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Abstract. In this paper, we propose a new algorithm for solving convex-concave saddle-point 
problems using regret minimization in the repeated game framework. To do so, we introduce 
the Conic Blackwell Algorithm+ (CBA+), a new parameter- and scale-free regret minimizer for 
general convex compact sets. CBA+ is based on Blackwell approachability and attains O(

ÇÇÇ
T

p
)

regret. We show how to efficiently instantiate CBA+ for many decision sets of interest, includ-
ing the simplex, !p norm balls, and ellipsoidal confidence regions in the simplex. Based on 
CBA+, we introduce SP-CBA+, a new parameter-free algorithm for solving convex-concave 
saddle-point problems achieving a O(1=

ÇÇÇ
T

p
) ergodic convergence rate. In our simulations, we 

demonstrate the wide applicability of SP-CBA+ on several standard saddle-point problems 
from the optimization and operations research literature, including matrix games, extensive- 
form games, distributionally robust logistic regression, and Markov decision processes. In each 
setting, SP-CBA+ achieves state-of-the-art numerical performance and outperforms classical 
methods, without the need for any choice of step sizes or other algorithmic parameters.

Funding: J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-LABX-0047] 
and by Hi! Paris. C. Kroer is supported by the Office of Naval Research [Grant N00014-22-1-2530] and by 
the National Science Foundation [Grant IIS-2147361]. 
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1. Introduction
In this paper, we develop new algorithms for solving the following convex-concave saddle-point problems (SPPs):

min
x2X

max
y2Y

F(x, y), (1) 

where X ⇢ Rn,Y ⇢ Rm are convex, compact sets and F : X ⇥ Y ! R is a subdifferentiable convex-concave func-
tion. The optimization Problem (1) arises in a number of practical problems in optimization, machine learning, 
and operations research. For example, the problem of computing a Nash equilibrium of a zero-sum game can be 
formulated as a convex-concave SPP, and this is the foundation of most methods for solving sequential zero-sum 
games (Kroer et al. [42], Tammelin et al. [61], von Stengel [63], Zinkevich et al. [66]). Other instances include 
imaging (Chambolle and Pock [18]), !1 regression (Sidford and Tian [58]), Markov decision processes (MDPs) 
and robust MDPs (Iyengar [37], Sidford and Tian [58], Wiesemann et al. [65]), market equilibrium (Kroer et al. 
[41]), and distributionally robust logistic regression, where the max term represents the distributional uncer-
tainty (Ben-Tal et al. [8], Namkoong and Duchi [47]). We introduce efficient algorithms for solving (1), focusing 
on parameter-free algorithms that do not require choosing, learning, or tuning any step sizes.

1.1. Repeated Game Framework
One way to solve convex-concave SPPs is by viewing the SPP as a repeated game between two players; at each 
iteration t, one player chooses xt 2 X , the other player chooses yt 2 Y, and then, the players observe F(xt, yt). If 
each player employs a regret-minimization algorithm, then a well-known theorem says that the uniform average 
of the decisions generated by the players converges to a solution to the SPP (see Theorem 1 in Section 2). We will 
call this the “repeated game framework.” There are already well-known algorithms for instantiating the repeated 
game framework for (1). For example, one can employ the online mirror descent (OMD) algorithm (Nemirovski 
and Yudin [49]), which generates iterates as follows for the first player (and similarly for the second player):

xt+1 à arg min
x2X

hηft, xi+ D(x, xt), (2) 

1 
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where f t 2 @xF(xt, yt) (@x denotes the set of subgradients as regards the variable x), η > 0 is an appropriate step 
size, and D is a Bregman divergence, which measures distance between points. Another example of a regret mini-
mizer is follow the regularized leader (FTRL) (Abernethy et al. [2]), which generates updates as follows:

xt+1 à arg min
x2X hηXt

τà1
f τ, xi+φ(x), (3) 

where φ : X ! R is a distance-generating function. The updates (2) and (3) can be computed efficiently for many 
decision sets X ; for instance, when D and φ�are the squared !2 norm, (2) and (3) can be computed in O(n) arith-
metic operations for !p balls with p 2 {1, 2,1} and O(n log(n)) operations for the simplex, and when φ�is the 
entropy and D is the Kullback–Leibler divergence, (2) and (3) can be computed in O(n) operations for the simplex. 
OMD and FTRL can achieve average regret on the order of O(1=

ÇÇÇÇ
T

p
) after T iterations. For instance, when D and 

φ�are the squared !2 norm, this regret can be achieved by choosing a fixed step size η à
ÇÇÇ
2

p
⌦=L

ÇÇÇÇ
T

p
, where L is an 

upper bound on the !2 norms of the subgradients (f t)t�0 and ⌦ à max{kx� x0k2 | x, x0 2 X}: Choosing the step size 
η�is problematic, as it requires choosing in advance the number of iterations T and to know the upper bound L, 
which may be hard to obtain in many applications or too conservative in practice. This can even be practically 
infeasible for very large instances because we do not know if the step size will cause a divergence until late in 
the optimization process. Alternatively, it is possible to choose changing step sizes ηt à α=

ÇÇ
t

p
for α > 0. Still, ade-

quately tuning the parameter α�can be time and resource consuming. This is not just a theoretical issue, as we 
highlight in our numerical experiments (Section 5) and in the appendices (Appendix J).

These issues can be addressed by employing adaptive step sizes, which estimate the parameters through the 
observed subgradients (e.g., AdaHedge for the simplex setting (De Rooij et al. [23]) or AdaFTRL for general com-
pact convex decisions sets (Orabona and Pál [52])). These adaptive variants have not seen practical adoption in 
large-scale game solving, where variants based on Blackwell approachability are preferred (see the next para-
graph). As we show in our experiments, adaptive variants of OMD and FTRL perform much worse than our pro-
posed algorithms. Although these adaptive algorithms are referred to as parameter free, this is only true in the 
sense that they are able to learn the necessary parameters. Our algorithm is parameter free in the stronger sense 
that there are no parameters that even require learning.

