., 2022). Snapping shrimp use latch-mediated spring
76 actuation to produce powerful strikes (Kaji et al., 2018; Longo et al., 2019, 2023; Patek &
77 Longo, 2018). They cock their claws open and use muscles to load an elastic mechanism
78 comprised of flexing exoskeleton and stretching apodemes (Longo et al., 2023). They unlatch the
79 claw to quickly release elastic energy, driving the dactyl shut in as little time as 0.36
80 milliseconds (Dinh & Patek, 2023). Upon closure, a tooth-shaped protrusion in the dactyl inserts
81 into a cavity in the propodus, which generates a high-velocity water jet that vaporizes the trailing
82 region of water. This vapor bubble, known as a cavitation bubble, collapses and produces
83 pressures that are audible to the human ear as a "snap" (Kaji et al., 2018; Lohse et al., 2001;
84 Versluis et al., 2000). Snapping shrimp fire snaps at opponents during contests (Dinh et al., 2020;
85 Dinh & Patek, 2023; Nolan & Salmon, 1970). The pressure of the cavitation bubble collapse can
86 cause neurotrauma to the opponent, so snapping shrimp have evolved shock-absorbing helmets
87 called orbital hoods to dampen the blows (Kingston et al., 2022).

88 Individuals with larger weapons produce longer-lasting cavitation bubbles, greater
89 pressures, and have greater offensive capacity (Dinh & Patek, 2023). They also tend to win
90 contests (Dinh et al., 2020; Dinh & Patek, 2023). Yet, snapping shrimp do not grow weapons to
91 arbitrary sizes. Instead, they vary along three axes: 1) larger individuals have larger weapons, 2)
92 at any given body size, males have larger weapons than females, and 3) the sex difference
93 amplifies during the summer breeding season (Heuring & Hughes, 2019). Therefore, costs and

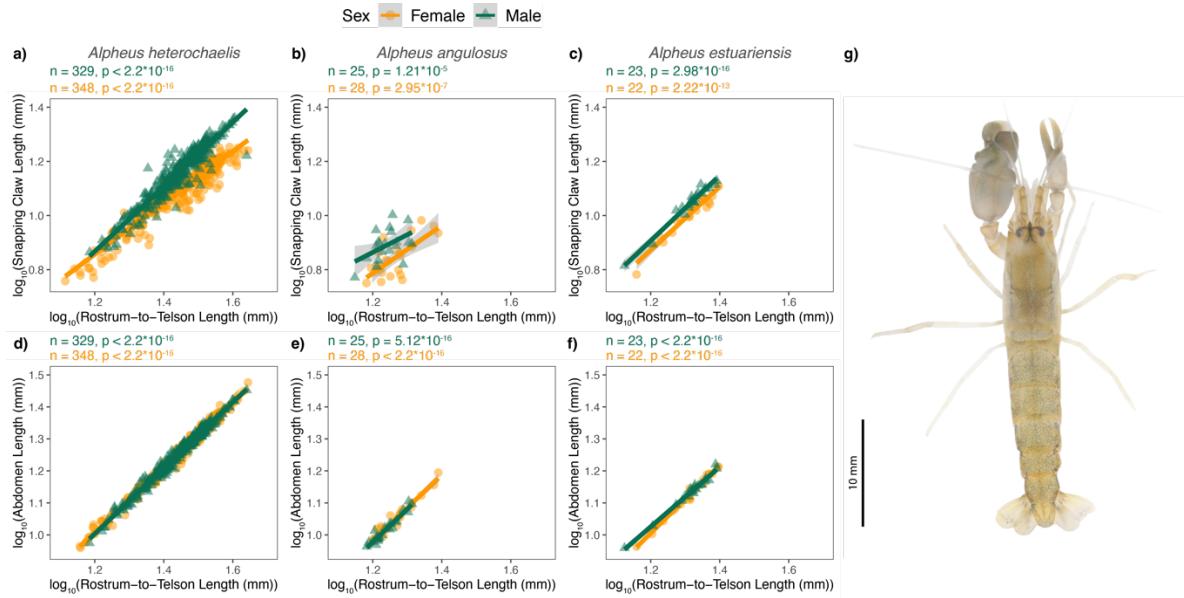
94 benefits of weapon size can be examined across these three axes: body size, sex, and breeding
95 season.

96 We test if snapping shrimp face tradeoffs that scale with condition as predicted by the
97 handicap principle. Then, we test the hypothesis that sex and seasonal differences in weaponry
98 arise from sex-specific costs and benefits in alpheid snapping shrimp. We did not measure fitness
99 and therefore refrain from using the term “costs” when referring to our data. Instead, we use the
100 term expenditure to represent tradeoffs that could cascade to fitness costs (Kotiaho, 2001).

101

102 **Results**

103 *Morphology*


104 To identify weapon expenditures that vary with size as predicted by the handicap
105 principle, we tested if snapping shrimp individuals bearing large weapons sacrificed resources
106 from the abdomen (the muscular segmented region of the body used for swimming) (Arnott et
107 al., 1998; Hunyadi et al., 2020). Reduced abdomen size could lower fitness through reduced
108 survival, given that abdomen length is positively correlated with predator escape velocity in
109 other benthic decapod crustaceans (Hunyadi et al., 2020). Snapping shrimp with smaller
110 abdomens could therefore be more vulnerable to predation. Furthermore, female snapping
111 shrimp hold eggs underneath their abdomen, and reduced abdomen size could constrain
112 maximum egg clutch volume. Thus, we tested whether snapping claws exhibit a morphological
113 tradeoff with abdomen size, and whether this expenditure increases as body size decreases.

114 The allometric slope of snapping claw scaling differed significantly between sexes for
115 *Alpheus heterochaelis* and *Alpheus angulosus* but not for *Alpheus estuariensis* (the species for
116 which we had the smallest sample size) (Figure 1). Scaling slopes and 95% confidence intervals
117 are presented in Supplemental Table 1. We used the residuals from scaling relationships for the
118 snapping claw and abdomens to test for morphological tradeoffs between weapons and
119 abdomens (see Materials and Methods).

120 As predicted, weapons with greater snapping claw residuals exhibited tradeoffs with
121 abdomen length. Snapping claw residuals and abdomen residuals were negatively correlated in
122 both sexes and for all three species (Figure 2; Supplemental Tables 2 – 4). We tested if this
123 tradeoff was size-dependent in *A. heterochaelis* — the species for which we had the largest
124 sample size and greatest statistical power. For males, as predicted, individuals with smaller

125 carapace lengths had steeper tradeoff slopes compared to those with larger carapace lengths
 126 (interaction p-value = 0.002; Figure 3; Supplemental Table 5). By contrast, we found no
 127 evidence of size-dependent slopes for female weapons (interaction p-value = 0.93; Supplemental
 128 Table 6).

129

130
 131 **Figure 1: Snapping claw length and abdomen length increased with rostrum-to-telson length**
 132 **across the three alpheid species.** Residuals from these lines were used to test for weapon
 133 expenditures and tradeoffs in subsequent analyses. Shaded regions represent 95% confidence
 134 intervals for linear regressions. A scaled dorsal view of an *Alpheus angulosus* individual is
 135 shown in panel g (distal toward top of page; left claw is the snapping claw). Slopes of each
 136 scaling relationship are presented in Table 1. F-test sample sizes and p-values are shown above
 137 each graph.

138

139

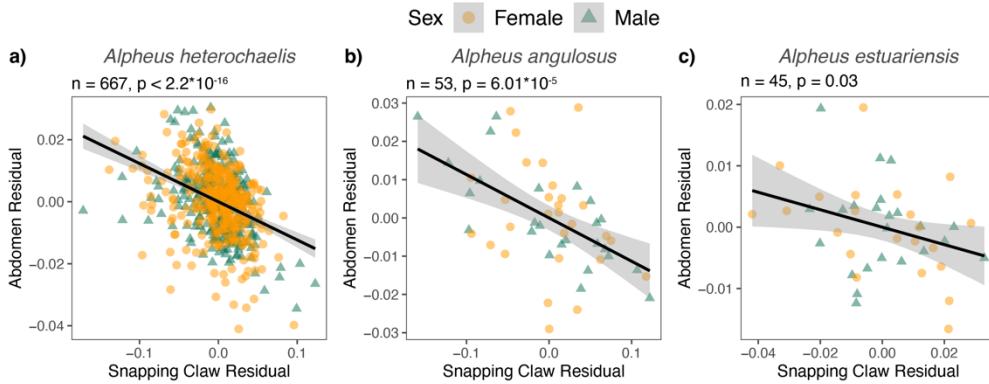


Figure 2: In all three analyzed species, there was a tradeoff between snapping claw residuals and abdomen residuals. Individuals with greater snapping claw residuals had lower abdomen residuals in a) *Alpheus heterochaelis*, b) *Alpheus angulosus*, and c) *Alpheus estuariensis*. Regressions were calculated from both sexes because sex and the sex*snapping claw residual interaction were not significant predictors in any model. Shaded regions represent 95% confidence intervals for linear regressions. F-test sample sizes and p-values are shown above each graph.

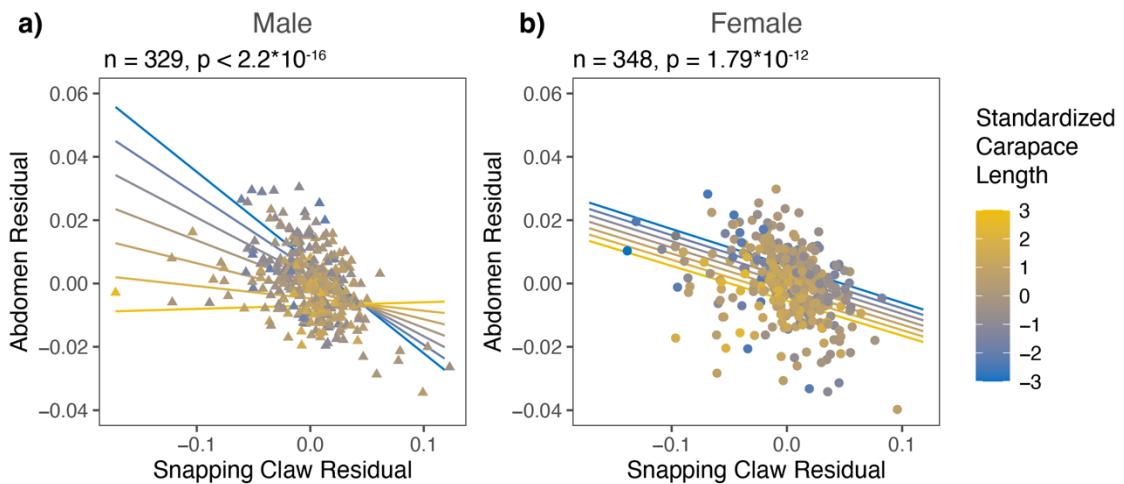


Figure 3: The tradeoff between snapping claw residuals and abdomen residuals was steepest for the smallest individuals in *Alpheus heterochaelis* males (a) but not females (b). Lines represent model predictions for standardized carapace lengths of -3, -2, -1, 0, 1, 2, and 3. A standardized carapace length of 0 represents an individual with the mean carapace length, and each increment of 1 represents one standard deviation. F-test sample sizes and p-values are

