






2.4. Other Video Segmentation Tasks

Apart from the aforementioned tasks, other video segmen-

tation tasks have been proposed. Video object segmentation

(VOS) [53] uses given ground truth segmentations of objects

(belonging to any category) in the first frame to track the

objects throughout the video [11, 21, 23, 24, 40, 46, 48, 59].

Video semantic segmentation (VSS) [14, 20, 31] requires

pixel-wise categorization of a video, an extension of the

image segmentation task. In this work, we are interested in

objects from known categories (unlike VOS) whose identi-

ties need to be associated over time (unlike VSS). Hence, we

don’t tackle these two tasks.

2.5. General Video Segmentation

Recently there has been progress in unifying video related

segmentation tasks or tracking tasks. TubeFormer [29] uni-

fies VSS, VPS and VIS by offline processing of entire videos

using dual-path transformer blocks with local and global

memory. Unicorn [55] unifies many tracking tasks via a sep-

arate frame-level and instance level embedding. However,

despite these attempts, there remains a gap between tracking

and video segmentation tasks, and little efforts have been

made to unify both video segmentation and tracking.

3. Context-Aware Relative Object Query Prop-

agation

3.1. Overview

Given a video, the goal of video instance segmentation

is to predict the classes for a set of objects of interest in

the video and the corresponding instance-level segmentation

masks of the objects at every frame. To achieve this goal,

we adopt a meta-architecture similar to recent works [9, 10].

However note, our approach is flexible enough to be used

with other query-based meta-architectures like [7]. As il-

lustrated in Fig. 2, similar to prior work [9, 10], our meta-

architecture consists of a backbone (bb.) feature extractor

for frames, a pixel decoder (pd.) to generate high-resolution

image features, and a transformer decoder (td.) to generate

meaningful object queries. An object’s class is computed

every frame from the object query using a linear layer fol-

lowing [9]. The segmentation mask of an object at every

frame is computed by passing the object query through linear

layers, followed by an inner product between the output of

the linear layers and high-resolution image features coming

from the pixel decoder.

Using this meta-architecture, every frame of a video can

be processed independently. But it is unclear how to extend

the architecture to video segmentation tasks, where segmen-

tations need to be linked across time. This is because 1)

online frame-by-frame processing has limited temporal con-

text and frame-by-frame or clip-by-clip methods require a

post processing association step; 2) offline processing of the

entire video using global object queries doesn’t accurately

encode the position-changes of objects across frames and

doesn’t scale to long videos.

To address both concerns, as illustrated in Fig. 2, we se-

quentially process each frame τ of the given video with a

transformer-based refinement of context-aware relative ob-

ject queries across frames. We first discuss the propagation

of object queries from one frame to the next (Sec. 3.2). We

then describe the use of relative position encodings (Sec. 3.3)

for computing the relative object queries. Finally we dis-

cuss the processing of a single frame with temporal context

(Sec. 3.4). Please see the supplementary material for more

training details.

3.2. Propagation of Object Queries

Given the t-th input frame τt, we define the query vectors

qτt ∈ R
N×C to be a collection of N object queries (each of

which is C dimensional) which represent a maximum of N

objects in the entire video. Importantly, the query vectors

qτt represents two kinds of objects: (a) expressed objects

which appear in the current frame τt; and (b) nascent objects

which are absent in τt but have appeared previously, or are

yet to appear. Query vectors attend to itself via self-attention

and to image features via cross-attention, both using a new

relative positional encoding, discussed in Sec. 3.3.

We introduce the idea of representing all objects in a

video by a single set of query vectors. This allows us to

seamlessly use the same query vectors again and again for

new frames: (a) to detect new objects, (b) to remove disap-

pearing objects, and (c) to retain existing objects without any

bells and whistles. This differs from and is simpler than prior

work [38], where new object queries are initialized at every

frame, are concatenated with the old object queries, and are

passed through attention layers to remove redundancies.

Fig. 2 illustrates the proposed query vector propagation

approach. Orange and blue borders and arrows represent

input, output, features and queries corresponding to the first

frame τ0 (orange) in a video and the t-th frame τt (blue).

For the first input frame τ0, the query vectors qτ0 are

obtained from learnt query embeddings qe ∈ R
N×C and

refined via multi-level context-features described in Sec. 3.4.

Intuitively, the learnt query embeddings qe act as abstract pro-

posals for the objects in the frame. Subsequent transformer

decoder layers successively refine the initial proposals qe
into the final query vectors qτ0 , which are obtained after qe
is modified by L+ 1 transformer decoder layers (l0, . . . , lL)

as shown in Fig. 2.