1.2. Blackwell Approachability
In this paper, we use the framework of Blackwell approachability (Blackwell [11]) to develop novel parameter- 
free algorithms for solving the convex-concave saddle-point Problem (1). We refer the reader to Perchet [54] for a 
survey on Blackwell approachability. In principle, Blackwell approachability arises in the framework of repeated 
two-player games with vector-valued payoffs; the goal of the first-player is to choose a sequence of decisions 
x1, x2, : : : , such that the average of the visited payoffs converges to a known target set S, whereas the second- 
player wishes to prevent this. Blackwell’s celebrated theorem (Blackwell [11]) provides an algorithm for con-
structing such a sequence of decisions x1, x2, : : : , in the case where the target set S is half-space forceable (see details 
in Section 2).

Blackwell approachability is a very general framework, and the applications are numerous, ranging from sto-
chastic games (Milman [44]); revenue management, market design, and submodular maximization (Niazadeh 
et al. [51]); calibration (Perchet [53]), and learning in games (Aumann et al. [5]) to fair online learning (Chzhen 
et al. [21]). In particular, Blackwell approachability can be used as a regret minimizer (Abernethy et al. [1], Black-
well [12]) and provides a no-regret algorithm, with an average regret of O(1=

ÇÇÇÇ
T

p
) after T iterations. Crucially, 

when applied to online regret minimization, Blackwell approachability can be instantiated without any choices 
of parameters, and the resulting no-regret algorithm does not use any step sizes; this is in contrast to classical 
regret minimizers, such as OMD (2) and FTRL (3), which require choosing step sizes.

Despite its appealing properties from a theoretical standpoint, in practice Blackwell approachability is not 
widely used to solve classical problems from the operations research literature. In fact, to the best of our knowl-
edge, the only practical implementation of Blackwell approachability for solving (1) is for the case of bilinear 
games on the simplex, where F(x, y) à h x, Ayi for A 2 Rn⇥m and X ,Y are simplices. This simplex instantiation is 
also used for extensive-form games (EFGs) via the aforementioned counterfactual regret minimization (CFR) 
decomposition (Farina et al. [26], Zinkevich et al. [66]). In the simplex setting, a particular application of Black-
well approachability yields a no-regret algorithm called regret matching (RM) (Hart and Mas-Colell [35]). Combin-
ing RM with specific weighting, thresholding, and alternating schemes yields an algorithm called regret 
matching+ (RM+) (Tammelin et al. [61]). RM+ has been used in every case of solving extremely large-scale EFGs in 
practice, and in particular, it was used in recent poker artificial intelligence milestones, where poker AIs beat 
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human poker players (Bowling et al. [13], Brown and Sandholm [14], Brown and Sandholm [16], Moravčı́k et al. 
[46]). In fact, RM+ routinely outperforms theoretically superior methods, such as optimistic variants of OMD and 
FTRL (Chiang et al. [20], Rakhlin and Sridharan [57]), which achieve O(1=T) convergence rates in the repeated 
game framework. Despite its very strong empirical performances, RM+ is only defined when the decision set is 
the simplex. However, many problems of the form (1) have convex sets X ,Y that are not simplexes (e.g., box con-
straints or norm balls for distributionally robust optimization) (Ben-Tal et al. [8]). Encouraged by the very strong 
empirical performance of RM+ and CFR+, we will construct parameter-free algorithms based on Blackwell 
approachability for solving more general instances of the saddle-point Problem (1).

Our main contributions are as follows. 
• Conic Blackwell Algorithm+ (CBA+). We start from the general reduction between regret minimization over gen-

eral convex compact sets and Blackwell approachability (Abernethy et al. [1]). This yields a regret minimizer, which 
we will refer to as the conic Blackwell algorithm (CBA). Motivated by the practical performance of RM+ on simplexes, 
we construct a variant of CBA, which uses a thresholding operation analogous to the one employed by RM+. We 
call this regret minimizer CBA+ (Algorithm 1). We show that CBA+ achieves O(1=

ÇÇÇÇ
T

p
) average regret in the worst 

case, and we show strong guarantees for the tracking regret of CBA+. A major selling point of CBA+ is that it does 
not require any step size choices; it implicitly adjusts to the structure of the domains and losses by being instantia-
tions of a Blackwell approachability algorithm, which is itself parameter free.

• Impacts of weights and alternation. As regret minimizers, we show that both CBA and CBA+ are compatible with 
increasing weighting schemes that put more weights on more recent decisions and losses (Theorems 2 and 3). 
Moreover, we show that CBA+ is compatible with different weighting schemes for the decisions and the losses. We 
then introduce a new algorithm for solving convex-concave saddle-point problems by using CBA+ in a repeated 
game framework with linear weights on the sequence of decisions and uniform weights on the losses (this is known 
as linear averaging in other algorithms (Tammelin et al. [61])), as well as an alternating update scheme. We call this 
algorithm SP-CBA+. We quantify the benefits of alternation for solving (1) with SP-CBA+ (Theorem 7) and show 
the first strict improvement guarantee for using alternation. The method that we develop in our proof for this result 
is very general, and we adapt it to prove the same strict improvements for combining alternation with RM and 
RM+. Prior results on RM and RM+ only showed that alternation does not hurt the convergence guarantee (Burch 
et al. [17]).

• Efficient implementation of CBA+. We show how to implement CBA and CBA+ when X and Y are simplexes, !p 
balls, and intersections of the !2 ball with a simplex, which arises naturally as a confidence region. More generally, 
CBA and CBA+ can be implemented when we can efficiently compute orthogonal projections onto the set X and Y. 
Note that the general reduction of regret minimization and Blackwell approachability from Abernethy et al. [1] 
yields CBA but does not yield a practically implementable algorithm, as the authors do not consider which decision 
sets allow for efficient projections.