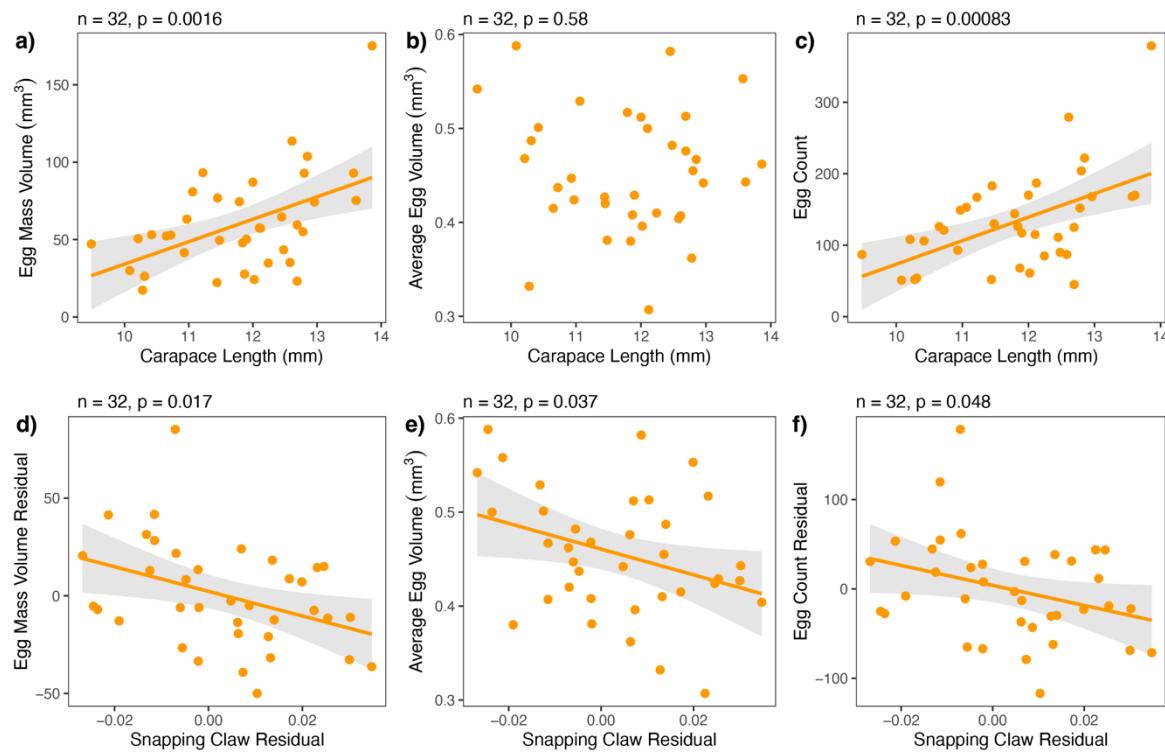
157 shown above each graph. The interaction term was significant for males (t -test, $n = 329$, $p =$
158 0.00209) but not for females (t -test, $n = 348$, $p = 0.932$)

159

160 *Kinematics*

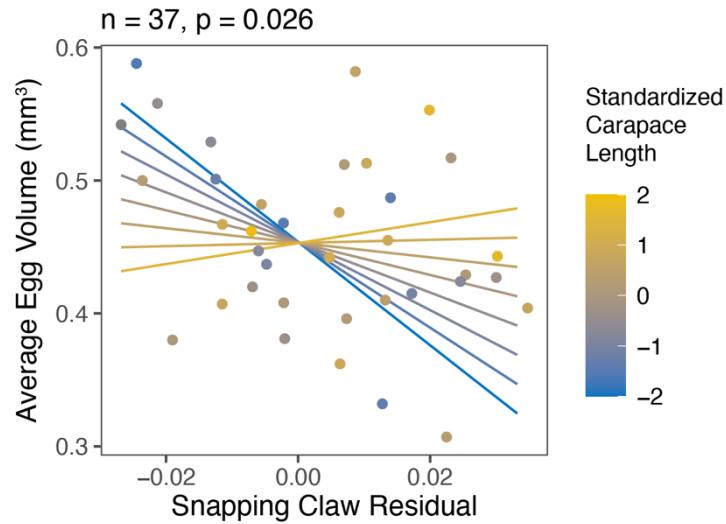
161 Larger weapons produce longer-lasting cavitation bubbles and greater pressures (Dinh &
162 Patek, 2023). However, individuals that grow larger weapons than predicted by snapping claw
163 scaling relationships do so using less muscle and more exoskeleton (Dinh, 2022). Reducing the
164 amount of muscle in the claw may hinder elastic loading and snap production. Therefore, we
165 tested if growing weapons larger than predicted by the weapon size scaling relationships reduced
166 the average angular velocity of the snapping claw, cavitation bubble duration, or pressure of the
167 snap. We predicted that this tradeoff would be steepest in the smallest males as predicted by the
168 handicap principle.

169 Surprisingly, weapon residuals did not affect any measured snap parameter in *A. heterochaelis* males or females: Neither weapon residuals nor its interaction with claw mass
170 were significant predictors of \log_{10} (average angular velocity), \log_{10} (bubble duration), or sound
171 pressure level (Supplementary Tables 7 – 12).


173

174 *Reproductive Tradeoffs*

175 To determine if female-specific expenditures explain why females have smaller
176 proportional weapon sizes than males, we tested for tradeoffs between female weaponry and egg
177 production. Analogous tradeoffs between primary and secondary sexual characteristics arise for
178 males in taxa as diverse as narwhals and dobsonflies (Dines et al., 2015; Liu et al., 2015;
179 Simmons et al., 2017). In snapping shrimp, females bear the entire burden of egg production
180 (Knowlton, 1980). Therefore, resources allocated to costly traits like weaponry should reduce the
181 allotment invested in primary reproduction. We used the same residual tradeoffs approach that
182 was used to test for morphological tradeoffs between weapons and abdomens.


183 For female *A. heterochaelis*, weapon residuals had egg production tradeoffs. Weapon
184 residuals were negatively correlated with egg mass volume residuals, average egg volume, and
185 egg count residuals (Figure 4; Supplemental Tables 13 – 15). Tradeoffs for egg count residuals
186 and egg mass volume residuals were not size dependent ($p_{\text{interaction}} = 0.223$ and $p_{\text{interaction}} = 0.483$,
187 respectively). However, average egg volume tradeoffs were steeper for females with smaller

188 carapace lengths compared to those with larger carapace lengths (interaction term t-test: $b =$
189 1.241 , $se = 0.538$, $t = 2.306$, $p = 0.028$) (Figure 5; Supplemental Table 15).
190

191
192 **Figure 4: *Alpheus heterochaelis* females exhibit tradeoffs between weapon size and egg mass**
193 **volume, average egg volume, and egg count.** As carapace length increased, a) egg mass volume
194 increased, b) average egg volume remained constant, and c) egg count increased. As snapping
195 claw residuals increased, d) egg mass volume residuals decreased, e) average egg volume
196 decreased, and f) egg count residual decreased. F-test sample size and p-values are shown above
197 each graph.

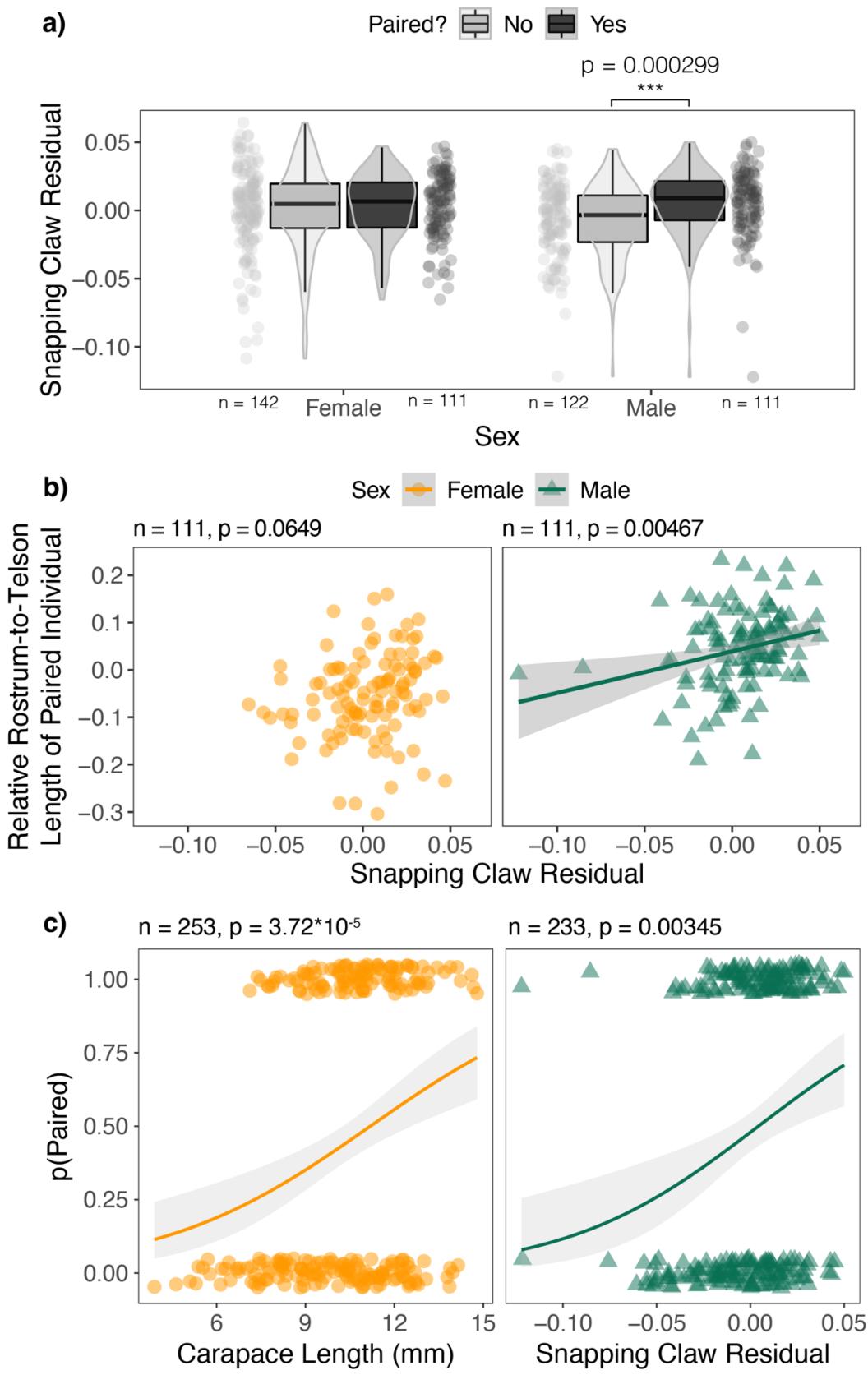
198
199

200

201 **Figure 5: Smaller *Alpheus heterochaelis* females (blue) exhibited steeper tradeoffs between**
 202 **snapping claw residuals and average egg volume compared to larger females (yellow). Lines**
 203 **represent model predictions for standardized carapace lengths of -2, -1.5, -1, -0.5, 0, 0.5, 1, and**
 204 **1.5. A standardized carapace length of 0 represents an individual with the mean carapace**
 205 **length, and each increment of 1 represents one standard deviation.**

