


grid representation (Varol et al. 2018; Maturana and Scherer
2015). Moreover, the plane structure naturally enables the
model to benefit more directly from correlations between
neighboring locations within a plane than unstructured rep-
resentations like point clouds (Fan, Su, and Guibas 2017;
Qi et al. 2017) and implicit representations with per-point
queries (Saito et al. 2019, 2020; Mescheder et al. 2019). To
summarize, our contributions are two-fold: 1) we propose
the OPlanes representation for single view RGB-D human re-
construction; 2) we verify that exploiting correlations within
planes is beneficial for 3D human shape reconstruction as
illustrated in Fig. 1.

We evaluate the proposed approach on the challeng-
ing S3D (Hu et al. 2021) data and observe improvements
over prior reconstruction work (Saito et al. 2020; Chibane,
Alldieck, and Pons-Moll 2020) by a margin, particularly for
occluded or partially visible humans. We also provide a com-
prehensive analysis to validate each of the design choices and
results on real-world data.

2 Related Work
3D human reconstruction (Guan et al. 2009; Tong et al. 2012;
Yang et al. 2016; Zhang et al. 2017; Bogo et al. 2016; Lassner
et al. 2017; Guler and Kokkinos 2019; Kolotouros, Pavlakos,
and Daniilidis 2019; Xiang, Joo, and Sheikh 2019; Xu, Zhu,
and Tung 2019; Yu et al. 2017; Zheng et al. 2019; Varol et al.
2018) has been extensively studied for the last few decades.
We first discuss the most relevant works on single-view hu-
man reconstruction (Gabeur et al. 2019) and group them into
two categories, template-based models and non-parametric
models. Then we review the common 3D representations.
Template-based models for single-view human re-
construction. Parametric human models such as
SCAPE (Anguelov et al. 2005) and SMPL (Bogo
et al. 2016) are widely used for human reconstruction. These
methods (Kanazawa et al. 2018; Varol et al. 2018; Zheng
et al. 2019; Huang et al. 2020) use the human body shape
as a prior to regularize the prediction space and predict or
fit the low-dimensional parameters of a human body model.
Specifically, HMR (Kanazawa et al. 2018) learns to predict
the human shape by regressing the parameters of SMPL from
a single image. BodyNet (Varol et al. 2018) predicts a 3D
voxel grid of the human shape and fits the SMPL body model
to the predicted volumetric shape. DeepHuman (Zheng
et al. 2019) utilizes the SMPL model as an initialization and
further refines it with deep nets. Although parametric human
models are deformable and can capture various complex
human body poses and different body measurements, these
methods generally do not consider surface details such as
hair, clothing as well as accessories.
Non-parametric models for single-view human recon-
struction. Non-parametric methods for human reconstruc-
tion (Saito et al. 2019, 2020; He et al. 2020; Gabeur et al.
2019; Wang et al. 2020; Ren, Zhao, and Schwing 2021)
gained popularity recently as they are more flexible in recov-
ering surface details compared to template-based methods.
Among them, using implicit function (Sclaroff and Pentland
1991) to predict human shape achieves state-of-the-art re-
sults (Saito et al. 2020), showing that the expressivity of

neural nets enables to memorize the human body shape. To
achieve this, the task is usually formulated as a per-point
classification, i.e., classifying every point in a 3D space in-
dependently into either inside or outside of the observed
body. For this, PIFu (Saito et al. 2019) reconstructs the hu-
man shape from an image encoded into a feature map, from
which it learns an implicit function to predict per-point oc-
cupancy. PIFuHD (Saito et al. 2020) employs a two level
implicit predictor and incorporates normal information to re-
cover high quality surfaces. GeoPIFu (He et al. 2020) learns
additionally latent voxel features to encourage shape regular-
ization. Hybrid methods have also been studied (Huang et al.
2020; Cao et al. 2022), combining human shape templates
with a non-parametric framework. These methods usually
yield reconstruction results with surface details. However, in
common to all the aforementioned methods, the per-point
classification formulation doesn’t directly take correlations
between neighboring 3D points into account. Therefore, pre-
dictions remain noisy, particularly in challenging situations
with occlusions or partial visibility. Because of this, prior
works usually consider images where the whole human body
is visible and roughly centered. In contrast, for broader appli-
cability and more accurate results in challenging situations,
we propose the OPlanes representation.