• Practical performance of SP-CBA+. We study the practical efficacy of our algorithmic framework on several 
domains. First, we apply SP-CBA+ to two-player zero-sum matrix games, where the objective function is bilinear, 
and we compare with RM+, as well as with AdaHedge and AdaFTRL, two adaptive first-order algorithms. We 
then apply SP-CBA+ to EFGs, where the RM+ regret minimizer combined with linear averaging, alternation, and a 
counterfactual regret (CFR+) minimization scheme leads to state-of-the-art practical algorithms (Gao et al. [29], 
Kroer et al. [42], Tammelin et al. [61]). For EFGs, we find that SP-CBA+ leads to comparable performance in terms 
of the iteration complexity, and for some games, it slightly outperforms CFR+. In the simplex setting, we also find 
that SP-CBA+ outperforms both AdaHedge and AdaFTRL. These results show that SP-CBA+ recovers the strong 
practical performance of RM+ and CFR+ in the only setting where these two methods apply. Second and more 
importantly, we show that SP-CBA+ leads to strong practical performance in settings where RM+ and CFR+ do 
not apply. We consider instances of distributionally robust logistic regression and MDPs. For these two instances 
of saddle-point problems, we find that SP-CBA+ performs orders of magnitude better than online mirror descent 
and follow-the-regularized leader, as well as their optimistic variants, when using their theoretically correct fixed 
step sizes. Even when considering tuned step sizes for the other algorithms, SP-CBA+ performs better, with only a 
few cases of comparable performance (at step sizes that lead to divergence for some of the other nonparameter-free 
methods). We also find that SP-CBA+ outperforms a vanilla implementation of CBA combined with the repeated 
game framework, which highlights the improved practical performance of our algorithm. The fast practical perfor-
mance of our algorithm, combined with its simplicity and the total lack of step sizes or parameters tuning, suggests 
that it should be seriously considered as a practical approach for solving convex-concave optimization instances 
arising naturally in the operations research literature.

Compared with an earlier conference version (Grand-Clément and Kroer [32]), the present paper proves the 
convergence guarantees of CBA+ with alternation (and of RM and RM+ as a by-product of our novel proofs), a 
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crucial component of its strong empirical performances. It also introduces the tracking regret guarantees for 
CBA+, presents simpler and more general proofs for the convergence of CBA+, and compares the practical per-
formance of CBA+ on new and important applications.

We conclude our introduction with a brief discussion on the average regret achieved by other methods and 
resulting convergence to a saddle point. Our algorithm SP-CBA+ has a rate of convergence toward a saddle 
point of O(1=

ÇÇÇÇ
T

p
), similar to OMD and FTRL. In theory, it is possible to obtain a faster O(1=T) rate of convergence 

when F is differentiable with Lipschitz gradients: for example, via mirror prox (Nemirovski [48]) or other primal- 
dual algorithms (Chambolle and Pock [19]). However, our experimental results show that SP-CBA+ is faster 
than optimistic variants of FTRL and OMD (Syrgkanis et al. [60]), the latter being almost identical to the mirror 
prox algorithm and both achieving O(1=T) rate of convergence. A similar conclusion has been drawn in the con-
text of sequential game solving, where the RM+-based algorithms have better practical performance than the the-
oretically superior O(1=T)-rate methods (Kroer et al. [40], Kroer et al. [42]). In a similar vein, using error-bound 
conditions, it is possible to achieve a linear rate (e.g., when solving bilinear saddle-point problems over polyhe-
dral decision sets) by using the extragradient method (Tseng [62]) or optimistic gradient descent-ascent (Wei et al. 
[64]). However, these linear rates rely on unknown constants and may not be indicative of practical performance.

2. Repeated Game Framework and Blackwell Approachability
We will solve (1) using a repeated game framework. For any x 2 X , y 2 Y, we assume that F is subdifferentiable 
in x and superdifferentiable in y; we define @xF(x, y) to be the set of subgradients of F with respect to x at some 
(x, y) 2 X ⇥ Y:

@xF(x, y) à {f 2 Rn |F(z, y) � F(x, y) + h f , z� xi, ∀z 2 X}, 
and we define @yF(x, y) ⇢ Rm as the set of supergradients of F with respect to y at (x, y) 2 X ⇥ Y:

@yF(x, y) à {g 2 Rm |F(x, z)  F(x, y) + h g, z� yi, ∀z 2 Y}:
There are T iterations with indices t à 1, : : : , T. In this framework, each iteration t consists of the following steps. 

1. Each player chooses decisions xt 2 X , yt 2 Y.
2. The first player observes f t 2 @xF(xt, yt) and uses f t when computing the next decision.
3. The second player observes gt 2 @yF(xt, yt) and uses gt when computing the next decision.

In the repeated game framework described, the goal of each player is to minimize their regret RT, x, RT, y across 
the T iterations:

RT, x à
XT

tà1
hf t, xti�min

x2X

XT

tà1
hf t, xi, RT, y à max

y2Y

XT

tà1
hgt, yi�

XT

tà1
hgt, yti:

The reason this repeated game framework leads to a solution to the SPP Problem (1) is the following well-known 
theorem (e.g., Kroer [39, theorem 1]). Relying on F being convex-concave and subdifferentiable, it connects the 
regret incurred by each player to the duality gap in (1).

Theorem 1. Let (x̄T, ȳT) à 1
T
PT

tà1(xt, yt) for any (xt)t�1, (yt)t�1. Then,
max
y2Y

F(x̄T, y)�min
x2X

F(x, ȳT)  (RT, x + RT, y)=T:

Therefore, when each player uses a regret minimizer that guarantees regret on the order of O(
ÇÇÇÇ
T

p
), (x̄T , ȳT)T�0 

converges to a solution to (1) at a rate of O(1=
ÇÇÇÇ
T

p
). Later, we will show a generalization of Theorem 1 that will 

allow us to incorporate increasing averaging schemes that put additional weight on the later iterates and use 
alternating updates (Theorem 6). Given the repeated game framework, the next question becomes which algo-
rithms to employ in order to minimize regret for each player. As mentioned in Section 1, for matrix games and 
EFGs, variants of Blackwell approachability are used in practice.

