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Abstract

Object queries have emerged as a powerful abstraction
to generically represent object proposals. However, their
use for temporal tasks like video segmentation poses two
questions: 1) How to process frames sequentially and prop-
agate object queries seamlessly across frames. Using inde-
pendent object queries per frame doesn’t permit tracking,
and requires post-processing. 2) How to produce tempo-
rally consistent, yet expressive object queries that model
both appearance and position changes. Using the entire
video at once doesn’t capture position changes and doesn’t
scale to long videos. As one answer to both questions we
propose ‘context-aware relative object queries’, which are
continuously propagated frame-by-frame. They seamlessly
track objects and deal with occlusion and re-appearance of
objects, without post-processing. Further, we find context-
aware relative object queries better capture position changes
of objects in motion. We evaluate the proposed approach
across three challenging tasks: video instance segmentation,
multi-object tracking and segmentation, and video panoptic
segmentation. Using the same approach and architecture,
we match or surpass state-of-the art results on the diverse
and challenging OVIS, Youtube-VIS, Cityscapes-VPS, MOTS
2020 and KITTI-MOTS data.

1. Introduction

Video instance segmentation (VIS) [56] and Multi-Object
Tracking and Segmentation (MOTS) combines segmentation
and tracking of object instances across frames of a given
video, whereas video panoptic segmentation (VPS) requires
to also pixel-wise categorize the entire video semantically.
These are challenging tasks because objects are occasion-
ally partly or entirely occluded, because the appearance and
position of objects change over time, and because objects
may leave the camera’s field of view only to re-appear at a
later time. Addressing these challenges to obtain an accurate
method for the aforementioned tasks that works online is
important in fields like video editing, autonomous systems,

and augmented as well as virtual reality, among others.

Classically, VIS or MOTS treat every frame or clip in a
video independently and associate the predictions temporally
via a post-processing step [1,3,4,6,12,19,35,41,50,56,57].
Many of these approaches are based on object proposal gen-
eration, that are used in classical detection methods [16,43].
For image detection and segmentation, recently, query-
vectors have been shown to encode accurate object propos-
als [7,9, 10]. These query-vector-based object proposals are
more flexible than classical object proposals because they
are not axis-aligned but rather feature-vector based. Using
these accurate query vectors for images, recent methods on
VIS [22,52] adopt the classical method of operating frame-
by-frame independently, followed by a post-processing step
for associating the query vectors temporally based on their
similarity. It remains unclear how the query-vector-based
object proposals can be seamlessly extended to the temporal
domain.

Some recent transformer-based works [8,25,49,51] use
global object queries to process entire videos at once offline,
but these methods fail to scale to long videos. However,
intuitively, offline approaches should be more accurate than
online methods since they operate with a much larger tem-
poral context. Surprisingly, this is not the case. The best
methods on VIS [18,22,52] produce query vectors frame-by-
frame independently, raising the question why global query
vectors fail to accurately represent objects spatio-temporally.
We study this carefully and observe that the query vectors are
often too reliant on the static spatial positions of objects in a
few frames. They hence fail to encode the position changes
well. This over-reliance of query vectors on spatial positions
has not been observed before in the context of video seg-
mentation. How to address this remains an open question.
It also remains unclear how the query-vector-based object
proposals can be extended to the temporal domain, while
keeping the processing of frames sequential.

In a first attempt to sequentially propagate object queries,
the problem of multi-object tracking was studied [38, 44,
58]. These works use separate, distinct queries to represent
existing object tracks and new objects. New object queries
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Figure 1. An example from the KITTI-MOTS dataset showing the need for context-aware relative object queries. Object queries from
Mask2Former-VIS [8] (top row) heavily rely on the spatial positions of objects, hence can’t reason about the position-changes of the cars in
the scene. The green car in the first frame is mistaken as the red car when the original red car leaves the scene and the green car takes its
spatial position. Similarly, the yellow car is first mistaken as the green car and later as the red car. Cyan boxes in the top row indicate the
identity switches. Our method (bottom row) is able to retain identities of the cars despite their significant motion.

are initialized each frame. However, it remains unclear how
to seamlessly unify 1) the new object queries, and 2) track
queries, while avoiding heuristic post-processing.