3D representations. Various 3D representation have been
developed, such as voxel grids (Varol et al. 2018; Maturana
and Scherer 2015; Lombardi et al. 2019; Ren et al. 2022),
meshes (Lin, Wang, and Liu 2021; Wang et al. 2018; Wu
et al. 2022), point clouds (Qi et al. 2017; Fan, Su, and
Guibas 2017; Wu et al. 2020; Aliev et al. 2020), implicit
functions (Mescheder et al. 2019; Saito et al. 2019, 2020; He
et al. 2020; Hong et al. 2021; Peng et al. 2021), layered rep-
resentations (Shade et al. 1998; Zhou et al. 2018; Srinivasan
et al. 2019; Tucker and Snavely 2020; Zhao et al. 2022) and
hierarchical representations (Meagher 1982; Häne, Tulsiani,
and Malik 2017; Yu et al. 2021). For human body shape re-
construction, template-based representations (Anguelov et al.
2005; Bogo et al. 2016; Pavlakos et al. 2019; Osman, Bolkart,
and Black 2020) are also popular. The proposed OPlanes
representation combines the benefits of both layered and im-
plicit representations. Compared to voxel grids, OPlanes is
more flexible, enabling prediction at different resolutions due
to its implicit formulation of occupancy-prediction of an en-
tire plane. Compared to unstructured representations such as
implicit functions or point clouds, OPlanes benefits from its
increased context of a per-plane prediction as opposed to a
per-pixel/point prediction. Concurrently, Fourier occupancy
field (FOF) (Feng et al. 2022) proposes to use a 2D field
orthogonal to the view direction to represent the occupancy.
Different from FOF, where coefficients for Fourier basis func-
tions are estimated for each position on the 2D field, OPlanes
directly regress to the occupancy value.

3 Method

3.1 Overview

Given an RGB image, a depth map, a mask highlighting
the human of interest in the image as well as the intrinsic
camera parameters, our goal is to reconstruct a spatially-





plane prediction ÔHO×WO
zi

. Note that this design differs from
prior work, which predicts the occupancy for each point in-
dependently. In contrast, we find spatial neighborhood infor-
mation is useful to improve occupancy prediction accuracy.

For an accurate prediction, the fully convolutional

net fspatial(·) operates on image features FHO×WO

RGB ∈
R

HO×WO×C and depth features FHO×WO
zi

∈ R
HO×WO×C .

In the following we discuss the deep nets to compute the

image features FHO×WO

RGB and the depth features FHO×WO
zi

.

Image feature FRGB. The image feature FHO×WO

RGB is ob-
tained by bilinearly upsampling a low-resolution feature map
to the operating resolution HO ×WO. Concretely,

FHO×WO

RGB = UpSamplehO×wO→HO×WO
(FhO×wO

RGB ), (5)

where FhO×wO

RGB ∈ R
hO×wO×C is the RGB feature at the

coarse resolution of hO × wO. UpSamplehO×wO→HO×WO

refers to the standard bilinear upsampling.
The coarse resolution RGB feature is obtained via

FhO×wO

RGB = fRGB(fFPN(ÎRGB)), (6)

where ÎRGB ∈ R
H×W×5 is the concatenation of IRGB and

two simple features (see appendix). fFPN is the Feature Pyra-
mid Network (FPN) backbone (Lin et al. 2017) and fRGB is
another fully-convolutional network for further processing.
Depth feature Fzi . The depth feature FHO×WO

zi
for an oc-

cupancy plane at depth zi encodes for every pixel [x, y] the
difference between the query depth zi and the depth at which
the object first intersects with the camera ray. Concretely, we
obtain the depth feature via

FHO×WO
zi

= fdepth(I
HO×WO
zi

), (7)

where fdepth is a fully convolutional network to process the

depth difference image IHO×WO
zi

.

The depth difference image IHO×WO
zi

is constructed to
capture the difference between the query depth zi and the
depth at which the object first intersects with the camera
ray. I.e., for each pixel [x, y],

IHO×WO
zi

[x, y] = PE(zi − Depth[x, y]), (8)

where PE(·) is the positional encoding operation (Vaswani
et al. 2017). Intuitively, the depth difference image Izi repre-
sents how far every point on the plane at depth zi is behind
or in front of the front surface of the observed human.