2.1. Blackwell Approachability
In Blackwell approachability, a decision maker repeatedly takes decisions xt from some decision set X (this set 
plays the same role as X or Y in (1)). After taking decision xt, the player observes a vector-valued affine payoff 
function ut(x) 2 Rn. The goal for the decision maker is to force the average payoff 1

T
PT

tà1 ut(xt) to approach some 
convex target set S. Blackwell proved that a convex target set S can be approached if and only if for every half- 
space H ◆ S, there exists x 2 X such that for every possible payoff function u(·), u(x) is guaranteed to lie in H. 
The action x is said to force H. Blackwell’s proof is via an algorithm; at iteration t, his algorithm projects the aver-
age payoff ūt à 1

t�1
Pt�1
τà1 uτ(xτ) onto S, and then, the decision maker chooses an action xt that forces the tangent 
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half-space to S generated by the normal vector ūt�πS(ūt), where πS(ūt) is the orthogonal projection of ūt onto 
S. We call this algorithm Blackwell’s algorithm; it approaches S at a rate of O(1=

ÇÇÇÇ
T

p
) (Blackwell [11]). In particular, 

for d(ūT,S) defined as d(ūT,S) àmin{kūT � zk2 |z 2 S}, we have d(ūT,S) à O(1=
ÇÇÇÇ
T

p
). Blackwell’s algorithm is 

really a meta-algorithm, rather than a concrete algorithm. Even within the context of the Blackwell approachabil-
ity problem, one needs to devise a way to compute the forcing actions needed at each iteration (i.e., to compute 
πS(ū)). To the best of our knowledge, prior to this paper, the only practical implementation of Blackwell 
approachability for solving (1) is on the simplex for solving bilinear saddle-point problems and extensive-form 
games, which leads to RM and RM+.

2.2. Details on Regret Matching
Let �(n) be the n-dimensional probability simplex. RM arises by instantiating Blackwell approachability with the 
decision space X equal to �(n), the target set S equal to the nonpositive orthant Rn

�, and the vector-valued payoff 
function ut(xt) à f t� hf t, xtie equal to the regret associated with each of the n actions (which correspond to the 
vertices of �(n)). Here, e à (1, : : : , 1) 2 Rn. Hart and Mas-Colell [35] showed that with this setup, playing each 
action with probability proportional to its positive regret up to time t satisfies the forcing condition needed 
in Blackwell’s algorithm. Formally, regret matching (RM) keeps a running sum rt à

Pt
τà1(f τ� hf τ, xτie), and 

then, action i is played with probability xt+1, i à [rt, i]+=
Pn

ià1[rt, i]+, where [·]+ denotes thresholding at zero. By 
Blackwell’s approachability theorem, this algorithm converges to zero average regret at a rate of O(1=

ÇÇÇÇ
T

p
). In 

zero-sum game solving, it was discovered that a variant of regret matching leads to extremely strong practical per-
formance (but the same theoretical rate of convergence). In regret matching+ (RM+), the running sum is thresholded 
at zero at every iteration: rt à [rt�1 + f t� hf t, xtie]+; then, actions are again played proportional to rt. In the next sec-
tion, we describe a framework by Abernethy et al. [1] for using Blackwell’s algorithm to construct regret minimizers 
for more general convex sets X ; this will lead to the CBA algorithm, from which we will construct CBA+.

3. Conic Blackwell Algorithm
3.1. Our Algorithm
In this section, we introduce our main regret minimizer, CBA+, which uses a variation of Blackwell’s approach-
ability procedure (Blackwell [11]) to perform regret minimization on a general convex compact decision set X . 
We assume that the sequences (f t)t�1 for the first player and (gt)t�1 for the second player are such that kf tk2 
Lx, kgtk2  Ly, ∀t � 1, for some Lx > 0, Ly > 0 (possibly unknown). In the repeated game framework where we use 
regret minimization to solve a saddle-point Problem (1), this occurs for instance if∀(x, y) 2 X ⇥ Y,9 f 2 @xF(x, y),9 g 2 @yF(x, y), kfk  Lx, kgk  Ly, (4) 

and the oracle returning a subgradient f t 2 @xF(xt, yt) and a supergradient gt 2 @yF(xt, yt) ensures that kf tk 
Lx, kgtk  Ly always holds. We will simply write L for Lx or Ly when we focus on the regret of a single player. We 
will also use the notation κ à maxx2Xkxk2 (recall that X is compact). CBA+ is best understood as a combination of 
two steps. The first is the basic CBA algorithm, derived from Blackwell’s algorithm, which we describe next. To 
convert Blackwell’s algorithm to a regret minimizer on X , we use the reduction from Abernethy et al. [1], which 
considers the conic hull C à cone({κ} ⇥ X ) ⇢ Rn+1. The Blackwell approachability problem is then instantiated 
with X as the decision set, the target set equal to the polar C� à {z : hz, ẑi  0, ∀ẑ 2 C} of C, and instantaneous payoff 
vectors v à (hf , xi=κ, � f ) 2 Rn+1. The conic Blackwell algorithm (CBA) is implemented by computing the projec-
tion πC(u) of the aggregate payoff vector u onto C, noting that the projection can be written as α(κ, x) where α � 0 is 
a scalar and x 2 X , and playing the decision x. The second step in CBA+ is to replace the aggregate payoff vector 
u with a running projected aggregate payoff vector, where we always add the instantaneous payoff vector to the 
aggregate and then project the aggregate onto C.