As the appearance of objects changes gradually across

frames, the final query vectors qτt−1
obtained in frame τt−1

contain valuable information about the next frame τt. We

leverage the redundancies across frames and only use qτt−1

as proposals for the current frame τt. Importantly, we don’t

use the abstract query embeddings qe to generate the query

vectors qτt for the current frame, as qτt−1
already contains

meaningful information about frame τt. Hence, we find
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fewer transformer decoder layers, i.e., l1, . . . , lL, are enough

to modulate the existing objects’ appearances, express new

objects that were nascent in the previous frame, or suppress

old objects that are nascent in the current frame. For this, l0
is skipped, as shown in Fig. 2.

We now make this process more formal. For frame τt, we

denote the query vectors modified by the l-th transformer de-

coder layer as qlτt . We obtain qlτt by masked cross-attention,

self-attention and feed forward operations following [9]. The

cross-attention operation is formulated as follows:

qlτt = softmax(Ml−1
τt

+ αrel,l
τt

)V lU l
τt
+ qprev, (1)

where qprev = 1{l ̸=1}[q
l−1
τt

] + 1{l=1}[qτt−1
]. Moreover,

Ml−1
τt

∈ {0,−∞}N×HlW lT is the attention mask from

the previous layer following [9], αrel,l
τt

∈ R
N×HlW lT is

the relative attention matrix described in Sec. 3.3, U l
τ ∈

R
HlW lT×C are the context features from the pixel decoder

as described in Sec. 3.4 and V l is a linear transformation

for the context features. H lW lT represents the flattened

context features of height H l, width W l and context length

T . The final set of query vectors is the output from the last

decoder layer, i.e., qτt = qLτt .

3.3. Relative Object Queries
We now discuss the relative attention matrix αrel,l

τt
em-

ployed in Eq. (1) which is used to compute the relative object

queries. We observe that relative positional encodings are

crucial for accurate results. This differs from the use of

absolute encodings in prior work, which often cause query

vectors to overly rely on spatial positions in the image space

(as seen in Fig. 1).

Transformer-based image detection/segmentation mod-

els [7,9] use absolute spatial encodings to represent ordering

of tokens while calculating self- or cross-attention. Video

segmentation models [8, 49] extend this to use absolute

spatio-temporal encodings. However, we observe an abso-

lute spatio-temporal encoding to create an unwanted depen-

dency of the query vectors on the spatial position of objects.

To illustrate this, let the cross-attention matrix with absolute

encodings for frame τt and decoder-layer l be called αabs,l
τt

.

Following [8], αabs,l
τt

can be written as follows:

αabs,l
τt

= Ql(qprev + ξQ)[K
l(U l

τt
+ ξK)]¦. (2)

Here, Kl and Ql are linear transformations for context fea-

tures U l
τt

and query vectors qprev respectively; ξQ ∈ R
N×C

and ξK ∈ R
HlW lT×C refer to the absolute learnt posi-

tion encodings for qprev and absolute sinusoidal position

encodings for U l
τt

following [9]. Absolute positional en-

codings cause object queries to depend on the temporary

positions of objects in the given frame. This can be seen

when Eq. (2) is expanded. The terms QlξQU
l
τt

¦
Kl¦ and

QlqprevξK
¦Kl¦ combine positions and content of qprev

and U l
τt

. The term QlξQξK
¦Kl¦ operates purely on posi-

tional encodings. This mix of content and positions of object

queries and context-features is not desirable in a temporal

setting because it causes object queries to not capture motion

properly. In addition, when an object replaces another object

spatially, identity switches are common. This observation

has been made previously in language modeling tasks [13],

but has not been addressed for video segmentation.

To address this concern, we propose to introduce relative

positional encodings to compute the self and cross-attention

operations in the transformer decoder as shown in Fig. 2. The

idea is to encode the relative positional information between

qprev and U l
τt

, instead of injecting the absolute positions,

which helps to incorporate temporal information.

In particular, the cross attention matrix αrel,l
τt

for the τt-th

frame and level l of the transformer decoder is computed as

follows:

αrel,l
τt

= QlqprevU l
τt

¦
Kl¦ +Qlqprevξrel,l

¦
Kl¦. (3)

Here, ξrel,l ∈ R
HlW lT×C refers to the relative positional en-

codings. Each element of ξrel,l is a relative distance between

two positions. See the supplementary material for more.