3.4 Training

The developed deep net to predict OPlanes is fully differen-
tiable. We use θ to subsume all trainable parameters within
the spatial network fspatial (Eq. (4)), the FPN network fFPN,
the RGB network fRGB (Eq. (6)), and the depth network fdepth

(Eq. (7)). Further, we use Ôθ to refer to the predicted occu-
pancy planes when using the parameter vector θ. We train
the deep net to predict OPlanes end-to-end with two losses
by addressing

min
θ

LHO×WO

θ + LhO×wO

θ . (9)

Here, LHO×WO

θ is the loss computed at the final prediction

resolution of HO × WO, while LhO×wO

θ is used to super-
vise intermediate features at the resolution of hO × wO. We
discuss both losses next.
Final prediction supervision via LHO×WO

θ . During train-
ing, we randomly sample N depth values from the view
frustum range [zmin, zmax] to obtain the set of depth val-
ues of interest ZN (Sec. 3.2). For this, we use zmin =
min{Depth[x, y] | Mask[x, y] == 1} by only considering
depth information within the target mask. Essentially, we
find the depth value that is closest to the camera. We set
zmax = zmin + zrange, where zrange marks the depth range we
are interested in. During training, zrange is computed from
the ground-truth range which covers the target mesh. During
inference, we set zrange = 2 meters to cover the shapes and
gestures of most humans.

The high resolution supervision loss LHO×WO

θ consists of

two terms. Namely LHO×WO

θ ,

λBCE · LBCE(O
HO×WO , ÔHO×WO

θ , MaskHO×WO , zmin, zmax)+

λDICE · LDICE(O
HO×WO , ÔHO×WO

θ , MaskHO×WO , zmin, zmax).
(10)

Here, LBCE is the binary cross entropy (BCE) loss while
LDICE is the DICE loss (Milletari, Navab, and Ahmadi 2016).
Both losses operate on the ground-truth OPlanes OHO×WO

downsampled from the original resolution H × W , the

OPlanes ÔHO×WO

θ predicted with the current deep net pa-

rameters θ, and the human mask MaskHO×WO downsampled
from the raw mask. Note, we only consider points behind
the human’s front surface when computing the loss, i.e., on

a plane Ôzi , we only consider {[x, y]|zi ≥ Detph[x, y]}. For
readability, we drop the superscript HO ×WO in the follow-
ing. The BCE loss is computed via LBCE =

1

|ZN |·Sum(Mask)

∑

zi∈ZN

x,y:Mask[x,y]=1

(
Ozi [x, y] · log Ôzi [x, y]

+ (1−Ozi [x, y]) · log(1− Ôzi [x, y])

)
, (11)

where Sum(Mask) is the number of pixels within the target’s
segmentation mask and x, y : Mask[x, y] = 1 emphasizes
that we only compute BCE loss on pixels within the mask.

Moreover, thanks to the occupancy plane representation
inspired by semantic segmentation tasks, we can utilize the
DICE loss from the semantic segmentation community to su-
pervise the occupancy training. Specifically, we use LDICE =

1

|ZN |

∑

zi∈ZN

2 · Sum(Mask ·Ozi · Ôzi)

Sum(Mask ·Ozi) + Sum(Mask · Ôzi)
. (12)

This is useful because there can be a strong imbalance be-
tween the number of positive and negative labels in an OPlane
Ozi due to human gestures. The DICE loss has been shown
to compellingly deal with such situations (Milletari, Navab,
and Ahmadi 2016).