Different from prior work, we develop a simple approach
which propagates object queries frame-by-frame while si-
multaneously refining queries via a transformer decoder.
Intuitively, the query-vectors in the proposed approach rep-
resent all objects of interest in a video without the need to
introduce new object queries every frame. Instead, queries
are activated if the objects they represent appear in a frame.
A continuous refinement of the query-vectors permits to ad-
just to gradual appearance changes. Their propagation across
frames helps them carry long-term temporal information, so
that they can seamlessly handle long-term occlusions or ab-
sence from the camera field-of-view. While studying why
global object queries are sub-optimal at encoding position
changes of objects, we observed that the use of absolute po-
sition encodings during self- and cross-attention causes the
object queries to heavily rely on the object positions in a few
frames, as illustrated in the top row of Fig. 1. To address this,
we use relative positional encodings (inspired from [13])
instead of absolute encodings. The ‘relative object queries’
(queries with relative positional encodings) better encode the
position changes of objects (bottom row of Fig. 1). Moreover,
we use spatio-temporal context (image features from previ-
ous frames and the current frame) to modulate the object
queries in the transformer decoder, making them ‘context-
aware.” This permits to more holistically reason about the
current frame without losing spatio-temporal details.

We evaluate the proposed approach on the challenging
VIS, VPS and MOTS tasks. We outperform methods that
reason about an entire video at once by 5% and 11% on
the challenging OVIS data using the Resnet-50 and Swin-
L backbones. We perform similar to image or clip-based
online methods which rely heavily on post-processing. We
also outperform or perform close to the state-of-the-art on

the Youtube- VIS, Cityscapes VPS, MOTS 2020, and KITTI-
MOTS data, demonstrating generalizability of the approach
to video segmentation tasks.

2. Related Work

2.1. Video Instance Segmentation

Video instance segmentation (VIS) was proposed by Yang
et al. [56] who also introduced the Youtube-VIS datasets.
More recently, the occluded video instance segmentation
(OVIS) dataset [41] increased the difficulty of this task. Ex-
isting VIS approaches can be broadly categorized into online
and offline methods.

Online methods. They either operate frame-by-frame [6,22,
41,52,56] or process short, sequential, possibly overlapping
clips [1,3,5,57]. In both cases, the local results for frames
or clips are merged via post-processing, often involving
heuristics which lead to error-prone results. For example,
VIS is carried out by first segmenting objects in every frame
using available instance segmentation methods (e.g., [9, 16]),
sometimes with an added contrastive or temporal loss [52],
and then associating the objects or queries to generate time-
consistent identities [6,22,41,52,56]. In contrast, InsPro [15]
propagates instance queries along with traditional region-
based proposals frame-by-frame, the latter being arguably
redundant because queries are more flexible object proposals.
Offline Methods. They process the entire video at once.
Recently, transformer-based methods [8,49,51] have been
proposed that perform the VIS task in a single step. IFC [25]
includes communication between frames in a transformer en-
coder. SeqFormer [51] generates global instance queries and
frame-level box queries, both of which are used to predict
dynamic mask head weights to generate mask sequences.
Mask2Former [9] (for image-level segmentation) trivially
generalizes to videos [8] by attending to spatio-temporal
volumes. However, offline methods can only be used on
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Figure 2. Propagation of context-aware relative object queries across video frames. A single set of query-vectors represents all objects in a
video; objects are either expressed or nascent in a given frame. The query vectors g, for the first frame 79 are obtained using learnt query
embeddings g. and context-features (pixel decoder features u,) from the first frame. Query vectors g, act as strong object proposals for
the next frame and so on. Hence, ¢-, _, can be used to meaningfully generate the query vectors g-, with fewer transformer decoder layers (lo
is skipped). The context-features, obtained from the current and few previous frames, modulate the object queries. S, and S,, represent the
output segmentation masks in frames 79 and 7; respectively. The abbreviations ‘bb.”, ‘pd.” and ‘td.” stand for backbone, pixel decoder and
transformer decoder. ‘Relative pos.’ refers to the learnt relative position encoding in the transformer decoder that better captures an object’s
position changes across frames. Orange and blue represent input, output, features and queries corresponding to frames 7 (orange) and 7
(blue). Object queries and segmentation masks corresponding to the three rabbits are shown using green, purple and maroon.

short videos. Besides, surprisingly, offline methods don’t
perform as well as some query-based online frame-by-frame
methods [22,52]. The best performing offline method [18]
generates object queries per frame and then combines them
temporally for predictions. Results indicate that query vec-
tors don’t extend trivially to temporal tasks.

Different from prior work, we propose a transformer-
based online method that seamlessly propagates query vec-
tors to subsequent frames for predictions, obviating the need
for any post-processing. Context-based frame-processing
produces high quality segmentations, and our query propa-
gation seamlessly links predictions across frames. The use
of relative positional encodings accurately captures position
changes of objects, leading to better association.

2.2. Multi-Object Tracking and Segmentation

The multi-object tracking and segmentation (MOTS) and
VIS tasks are identical, but MOTS datasets often consists of
fast moving objects. MOTS mainly focuses on 2 categories
(cars and pedestrians), whereas VIS includes many more
(e.g., 40 categories in the Youtube-VIS dataset).