More concretely, pseudocode for CBA+ is given in Algorithm 1. This pseudocode relies on two functions: 
CHOOSEDECISIONCBA+ : Rn+1 ! Rn, which maps the aggregate payoff vector ut to a decision in X , and 
UPDATEPAYOFFCBA+ , which controls how we aggregate payoffs. Given a vector u à (ũ, û) 2 R ⇥ Rn, represent-
ing a (projected) aggregate payoff u 2 C, we define

CHOOSEDECISIONCBA+(u) à (κ=ũ)û:
If ũ à 0, we just let CHOOSEDECISIONCBA+ (u) à x0 for some arbitrary x0 2 X . The function UPDATEPAYOFFCBA+ is 
implemented by adding the instantaneous payoff vector to the aggregate payoffs and then projecting onto C. More for-
mally, it is defined as

UPDATEPAYOFFCBA+(u, x, f ,ω) à πC(u +ω(hf , xi=κ, � f )), 
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where ω�is the weight assigned to the instantaneous payoff vector. Because of the projection step in 
UPDATEPAYOFFCBA+ , we always have u 2 C, which in turn, guarantees that CHOOSEDECISIONCBA+ (u) 2 X 
because C à cone({κ} ⇥ X ).
Algorithm 1 (CBA+) 

1. Input A convex, compact set X ⇢ Rn, κ àmax{kxk2 |x 2 X}.
2. Algorithm parameters Weights (ωt)t�1 2 RN.
3. Initialization tà 1, x1 2 X .
4. Observe f 1 then set u1 à ω1(hf 1, x1i=κ, � f 1) 2 R ⇥ Rn.
5. for t � 1 do
6. Choose xt+1 à CHOOSEDECISIONCBA+(ut).
7. Observe the loss f t+1 2 Rn.
8. Update ut+1 à UPDATEPAYOFFCBA+(ut, xt+1, f t+1,ωt+1):
9. end for

Let us give some intuition on the effect of the projection onto C. For a geometric intuition, it is easier to visual-
ize the dynamics in R2. Figure 1 illustrates the projection step πC(·) of CBA+. At a high level, from ut to ut+1, an 
instantaneous payoff vector

vt+1 à (h f t+1, xt+1i=κ, � f t+1)
is first reweighted by ωt+1 and added to ut, and then, the resulting vector u+

t à ut +ωt+1vt+1 is projected onto C to 
obtain ut+1. The projection πC(·) moves the vector u+

t along the edges of the cone C�, preserving the orthogonal 
distance d to C�. Intuitively, from a game-theoretic perspective in the case C à R2

+, the projection eliminates the 
negative components of the aggregate payoff, meaning that CBA+ does not remember “negative regrets.”

Let us also note the difference between CBA+ and the algorithm introduced in Abernethy et al. [1], which we 
have called CBA. CBA uses different UPDATEPAYOFF and CHOOSEDECISION functions. In CBA, the aggre-
gate payoff update is defined as

UPDATEPAYOFFCBA(u, x, f ,ω) à u +ω(hf , xi=κ, � f ):
Note in particular the lack of projection as compared with CBA+; this is analogous to the difference between RM 
and RM+. The CHOOSEDECISIONCBA function then requires a projection onto C:

CHOOSEDECISIONCBA(u) à CHOOSEDECISIONCBA+(πC(u)):
Based upon the analysis in Blackwell [11], Abernethy et al. [1] show that CBA with uniform weights (both on 
payoffs and decisions) guarantees O(1=

ÇÇÇÇ
T

p
) average regret.

3.2. Regret Bounds for CBA and CBA!

In this section, we investigate the theoretical performance guarantees of CBA and CBA+ when we vary the 
weights on decisions and payoffs. This is motivated by practical performance, where it has been observed in sev-
eral other settings that increasing weights usually perform better (Brown and Sandholm [15], Gao et al. [29], 
Tammelin et al. [61]) and that alternating update schemes are helpful (Kroer [39], Tammelin et al. [61]). First, we 
show that CBA and CBA+ are both compatible with varying weights (ωt)t�1 when those weights are used on 
both decisions and payoffs. Second, we show that CBA+ is compatible with weights (ωt)t�1 on payoffs and 
weights (θt)t�1 on decisions, possibly with ωt ≠ θt.

Figure 1. Illustration of πC(·) for C à R2
+ (left panel) and C any cone in R2 (right panel). 
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We start with the following theorem, which shows that CBA with weights on both decisions and payoffs is a 
no-regret algorithm. This generalizes the result of Abernethy et al. [1], which shows that CBA works for uniform 
weights.

Theorem 2. Let (xt)t�1 be the sequence of decisions generated by CBA with weights (ωt)t�1 on the instantaneous payoff 
vectors, and let St à

Pt
τà1ωτ�for any t � 1. Then,

XT

tà1
ωthf t, xti�min

x2X

XT

tà1
ωthf t, xi 

ÇÇÇ
2

p
κ · d(uT,C�):

Additionally,

d(uT, C�) 
ÇÇÇ
2

p
L ·

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
XT

tà1
ω2

t

vuut :

Overall, the average regret is such that
PT

tà1 ωthf t, xti�minx2X
PT

tà1ωthf t, xi
ST

 2κL

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1 ω

2
t

q

PT
tà1ωt

:

The proof of Theorem 2 uses the following facts from conic optimization. We provide proofs of all statements in 
Lemma 1 in Appendix A.
Lemma 1. Let C ⇢ Rn+1 be a closed convex cone and C� its polar. 

1. (Moreau’s decomposition (Combettes and Reyes [22])) If u 2 Rn+1, then u�πC�(u) à πC(u), hu�πC� (u),πC� (u)i à 0, 
and ku�πC�(u)k2  kuk2.

2. (Abernethy et al. [1, lemma 13]) If u 2 Rn+1, then d(u,C) àmaxw2C�\B2(1)hu, wi, where B2(1) à {w 2 Rn+1 |kwk2  1}.
3. If u 2 C, then d(u,C�) à kuk2.
4. Assume that C à cone({κ} ⇥ X) with X ⇢ Rn convex compact and κ à maxx2X kxk2. Then, C� is a closed convex cone. 