Intermediate feature supervision via LhO×wO

θ . Besides su-

pervision of the final occupancy image Ôzi discussed in the



preceding section, we also supervise the intermediate features

FhO×wO

RGB (Eq. (6)) via the loss LhO×wO

θ . Analogously to the

high-resolution loss, we use two terms, i.e., LhO×wO

θ ,

λBCE · LBCE(O
hO×wO , ÔhO×wO

θ , MaskhO×wO , zmin, zmax)+

λDICE · LDICE(O
hO×wO , ÔhO×wO

θ , MaskhO×wO , zmin, zmax).
(13)

Different from the high-resolution representation, we predict
the OPlanes representation at the coarse resolution hO × wO

via

ÔhO×wO
zi

[x, y] = 〈FhO×wO

RGB [x, y, ·], FhO×wO
zi

[x, y, ·]〉,
(14)

where 〈·, ·〉 is the inner-product operation and

FhO×wO

RGB [x, y, ·] represents the feature vector at the

pixel location [x, y]. To obtain FhO×wO
zi

, we feed the down-

sampled difference image IhO×wO
zi

into fdepth. Intuitively,
we use the inner product to encourage the image feature

FhO×wO

RGB to be strongly correlated to information from the

depth feature FhO×wO
zi

.

3.5 Inference

During inference, to reconstruct a mesh from predicted

OPlanes Ô, we first establish an occupancy grid before
running a marching cube (Lorensen and Cline 1987) algo-
rithm to extract the isosurface. Specifically, we uniformly
sample N depths in the view frustum between depth range
[zmin, zmin + 2.0], e.g., N = 256. Here 2.0 is a heuristic
depth range which covers most human poses (Sec. 3.4). The
network predicts an occupancy for each pixel on those N
planes. Importantly, since OPlanes represent occupancy cor-
responding to slices through the view frustum, a marching
cube algorithm is not directly applicable. Instead, we first
establish a voxel grid to cover the view frustum between
[zmin, zmin + 2.0]. Each voxel’s occupancy is sampled from
the predicted OPlanes before a marching cube method is
used. We emphasize that the number of planes do not need
to be the same during training and inference, which we will
show later. This ensures that the OPlanes representation is
memory efficient at training time while enabling accurate
reconstruction at inference time.

4 Experiments

4.1 Implementation Details

Here we introduce key implementation details. Please see the
appendix for more information. During training, the input
has a resolution of H = 512 and W = 512. We operate at
HO = 256, WO = 256, while the intermediate resolution
is hO = 128 and wO = 128. During training, for each
mesh, we randomly sample N = 10 planes in the range of
[zmin, zmax] at each training iteration. I.e., the set ZN contains
10 depth values. As mentioned in Sec. 3.4, during training,
we set zmax to be the ground-truth mesh’s furthest depth.

The four deep nets, which we detail next, are mostly con-
volutional. We use (in, out, k) to denote the input/output
channels and the kernel size of a convolutional layer.

Spatial network fspatial (Eq. (4)): It’s a three-layer convolu-
tional neural net (CNN) with a configuration of (256, 128, 3),
(128, 128, 3), (128, 1, 1). We use group norm (Wu and He
2018) and ReLU activation.
Feature pyramid network fFPN (Eq. (6)): We use
ResNet50 (He et al. 2016) as the backbone of our FPN net-
work. We use the output of each stage’s last residual block as
introduced in (Lin et al. 2017). The final output of this FPN
has 256 channels and a resolution of H

4 × W
4 .

RGB network fRGB (Eq. (6)): It’s a three-layer CNN with a
configuration of (256, 128, 3), (128, 128, 3), (128, 128, 1).
We use group norm (Wu and He 2018) and ReLU activation.
Positional encoding PE (Eq. (8)): We follow (Vaswani et al.
2017) to define PE(pos) =

(PE0(pos), PE1(pos), . . . , PE63(pos), PE64(pos)) , (15)

where PE2t(pos) = sin( 50·pos

2002t/64
) and PE2t+1(pos) =

cos( 50·pos

2002t/64
).

Depth difference network fdepth (Eq. (7)): It’s a two-layer
CNN with a configuration of (64, 128, 1), (128, 128, 1). We
use group norm (Wu and He 2018) and ReLU activation.

To train the networks, we use the Adam (Kingma and
Ba 2015) optimizer with a learning rate of 0.001. We set
λBCE = 1.0 and λDICE = 1.0 (Eq. (10) and Eq. (13)). We set
the batch size to 4 and train for 15 epochs. It takes around 22
hours to complete the training using an AMD EPYC 7543
32-Core Processor and an Nvidia RTX A6000 GPU.