Several works on MOTS [4,12,19,35,50] first detect (and
segment) objects for individual frames before associating
the objects across frames. Others [27,34,37,47,54,60] ap-
proach detection (and segmentation) and association jointly.
Bergmann et al. [2] introduced the idea of tracking by regres-
sion, i.e., the bounding box of an object for a current frame
acts as a region proposal for the same object in the next
frame. In our work, we adopt a similar strategy. However,
instead of bounding boxes, object queries in a current frame

act as proposals for the object queries in the next frame.

Several transformer-based methods [38,44,58] have been
proposed recently to approach multi-object tracking. Some
operate frame-by-frame [38, 44], others clip-by-clip [58].
These approaches extend DeTR [7] temporally and use 2
types of queries: a) new object queries that are initialized in
every frame or clip to generate new objects; b) track queries
that are retained to represent old objects. Predictions are
obtained via post-processing.

Our work also adopts a query propagation approach like
[38,44,58]. However, it is simpler and seamless, without
any need for heuristics and post-processing. Specifically,
unlike prior work, we use a single set of query vectors to
represent all objects in a given video and refine them again
and again for new frames: a) to detect new objects, b) to
remove objects that disappeared, and c) to retain existing
objects without any bells and whistles.

2.3. Video Panoptic Segmentation

Video panoptic segmentation [28] requires pixel-wise
semantic categorization of a video and simultaneous assign-
ment of instance identities to the ‘thing’ objects, similar to
image panoptic segmentation. The ‘stuff’ category isn’t in-
stantiated. VPS-Net [28] and ViP-DeepLab [42] approach
this problem using a branched architecture separately for
instance and semantic segmentation, before combining the
predictions. In contrast, we use query vectors to generically
represent objects both from the ‘thing’ as well as the ‘stuff’
categories without treating them separately.
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2.4. Other Video Segmentation Tasks

Apart from the aforementioned tasks, other video segmen-
tation tasks have been proposed. Video object segmentation
(VOS) [53] uses given ground truth segmentations of objects
(belonging to any category) in the first frame to track the
objects throughout the video [11,21,23,24,40,46,48,59].
Video semantic segmentation (VSS) [14, 20, 31] requires
pixel-wise categorization of a video, an extension of the
image segmentation task. In this work, we are interested in
objects from known categories (unlike VOS) whose identi-
ties need to be associated over time (unlike VSS). Hence, we
don’t tackle these two tasks.

2.5. General Video Segmentation

Recently there has been progress in unifying video related
segmentation tasks or tracking tasks. TubeFormer [29] uni-
fies VSS, VPS and VIS by offline processing of entire videos
using dual-path transformer blocks with local and global
memory. Unicorn [55] unifies many tracking tasks via a sep-
arate frame-level and instance level embedding. However,
despite these attempts, there remains a gap between tracking
and video segmentation tasks, and little efforts have been
made to unify both video segmentation and tracking.

3. Context-Aware Relative Object Query Prop-
agation

3.1. Overview

Given a video, the goal of video instance segmentation
is to predict the classes for a set of objects of interest in
the video and the corresponding instance-level segmentation
masks of the objects at every frame. To achieve this goal,
we adopt a meta-architecture similar to recent works [9, 10].
However note, our approach is flexible enough to be used
with other query-based meta-architectures like [7]. As il-
lustrated in Fig. 2, similar to prior work [9, 10], our meta-
architecture consists of a backbone (bb.) feature extractor
for frames, a pixel decoder (pd.) to generate high-resolution
image features, and a transformer decoder (td.) to generate
meaningful object queries. An object’s class is computed
every frame from the object query using a linear layer fol-
lowing [9]. The segmentation mask of an object at every
frame is computed by passing the object query through linear
layers, followed by an inner product between the output of
the linear layers and high-resolution image features coming
from the pixel decoder.

Using this meta-architecture, every frame of a video can
be processed independently. But it is unclear how to extend
the architecture to video segmentation tasks, where segmen-
tations need to be linked across time. This is because 1)
online frame-by-frame processing has limited temporal con-
text and frame-by-frame or clip-by-clip methods require a
post processing association step; 2) offline processing of the
entire video using global object queries doesn’t accurately

encode the position-changes of objects across frames and
doesn’t scale to long videos.

To address both concerns, as illustrated in Fig. 2, we se-
quentially process each frame 7 of the given video with a
transformer-based refinement of context-aware relative ob-
ject queries across frames. We first discuss the propagation
of object queries from one frame to the next (Sec. 3.2). We
then describe the use of relative position encodings (Sec. 3.3)
for computing the relative object queries. Finally we dis-
cuss the processing of a single frame with temporal context
(Sec. 3.4). Please see the supplementary material for more
training details.