Additionally, if u 2 C, we have �u 2 C�.
5. Let us write C� for the ordering induced by C� : x C� y � y� x 2 C�. Then,

xC�y, x0C�y0 ) x + x0C�y + y0, ∀x, x0, y, y0 2 Rn+1, (5) 
x + x0C�y ) xC�y, ∀x, y 2 Rn+1, ∀x0 2 C�: (6) 

6. Assume that xC�y for x, y 2 Rn+1. Then, d(y,C�)  kxk2.

We are now ready to prove Theorem 2.
Proof of Theorem 2. The proof proceeds in two steps. We first have

d(uT, C�) à max
w2cone({κ}⇥X )\B2(1) hXT

tà1
ωtvt, wi (7) 

� max
x2X hXT

tà1
ωtvt,

(κ, x)
k(κ, x)k2 i (8) 

à max
x2X

PT
tà1 ωthf t, xti�

PT
tà1 ωthf t, xi

k(κ, x)k2
, (9) 

where (7) follows from statement 2 in Lemma 1. For (8), we note that for w attaining the arg max in the right- 
hand side of (7), we must have kwk2 à 1 or w à 0; we obtain (8) by dropping the second case. Equality (9) follows 
from CBA maintaining ut à

Pt
τà1ωτ

hf τ,xτi
κ , �

Pt
τà1ωτf τ

⌘ ✓
, ∀t � 1: Because k(κ, x)k2 

ÇÇÇ
2

p
κ, we conclude that

ÇÇÇ
2

p
κ · d(uT,C�) �

XT

tà1
ωthf t, xti�min

x2X

XT

tà1
ωthf t, xi:
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We now prove that d(uT,C�) 
ÇÇÇ
2

p
L
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
τà1ω

2
τ

q
: We have

d(ut+1, C�)2 à min
z2C�

kut+1 � zk2
2  kut+1�πC�(ut)k2

2  kut +ωt+1vt+1�πC�(ut)k2
2:

This shows that

d(ut+1, C�)2  kut � πC� (ut)k2
2 + ω2

t+1kvt+1k2
2 + 2ωt+1hut � πC�(ut), vt+1i

 kut � πC� (ut)k2
2 + ω2

t+1kvt+1k2
2, (10) 

where (10) follows from
hut � πC� (ut), vt+1i à 0: (11) 

This is one of the crucial components of Blackwell’s approachability framework; the current decision is chosen to 
force the next instantaneous payoff vector to lie in the hyperplane generated by projecting the aggregate payoff 
onto the target set. To see this, first note that ut�πC�(ut) à πC(ut). Let us write " à (π̃, "̂) à πC(ut). Note that by 
definition, xt+1 à (κ=π̃)"̂, and vt+1 à (hf t+1, xt+1i=κ, � f t+1). Therefore,

hut�πC�(ut), vt+1i à h", vt+1i
à h(π̃, "̂), (hf t+1, xt+1i=κ, � f t+1)i
à h(π̃, "̂), (hf t+1, (κ=π̃)"̂i=κ, � f t+1)i
à h"̂, f t+1i� h"̂, f t+1i
à 0:

Next, recall that d(ut, C�)2 à kut�πC�(ut)k2
2. Therefore, we have shown that

d(ut+1, C�)2  d(ut, C�)2 +ω2
t+1kvt+1k2

2:

Applying the previous inequality inductively and telescoping, we obtain

d(ut, C�)2 
Xt

τà1
ω2
τkvτk2

2  2L2 ·
Xt

τà1
ω2
τ, 

where the last inequality follows from the definition of vt and L. w

In the next theorem, we show a result that may seem surprising; CBA+ allows us to use two separate and dif-
ferent weighting schemes for the decisions in the regret definition and the aggregate payoffs. This result is 
important because as we show in Appendix I, using linear averaging for the decisions and uniform weights for 
the instantaneous payoffs results in dramatically faster empirical convergence for CBA+. This is analogous to 
RM+ in the simplex case; using linear averaging on decisions but constant weights on the instantaneous payoffs 
is vastly superior numerically (Brown and Sandholm [15], Tammelin et al. [61]). Both for CBA+ and RM+, this 
requires combination with alternation, which we study in Section 3.4.
Theorem 3. Let (xt)t�1 be the sequence of decisions generated by CBA+ with weights (ωt)t�1 on the instantaneous payoff 
vectors. Let (θt)t�1 be the weights on the decisions and ST à

PT
tà1 θt. Assume that θt+1

θt
� ωt+1
ωt

, ∀t � 1. Then,

PT
tà1 θthf t, xti�minx2X

PT
tà1 θthf t, xi

ST
 2κLθT

ωT

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1 θt

:

Our proof heavily relies on the sequence of aggregate payoffs belonging to the cone C at every iteration 
(ut 2 C, ∀t � 1), and for this reason, it does not extend to CBA. We also note that the use of conic optimization 
somewhat simplifies the argument compared with the proof that RM+ is compatible with polynomial averaging 
on decisions and uniform weights on payoffs.

Proof of Theorem 3. Recall that vt à (hf t, xti=κ, � f t). By construction and following the same argument as for the 
proof of Theorem 2, we have

XT

tà1
θthf t, xti�min

x2X

XT

tà1
θthf t, xi 

ÇÇÇ
2

p
κ · d

XT

tà1
θtvt,C�

 !

: (12) 
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Additionally, we always have
ωt+1vt+1 �C� ut+1 � ut: (13) 

This is because
ωt+1vt+1 � ut+1 + ut à ut + ωt+1vt+1 � ut+1

à ut + ωt+1vt+1 � πC(ut + ωt+1vt+1)
à πC�(ut + ωt+1vt+1) 2 C�, 

where the second equality follows from the definition of ut+1 and the third equality follows from Moreau’s 
decomposition. Therefore, multiplying (13) by θt+1 and dividing by ωt+1, we obtain

θt+1vt+1 �C�
θt+1
ωt+1

(ut+1 � ut):

Reformulating the right-hand side, we obtain

θt+1vt+1 �C�
θt+1
ωt+1

ut+1 �
θt
ωt

ut �
θt+1
ωt+1

� θt
ωt

◆ 
ut:

Note that θt+1
ωt+1
� θt
ωt

⌘ ✓
ut 2 C because θt+1

ωt+1
� θt
ωt
� 0 and ut 2 C. Statement 4 in Lemma 1 shows that if u 2 C, then 

�u 2 C�. Therefore, � θt+1
ωt+1
� θt
ωt

⌘ ✓
ut 2 C�. Now, by applying (6) in statement 5 of Lemma 1, we have that

θt+1vt+1 �C�
θt+1
ωt+1

ut+1 �
θt
ωt

ut�
θt+1
ωt+1
� θt
ωt

◆ 
ut ) θt+1vt+1 �C�

θt+1
ωt+1

ut+1 �
θt
ωt

ut:

Summing up the previous inequalities from tà 1 to t à T� 1 and using u1 à v1, we obtain 
PT

tà1 θtvt �C�
θT
ωT

uT:
Now, statement 6 shows that

d
XT

tà1
θtvt,C�

 !