4.2 Experimental Setup

Dataset. We utilize S3D (Hu et al. 2021) to train our OPlanes-
based human reconstruction model. S3D is a photo-realistic
synthetic dataset built on the game GTA-V, providing ground-
truth meshes together with masks and depths. To construct
our train and test set, we sample 27588 and 4300 meshes from
its train and validation split respectively. This dataset differs
from counterparts in prior works (Saito et al. 2019, 2020;
He et al. 2020; Alldieck, Zanfir, and Sminchisescu 2022):
there are no constraints on the appearance of humans in the
images. In our dataset, humans appear with any gestures, any
sizes, any position, and any level of occlusion. In contrast,
humans in datasets of prior work usually appear in an upright
position and are mostly centered in an image while exhibiting
little to no occlusion. We think this setup strengthens the
generalization ability. See Fig. 3 for some examples.
Baselines. We compare to PIFuHD (Saito et al. 2020) and IF-
Net (Chibane, Alldieck, and Pons-Moll 2020). 1) PIFuHD:
since there is no training code available, we test with the
officially-released checkpoints. Following the author’s sug-
gestion in the public code repository1 to improve the recon-
struction quality, we 1.1) remove the background with the
ground-truth mask; 1.2) apply human pose detection (Osokin
2018) and crop the image accordingly to place the human
of interest in the center of the image. 2) IF-Net: we evalu-
ate with the officially-released checkpoint. IF-Net uses a 3D
voxel grid representation. We set the resolution of the grid to
256 to align with the pretrained checkpoint.

1https://github.com/facebookresearch/pifuhd



Table 1: Quantitative results. Each result averages three runs with different seeds and is reported in the format of mean±std.
OPlanes improve upon PIFuHD by a margin (1st vs. 6th row) and outperform IF-Net in almost all metrics (2nd vs. 6th row). We
also verify the design choices via an ablation study reported in the 3rd to 5th row. For all OPlanes results, we predict occupancy
using 256 planes per mesh during inference, while using 10 or less planes per mesh when training.

OPlane
fspatial

Kernel Size
LhO×wO

θ

#Planes
in Train

IoU↑ Cham-L1 ↓
Normal
Consist.

↑

1 PIFuHD (Saito et al. 2020) 7 - - - 0.428 0.332 0.677
2 IF-Net (Chibane, Alldieck, and Pons-Moll 2020) 7 - - - 0.584 0.216 0.802

3 NoNeighborInfo 3 1× 1 3 5 0.679±0.013 0.158±0.007 0.738±0.005

4 NoInterSupervision 3 3× 3 7 5 0.681±0.013 0.161±0.008 0.739±0.005

5 LessPlanes 3 3× 3 3 5 0.684±0.013 0.158±0.008 0.747±0.005

6 OursFull 3 3× 3 3 10 0.691±0.013 0.155±0.008 0.749±0.005

Evaluation metrics. We focus on evaluating the qual-
ity of the reconstructed geometry. Following prior
works (Mescheder et al. 2019; Saito et al. 2019, 2020; He et al.
2020; Alldieck, Zanfir, and Sminchisescu 2022; Huang et al.
2020; He et al. 2021), we report the Volumetric Intersection
over Union (IoU), the bi-directional Chamfer-L1 distance,
and the Normal Consistency. Please refer to the supplemen-
tary material of (Mescheder et al. 2019) for more details on
these metrics. To compute the IoU, we need a finite space to
sample points. Since humans in our data appear anywhere in
3D space, the implicit assumption of prior works (Saito et al.
2019, 2020; He et al. 2020) that there exists a fixed bounding
box for all objects does not hold. Instead, we use the view
frustum between depth zmin and zmax as the bounding box.
Note, for evaluation purposes, zmax utilizes the heuristic zrange

of 2.0 meters (Sec. 3.4). We sample 100k points for an unbi-
ased estimation. When computing the Chamfer distance, we
need to avoid that the final aggregated results are skewed by a
scale discrepancy between different objects. We follow (Fan,
Su, and Guibas 2017; Mescheder et al. 2019) and let 1

10 of
each object’s ground-truth bounding box’s longest edge cor-
respond to a unit of one when computing Chamfer-L1. To
resolve the discrepancy between the orthogonal projection
and the perspective projection, we utilize the iterative-closest-
point (ICP) (Besl and McKay 1992) algorithm to register
the reconstruction of baselines to the ground-truth, follow-
ing (Alldieck, Zanfir, and Sminchisescu 2022). ICP is not
applied to our OPlanes method since we directly reconstruct
the human in the camera coordinate system.