206

207 *Pairing*


208 If males benefit more from large weaponry than females, then that benefit could also
 209 contribute to the sex differences in weaponry. Therefore, we tested if males with large weaponry
 210 benefited through improved pairing success. Snapping shrimp form size-assortative pairs
 211 (Mathews, 2002b; Nolan & Salmon, 1970). We tested whether large weapons improved the
 212 likelihood of pairing and whether individuals with large weapons paired with relatively larger
 213 mates. If either of these pairing advantages disproportionately benefits males, then this could
 214 explain why males have larger weapons than females.

215 In *A. heterochaelis*, paired males had significantly greater weapon residuals compared to
 216 unpaired males (t-test: $n = 233, p = 0.000299$), but there was no significant difference for females (t-
 217 test: $n = 253, p = 0.56$) (Figure 6; Supplemental Table 16).

218 For males, the probability of being paired increased as snapping claw residual increased ($n =$
 219 $233, b = 16.879, SE = 5.652, z = 2.986, p = 0.00345$), but there was no significant relationship with
 220 carapace length ($p = 0.104$; Supplemental Table 17). By contrast, for females, the probability of
 221 being paired increased as carapace length increased ($n = 253, b = 0.574, SE = 0.142, z = 4.034, p =$

222 3.72×10^{-5}) but there was no significant relationship with snapping claw residual ($p = 0.487$;
223 Supplemental Table 18) (Figure 6).

224 For paired males, as weapon residuals increased, the relative rostrum-to-telson lengths of
225 their pair mates also increased (linear model F-test, $n = 111$, $p = 0.00467$). However, there was no
226 significant trend in females (linear model F-test, $n = 111$, $p = 0.0649$) (Figure 6; Supplemental Tables
227 19 – 20)

229 **Figure 6: Male *Alpheus heterochaelis* benefited from positive snapping claw residuals**
230 **through pairing in a way that females did not. a)** Paired *Alpheus heterochaelis* males had
231 greater snapping claw residuals than unpaired males, but there was no such trend in females.
232 Sample sizes are shown below each jittered dot plot. P-value for the statistically significant t-test
233 is shown above the graph. **b)** Males with more positive residuals paired with relatively larger
234 pairmates, but there was no such trend in females. F-test sample sizes and p-values are shown
235 above each graph. **c)** The probability of being paired was positively correlated with snapping
236 claw residuals (but not carapace length) for males. Meanwhile, the same probability was
237 correlated with carapace length (but not snapping claw residuals) for females. 1 indicates paired
238 individuals, and 0 indicates unpaired individuals. Z-test sample sizes and p-values are shown
239 above each graph. Shaded regions in regressions are 95% confidence intervals.

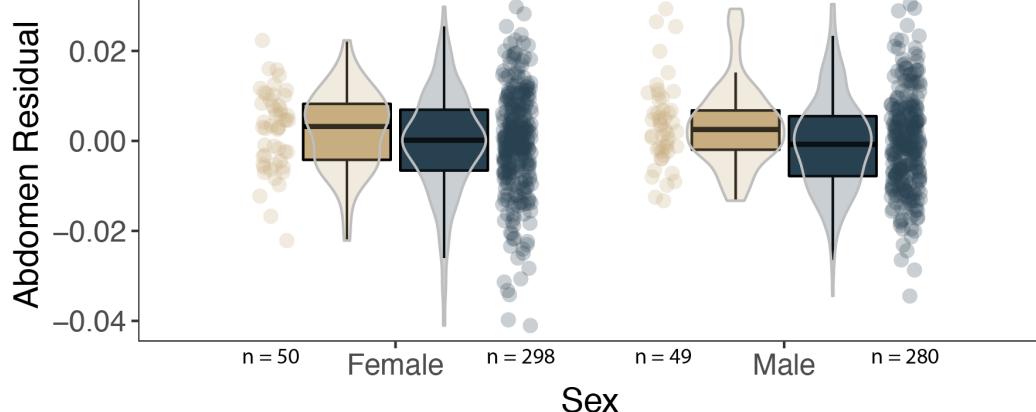
240

241 *Seasonal Trends*

242 Because the benefits of being paired and the costs of egg production are most salient during
243 the breeding season, we expected investment into different morphologies to change as the costs and
244 benefits do. Specifically, we predicted that snapping claw residuals would be greater for males
245 during the breeding season. Meanwhile, we predicted that abdomen residuals for both sexes would
246 decrease during the breeding season as males invest more into their weapons and as females invest
247 more into their eggs.

248 Abdomen residuals were reduced in male *A. heterochaelis* during the breeding season
249 compared to the non-breeding season, whereas females exhibited a marginally nonsignificant but
250 parallel seasonal shift (t-test: $n = 348$, $p = 0.06$) (Figure 7). Meanwhile, snapping claw residuals were
251 elevated in males during the breeding season compared to the non-breeding season, whereas females
252 exhibited no significant seasonal shift (Figure 7).

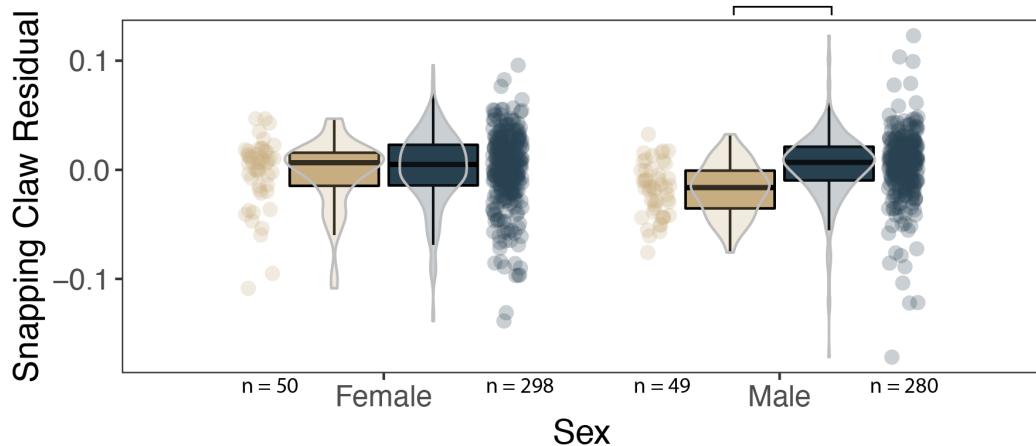
253 Furthermore, the scaling slope for female snapping claws became less steep during the
254 breeding season (interaction term t-test: $n = 348$, $b = -0.183$, $p = 0.000838$). There was no such
255 seasonal shift in allometry for males (interaction term t-test: $n = 329$, $p = 0.233$). After the
256 nonsignificant interaction term was removed from the male model, there was a significant increase in
257 snapping claw lengths across all rostrum-to-telson lengths (t-test, $n = 329$, $b = 0.023$, $p = 5.62 \times 10^{-6}$)
258 (Figure 7; Supplemental Tables 22-24).


259

260

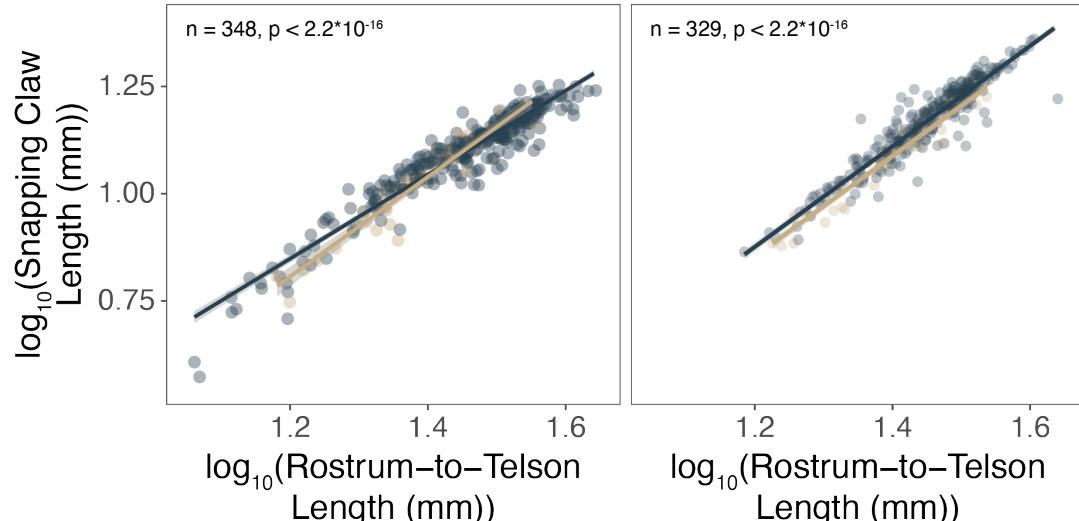
a)

Breeding? No Yes $p = 0.0599$


**

b)

 $p = 3.94 \times 10^{-7}$



c)

Breeding Season? No Yes

Female

Male

262 **Figure 7: Male *Alpheus heterochaelis* shifted investment from their abdomen to their**
263 **snapping claws during the breeding season, whereas female weapon scaling slopes decreased**
264 **during the breeding season. During the breeding season, males had a) reduced abdomen**
265 **residuals and b) increased snapping claw residuals. Females did not exhibit significant**
266 **morphological shifts. c) Female *Alpheus heterochaelis* scaling slopes were significantly**
267 **shallower during the breeding season compared to the nonbreeding season. Male scaling slopes**
268 **did not significantly change seasonally, but during the breeding season, there was an upward**
269 **shift in snapping claw lengths across all rostrum-to-telson lengths. Shaded regions are 95**
270 **percent confidence intervals. F-test sample sizes and p-values are shown above each graph. **p**
271 **< 0.01 ***p < 0.001**