3.4. Processing of a Single Frame With Context

To obtain predictions for a single frame τt, as shown in

Fig. 2, the frame is first passed through the backbone and

the pixel decoder and flattened to obtain multi-level image-

features uτt = {ul
τt
}, where ul

τt
∈ R

HlW l×C . Here, l

denotes the level. We define context-features as a temporary

bank of multi-level image features for T consecutive frames

(T − 1 past frames and uτt) as shown in Fig. 2. T refers to

the context-length. The context-features U l
τt

∈ R
HlW lT×C

for level l can be represented as follows:

U l
τt

= [ul
τt−T+1

, . . . , ul
τt−1

, ul
τt
]. (4)

Features from frames older than τt−T+1 are discarded from

the bank.

To generate the query vectors qτt for the current frame τt,

the context features are passed to the transformer-decoder in

a round robin fashion, where they are used to modulate the

object queries (as discussed in Sec. 3.2). Importantly, the

object queries attend to the multi-level image features for

all the T frames at once for predictions in the current frame

τt. The use of context better captures spatio-temporal details

than using only the current frame features.

The query vectors qτt for frame τt are used to obtain

the predicted class and segmentation masks for all objects

in frame τt using linear layers (omitted in Fig. 2 for read-

ability). The output from the class head is the matrix

Cτt ∈ [0, 1]N×(M+1), which indicates for each of the N

object proposals a probability distribution over the M cat-

egories (with an additional no-object category) which are
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OVIS Youtube-VIS 2019 Youtube-VIS 2021

Method Bb. Steps FPS Onl. AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

MaskTrack [56] R50 D+A 26.1 ✓ 10.8 25.3 8.5 7.9 14.9 30.3 51.1 32.6 31.0 35.5 28.6 48.9 29.6 26.5 33.8

IFC [25] (T=5) R50 D+A 46.5 ✓ - - - - - 41.0 62.1 45.4 43.5 52.7 - - - - -

DeVIS [5] (T=6, S=4) R50 D+A 18.4 ✓ 23.7 47.6 20.8 12.0 28.9 44.4 66.7 48.6 42.4 51.6 43.1 66.8 46.6 38.0 50.1

MinVIS [22] R50 D+A - ✓ 25.0 45.5 24.0 13.9 29.7 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7

IDOL [52] R50 D+A 30.6 ✓ 30.2 51.3 30.0 15.0 37.5 46.4 70.7 51.9 44.8 54.9 43.9 68.0 49.6 38.0 50.9

VisTR [49] R50 1-step 30.0 × - - - - - 36.2 59.8 36.9 37.2 42.4 - - - - -

PCAN [27] R50 1-step 15.0 ✓ - - - - - 36.1 54.9 39.4 36.3 41.6 - - - - -

InsPro [15] R50 1-step 26.3 ✓ - - - - - 43.2 65.3 48.0 38.8 49.0 37.6 58.7 4 0.9 32.7 41.4

SeqFormer [51] R50 1-step 12.0 × - - - - - 45.1 66.9 50.5 45.6 54.6 40.5 62.4 43.7 36.1 48.1

Mask2Former-VIS [9] R50 1-step - × - - - - - 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -

VMT [26] R50 1-step - ✓ 16.9 36.4 13.7 10.4 22.7 47.9 52.0 45.8 - - - - - - -

InstanceFormer [30] R50 1-step - ✓ 20.0 40.7 18.1 12.0 27.1 45.6 68.6 49.6 42.1 53.5 40.8 62.4 43.7 36.1 48.1

VITA [18] R50 1-step - × 19.6 41.2 17.4 11.7 26.0 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6

Ours R50 1-step 40.2 ✓ 25.8 47.9 25.4 14.2 33.9 46.7 70.4 50.9 45.7 55.9 43.3 64.9 47.1 39.3 52.7

DeVIS [5] (T=6, S=4) SL D+A 18.4 ✓ 35.5 59.3 38.3 16.6 39.8 57.1 80.8 66.3 50.8 61.0 54.4 77.7 59.8 43.8 57.8

MinVIS [22] SL D+A - ✓ 39.4 61.5 41.3 18.1 43.3 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8

IDOL [52] SL D+A 17.6 ✓ 42.6 65.7 45.2 17.9 49.6 61.5 84.2 69.3 53.3 65.6 56.1 80.8 63.5 45.0 60.1

VMT [26] SL 1-step 8.2 ✓ 19.8 39.6 17.2 11.2 26.3 59.7 66.7 52.0 - - - - - - -

SeqFormer [51] SL 1-step - × - - - - - 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1

Mask2Former-VIS [9] SL 1-step - × - - - - - 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -

MS-STS [45] SL 1-step - × - - - - - 61.0 85.2 68.6 54.7 66.4 - - - - -

VITA [18] SL 1-step - × 27.7 51.9 24.9 14.9 33.0 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6