3.2. Propagation of Object Queries

Given the ¢-th input frame 7, we define the query vectors
qr, € RV*C (0 be a collection of N object queries (each of
which is C' dimensional) which represent a maximum of NV
objects in the entire video. Importantly, the query vectors
q-, represents two kinds of objects: (a) expressed objects
which appear in the current frame 7;; and (b) nascent objects
which are absent in 7; but have appeared previously, or are
yet to appear. Query vectors attend to itself via self-attention
and to image features via cross-attention, both using a new
relative positional encoding, discussed in Sec. 3.3.

We introduce the idea of representing all objects in a
video by a single set of query vectors. This allows us to
seamlessly use the same query vectors again and again for
new frames: (a) to detect new objects, (b) to remove disap-
pearing objects, and (c) to retain existing objects without any
bells and whistles. This differs from and is simpler than prior
work [38], where new object queries are initialized at every
frame, are concatenated with the old object queries, and are
passed through attention layers to remove redundancies.

Fig. 2 illustrates the proposed query vector propagation
approach. Orange and blue borders and arrows represent
input, output, features and queries corresponding to the first
frame 7y (orange) in a video and the #-th frame 7; (blue).

For the first input frame 7y, the query vectors ¢,, are
obtained from learnt query embeddings ¢, € RV*® and
refined via multi-level context-features described in Sec. 3.4.
Intuitively, the learnt query embeddings g, act as abstract pro-
posals for the objects in the frame. Subsequent transformer
decoder layers successively refine the initial proposals ¢,
into the final query vectors ¢-,, which are obtained after g,
is modified by L + 1 transformer decoder layers (lg, .. .,11)
as shown in Fig. 2.

As the appearance of objects changes gradually across
frames, the final query vectors g, , obtained in frame 7;_;
contain valuable information about the next frame 7;. We
leverage the redundancies across frames and only use ¢, ,
as proposals for the current frame 7,. Importantly, we don’t
use the abstract query embeddings g, to generate the query
vectors ¢, for the current frame, as ¢,,_, already contains
meaningful information about frame 7;. Hence, we find
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fewer transformer decoder layers, i.e., l1, .. .,[r, are enough
to modulate the existing objects’ appearances, express new
objects that were nascent in the previous frame, or suppress
old objects that are nascent in the current frame. For this, [
is skipped, as shown in Fig. 2.

We now make this process more formal. For frame 74, we
denote the query vectors modified by the [-th transformer de-
coder layer as qlﬂ. We obtain qln by masked cross-attention,
self-attention and feed forward operations following [9]. The
cross-attention operation is formulated as follows:

qlTt = softmax(/\/llg1 + ozifl’l)VlUit +¢, D)

where ¢P*® = Ly1y¢h ] + Ly=1y[gr,_,]. Moreover,

ML e o, —oo}NXH'W'T g the attention mask from
the previous layer following [9], a2 € RNXH'W'T g
the relative attention matrix described in Sec. 3.3, UL €
RH'W'TXC gre the context features from the pixel decoder
as described in Sec. 3.4 and V' is a linear transformation
for the context features. H'W'T represents the flattened
context features of height H', width W' and context length
T'. The final set of query vectors is the output from the last
decoder layer, i.e., ¢, = qft .

3.3. Relative Object Queries

We now discuss the relative attention matrix aﬁfl’l em-
ployed in Eq. (1) which is used to compute the relative object
queries. We observe that relative positional encodings are
crucial for accurate results. This differs from the use of
absolute encodings in prior work, which often cause query
vectors to overly rely on spatial positions in the image space
(as seen in Fig. 1).

Transformer-based image detection/segmentation mod-
els [7,9] use absolute spatial encodings to represent ordering
of tokens while calculating self- or cross-attention. Video
segmentation models [8, 49] extend this to use absolute
spatio-temporal encodings. However, we observe an abso-
lute spatio-temporal encoding to create an unwanted depen-
dency of the query vectors on the spatial position of objects.
To illustrate this, let the cross-attention matrix with absolute
encodings for frame 7, and decoder-layer [ be called ai?s’l.
Following [8], b5l can be written as follows:

o = Qe + QK UL + &) @)

Here, K and Ql are linear transformations for context fea-
tures Uit and query vectors gP™" respectively; £ € RY xC
and £x € RE'W'TXC pefer to the absolute learnt posi-
tion encodings for ¢P™®V and absolute sinusoidal position
encodings for Uit following [9]. Absolute positional en-
codings cause object queries to depend on the temporary
positions of objects in the given frame. This can be seen
when Eq. (2) is expanded. The terms QlfQUitTKlT and

T . .
Q'¢P*vEx "K' combine positions and content of gPe

and UL . The term Q'¢oé ' K T operates purely on posi-
tional encodings. This mix of content and positions of object
queries and context-features is not desirable in a temporal
setting because it causes object queries to not capture motion
properly. In addition, when an object replaces another object
spatially, identity switches are common. This observation
has been made previously in language modeling tasks [13],
but has not been addressed for video segmentation.