272

273 **Discussion**

274 Evolutionary theory suggests that individuals express costly traits like weapons and
275 ornaments at an optimal magnitude that maximizes the cost-benefit difference. Because
276 individuals differ in the costs they pay and the benefits they reap, trait expression varies in
277 systematic and predictable ways across the population (Grafen, 1990a, 1990b; Nur & Hasson,
278 1984; Zahavi, 1977). We found empirical evidence for size-dependent expenditures that could
279 explain reliable scaling of trait expression: the smallest snapping shrimp exhibited the steepest
280 morphological and reproductive tradeoffs. Moreover, we applied the same logic — that costs and
281 benefits differ between individuals and lead to different optimal trait expression — to explain sex
282 differences in weaponry. Large weaponry is especially burdensome to females which suffer
283 reproductive tradeoffs. Meanwhile, large weaponry benefits males by increasing the probability
284 of being paired and the relative rostrum-to-telson length of their pair mate. These sex-specific
285 implications of weapon investment on reproduction and pairing are vital to fitness because
286 female egg production is the primary determinant of fecundity (Knowlton, 1980). Males can
287 boost fitness by pairing with larger females, and females sacrifice fitness by reducing investment
288 into eggs. These sex-specific tradeoffs and benefits can therefore explain why females have
289 smaller proportional weapon sizes compared to males, why this sex difference amplifies during
290 the breeding season, and why female weapon scaling slopes become more shallow during the
291 breeding season when egg production and pairing is at a premium.

292 For both males and females, individuals with larger weapons had smaller abdomens
293 (Figure 2). This was true in all three species of snapping shrimp that we tested. Similar resource
294 allocation tradeoffs between body parts have been shown in other species. For example, several
295 species of dung beetles face tradeoffs between their horns and nearby morphologies such as their
296 eyes, wings, and antennae (Emlen, 2001), and reindeer face tradeoffs between antler length and
297 body mass (Melnycky et al., 2013). Critically, in our study, we moved beyond simply identifying
298 a tradeoff and demonstrated that different individuals experience tradeoffs to different extents.
299 Specifically, in male *Alpheus heterochaelis*, smaller males exhibited a steeper tradeoff than
300 larger males, indicating a size-dependent expenditure of weaponry (Figure 3).

301 The proportion of the claw made of muscle decreases as weapon residual increases (Dinh,
302 2022). Therefore, we tested whether weapon residuals were negatively correlated with average
303 angular velocity in the snapping claw, cavitation bubble duration, and snap pressure. We
304 expected weapon residuals to affect these metrics because in other crustaceans, weapon residuals
305 and muscle mass affects weapon function. For example, in some fiddler crabs, regenerated claws
306 never fully recover the muscle mass of original ones and have reduced pinching force (Lailvaux
307 et al., 2009). Similarly, in the same species of fiddler crabs, as weapon residuals increase,
308 pinching force does, too (Lailvaux et al., 2009). Surprisingly, in our analysis in snapping shrimp,
309 weapon residuals were not correlated with any of the measured snap parameters.

310 The expenditures and benefits of growing a large weapon also differed by sex. For
311 ovigerous *A. heterochaelis* females, greater weapon size led to lower egg counts, smaller average
312 egg volume, and lower egg clutch volume (Figure 4). In males, tradeoffs between primary
313 reproductive traits and weapons are widespread. For example, male horned scarab beetles
314 (*Onthophagus spp.*) experience tradeoffs between their horns and genitalia, and this tradeoff is
315 most pronounced just as larvae are about to enter their prepupal stage (Moczek & Nijhout, 2004;
316 Simmons & Emlen, 2006). Similar tradeoffs arise in other insects like coreids (Miller et al.,
317 2019; Somjee et al., 2018). These tradeoffs are evident in phylogenetic comparative analyses.
318 Across horned scarab beetle species, for example, those with more positively allometric horn
319 slopes have more negatively allometric testes slopes (Simmons & Emlen, 2006). Similarly,
320 cetacean species that invest more in sexually dimorphic traits (e.g., narwhal tusks) invest less in
321 testes mass (Dines et al., 2015), howler monkeys that have greater hyoid volume have smaller
322 testes mass (Dunn et al., 2015), and dobsonflies that have enlarged mandibular weapons invest

323 less into nuptial gifts (Liu et al., 2015). Although weapon-reproduction tradeoffs are commonly
324 identified across taxa, the existing studies rarely identify analogous tradeoffs in females, and
325 they rarely, if ever, test for size- or condition-dependence of tradeoffs. Our findings that female
326 snapping shrimp face weapon-reproduction tradeoffs and those reproductive expenditures were
327 size-dependent provide valuable nuances to the existing literature.

328 In addition, we showed that male *A. heterochaelis* benefited by investing in weaponry
329 through pairing, whereas females did not. In males, weapon residuals were positively correlated
330 with the probability of being paired and the relative body length of their pair mates (Figure 6).
331 Females did not exhibit either of these benefits. Male-specific benefits could therefore contribute
332 to sex differences in weapon investment.

333 Egg production is particularly salient to female snapping shrimp because they bear the
334 entire energetic burden of egg production (Knowlton, 1980). Likewise, there is incentive for
335 males to pair with large and fecund females. Therefore, growing a large weapon is particularly
336 burdensome to females and particularly beneficial for males. These reproductive expenditures
337 and benefits could therefore explain why males have larger proportional weapon sizes than
338 females.

339 The sex-specific expenditures and benefits are also consistent with seasonal oscillations
340 in weaponry. *A. heterochaelis* males had greater weapon residuals during the breeding season
341 compared to the non-breeding season, whereas female weapon residuals remained consistent
342 throughout the year (Figure 7). Furthermore, the scaling slope of the snapping claw became more
343 shallow during the breeding season for females. By contrast, males did not show a significant
344 seasonal change in scaling slope, but across the range of body sizes, snapping claw lengths
345 increased during the breeding season (Figure 7). Concurrently, males had significantly lower
346 abdomen residuals during the breeding season, whereas females exhibited a parallel but
347 marginally nonsignificant decrease in abdomen residuals. Similar trends have been reported in *A.*
348 *angulosus*, although in that species, females significantly reduce proportional abdomen sizes
349 during the breeding season (Heuring & Hughes, 2019). We speculate that males shift investment
350 from their abdomens into weapons during the breeding season because it increases their
351 likelihood of being paired. Female snapping shrimp shift investment from abdomens to eggs, and
352 they do not increase weapon size because they face tradeoffs between eggs and weapons.

353 Female weapon-egg tradeoffs are analogous to classic examples of male weapon-testes
354 tradeoffs (Simmons et al., 2017; Simmons & Emlen, 2006). Still, female analogs of this
355 phenomenon are rare (Miller et al., 2019). Most likely, the dearth of findings is simply due to
356 insufficient studies of female weaponry. Sex biases in research, such as the misconception that
357 only males fight and only females choose, are common (Haines et al., 2020; Pollo & Kasumovic,
358 2022; Tang-Martínez, 2016). For example, it is now accepted that female birdsong is
359 widespread, but for centuries, historical research focused almost entirely on males that were
360 presumed to be the only sex to compete for mates (Odom et al., 2014; Odom & Benedict, 2018;
361 Riebel et al., 2019). Like birdsong, female secondary sexual traits, weapons, and competition are
362 not uncommon, and they often serve signaling functions just as they do in males (Amundsen &
363 Forsgren, 2001; LeBas, 2006; Nolazco et al., 2022; Nordeide, 2002; Watson & Simmons, 2010).
364 Sex-inclusive research on the costs and benefits of these traits would not only redress long-
365 standing omissions from the scientific literature, but comparisons between males and females
366 would also provide empirical tools to understand how costs and benefits govern trait expression
367 within a single species.

368 In snapping shrimp, large weaponry could have fitness benefits. For example, individuals
369 of both sexes use weapons during contests over mates and territory (Dinh et al., 2020; Dinh &
370 Patek, 2023; Hughes et al., 2014; Nolan & Salmon, 1970). Larger weapons produce greater
371 pressures and therefore increase offensive capacity during contests (Dinh & Patek, 2023).
372 Furthermore, male snapping shrimp with large weapons independent of body size use elevated
373 levels of visual weapon displays, and that seems to affect rival assessment during contests
374 (Hughes, 2000b). It is also possible that large weaponry could be preferred in mate choice,
375 although that has not been established firmly. In *A. angulosus*, females show a marginally non-
376 significant preference for males with large claws independent of body size during the breeding
377 season (Heuring & Hughes, 2020). Meanwhile, females prefer larger males in *A. heterochaelis*,
378 although experiments have not tested whether weapon size independent of body size affects mate
379 choice in this species (Rahman et al., 2004). Finally, large weaponry could also help snapping
380 shrimp defend themselves against heterospecific intruders and predators. For example, the
381 snapping shrimp *Alpheus armatus* defends its host anemone from fireworm predation using
382 snaps, which can kill intruders (McCammon & Brooks, 2014). Anecdotal evidence suggests a
383 similar symbiotic relationship between nest-defending *A. heterochaelis* mud crabs (Silliman et

384 al., 2003). If larger weapons are better equipped to fend off predators, then large weaponry could
385 also boost fitness by preventing predation.

386 Ideally, we would be able to link each of the expenditures and benefits we identified here
387 to a fitness cost (Kotiaho, 2001). There have been two systems where such a condition-
388 dependent fitness cost has been demonstrated: in the substrate-borne signaling of wolf spiders
389 (*Hygrolycosa rubrofasciata*) and in the ornamented tail feathers of barn swallows (*Hirundo*
390 *rustica*). In wolf spiders, individuals that are fed high-quantity diets maintain steady body mass
391 and drum at greater rates compared to those fed a low-rationed diet (Kotiaho, 2000). Females
392 prefer to mate with males that drum at higher rates (Kotiaho et al., 1996). However, drumming is
393 energetically demanding and, sometimes, lethal (Kotiaho, 2000; Mappes et al., 1996). Males fed
394 high-volume diets are better able to sustain and survive these costs compared to males on low-
395 volume diets (Kotiaho, 2000).

396 In barn swallows, females prefer to mate with males that have long marginal tail feathers
397 (Møller, 1988, 1990, 1992). However, long tail feathers hinder the aerodynamics of flight:
398 Individuals with experimentally lengthened tail feathers catch smaller, lower quality dipteran
399 prey and are more likely to die. Meanwhile, those with experimentally shortened tail feathers
400 catch larger, higher quality dipteran prey and were more likely to survive (Møller & de Lope,
401 1994). Individuals with naturally long tail feathers were best able to cope with experimental tail
402 elongation, whereas those with naturally short tail feathers reaped the greatest survival boost
403 from tail shortening, suggesting that the cost of ornamented tail feathers disproportionately
404 burdens males with naturally short tail feathers (Møller & de Lope, 1994).