Ours SL 1-step 20.5 ✓ 38.2 60.7 39.5 17.7 44.1 61.4 82.8 68.6 55.2 68.1 54.5 75.4 60.5 45.5 61.4

Table 1. Different methods on Video Instance Segmentation (OVIS, Youtube-VIS 2019 and Youtube-VIS 2021 validation data) using

Resnet-50 (R50) and Swin-L (SL) backbones. We categorize the methods based on backbones: R50 and SL, and based on steps: 1-step or

2-steps (Detection followed by association (D+A)). ‘Onl.’ indicates whether a method is online or near-online (✓) or offline (×). VITA [18]

performs best on the Youtube-VIS data, but is sub-optimal for the more complex OVIS data with longer videos.

of interest in a given dataset. The output of the mask head

is multiplied with the high resolution image features of the

current frame to get the final segmentation masks of all ob-

jects Sτt ∈ [0, 1]N×H×W . Note, H and W represent the

height and width of frame τt, N is the maximum number of

considered objects in a given video.

4. Experiments
We evaluate our proposed approach on three challenging

tasks: VIS, VPS and MOTS. We first discuss the datasets

and evaluation metrics. In Sec. 4.1 we then present the main

results using the following datasets: OVIS, Youtube-VIS,

Cityscapes VPS, MOTS 2020, and KITTI-MOTS. Next, in

Sec. 4.2, we present ablation studies. We show the impor-

tance of our query vector propagation approach as opposed

to a [38]-like approach. We then show that relative positional

encodings are better at associating objects as opposed to ab-

solute encodings. We also show the importance of having

a temporal context length T greater than 1 to incorporate

temporally rich information while processing a single frame.

Lastly, we show some qualitative results.

Datasets and Evaluation Metrics. We evaluate our ap-

proach on the VIS, VPS and MOTS task. For VIS, we use

the challenging OVIS [41] dataset. We also evaluate our ap-

proach on Youtube-VIS 2019 and 2021 [56] data. We test our

approach on the VPS task using the Cityscapes-VPS [28]

data and on the MOTS task using the KITTI-MOTS and

Cityscapes-VPS

Method 2-Br. Dep. VPQ VPQth VPQst

ViP-DeepLab [42] ✓ ✓ 63.1 49.5 73.0

VPS-Net [28] ✓ 57.5 44.8 66.7

Ours 63.0 48.0 72.8

Table 2. Results on VPS. Our method, while being general, per-

forms better than VPS-Net [28], which has 2 separate branches

(2-Br.) for semantic and instance segmentation. ViP-DeepLab [42],

also uses a 2-branch network and also depth for training.

MOTS 2020 data.

For VIS, we use the standard evaluation metrics of av-

erage precision (AP, AP50, AP75) and average recall (AR1,

AR10). For MOTS, we use the sMOTSA (soft MOTS Accu-

racy) [47], MOTSA (MOTS Accuracy) and MOTSP (MOTS

Precision). For ablation studies with KITTI-MOTS, we use

the higher order tracking accuracy (HOTA), detection accu-

racy (DetA) and association accuracy (AssA) [36] because

they better capture the detection and tracking aspects of the

MOTS task. For VPS, we use video panoptic quality metrics

(VPQ, VPQth, VPQst) to evaluate the overall performance,

performance on the ‘thing’ category and on the ‘stuff’ cate-

gory, as proposed before [28].

4.1. Main Results

We discuss the results of different approaches in this

section. We use context-length, T = 2 in all experiments
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MOTS 2020

Method sMOTSA MOTSA MOTSP

TrackRCNN [47] 52.7 66.9 80.2

PointTrack [54] 58.1 70.6 -

TrackFormer [38] 58.7 - -

Ours 60.2 73.2 84.3

Table 3. Results of different methods on the MOTS 2020 dataset.

KITTI-MOTS

Method Ext. sMOTSA MOTSA MOTSP

car ped. car ped. car ped.

MOTSFusion [35] Dep. 82.8 59.4 90.5 72.6 - -

PointTrack [54] Flow. 85.5 62.4 94.9 77.3 - -

TrackRCNN [47] 76.2 46.8 87.8 65.1 87.2 75.7

PCAN [27] - - 89.6 66.4 88.3 76.1

Ours 84.5 62.8 94.0 77.6 92.3 84.5

Table 4. Results of different methods on the KITTI-MOTS dataset.

unless otherwise stated. We use the Resnet-50 [17] (R50) and

Swin-L [32] (SL) backbones when comparing our approach

to other methods.