To address this concern, we propose to introduce relative
positional encodings to compute the self and cross-attention
operations in the transformer decoder as shown in Fig. 2. The
idea is to encode the relative positional information between
q°®’ and Uit, instead of injecting the absolute positions,
which helps to incorporate temporal information.

In particular, the cross attention matrix a2 for the 74-th
frame and level [ of the transformer decoder is computed as
follows:

Oéf_fl"l — quprevlLl_tTI(lT + quprevgrel,lTKlT. (3)
Here, £l ¢ RE'W'TXC pefers to the relative positional en-
codings. Each element of £ is a relative distance between
two positions. See the supplementary material for more.

3.4. Processing of a Single Frame With Context
To obtain predictions for a single frame 7, as shown in
Fig. 2, the frame is first passed through the backbone and
the pixel decoder and flattened to obtain multi-level image-
features u,, = {ul }, where ul € RA'W'*C  Here, 1
denotes the level. We define context-features as a temporary
bank of multi-level image features for T consecutive frames
(T' — 1 past frames and u,) as shown in Fig. 2. T refers to
the context-length. The context-features Uit € RE'W'TXC
for level [ can be represented as follows:
UL = [u!

! 1
TFTH,...,uTFl,uTt]. (@))

Features from frames older than 747 are discarded from
the bank.

To generate the query vectors g, for the current frame 7,
the context features are passed to the transformer-decoder in
a round robin fashion, where they are used to modulate the
object queries (as discussed in Sec. 3.2). Importantly, the
object queries attend to the multi-level image features for
all the T frames at once for predictions in the current frame
7¢. The use of context better captures spatio-temporal details
than using only the current frame features.

The query vectors ¢,, for frame 7, are used to obtain
the predicted class and segmentation masks for all objects
in frame 7; using linear layers (omitted in Fig. 2 for read-
ability). The output from the class head is the matrix
C,, € [0, 1]V*(M+1) “which indicates for each of the N
object proposals a probability distribution over the M cat-
egories (with an additional no-object category) which are
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| OVIS

| Youtube-VIS 2019 | Youtube-VIS 2021

Method | Bb. Steps FPS Onl. | AP APs; AP;s AR ARjg| AP APsy AP;s AR; ARjg| AP APs; AP;s AR; ARy
MaskTrack [56] R50 D+A 261 v |108 253 85 79 149 [303 51.1 32.6 31.0 355286 489 296 265 338
IFC [25] (T=5) R50 D+A 465 v | - - - - - |41.0 621 454 435 527 | - - - - -

DeVIS [5] (T=6,S=4) |R50 D+A 184 v |23.7 47.6 20.8 12.0 289 (444 66.7 48.6 424 516 |43.1 668 46.6 38.0 50.1
MinVIS [22] R50 D+A - v [250 455 240 139 29.7 [474 69.0 521 457 55.7 |44.2 660 48.1 392 517

IDOL [52] R50 D+A 30.6 v [30.2 513 30.0 15.0 37.5 [464 70.7 519 448 549 (439 68.0 49.6 38.0 50.9

VisTR [49] R50 l-step 30.0 X - - - - - |362 59.8 369 372 424 | - - - - -

PCAN [27] R50 1-step 150 v | - - - - - 361 549 394 363 41.6| - - - - -

InsPro [15] R50 l-step 263 v | - - - - - |432 653 48.0 38.8 49.0 [37.6 5874 09 327 414
SeqFormer [51] R50 1-step 12.0 x - - - - - 451 669 50.5 456 54.6 |40.5 624 437 36.1 48.1

Mask2Former-VIS [9] | R50 1-step - X - - - - - 46.4 68.0 50.0 - - 40.6 609 41.8 - -
VMT [26] R50 1-step - v |169 364 137 104 227 (479 520 458 - - - - - - -
InstanceFormer [30] [R50 1-step - v [20.0 40.7 18.1 12.0 27.1 456 68.6 49.6 42.1 53.5 [408 624 437 36.1 48.1
VITA [18] R50 I-step - x [19.6 412 174 11.7 260 [49.8 72.6 545 494 61.0 (457 674 495 409 53.6
Ours R50 1-step 402  |25.8 479 254 142 339 (467 704 509 457 559 |433 649 47.1 393 52.7
DeVIS [5] (T=6,S=4) | SL D+A 184 v |355 59.3 383 16.6 39.8 |57.1 80.8 663 50.8 610|544 777 598 438 578
MinVIS [22] SL D+A - v [394 615 413 181 433 |61.6 833 68.6 548 66.6 553 76.6 62.0 459 60.8