405 It is not feasible to quantify such fitness costs in natural observations of snapping shrimp.
406 They are prolific breeders, cryptic, and difficult to mark and recapture because they molt each
407 month. The egg production tradeoffs are as close to a direct fitness cost as we could identify.
408 Morphological tradeoffs, on the other hand, are more distant to fitness costs. However, it is a
409 reasonable possibility that abdomen tradeoffs impact survival. For example, the primary mode of
410 predator escape in many decapod crustaceans is the tailflip, during which individuals contract
411 their abdomen to propel themselves backwards (Wiersma, 1947). Tailflip velocity and
412 acceleration in crayfish increases with abdomen length (Hunyadi et al., 2020). If the same holds
413 in snapping shrimp, then the abdomen tradeoff that we found here could influence survival.
414 However, future work is required to reach a definitive answer.

415 Some expenditures we documented did not differ with size; however, the overall fitness
416 cost might still be size-dependent. For example, smaller females did not exhibit a weapon size
417 tradeoff with the total number of eggs they produced. Even though the scaling slopes were
418 invariant across the size range, small individuals might suffer a greater relative reduction in eggs
419 and therefore a greater reduction in relative fitness. For example, reducing a 100-egg clutch by
420 10 would incur a 10 percent decrease, but reducing a 200-egg clutch by 10 would incur a 5
421 percent decrease. Compared to large and fecund individuals, then, smaller individuals might
422 suffer a greater reduction in relative fitness than larger individuals despite a similar absolute
423 tradeoff in egg production.

424 Critically, our findings rely entirely on observational data, and therefore, we cannot infer
425 causation. In other taxa, it is possible to experimentally manipulate weapons to prevent them
426 from developing. In beetles, for example, researchers can ablate imaginal disklike tissue in larvae
427 before they form into horns (Moczek & Nijhout, 2004; Simmons & Emlen, 2006), and in coreid
428 insects, researchers can induce permanent autotomy of hind-leg weapons (Joseph et al., 2018;
429 Miller et al., 2019; Somjee et al., 2018). However, permanent manipulation of weaponry is not as
430 straightforward in snapping shrimp as it is in terminally molting insects. Snapping shrimp molt
431 every 16-20 days, and after autotomy, they regenerate their weapons over a series of molts.
432 Specifically, snapping shrimp regenerate a new non-snapping claw at the site of autotomy and
433 transform the contralateral claw into a snapping claw (Cooney et al., 2017; Govind et al., 1986;
434 Pereira et al., 2014). It is not clear how weapon expenditures would change during regeneration;
435 one might expect some expenditures, like maintenance, could decrease with a smaller,
436 recovering claw, but other expenditures, like growth, could increase as the weapon grows and
437 transforms (Akhter et al., 2015; Bywater et al., 2014; Dinh, 2022; Pereira et al., 2014; Read &
438 Govind, 1991). Interestingly, in rare cases, wild-caught snapping shrimp can bear two snapping
439 claws. This unusual arrangement can be permanently induced in the lab by removing the dactyl
440 from a claw as it is transforming from a non-snapping claw to a snapping claw (Read & Govind,
441 1997). In future experiments, it would be interesting to test if this manipulation decreases
442 investment into traits like abdomens and egg production.

443 Our methods also could not account for the genetic background of individuals, which
444 could influence their weapon investment. Future experiments could use a siblings-based
445 approach to control for these factors. Prior research has relied on breeding experiments, for

446 example, to identify weapon-testes tradeoffs in horned scarab beetles (*O. taurus*) (Moczek &
447 Nijhout, 2004) and to test the effects of diet on weapon development in the dung beetle
448 *Onthophagus acuminatus* (Emlen, 1997). Indeed, it is possible to rear field-collected snapping
449 shrimp eggs in captivity, though we have not been successful at inducing mating in the lab
450 (Harrison & Patek, 2023). In the future, it would be interesting to use a siblings-based design
451 with the experimental manipulations described above to test experimentally for resource
452 allocation tradeoffs.

453 Despite the challenges of observational inference, the statistical approach of testing for
454 residual-based tradeoffs pinpoints patterns that are consistent with resource allocation tradeoffs.
455 The morphologies implicated in these trends are valuable candidates for future experiments as
456 described above. Furthermore, the robust datasets that we are able to collect from field
457 observations allowed us to test for size-dependence of these tradeoffs — a critical assumption of
458 the handicap principle that has largely been omitted from such experiments. Future research
459 could apply the statistical framework we lay out here to test for size dependence in tradeoffs in
460 lab-based experiments as well.

461 Empirical evidence of fitness costs is elusive because fitness manifests from a mosaic of
462 subtle expenditures. Some of these expenditures, like reproduction, are obviously correlated to
463 fitness, while others might have subtle yet meaningful effects. There is likely a smorgasbord of
464 expenditures that we did not test for here, some of which are undetectable in purely observational
465 work. For example, in other crustaceans, weapons hinder locomotion and reduce survival during
466 predator escape (Hunyadi et al., 2020). These expenditures need to be identified through future
467 experiments. Other expenditures might not be tractable through morphology, but through social
468 interactions. In the paper wasp *Polistes dominulus*, for example, body size is correlated with
469 pigment deposition in facial masks. Poor-condition wasps with facemasks manipulated to appear
470 formidable experienced social costs via conspecific aggression (Tibbetts & Dale, 2004). The
471 observational work we present here is a starting point to identify the fitness consequences of
472 large weaponry. We encourage observations of behavior in naturalistic conditions and
473 experiments that manipulate sexual traits to paint the entire mosaic of fitness-relevant
474 expenditures of weaponry.

475

476 **Conclusion**

477 The handicap principle suggests that individuals are plastic in their ability to signal at
478 different levels, and they signal at the level that optimizes their cost-benefit difference (Grafen,
479 1990a, 1990b; Nur & Hasson, 1984; Zahavi, 1977). This hypothesis requires costs or benefits
480 that differ between individuals. However, the debate and acceptance of this principle has relied
481 more on theory and less on empirical evidence (Penn & Számadó, 2020). We showed through
482 field observations that size-dependent expenditures can ensure signal reliability through
483 morphological and reproductive tradeoffs. Furthermore, we co-opted the same logic of
484 differential costs and benefits to show that large weapons are particularly beneficial to males and
485 particularly burdensome to females. These sex-specific implications of weaponry on
486 reproduction could underlie sex and seasonal differences in costly trait expression.

487

488 **Materials and Methods**

489 *Animal Collection*

490 In total, we collected 677 *Alpheus heterochaelis* snapping shrimp from Beaufort, North
491 Carolina, USA (NCDENR Scientific and Education permit # 707075 to Duke University Marine
492 Laboratory). We measured each individual and tested for a tradeoff between abdomen and
493 snapping claw size (see *Morphological Tradeoff* and *Seasonal Trends* sections below). Subsets
494 of these same *Alpheus heterochaelis* individuals were used in the remaining analyses: we used 76
495 individuals to test for kinematic tradeoffs (see *Kinematics* section), 37 egg-bearing females to
496 test for reproductive tradeoffs (see *Reproductive Tradeoffs* section), and 486 individuals to test
497 for pairing benefits (see *Pairing* section). Finally, we captured 45 *Alpheus estuariensis*
498 individuals from the same site and 53 *Alpheus angulosus* individuals from Beaufort, South
499 Carolina, USA, and we tested whether morphological tradeoffs also arose in these species. No
500 ethical permits were required.

501 We collected *A. heterochaelis* and *A. estuariensis* once per month during the spring tide
502 from July to October 2020 and February to August 2021. We collected *A. angulosus* during one
503 trip in March 2019. We found snapping shrimp in oyster reefs at low tide by flipping oyster
504 clusters and excavating several centimeters of mud. We located individuals through turbid waters
505 by scanning for antennae sweeping the water surface. We designated two shrimp as a male-
506 female pair if they occupied the same tidepool underneath an oyster clump, and we acquired
507 pairing data for 486 *Alpheus heterochaelis* individuals. We also noted whether individuals were

508 caught during the breeding season. We considered breeding season as a binary variable. If any
509 female was found holding eggs, then the collection date was considered the breeding season. The
510 breeding season occurred between April and October, and no eggs were found during February
511 and March collections. The months of breeding resemble those seen in *A. angulosus* populations
512 in Charleston, South Carolina, USA (Heuring & Hughes, 2019). Temperatures in nearby waters
513 were colder during the non-breeding season, fluctuating between 8 and 14 degrees Celsius,
514 whereas breeding season temperatures fluctuated between 18 to 30 degrees Celsius (NOAA
515 Station 8656483, Beaufort, Duke Marine Lab, North Carolina, USA).

516 For all three species, we measured each individual's carapace length, abdomen length,
517 rostrum-to-telson length, and snapping claw length using digital calipers (resolution +/- 0.02
518 mm, Husky Tools, Atlanta, Georgia, USA) (see Supplemental Figure 1). We built log-log scaling
519 relationships for snapping claws, and abdomen length as a function of rostrum-to-telson length,
520 sex, and their interaction. Abdomen length and carapace length both contribute to rostrum-to-
521 telson length, but we used each of the three metrics in separate analyses because the existing
522 literature indicates that each metric predicts different biologically relevant functions. For
523 example, carapace length is the best known predictor of resource holding potential (Dinh et al.,
524 2020; Dinh & Patek, 2023), abdomen length in other benthic decapods predicts predator escape
525 velocity (Hunyadi et al., 2020), and rostrum-to-telson length predicts egg production (Knowlton,
526 1980).

527

528 *Statistical Analysis*

529 All statistical analyses were conducted using, R version 4.1.1, RStudio version 1.4.1717,
530 and the tidyverse suite of R packages (R Core Team, 2018; RStudio Team, 2021; Wickham et
531 al., 2019).

532

533 *Morphological Tradeoffs*

534 For each species, we hypothesized that growing a larger snapping claw would coincide
535 with reduced abdomen size. We tested this relationship by calculating the residuals from the log-
536 log abdomen and snapping claw scaling relationships defined above, where positive residuals
537 indicate a larger abdomen or snapping claw than predicted by the scaling relationship. To test for
538 a morphological tradeoff, we built regressions using abdomen residuals as the response variable

539 and snapping claw residuals, sex, and their interaction as the explanatory variables. We repeated
540 this analysis for *A. heterochaelis*, *A. angulosus*, and *A. estuariensis*.