4.3 Quantitative Results

In Tab. 1 we provide quantitative results, comparing to base-
lines in the 1st/2nd vs. 6th row. For a fair comparison when
computing the results, we reconstruct the final geometry in a
2563 grid. Although 256 OPlanes are inferred, we train with
only 10 planes per mesh in each iteration.
PIFuHD (Saito et al. 2020): The OPlanes representation
outperforms the PIFuHD results by a margin. Specifically,
our results exhibit a larger volume overlap with the ground-
truth (0.691 vs. 0.428 on IoU, ↑ is better), more completeness
and accuracy (0.155 vs. 0.332 on Chamfer distance, ↓ is
better), and more fine-grained details (0.749 vs. 0.677 on
normal consistency, ↑ is better).
IF-Net (Chibane, Alldieck, and Pons-Moll 2020): We also
compare to the depth-based single-view reconstruction ap-
proach IF-Net. The results are presented in row 2 vs. 6

in Tab. 1. We find that IF-Net struggles to reconstruct hu-
mans which are partly occluded or outside the field-of-view
(see Fig. 3 and Fig. 4 for some examples). More impor-
tantly, we observe IF-Net to yield inferior results with respect
to IoU (0.584 vs. 0.691, ↑ is better) and Chamfer distance
(0.216 vs. 0.155, ↓ is better). Notably, we find the high nor-
mal consistency of IF-Net to be due to the high-resolution
voxel grid, which provides more details.

4.4 Analysis

To verify design choices, we conduct ablation studies. We
report the results in Tab. 1’s 3rd to 5th row.

Per-point classification is not all you need: To understand
whether neighboring information is needed, we replace the
3× 3 kernel in fspatial (Eq. (4), Sec. 4.1) with a 1× 1 kernel,
which essentially conducts per-point classification for each
pixel on the OPlane. Comparing the 3rd vs. 5th row in Tab. 1
corroborates the importance of context as per-point classifica-
tion yields inferior results. This shows that the conventional
way to treat shape reconstruction as a point classification
problem (Saito et al. 2019, 2020; He et al. 2020) may be sub-
optimal. Specifically, without directly taking into account the
context information, we observe lower IoU (0.679 vs. 0.684)
and less normal consistency (0.738 vs. 0.747).

Intermediate supervision is important: To understand
whether the supervision of intermediate features is needed,

we train our OPlanes without LhO×wO

θ (Eq. (13)). The results

in Tab. 1’s 4th vs. 5th row verify the benefits of intermediate
supervision. Concretely, with intermediate feature supervi-
sion, we obtain a better IoU (0.684 vs. 0.681, ↑ is better), an
improved Chamfer distance (0.158 vs. 0.161, ↓ is better), and
a better normal consistency (0.747 vs. 0.739, ↑ is better).

Training with more planes is beneficial: We are curious
about whether training with less planes harms the perfor-
mance of our OPlanes model. For this, we sample only 5
planes per mesh when training the OPlanes model. The re-
sults in the 5th vs. 6th row in Tab. 1 demonstrate that training
with more planes yields better results. Concretely, with more
planes, we obtain better IoU (0.691 vs. 0.684, ↑ is better),
smaller Chamfer distance (0.155 vs. 0.158, ↓ is better), and
better normal consistency (0.749 vs. 0.747, ↑ is better).

4.5 Qualitative Results

S3D. We provide qualitative results in Fig. 3. OPlanes suc-
cessfully handle various human gestures and different levels
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Supplementary Material:

Occupancy Planes for Single-view RGB-D Human Reconstruction

This supplementary material is structured as follows:

1. Sec. A: Implementation details

2. Sec. B: Additional quantitative results

A Implementation Details

A.1 Input to Image Feature Extractor

To extract the image features FhO×wO

RGB = fRGB(fFPN(ÎRGB)) (see Eq. (6)), instead of feeding the raw RGB image IRGB ∈
R

H×W×3 into the FPN backbone, we first concatenate the image IRGB with two simply-processed one-channel features which

are concatenated to the image along the channel dimension. We therefore use ÎRGB ∈ R
H×W×5, which will be fed into the

FPN, i.e., FhO×wO

RGB = fRGB(fFPN(ÎRGB)). The two one-channel features are: 1) for each pixel, we compute the distance to the
visibility mask’s boundary; 2) we detect edges with the help of a Farid filter (Farid and Simoncelli 2004).