�����

�����
θT
ωT

uT

�����

�����
2

: (14) 

By construction, uT is the sequence of aggregate payoffs generated by CBA+ with weights (ωt)t�1. We now show 
that

d(uT,C�) à kuTk2 
ÇÇÇ
2

p
L

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
XT

tà1
ω2

t

vuut :

We have, from statement 1 in Lemma 1,

kut+1k2
2 à kπC(ut + ωt+1vt+1)k2

2  kut + ωt+1vt+1k2
2:

Therefore,

kut+1k2
2  kutk2

2 + ω2
t+1kvt+1k2

2 + 2ωt+1hut, vt+1i:
By construction and for the same reason as for (11), hut, vt+1i à 0. Therefore, we have the inequality

kut+1k2
2  kutk2

2 +ω2
t+1kvt+1k2

2:

By telescoping this inequality, we obtain kutk2
2 
Pt
τà1ω

2
τkvτk2

2: By definition of L, we conclude that

kuTk2 
ÇÇÇ
2

p
L

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
XT

tà1
ω2

t

vuut : (15) 

From (14), d(PT
tà1θtvt,C�) 

ÇÇÇ
2

p
L θT
ωT

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q
, which together with (12), concludes the proof of Theorem 3. w

Remark 1. We could have defined more general versions of CBA and CBA+, parametrized by a positive scalar 
λ > 0, by defining the cone C à cone({λ} ⇥ X ) ⇢ Rn+1 and the instantaneous payoffs as vt à hf t,xti

λ , � f t

⌘ ✓
. The 

algorithms introduced in this section correspond to the choice λ à κ�with κ à maxx2Xkxk2. In Appendix B, we pro-
vide the regret guarantees for these more general CBA and CBA+ algorithms based on the value of λ > 0. We 
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then show that choosing λ à κ�minimizes our regret bounds, simplifies the exposition, and performs well 
empirically.

So far, we have studied the classical notion of regret where we compare the performance of the regret minimizer 
against the best stationary decision in hindsight. We now show that CBA+ provides a stronger tracking regret guaran-
tee. In tracking regret, a constant K is given, and we measure the performance against the best sequence from the set 
of all sequences z1, : : : , zT 2 X that change at most K�1 times (Herbster and Warmuth [36]). The standard notion of 
regret corresponds to Kà1. Analogously to the case of RM+ and RM, we have that CBA+ provides a tracking regret 
guarantee, whereas CBA does not. We provide the detailed proof in Appendix C.
Theorem 4. Let (xt)t�1 be the sequence of decision generated by CBA+ with weights (ωt)t�1 on the instantaneous payoff 
vectors. Let (θt)t�1 be the weights on the decisions and ST à

PT
tà1 θt. Assume that θt+1

θt
� ωt+1
ωt

, ∀t � 1. For any K 2 N, let 
σK ⇢ XT be the set of sequences of T elements of X that change at most K � 1 times:

σK à {(z1, : : : , zT) 2 XT |Card({z1, : : : , zT})  K}:
Then, we have

PT
tà1 θthf t, xti�minz2σK

PT
tà1 θthf t, zti

ST
 2κLK θT

ωT

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1 ω

2
t

q

PT
tà1 θt

:

3.3. Convergence Bounds for Saddle-Point Problems
In this section, we show how the regret bounds from the previous section translate into convergence rates for 
solving convex-concave saddle-point problems in the repeated game framework. In particular, the following the-
orem gives the convergence rate of CBA+ and CBA for solving saddle-point problems of the form (1) based on 
our bounds on the regret of each player under various weighting schemes. The proof is in Appendix D.

Theorem 5. Let L àmax{Lx, Ly} defined in (4) and κ àmax{max{kxk2, kyk2} |x 2 X , y 2 Y}. 
1. Let p 2 N. Let (x̄T, ȳT) à

PT
tà1ωt(xt, yt)=ST, where (xt)t�1, (yt)t�1 are generated by the repeated game framework with 

CBA with weights (ωτ)t�1 on both decisions and payoffs and ST à
PT

tà1ωt. Assume that ωt à tp, ∀t � 1. Then,

max
y2Y

F(x̄T, y)�min
x2X

F(x, ȳT) àO
κL

ÇÇÇÇÇÇÇÇÇÇ
p + 1

p
ÇÇÇÇ
T

p
 !

:

2. Let p, q 2 N with q � p. Let (x̄T, ȳT) à
PT

tà1 θt(xt, yt)=ST, where (xt)t�1, (yt)t�1 are generated by the repeated game 
framework with CBA+ with payoff weights (ωt)t�1, decision weights (θt)t�1, and ST à

PT
tà1 θt. Assume that θt à tq,ωt à tp, ∀t � 1. Then,

max
y2Y

F(x̄T, y)�min
x2X

F(x, ȳT) à O κL(q + 1)
ÇÇÇÇÇÇÇÇÇÇ
p + 1

p ÇÇÇÇ
T

p
 !