541 Then, we tested whether slopes of the tradeoff depended on quality. Here and throughout
542 the rest of the paper, we used carapace length as a measure of quality because it is the best
543 known proxy for resource holding potential, the best-known predictor for female fecundity, and a
544 reliable predictor of dominance and subordinance in dyadic contests (Dinh et al., 2020). We
545 hypothesized that the slope of the tradeoff would increase as carapace length decreased. To test
546 this, we standardized carapace length so that the mean was zero and each increment of one
547 represents an increase of one standard deviation. We built a regression with abdomen residual as
548 the response variable and snapping claw residual, standardized carapace length, and their
549 interaction as the explanatory variable. We performed this analysis only for *Alpheus*
550 *heterochaelis*, the species for which we had the greatest sample size and statistical power. We
551 predicted a negative coefficient for the interaction, meaning that the tradeoff slope would
552 approach zero as carapace length increased.

553

554 *Kinematics*

555 We reanalyzed data from Dinh & Patek (2022) to test if exaggerated weapons reduced
556 weapon performance. We recorded high speed videos with synchronous pressure measurements
557 from 10 snaps each in 76 individuals. We measured the average angular velocity, cavitation
558 bubble duration, and peak-to-peak sound pressure level of each snap. Details about recording
559 setup, equipment, and performance metrics are provided in Dinh & Patek (2022). In brief, we
560 calculated average angular velocity as the angle change between the dactyl and the propodus
561 during closure divided by the duration of closure (Kagaya & Patek, 2016). Then, we calculated
562 cavitation bubble duration as the duration between the initiation of cavitation to the onset of
563 initial bubble implosion. Finally, we calculated the peak-to-peak sound pressure level coincident
564 with cavitation bubble collapse.

565 In previous research, we showed that average angular velocity decreased as claw mass
566 increased, whereas cavitation bubble duration and sound pressure level increased as claw mass
567 increased (Dinh & Patek, 2023). Here, we tested if these relationships also depended on weapon
568 residuals. We built three linear models that used either \log_{10} (average angular velocity),
569 \log_{10} (bubble duration), or sound pressure level (a logarithmic measure of pressure) as the

570 response variable. In each model, we used \log_{10} (claw mass) and weapon residual as explanatory
571 variables. We built separate models for males and females. For each performance metric, we
572 hypothesized that performance would decrease with high-residual snapping claws, and we
573 therefore predicted a negative coefficient for snapping claw residuals.

574

575 *Reproductive Tradeoffs*

576 We collected 37 ovigerous *A. heterochaelis* females. We removed each egg clutch and
577 photographed them. We only included eggs in the early stage of development when the egg yolk
578 was barely consumed and oblong deformation by the embryo was minimal. We counted the total
579 number of eggs in each egg clutch and measured the estimated average egg volume using the Fiji
580 distribution of ImageJ (version 2.0.0) (Schindelin et al., 2012). For each egg clutch, we measured
581 the egg volume for 20 randomly selected eggs as $V_{egg} = \frac{1}{6}\pi d_{min}^2 d_{max}$, where V_{egg} represents egg
582 volume, d_{min} represents the minimum egg diameter, and d_{max} represents the maximum egg diameter
583 (Kuris, 1990). We then calculated the average egg volume as the mean volume of these 20 eggs.
584 Finally, we calculated total egg mass volume as the egg count multiplied by the average egg
585 volume.

586 Egg count and egg mass volume increased as carapace length increased. Therefore, we
587 regressed egg count and egg mass volume against carapace length and calculated egg count
588 residuals and egg mass volume residuals from the scaling relationship. These residuals reflect
589 investment into eggs, where more positive residuals indicate greater investment and more negative
590 residuals indicate less investment. We did not use residual analysis for average egg volume
591 because it did not scale with carapace length. To test for reproductive tradeoffs between eggs and
592 weapons, we built three linear regressions that used either egg count residual, average egg volume,
593 or egg mass volume residual as the response variable. All models included snapping claw residual
594 as the sole explanatory variable. We predicted a negative relationship that reflected a reproductive
595 tradeoff.

596 Then, to test if female snapping shrimp with smaller carapace lengths faced steeper
597 tradeoffs, we added carapace length and its interaction with snapping claw residual to each of the
598 models. If smaller individuals pay steeper expenditures, then the interaction should be positive:
599 the negative relationship between egg properties and snapping claw residuals would taper to zero
600 as carapace length increases.

601

602 *Pairing*

603 We used t-tests to determine if paired individuals had greater weapon residuals than
604 unpaired individuals. The response variable was weapon residual, and the explanatory variable
605 was a binary variable of paired status, where one represents a paired individual and zero
606 represents an unpaired individual. We performed separate tests for each sex.

607 Similarly, to test if greater snapping claw residuals increased the probability of pairing,
608 we built a binomial generalized linear model with pairing status (1 = paired, 0 = unpaired) as the
609 response variable. The explanatory variables were carapace length and snapping claw residual.
610 We built models for each sex separately.

611 Then, we tested if individuals with greater weapon residuals paired with larger mates. We
612 calculated the relative size of pair mates as $1 - \frac{\text{rostrum-to-telson length}_{\text{focal}}}{\text{rostrum-to-telson length}_{\text{pairmate}}}$ such that more
613 positive values mean that pair mates are larger than focal individuals, and 0 means that
614 individuals are equally sized. We used rostrum-to-telson length here because males and females
615 form size-assortative pairs based on body length (Mathews, 2002b; Nolan & Salmon, 1970). We
616 built a linear model with the relative size of pairmates as the response variable and snapping
617 claw residual of the focal individual as the explanatory variable. We repeated this analysis using
618 either males or females as the focal individuals and the opposite sex as the pairmate. We
619 predicted a positive relationship if individuals with greater weapon residuals attracted or
620 maintained relatively larger pairmates.

621

622 *Seasonal Trends*

623 We tested if reproductive tradeoffs manifested in seasonal fluctuations in morphology
624 between breeding and non-breeding seasons in *Alpheus heterochaelis*. We performed t-tests to
625 compare 1) abdomen residuals and 2) snapping claw residuals using breeding season as the
626 explanatory variable (1 = breeding season, 0 = non-breeding season). The breeding season lasted
627 from April to October when we found ovigerous female snapping shrimp. February and March
628 collections were considered the nonbreeding season because we collected no ovigerous females.
629 We performed separate t-tests for each sex in *Alpheus heterochaelis*. We predicted that snapping
630 claw residuals would be elevated during the breeding season for males but not females, and that
631 shift would coincide with a reduction in abdomen residuals. Then, to test if the scaling slope of

632 the snapping claw changed between seasons, we built a linear model for each sex with
633 \log_{10} (snapping claw length) as the response variable and \log_{10} (rostrum-to-telson-length),
634 breeding season, and their interaction as the predictor variables. A significant interaction term
635 would indicate a seasonal allometric shift. If the interaction term was nonsignificant, we
636 removed it from the model to test if there was an overall shift in weapon investment without a
637 change in slope across breeding and non-breeding seasons.

638

639 **Acknowledgments**

640 Thanks to Ben Schelling and Jacob Harrison for assisting with field collection. Thanks also to
641 the Duke University Marine Laboratory for providing facilities and administrative support. This
642 research was funded by the Duke University Biology Department Grant-in-Aid and the NSF
643 Graduate Research Fellowship to J.P.D. and NSF IOS 2019323 to S.N.P.

644

645 **References**

646

647 Akhter, E. T., Pereira, A., Hughes, M., & Korey, C. A. (2015). Plasticity of external setae during
648 claw transformation in the snapping shrimp, *Alpheus angulosus* McClure, 2002
649 (Decapoda, Caridea). *Crustaceana*, 88(7–8), 893–910. <https://doi.org/10.1163/15685403-00003457>

650

651 Amundsen, T., & Forsgren, E. (2001). Male mate choice selects for female coloration in a fish.
652 *Proceedings of the National Academy of Sciences*, 98(23), 13155–13160.
653 <https://doi.org/10.1073/pnas.211439298>

654 Arnott, S., Neil, D., & Ansell, A. (1998). Tail-flip mechanism and size-dependent kinematics of
655 escape swimming in the brown shrimp *Crangon crangon*. *Journal of Experimental*
656 *Biology*, 201(11), 1771–1784. <https://doi.org/10.1242/jeb.201.11.1771>

657 Brockes, J. P., Martin, P., Price, J., & Allen, S. (2004). Exploring the mechanisms regulating
658 regeneration of deer antlers. *Philosophical Transactions of the Royal Society of London.*
659 *Series B: Biological Sciences*, 359(1445), 809–822.
660 <https://doi.org/10.1098/rstb.2004.1471>

661 Bywater, C. L., White, C. R., & Wilson, R. S. (2014). Metabolic incentives for dishonest signals
662 of strength in the fiddler crab *Uca vomeris*. *Journal of Experimental Biology*, 217(16),
663 2848–2850. <https://doi.org/10.1242/jeb.099390>

664 Cavender, K. R., Ricker, T. A., Lyon, M. O., Shelby, E. A., Miller, C. W., & Moore, P. J. (2021).
665 The trade-off between investment in weapons and fertility is mediated through
666 spermatogenesis in the leaf-footed cactus bug *Narnia femorata*. *Ecology and Evolution*,
667 11(13), 8776–8782. <https://doi.org/10.1002/ece3.7686>

668 Clements, M. N., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. M., & Kruuk, L. E. B.
669 (2010). Getting the timing right: Antler growth phenology and sexual selection in a wild
670 red deer population. *Oecologia*, 164(2), 357–368. [https://doi.org/10.1007/s00442-010-1656-7](https://doi.org/10.1007/s00442-010-
671 1656-7)

672 Cooney, P., Korey, C. A., & Hughes, M. (2017). Autotomy and recovery in the snapping shrimp,
673 *Alpheus angulosus* McClure, 2002 (Caridea: Alpheidae). *Journal of Crustacean Biology*,
674 37(6), 701–708. <https://doi.org/10.1093/jcobi/rux082>

675 Costa-Souza, A. C., de Souza, J. R. B., de Araújo, M. de S. L. C., & Almeida, A. O. (2018).
676 Population Structure of the Shrimp *Alpheus estuariensis* (Caridea: Alpheidae) in a
677 Tropical Estuarine Tidal Mudflat. *Thalassas: An International Journal of Marine
678 Sciences*, 34(1), 1–11. <https://doi.org/10.1007/s41208-017-0036-z>

679 Dines, J. P., Mesnick, S. L., Ralls, K., May-Collado, L., Agnarsson, I., & Dean, M. D. (2015). A
680 trade-off between precopulatory and postcopulatory trait investment in male cetaceans.
681 *Evolution*, 69(6), 1560–1572. <https://doi.org/10.1111/evo.12676>