A.2 Visualization

Even though occupancy planes learn a high-quality inductive bias for single-view RGB-D human reconstruction, floating artifacts
behind the visible surfaces are possible as inferring invisible parts is an ill-posed problem. For a smooth visualization, we utilize
1) the smoothing function in PyMCubes 2; 2) the GraphCut algorithm (Boykov and Kolmogorov 2004) in medpy 3. Importantly,
note that we only apply this post-processing for visualization purposes and we never use this post-processing when reporting
quantitative results.

B More Quantitative Results

B.1 Performance across Various Visibility Levels

Since OPlanes can deal with humans of various visibilities, we are interested in understanding how the proposed approach
performs across different partial visibility levels. We present results with respect to different visibility levels in Tab. S1. To
compute the visibility we use three steps: 1) we uniformly sample 100k points within the complete mesh of the human; 2)
we project those 100k 3D points onto the 2D image and count the number of points which are in view; 3) the level of partial
visibility is computed as the ratio of in-view points, i.e., the number of in-view points divided by 100k. We also explicitly
consider the fully visible humans in the 4th row of Tab. S1. Results for different visibility ranges are provided in the 1st to 3rd row
of Tab. S1. As expected, the more visible the human, the better the model performs. Specifically, comparing full visibility to low
visibility (4th vs. 1st row), we obtain higher IoU (0.707 vs. 0.668), smaller Chamfer distance (0.109 vs. 0.289), and more normal
consistency (0.759 vs. 0.703). However, it is notable that the drop in performance is not very severe.

To verify this, we also report IF-Net and PIFuHD results for each visibility range in Tab. S1. Specifically, comparing the
4th vs. 1st row, we observe: 1) for IoU (↑ is better), IF-Net’s performance drops from 0.644 to 0.365 and PIFuHD results drop
from 0.533 to 0.131; 2) for Chamfer distance (↓ is better), IF-Net results deteriorate from 0.134 to 0.444 and PIFuHD results
worsen from 0.214 to 0.702; 3) for Normal consistency (↑ is better), IF-Net results drop from 0.828 to 0.715 while PIFuHD
results drop from 0.734 to 0.543. Summarizing the three observations, we find OPlanes to be more robust to partial visibility.

Table S1: Performance across various visibility levels. For each cell, we report in the format of OPlane / IF-Net / PIFuHD.
Each OPlane result is averaged over three runs with different seeds and is reported in the format of mean±std. The column
“Visibility Range” refers to the range of the visibility percentage of a mesh. The higher the more visible. #Data denotes the
number of evaluation entries in the corresponding range (row of the table). We report the overall performance in the 5th row while
the 1st to 4th rows provide more fine-grained results. Note, the 4th row presents results for fully-visible objects. As expected,
when the visibility drops, the performance drops too.

Partial
Visibility

Visibility
Range

#Data IoU↑ Cham-L1 ↓
Normal

Consistency
↑

1 Low [0.069, 0.379) 64 0.668±0.021 / 0.365 / 0.131 0.289±0.023 / 0.444 / 0.702 0.703±0.008 / 0.715 / 0.543
2 Middle [0.379, 0.690) 552 0.618±0.013 / 0.376 / 0.172 0.291±0.012 / 0.461 / 0.654 0.710±0.006 / 0.731 / 0.559
3 High [0.690, 1.000) 2167 0.699±0.013 / 0.602 / 0.429 0.149±0.008 / 0.204 / 0.322 0.753±0.005 / 0.805 / 0.672
4 Full [1.000, 1.000] 1517 0.707±0.013 / 0.644 / 0.533 0.109±0.006 / 0.134 / 0.214 0.759±0.005 / 0.828 / 0.734

5 - [0.069, 1.000] 4300 0.691±0.013 / 0.584 / 0.428 0.155±0.008 / 0.216 / 0.332 0.749±0.005 / 0.802 / 0.677

2https://github.com/pmneila/PyMCubes
3https://github.com/loli/medpy/