Evaluation on VIS Data. Tab. 1 summarizes the results of

different methods on the OVIS, Youtube-VIS 2019 and 2021

validation data. We categorize the methods based on back-

bone and whether a post processing step is required. ‘D+A’

refers to detection followed by a post processing associa-

tion step. Our online approach improves upon other 1-step

approaches (which are offline) by 5.8% and 10.5% on the

OVIS validation data using the Resnet-50 (R50) and Swin-L

(SL) backbones. However, we find a reduction in perfor-

mance for the Youtube-VIS data as compared to VITA [18].

Note, VITA [18] is an offline method that uses indepen-

dent object queries per frame which are then combined for

predictions. Although VITA [18] performs better on the

Youtube-VIS data with simpler scenes and shorter videos,

it performs worse than the proposed method on the more

challenging OVIS data. Further note, the OVIS data contains

long video sequences (often with 500 frames). Hence, re-

cent transformer-based offline approaches [8,18,51] can’t be

evaluated on this dataset without predictions on short clips

and heuristic merging. Note that our 1-step method under-

performs as compared to the 2-step IDOL [52], possibly

due to the disentangled detection and association steps in

IDOL. However, we highlight our method’s generalizability

across a wide range of tasks (VIS, VPS, MOTS). IDOL has

only been tested on VIS, and the absolute encodings used in

IDOL are seen to be sub-optimal for MOTS, as highlighted

in Tab. 6.

Evaluation on VPS Data. Tab. 2 shows results of differ-

ent methods on the VPS task. Our proposed method im-

proves upon VPS-Net [28] and performs similar to ViP-

DeepLab [42], which uses a specialized 2-branch architec-

ture particularly developed for panoptic segmentation: the 2

branches perform semantic and instance segmentation sepa-

Method AP AP50 AP75 AR1 AR10

Ours 25.8 47.9 25.4 14.2 33.9

w. QC 16.9 34.2 15.2 11.9 23.9

w/o. QP 9.8 24.6 5.8 9.4 14.7

Table 5. Importance of our query propagation approach. Abbrevi-

ations ‘w. QC’ and ‘w/o. QP’ represent with query concatenation

and without query vector propagation.

Car Pedestrian

Method HOTA DetA AssA HOTA DetA AssA

Ours 83.2 84.5 85.0 64.1 64.4 63.7

Ours (absolute pos.) 70.4 78.6 62.7 52.0 58.0 46.4

Table 6. Importance of relative positional encodings.

T Bb. AP AP50 AP75 AR1 AR10 APso APmo APho

1 R50 19.1 36.0 17.8 11.1 27.0 31.2 22.3 5.9

2 R50 25.8 47.9 25.4 14.2 33.9 39.5 29.1 9.7

4 R50 25.8 49.5 24.4 13.8 33.0 39.1 29.4 9.7

1 SL 34.0 56.0 34.3 15.9 41.5 47.4 37.9 16.2

2 SL 38.2 60.7 39.5 17.7 44.1 57.5 43.2 18.7

Table 7. Ablation to show how context length T affects perfor-

mance. R50 and Swin-L (SL) backbones are used.

rately. ViP-DeepLab [42] also uses additional depth data for

training and has an additional branch to estimate monocular

depth. The results show that the proposed general and simple

approach is effective enough to replace specialized 2-branch

architectures for the VPS task.

Evaluation on MOTS Data. Tab. 3 and Tab. 4 show the

results on the MOTS 2020 and KITTI-MOTS validation

data. We obtain the best results on the MOTS 2020 data and

perform similar to the highly specialized PointTrack [54]

that uses optical flow on the KITTI-MOTS data.

4.2. Ablation Studies
We now study the importance of each component in our

approach. First we show how our method of query propa-

gation is superior to [38]-like propagation or heuristic as-

sociation. We then show how relative positional encodings

improve results and how temporal context length T affects

performance. We use the OVIS dataset for these analyses

unless mentioned otherwise. Note, the performance changes

are more drastic when using a challenging dataset like OVIS

that contains complex scenes and severe occlusions.

Effect of query propagation. The 2nd row of Tab. 5 shows

a [38]-like setting for query vector propagation. We call this

setting ‘w. QC’, i.e., with query concatenation. Instead of

using our query-vector propagation approach where a sin-

gle set of object queries is refined repeatedly, we use the

learnt query embeddings qe for each frame (to represent new

objects) and concatenate them with the queries from the pre-

vious frame (to retain old objects). We pass the concatenated

queries through a MLP to retain the original number of N

total queries. Note that none of the heuristics from [38]

were used in this setting. We observe a performance drop

in AP from 25.8 (our approach, row 1 in Tab. 5) to 16.9
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