682 Dinh, J. P. (2022). Large and exaggerated sexually selected weapons comprise high proportions
683 of metabolically inexpensive exoskeleton. *Biology Letters*, 18(2), 20210550.
684 <https://doi.org/10.1098/rsbl.2021.0550>

685 Dinh, J. P., Azza, J., & Patek, S. N. (2020). Winner effects and switching assessment strategies
686 facilitate fast and frugal decisions in territorial contests. *Animal Behaviour*, 170, 189–
687 205. <https://doi.org/10.1016/j.anbehav.2020.09.012>

688 Dinh, J. P., & Patek, S. N. (2023). Weapon performance and contest assessment strategies of the
689 cavitating snaps in snapping shrimp. *Functional Ecology*, 37(2), 327–342.
690 <https://doi.org/10.1111/1365-2435.14190>

691 Dunn, J. C., Halenar, L. B., Davies, T. G., Cristobal-Azkarate, J., Reby, D., Sykes, D., Dengg, S.,
692 Fitch, W. T., & Knapp, L. A. (2015). Evolutionary trade-off between vocal tract and
693 testes dimensions in howler monkeys. *Current Biology*, 25(21), 2839–2844.
694 <https://doi.org/10.1016/j.cub.2015.09.029>

695 Emlen, D. J. (1997). Diet alters male horn allometry in the beetle *Onthophagus acuminatus*
696 (Coleoptera: Scarabaeidae). *Proceedings of the Royal Society of London. Series B:*
697 *Biological Sciences*, 264(1381), 567–574. <https://doi.org/10.1098/rspb.1997.0081>

698 Emlen, D. J. (2001). Costs and the diversification of exaggerated animal structures. *Science*,
699 291(5508), 1534–1536. <https://doi.org/10.1126/science.1056607>

700 Govind, C. K., Mearrow, K. M., & Wong, A. (1986). Regeneration of fibre types in paired
701 asymmetric closer muscles of the snapping shrimp, *Alpheus Heterochelis*. *Journal of*
702 *Experimental Biology*, 123(1), 55–69.

703 Grafen, A. (1990a). Biological signals as handicaps. *Journal of Theoretical Biology*, 144(4),
704 517–546. [https://doi.org/10.1016/S0022-5193\(05\)80088-8](https://doi.org/10.1016/S0022-5193(05)80088-8)

705 Grafen, A. (1990b). Sexual selection unhandicapped by the Fisher process. *Journal of*
706 *Theoretical Biology*, 144(4), 473–516. [https://doi.org/10.1016/s0022-5193\(05\)80087-6](https://doi.org/10.1016/s0022-5193(05)80087-6)

707 Haines, C. D., Rose, E. M., Odom, K. J., & Omland, K. E. (2020). The role of diversity in
708 science: A case study of women advancing female birdsong research. *Animal Behaviour*,
709 168, 19–24. <https://doi.org/10.1016/j.anbehav.2020.07.021>

710 Harrison, J. S., & Patek, S. N. (2023). Developing elastic mechanisms: Ultrafast motion and
711 cavitation emerge at the millimeter scale in juvenile snapping shrimp. *Journal of*
712 *Experimental Biology*, 226, 2–14. <https://doi.org/10.1242/jeb.244645>

713 Heuring, W. L., & Hughes, M. (2019). It takes two: Seasonal variation in sexually dimorphic
714 weaponry results from divergent changes in males and females. *Ecology and Evolution*,
715 9(9), 5433–5439. <https://doi.org/10.1002/ece3.5136>

716 Heuring, W. L., & Hughes, M. (2020). Continuously choosy males and seasonally faithful
717 females: Sex and season differences underlie size-assortative pairing. *Animal Behaviour*,
718 160, 91–98. <https://doi.org/10.1016/j.anbehav.2019.12.003>

719 Hughes, M. (1996). Size assessment via a visual signal in snapping shrimp. *Behavioral Ecology*
720 and *Sociobiology*, 38(1), 51–57.

721 Hughes, M. (2000a). Deception with honest signals: Signal residuals and signal function in
722 snapping shrimp. *Behavioral Ecology*, 11(6), 614–623.
723 <https://doi.org/10.1093/beheco/11.6.614>

724 Hughes, M. (2000b). Deception with honest signals: Signal residuals and signal function in
725 snapping shrimp. *Behavioral Ecology*, 11(6), 614–623.
726 <https://doi.org/10.1093/beheco/11.6.614>

727 Hughes, M., Williamson, T., Hollowell, K., & Vickery, R. (2014). Sex and weapons: contrasting
728 sexual dimorphisms in weaponry and aggression in snapping shrimp. *Ethology*, 120(10),
729 982–994. <https://doi.org/10.1111/eth.12270>

730 Hunyadi, J., Currier, T., Modarres-Sadeghi, Y., Flammang, B. E., & Clotfelter, E. D. (2020).
731 Morphology, performance and fluid dynamics of the crayfish escape response. *Journal of*
732 *Experimental Biology*, 223(15). <https://doi.org/10.1242/jeb.219873>

733 Joseph, P. N., Emberts, Z., Sasson, D. A., & Miller, C. W. (2018). Males that drop a sexually
734 selected weapon grow larger testes. *Evolution*, 72(1), 113–122.
735 <https://doi.org/10.1111/evo.13387>

736 Kagaya, K., & Patek, S. N. (2016). Feed-forward motor control of ultrafast, ballistic movements.
737 *Journal of Experimental Biology*, 219(3), 319–333. <https://doi.org/10.1242/jeb.130518>

738 Kaji, T., Anker, A., Wirkner, C. S., & Palmer, A. R. (2018). Parallel saltational evolution of
739 ultrafast movements in snapping shrimp claws. *Current Biology*, 28(1), 106-113.e4.
740 <https://doi.org/10.1016/j.cub.2017.11.044>

741 Kingston, A. C. N., Woodin, S. A., Wethey, D. S., & Speiser, D. I. (2022). Snapping shrimp
742 have helmets that protect their brains by dampening shock waves. *Current Biology*,
743 32(16), 3576-3583.e3. <https://doi.org/10.1016/j.cub.2022.06.042>

744 Knowlton, N. (1980a). Sexual selection and dimorphism in two demes of a symbiotic, pair-
745 bonding snapping shrimp. *Evolution*, 34(1), 161–173. <https://doi.org/10.1111/j.1558-5646.1980.tb04802.x>

747 Kotiaho, J., Alatalo, R. V., Mappes, J., & Parri, S. (1996). Sexual selection in a wolf spider: male
748 drumming activity, body size, and viability. *Evolution*, 50(5), 1977–1981.
749 <https://doi.org/10.1111/j.1558-5646.1996.tb03584.x>

750 Kotiaho, J. S. (2000). Testing the assumptions of conditional handicap theory: costs and
751 condition dependence of a sexually selected trait. *Behavioral Ecology and Sociobiology*,
752 48(3), 188–194. <https://doi.org/10.1007/s002650000221>

753 Kotiaho, J. S. (2001). Costs of sexual traits: a mismatch between theoretical considerations and
754 empirical evidence. *Biological Reviews*, 76(3), 365–376.
755 <https://doi.org/10.1017/S1464793101005711>

756 Kotiaho, J. S., Alatalo, R. V., Mappes, J., Nielsen, M. G., Parri, S., & Rivero, A. (1998).
757 Energetic costs of size and sexual signalling in a wolf spider. *Proceedings of the Royal
758 Society B: Biological Sciences*, 265(1411), 2203. <https://doi.org/10.1098/rspb.1998.0560>

759 Kuris, A. (1990). *Crustacean Egg Production*. CRC Press. Leiden, Netherlands.

760 Lailvaux, S. P., Reaney, L. T., & Backwell, P. R. Y. (2009). Dishonest signalling of fighting
761 ability and multiple performance traits in the fiddler crab *Uca mjoebergi*. *Functional
762 Ecology*, 23(2), 359–366. <https://doi.org/10.1111/j.1365-2435.2008.01501.x>

763 LeBas, N. R. (2006). Female finery is not for males. *Trends in Ecology & Evolution*, 21(4), 170–
764 173. <https://doi.org/10.1016/j.tree.2006.01.007>

765 Liu, X., Hayashi, F., Lavine, L. C., & Yang, D. (2015). Is diversification in male reproductive
766 traits driven by evolutionary trade-offs between weapons and nuptial gifts? *Proceedings
767 of the Royal Society B: Biological Sciences*, 282(1807), 20150247.
768 <https://doi.org/10.1098/rspb.2015.0247>

769 Lohse, D., Schmitz, B., & Versluis, M. (2001). Snapping shrimp make flashing bubbles. *Nature*,
770 413(6855), 477–478. <https://doi.org/10.1038/35097152>

771 Longo, S. J., Cox, S. M., Azizi, E., Ilton, M., Olberding, J. P., Pierre, R. S., & Patek, S. N.
772 (2019). Beyond power amplification: latch-mediated spring actuation is an emerging
773 framework for the study of diverse elastic systems. *Journal of Experimental Biology*,
774 222(15). <https://doi.org/10.1242/jeb.197889>

775 Longo, S. J., St. Pierre, R., Bergbreiter, S., Cox, S., Schelling, B., & Patek, S. N. (2023).
776 Geometric latches enable tuning of ultrafast, spring-propelled movements. *Journal of
777 Experimental Biology*, 226 (2). <https://doi.org/10.1242/jeb.244363>

778 Møller, A. P., & de Lope, F. (1994). Differential costs of a secondary sexual character: an
779 experimental test of the Handicap Principle. *Evolution*, 48(5), 1676–1683.
780 <https://doi.org/10.1111/j.1558-5646.1994.tb02204.x>

781 Mappes, J., Alatalo, R. V., Kotiaho, J., & Parri, S. (1996). Viability costs of condition-dependent
782 sexual male display in a drumming wolf spider. *Proceedings of the Royal Society of*
783 *London. Series B: Biological Sciences*, 263(1371), 785–789.
784 <https://doi.org/10.1098/rspb.1996.0117>

785 Mathews, L. M. (2002a). Territorial cooperation and social monogamy: Factors affecting
786 intersexual behaviours in pair-living snapping shrimp. *Animal Behaviour*, 63(4), 767–
787 777. <https://doi.org/10.1006/anbe.2001.1976>

788 Mathews, L. M. (2002b). Tests of the mate-guarding hypothesis for social monogamy: does
789 population density, sex ratio, or female synchrony affect behavior of male snapping
790 shrimp (*Alpheus angulatus*)? *Behavioral Ecology and Sociobiology*, 51(5), 426–432.
791 <https://doi.org/10.1007/s00265-002-0465-3>