IDOL [52] SL D+A 176 v |42.6 657 452 179 49.6 |61.5 842 69.3 533 65.6 [56.1 80.8 63.5 450 60.1

VMT [26] SL 1-step 82 v [19.8 39.6 172 112 263 |59.7 66.7 520 - - - - - - -
SeqFormer [51] SL l-step - X - - - - - 593 821 664 517 644 |51.8 746 582 428 58.1

Mask2Former-VIS [9] | SL  1-step - X - - - - - 60.4 844 67.0 - - 52.6 764 572 - -
MS-STS [45] SL l-step - X - - - - - |61.0 852 68.6 547 664 | - - - - -
VITA [18] SL l-step - X [27.7 519 249 149 330 |63.0 869 679 563 68.1 |[57.5 80.6 61.0 47.7 62.6

Ours SL 1-step 20.5 v [38.2 60.7 395 17.7 44.1 |61.4 828 68.6 552 68.1 [545 754 60.5 455 614

Table 1. Different methods on Video Instance Segmentation (OVIS, Youtube-VIS 2019 and Youtube-VIS 2021 validation data) using
Resnet-50 (R50) and Swin-L (SL) backbones. We categorize the methods based on backbones: R50 and SL, and based on steps: 1-step or
2-steps (Detection followed by association (D+A)). ‘Onl.” indicates whether a method is online or near-online (v') or offline (x). VITA [18]
performs best on the Youtube-VIS data, but is sub-optimal for the more complex OVIS data with longer videos.

of interest in a given dataset. The output of the mask head
is multiplied with the high resolution image features of the
current frame to get the final segmentation masks of all ob-
jects S;, € [0, 1]V*H>W_ Note, H and W represent the
height and width of frame 7, IV is the maximum number of
considered objects in a given video.

4. Experiments

We evaluate our proposed approach on three challenging
tasks: VIS, VPS and MOTS. We first discuss the datasets
and evaluation metrics. In Sec. 4.1 we then present the main
results using the following datasets: OVIS, Youtube-VIS,
Cityscapes VPS, MOTS 2020, and KITTI-MOTS. Next, in
Sec. 4.2, we present ablation studies. We show the impor-
tance of our query vector propagation approach as opposed
to a [38]-like approach. We then show that relative positional
encodings are better at associating objects as opposed to ab-
solute encodings. We also show the importance of having
a temporal context length 7" greater than 1 to incorporate
temporally rich information while processing a single frame.
Lastly, we show some qualitative results.
Datasets and Evaluation Metrics. We evaluate our ap-
proach on the VIS, VPS and MOTS task. For VIS, we use
the challenging OVIS [41] dataset. We also evaluate our ap-
proach on Youtube-VIS 2019 and 2021 [56] data. We test our
approach on the VPS task using the Cityscapes-VPS [28]
data and on the MOTS task using the KITTI-MOTS and

Cityscapes-VPS

Method | 2-Br. | Dep. | VPQ VPQy VPQg
ViP-DeepLab [42] | v | v | 63.1 495 73.0
VPS-Net [28] | v 575 448 667
Ours 63.0 480 728

Table 2. Results on VPS. Our method, while being general, per-
forms better than VPS-Net [28], which has 2 separate branches
(2-Br.) for semantic and instance segmentation. ViP-DeepLab [42],
also uses a 2-branch network and also depth for training.

MOTS 2020 data.

For VIS, we use the standard evaluation metrics of av-
erage precision (AP, APsy, AP;s) and average recall (AR|,
ARyg). For MOTS, we use the SMOTSA (soft MOTS Accu-
racy) [47], MOTSA (MOTS Accuracy) and MOTSP (MOTS
Precision). For ablation studies with KITTI-MOTS, we use
the higher order tracking accuracy (HOTA), detection accu-
racy (DetA) and association accuracy (AssA) [36] because
they better capture the detection and tracking aspects of the
MOTS task. For VPS, we use video panoptic quality metrics
(VPQ, VPQu, VPQy) to evaluate the overall performance,
performance on the ‘thing’ category and on the ‘stuff’ cate-
gory, as proposed before [28].

4.1. Main Results
We discuss the results of different approaches in this
section. We use context-length, 7" = 2 in all experiments

6382



MOTS 2020

Method | sMOTSA MOTSA MOTSP
TrackRCNN [47] | 52.7 66.9 802
PointTrack [54] | 58.1 70.6 -
TrackFormer [38] 58.7 - -
Ours 60.2 732 843

Table 3. Results of different methods on the MOTS 2020 dataset.

KITTI-MOTS
Method Ext. | sMOTSA | MOTSA | MOTSP
car ped.| car ped.| car ped.
MOTSFusion [35] | Dep. | 82.8 59.4(90.5 72.6| - -
PointTrack [54] | Flow. | 85.5 62.4|94.9 773| - -
TrackRCNN [47] 762 46.8 |87.8 65.1|87.2 75.7
PCAN [27] - - 189.6 66.4|88.3 76.1
Ours 84.5 62.8|94.0 77.6|92.3 84.5

Table 4. Results of different methods on the KITTI-MOTS dataset.

unless otherwise stated. We use the Resnet-50 [17] (R50) and
Swin-L [32] (SL) backbones when comparing our approach
to other methods.

Evaluation on VIS Data. Tab. 1 summarizes the results of
different methods on the OVIS, Youtube-VIS 2019 and 2021
validation data. We categorize the methods based on back-
bone and whether a post processing step is required. ‘D+A’
refers to detection followed by a post processing associa-
tion step. Our online approach improves upon other 1-step
approaches (which are offline) by 5.8% and 10.5% on the
OVIS validation data using the Resnet-50 (R50) and Swin-L
(SL) backbones. However, we find a reduction in perfor-
mance for the Youtube-VIS data as compared to VITA [18].
Note, VITA [18] is an offline method that uses indepen-
dent object queries per frame which are then combined for
predictions. Although VITA [18] performs better on the
Youtube-VIS data with simpler scenes and shorter videos,
it performs worse than the proposed method on the more
challenging OVIS data. Further note, the OVIS data contains
long video sequences (often with 500 frames). Hence, re-
cent transformer-based offline approaches [8,18,51] can’t be
evaluated on this dataset without predictions on short clips
and heuristic merging. Note that our 1-step method under-
performs as compared to the 2-step IDOL [52], possibly
due to the disentangled detection and association steps in
IDOL. However, we highlight our method’s generalizability
across a wide range of tasks (VIS, VPS, MOTS). IDOL has
only been tested on VIS, and the absolute encodings used in
IDOL are seen to be sub-optimal for MOTS, as highlighted
in Tab. 6.

Evaluation on VPS Data. Tab. 2 shows results of differ-
ent methods on the VPS task. Our proposed method im-
proves upon VPS-Net [28] and performs similar to ViP-
DeepLab [42], which uses a specialized 2-branch architec-
ture particularly developed for panoptic segmentation: the 2
branches perform semantic and instance segmentation sepa-

MC[hOd‘ AP AP5() AP75 AR1 ARl()

Ours |25.8 479 254 142 339
w.QC | 169 342 152 119 239
w/o.QP| 9.8 246 58 94 147

Table 5. Importance of our query propagation approach. Abbrevi-
ations ‘w. QC’ and ‘w/o. QP’ represent with query concatenation
and without query vector propagation.

Car Pedestrian
Method HOTA DetA AssA | HOTA DetA AssA
Ours 83.2 64.4 63.7

84.5 85.0‘ 64.1

Ours (absolute pos.) | 704 78.6 62.7 | 520 58.0 464

Table 6. Importance of relative positional encodings.

T|Bb. | AP APsy AP;s AR; ARj| APy APno APy,

1|R50|19.1 36.0 17.8 11.1 27.0 |31.2 223 59
2|R50|25.8 479 254 142 339 | 395 291 97
4|R50(25.8 495 244 138 33.0 |39.1 294 9.7

474 379 162

575 432 187

1| SL |34.0 56.0 343 159 415
2| SL |38.2 60.7 395 17.7 44.1

Table 7. Ablation to show how context length 7" affects perfor-
mance. R50 and Swin-L (SL) backbones are used.

rately. ViP-DeepLab [42] also uses additional depth data for
training and has an additional branch to estimate monocular
depth. The results show that the proposed general and simple
approach is effective enough to replace specialized 2-branch
architectures for the VPS task.

Evaluation on MOTS Data. Tab. 3 and Tab. 4 show the
results on the MOTS 2020 and KITTI-MOTS validation
data. We obtain the best results on the MOTS 2020 data and
perform similar to the highly specialized PointTrack [54]
that uses optical flow on the KITTI-MOTS data.