792 Mathews, L. M. (2007). Evidence for high rates of in-pair paternity in the socially monogamous
793 snapping shrimp *Alpheus angulosus*. *Aquatic Biology*, 1(1), 55–62.
794 <https://doi.org/10.3354/ab00007>

795 McCammon, A. M., & Brooks, W. R. (2014). Protection of host anemones by snapping shrimps:
796 A case for symbiotic mutualism? *Symbiosis*, 63(2), 71–78.
797 <https://doi.org/10.1007/s13199-014-0289-8>

798 Melnycky, N. A., Weladji, R. B., Holland, Ø., & Nieminen, M. (2013). Scaling of antler size in
799 reindeer (*Rangifer tarandus*): sexual dimorphism and variability in resource allocation.
800 *Journal of Mammalogy*, 94(6), 1371–1379. <https://doi.org/10.1644/12-MAMM-A-282.1>

801 Miller, C. W., Joseph, P. N., Kilner, R. M., & Emberts, Z. (2019). A weapons–testes trade-off in
802 males is amplified in female traits. *Proceedings of the Royal Society B: Biological*
803 *Sciences*, 286(1908), 20190906. <https://doi.org/10.1098/rspb.2019.0906>

804 Moczek, A. P., & Nijhout, H. F. (2004). Trade-offs during the development of primary and
805 secondary sexual traits in a horned beetle. *The American Naturalist*, 163(2), 184–191.
806 <https://doi.org/10.1086/381741>

807 Møller, A. P. (1988). Female choice selects for male sexual tail ornaments in the monogamous
808 swallow. *Nature*, 332(6165). <https://doi.org/10.1038/332640a0>

809 Møller, A. P. (1990). Male tail length and female mate choice in the monogamous swallow
810 *Hirundo rustica*. *Animal Behaviour*, 39(3), 458–465. [https://doi.org/10.1016/S0003-3472\(05\)80409-9](https://doi.org/10.1016/S0003-3472(05)80409-9)

812 Møller, A. P. (1992). Female swallow preference for symmetrical male sexual ornaments.
813 *Nature*, 357(6375), 238–240. <https://doi.org/10.1038/357238a0>

814 Mossolin, E. C., Shimizu, R. M., & Bueno, S. L. S. (2006). Population structure of *Alpheus*
815 *Armillatus* (Decapoda, Alpheidae) in São Sebastião and Ilhabela, Southeastern Brazil.
816 *Journal of Crustacean Biology*, 26(1), 48–54. <https://doi.org/10.1651/C-2561.1>

817 Nolan, B. A., & Salmon, M. (1970). The behavior and ecology of snapping shrimp (Crustacea:
818 *Alpheus heterochelis* and *Alpheus normanni*). *Forma et Functio*, 2, 289–335.

819 Nolazco, S., Delhey, K., Nakagawa, S., & Peters, A. (2022). Ornaments are equally informative
820 in male and female birds. *Nature Communications*, 13(1).
821 <https://doi.org/10.1038/s41467-022-33548-7>

822 Nordeide, J. T. (2002). Do male sticklebacks prefer females with red ornamentation? *Canadian*
823 *Journal of Zoology*, 80(8), 1344–1349. <https://doi.org/10.1139/z02-116>

824 Nur, N., & Hasson, O. (1984). Phenotypic plasticity and the handicap principle. *Journal of*
825 *Theoretical Biology*, 110(2), 275–297. [https://doi.org/10.1016/S0022-5193\(84\)80059-4](https://doi.org/10.1016/S0022-5193(84)80059-4)

826 Odom, K. J., & Benedict, L. (2018). A call to document female bird songs: Applications for
827 diverse fields. *The Auk*, 135(2), 314–325. <https://doi.org/10.1642/AUK-17-183.1>

828 Odom, K. J., Hall, M. L., Riebel, K., Omland, K. E., & Langmore, N. E. (2014). Female song is
829 widespread and ancestral in songbirds. *Nature Communications*, 5(1).
830 <https://doi.org/10.1038/ncomms4379>

831 Patek, S. N., & Longo, S. J. (2018). Evolutionary biomechanics: The pathway to power in
832 snapping shrimp. *Current Biology*, 28(3), R115–R117.
833 <https://doi.org/10.1016/j.cub.2017.12.033>

834 Penn, D. J., & Számadó, S. (2020). The Handicap Principle: How an erroneous hypothesis
835 became a scientific principle. *Biological Reviews*, 95(1), 267–290.
836 <https://doi.org/10.1111/brv.12563>

837 Pereira, A., Tracey, E., Cooney, P. C., Korey, C. A., & Hughes, M. (2014). Post-autotomy claw
838 regrowth and functional recovery in the snapping shrimp *Alpheus angulosus*. *Marine and*
839 *Freshwater Behaviour and Physiology*, 47(3), 147–159.
840 <https://doi.org/10.1080/10236244.2014.928460>

841 Pollo, P., & Kasumovic, M. M. (2022). Let's talk about sex roles: what affects perceptions of sex
842 differences in animal behaviour? *Animal Behaviour*, 183, 1–12.
843 <https://doi.org/10.1016/j.anbehav.2021.10.016>

844 Price, J. S., Allen, S., Faucheuix, C., Althnaian, T., & Mount, J. G. (2005). Deer antlers: A
845 zoological curiosity or the key to understanding organ regeneration in mammals? *Journal*
846 *of Anatomy*, 207(5), 603–618. <https://doi.org/10.1111/j.1469-7580.2005.00478.x>

847 R Core Team. (2018). *R: A Language and Environment for Statistical Computing*. R Foundation
848 for Statistical Computing. <https://www.R-project.org/>

849 Rahman, N., Dunham, D. W., & Govind, C. K. (2003). Social monogamy in the big-clawed
850 snapping shrimp, *Alpheus heterochelis*. *Ethology*, 109(6), 457–473.
851 <https://doi.org/10.1046/j.1439-0310.2003.00885.x>

852 Rahman, N., Dunham, D. W., & Govind, C. K. (2004). Mate choice in the big-clawed snapping
853 shrimp, *Alpheus heterochaelis* Say, 1818. *Crustaceana*, 77(1), 95–111.

854 Rahman, N., Govind, & Dunham. (2002). Size-assortative pairing in the big-clawed snapping
855 shrimp, *Alpheus heterochaelis*. *Behaviour*, 139(11–12), 1443–1468.
856 <https://doi.org/10.1163/15685390260514717>

857 Read, A. T., & Govind, C. K. (1991). Composition of external setae during regeneration and
858 transformation of the bilaterally asymmetric claws of the snapping shrimp, *Alpheus*
859 *heterochelis*. *Journal of Morphology*, 207(1), 103–111.
860 <https://doi.org/10.1002/jmor.1052070112>

861 Read, A. T., & Govind, C. K. (1997). Claw transformation and regeneration in adult snapping
862 shrimp: test of the inhibition hypothesis for maintaining bilateral asymmetry. *The*
863 *Biological Bulletin*, 193(3), 401–409. <https://doi.org/10.2307/1542942>

864 Riebel, K., Odom, K. J., Langmore, N. E., & Hall, M. L. (2019). New insights from female bird
865 song: towards an integrated approach to studying male and female communication roles.
866 *Biology Letters*, 15(4), 20190059. <https://doi.org/10.1098/rsbl.2019.0059>

867 RStudio Team. (2021). *RStudio: Integrated Development Environment for R*. RStudio.
868 <http://www.rstudio.com>

869 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
870 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V.,
871 Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for

872 biological-image analysis. *Nature Methods*, 9(7), 676–682.
873 <https://doi.org/10.1038/nmeth.2019>

874 Searcy, W. A., & Nowicki, S. (2005). *The Evolution of Animal Communication: Reliability and*
875 *Deception in Signaling Systems*. Princeton University Press.

876 Silliman, B. R., Layman, C. A., & Altieri, A. H. (2003). Symbiosis between an alpheid shrimp
877 and a xanthoid crab in salt marshes of mid-Atlantic states, U.S.A. *Journal of Crustacean*
878 *Biology*, 23(4), 876–879. <https://doi.org/10.1651/C-2410>

879 Simmons, L. W., & Emlen, D. J. (2006). Evolutionary trade-off between weapons and testes.
880 *Proceedings of the National Academy of Sciences*, 103(44), 16346–16351.
881 <https://doi.org/10.1073/pnas.0603474103>

882 Simmons, L. W., Lüpold, S., & Fitzpatrick, J. L. (2017). Evolutionary trade-off between
883 secondary sexual traits and ejaculates. *Trends in Ecology & Evolution*, 32(12), 964–976.
884 <https://doi.org/10.1016/j.tree.2017.09.011>

885 Somjee, U., Miller, C. W., Tatarnic, N. J., & Simmons, L. W. (2018b). Experimental
886 manipulation reveals a trade-off between weapons and testes. *Journal of Evolutionary*
887 *Biology*, 31(1), 57–65. <https://doi.org/10.1111/jeb.13193>

888 Tang-Martínez, Z. (2016). Rethinking Bateman's principles: challenging persistent myths of
889 sexually reluctant females and promiscuous males. *The Journal of Sex Research*, 53(4–5),
890 532–559. <https://doi.org/10.1080/00224499.2016.1150938>

891 Tibbetts, E. A., & Dale, J. (2004). A socially enforced signal of quality in a paper wasp. *Nature*,
892 432(7014). <https://doi.org/10.1038/nature02949>

893 Versluis, M., Schmitz, B., Heydt, A. von der, & Lohse, D. (2000). How snapping shrimp snap:
894 through cavitating bubbles. *Science*, 289(5487), 2114–2117.
895 <https://doi.org/10.1126/science.289.5487.2114>

896 Watson, N. L., & Simmons, L. W. (2010). Reproductive competition promotes the evolution of
897 female weaponry. *Proceedings of the Royal Society B: Biological Sciences*, 277(1690),
898 2035–2040. <https://doi.org/10.1098/rspb.2009.2335>

899 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemond, G.,
900 Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller,
901 K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., ... Yutani, H. (2019). Welcome to the

902 Tidyverse. *Journal of Open Source Software*, 4(43), 1686.
903 <https://doi.org/10.21105/joss.01686>

904 Wiersma, C. a. G. (1947). Giant nerve fiber system of the crayfish. A contribution to
905 comparative physiology of synapse. *Journal of Neurophysiology*, 10(1), 23–38.
906 <https://doi.org/10.1152/jn.1947.10.1.23>

907 Zahavi, A. (1977). The cost of honesty: further remarks on the handicap principle. *Journal of*
908 *Theoretical Biology*, 67(3), 603–605. [https://doi.org/10.1016/0022-5193\(77\)90061-3](https://doi.org/10.1016/0022-5193(77)90061-3)

909