4.2. Ablation Studies

We now study the importance of each component in our
approach. First we show how our method of query propa-
gation is superior to [38]-like propagation or heuristic as-
sociation. We then show how relative positional encodings
improve results and how temporal context length T affects
performance. We use the OVIS dataset for these analyses
unless mentioned otherwise. Note, the performance changes
are more drastic when using a challenging dataset like OVIS
that contains complex scenes and severe occlusions.
Effect of query propagation. The 2" row of Tab. 5 shows
a [38]-like setting for query vector propagation. We call this
setting ‘w. QC’, i.e., with query concatenation. Instead of
using our query-vector propagation approach where a sin-
gle set of object queries is refined repeatedly, we use the
learnt query embeddings ¢, for each frame (to represent new
objects) and concatenate them with the queries from the pre-
vious frame (to retain old objects). We pass the concatenated
queries through a MLP to retain the original number of N
total queries. Note that none of the heuristics from [38]
were used in this setting. We observe a performance drop
in AP from 25.8 (our approach, row 1 in Tab. 5) to 16.9
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Figure 3. Examples from the OVIS data. Our method can retain
identities of objects despite absence (first example), occlusion and
viewpoint changes (second example). In the first example, the green
cat leaves the scene and reappears 54 frames later. Our approach
correctly identifies the cat when it reappears. In the second example
(crowded scene), our method correctly retains the identities of all
people, despite heavy occlusion and viewpoint changes.

Figure 4. Video panoptic segmentation on Cityscapes-VPS data.
The segmentation masks are overlaid on the images.

Figure 5. Failure modes of our method. In the first example (top
row) the green and white zebras are swapped as highlighted by
cyan boxes. In the second example, the light and dark green fish
are swapped as shown with cyan boxes (although the identities are
successfully recovered later as highlighted with a yellow box).

using this setting. The last row of Tab. 5 shows results when
object queries aren’t propagated. We call this setting ‘w/o.
QP’: inference is performed frame-by-frame using only g,
as object proposals. The final objects are matched based
on mask-overlap using the Hungarian algorithm [39]. We
observe a drop in AP to 9.8 with this setting.

Effect of relative positional encodings. We use the KITTI-
MOTS dataset for this analysis. The official metrics for
KITTI-MOTS, detection accuracy (DetA) and association
accuracy (AssA), effectively capture the performance gaps
in detection and association, providing better analysis. No-
tably, objects in this dataset often have fast motion, which
better highlights the relevance of relative positional encod-
ings. The performance gap isn’t as severe on OVIS data.
Tab. 6 shows the performance differences. Using absolute
positional encodings (row 2 — ‘Ours (absolute pos.)’), DetA
drops by 6% for both cars and pedestrians, and AssA dras-
tically decreases by 22% for cars and 17% for pedestrians.
The overall HOTA is lower by 13% for cars and 12% for
pedestrians. This clearly indicates the benefit of using rel-

ative positional encodings (also highlighted in Fig. 1). We
show the effect of relative positional encodings on the VIS
task in the supplementary material.

Effect of context-length. Tab. 7 shows how the length 7" of
the context affects performance. 7' = 1 defaults to frame-
by-frame inference. We clearly observe that frame-by-frame
inference is sub-optimal as compared to larger temporal con-
text. As expected, temporal context is important to generate
object queries. However, the performance improvement is
marginal with 7" > 2. This suggests that the object queries
already retain long-term temporal information and additional
context-features are no longer significant.

4.3. Qualitative Results

Fig. 3 shows 2 examples from the OVIS dataset. They
represent 4 non-consecutive frames from 2 videos. Our
approach retains identities of objects despite long-term ab-
sence and heavy occlusion. In the first example, the green
cat leaves the scene and reappears after multiple frames (last
frame). Our approach correctly identifies the cat when it
reappears. The second example shows a crowded scene,
where our method correctly retains the identities of all per-
sons, despite heavy occlusions and viewpoint changes. Fig. 4
shows images overlaid with segmentation masks generated
by the proposed method for VPS (Cityscapes-VPS dataset).
We highlight the compelling quality of the generated masks.
Failure cases. Fig. 5 shows two cases, where our method
exhibits identity switches. In the first case (top row) the
green and white zebras are swapped as shown with cyan
boxes. In the second case, the light and dark green fish are
swapped as shown with cyan boxes (although the identities
are successfully recovered later, as shown with a yellow box).
These cases show that results are promising, but context-
aware relative object queries need to be improved further.

5. Conclusion

In this work, we introduce context-aware relative object
queries for online video instance and panoptic segmenta-
tion. The object queries are continuously refined every
frame by a transformer decoder and propagated across video
frames to seamlessly predict segmentations. We reach or sur-
pass the current state-of-the-art on three challenging video-
segmentation tasks. We demonstrate in ablation studies that
each of our developed components contributes to the success.
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