:

Let us compare our bounds with the regret bounds of classical first-order methods (FOMs). We consider p, q à 0. 
CBA and CBA+ achieve O(κL=

ÇÇÇÇ
T

p
) average regret, whereas OMD (Nemirovski and Yudin [49]) and FTRL (Aber-

nethy et al. [2]) achieve O(⌦L=
ÇÇÇÇ
T

p
) average regret, where ⌦ àmax{kx� x0k2 | x, x0 2 X}: We can always recenter 

X to contain 0, in which case the bounds for OMD/FTRL and CBA+ are equivalent because κ  ⌦  2κ. The 
bound on the average regret for optimistic online mirror descent (OOMD) (Chiang et al. [20]) and optimistic follow 
the regularized leader (OFTRL) (Rakhlin and Sridharan [57]) is O(⌦2L=T) in the repeated game framework, a pri-
ori better than the bound for CBA+ as regards the number of iterations T. Nonetheless, we will see in Section 5
that the empirical performance of CBA+ is better than that of O(1=T) methods. A similar situation occurs for 
RM+ compared with OOMD and OFTRL for solving extensive-form games, such as poker (Farina et al. [27]).

3.4. Improved Convergence Bounds Using Alternation
Alternation is a simple variation of the repeated game framework from Section 2. Alternation is known to lead to 
significant empirical speedups for RM+ and CFR+ (Tammelin et al. [61]), and we observe in our simulations 
(Appendix I) that this holds for CBA+ as well. In the repeated game framework with alternation, at iteration t, 
the second player is provided with the decision xt of the first player for iteration t. Because alternation is defined 
the same way for both CBA and CBA+, we omit the subscripts in CHOOSEDECISION and UPDATEPAYOFF. In 
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particular, at iteration t of the repeated game framework with alternation, the players choose xt and yt as 
follows. 

1. Both players start with aggregate payoffs ux
t�1, uy

t�1.
2. The first player chooses a decision xt based on ux

t�1: xt à CHOOSEDECISION(ux
t�1):

3. For gt�1 à @yF(xt, yt�1), the second player updates its aggregate payoff:

uy
t à UPDATEPAYOFF(uy

t�1, yt�1, gt�1,ωt):

4. The second player chooses a decision yt based on uy
t : yt à CHOOSEDECISION(uy

t ):
5. For f t à @xF(xt, yt), the first player updates its aggregate payoff:

ux
t à UPDATEPAYOFF(ux

t�1, xt, f t,ωt):

Recall that we use the repeated game framework to solve (1) because we can bound the duality gap by the sum 
of the average regrets of each player using Theorem 1. It is known that in the repeated game framework with 
alternation, it is possible to construct decisions such that Theorem 1 fails to hold because of the mismatch in the 
sequences of decisions of the players (Farina et al. [26]). That said, it was later shown that a modified version of 
Theorem 1 holds (Burch et al. [17]). Here, we state a more general version of that result, which was first shown in 
a set of lecture notes (Kroer [39]). In particular, the following bound holds on the duality gap. For the sake of 
completeness, we provide the proof in Appendix E.

Theorem 6. Consider some weights (θt)t�1 and ST à
PT

tà1 θt+1. Let (x̄T, ȳT) à
PT

tà1 θt+1(xt+1, yt)=ST, where (xt)t�1, 
(yt)t�1 are generated by the repeated game framework with alternation. Then,

max
y2Y

F(x̄T, y)�min
x2X

F(x, ȳT) 
1

ST
max
y2Y

XT

tà1
θt+1hgt, yi�

XT

tà1
θt+1hgt, yti

 !

+ 1
ST

XT

tà1
θt+1hf t, xti�min

x2X

XT

tà1
θt+1hf t, xi

 !

+ 1
ST

XT

tà1
θt+1(F(xt+1, yt)� F(xt, yt))

 !

:

From Theorem 6, we see that alternation guarantees convergence to a solution of (1) if
XT

tà1
θt+1(F(xt+1, yt)� F(xt, yt)) 0: (16) 

In the framework of RM and RM+, we have X à �(n),Y à �(m), and the objective function is bilinear. In this case, 
it is shown in Burch et al. [17] that (16) holds. In particular, for any t 2 [T], it holds that F(xt+1, yt)� F(xt, yt)  0. 
We provide the following stronger result for CBA+ in the case of an objective function F that is linear in one of 
the two variables, with any convex compact decision sets X and Y. The proof is presented in Appendix F.
Theorem 7. Assume that (x, y) !̀ F(x, y) is linear in x. 

1. In the framework of Theorem 6, suppose that (xt)t�1, (yt)t�1 are generated by CBA+ with weights (ωt)t�1 on the payoffs. 
Let t � 1. If ux

t à 0, then xt+1 à xt and F(xt+1, yt)� F(xt, yt) à 0. Otherwise,

F(xt+1, yt)� F(xt, yt) �
κ

ωt · kux
t k1

kux
t � ux

t�1k2
2:

2. In the framework of Theorem 6, suppose that (xt)t�1, (yt)t�1 are generated by CBA with weights (ωt)t�1 on the payoffs. 
Let t � 1. If πC(ux

t ) à 0, then xt+1 à xt and F(xt+1, yt)� F(xt, yt) à 0. Otherwise,

F(xt+1, yt)� F(xt, yt) �
κ

ωt · kπC(ux
t )k1

kπC(ux
t )�πC(ux

t�1)k2
2:

Note that our results in Theorem 7 for CBA and CBA+ improve upon the analogous results for RM and RM+

(Burch et al. [17]) because Theorem 7 guarantees a strict improvement from alternation, where Burch et al. [17] 
only show that “alternation does not hurt” (i.e., Burch et al. [17] only show that (16) holds). Second, their result is 
for the case of a bilinear objective function, whereas we only require linearity in one of the variables. In fact, our 
results in Theorem 7 also extend to RM and RM+, which provides the first explanation for the strong 
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performances of RM and RM+ combined with alternation. For the sake of conciseness, we present the details on RM 
and RM+ in Appendix G. Finally, we would like to note that our assumption that the objective function is linear in 
one of the decision variable is satisfied for many important decision problems (e.g., Markov decision processes, dis-
tributionally robust logistic regression, and matrix games), as we will see in our simulations in Section 5.

4. Efficient Implementations of CBA
The main bottleneck of both CBA+ and CBA is to efficiently compute πC(u), the orthogonal projection of a vector 
u on the cone C à cone({κ} ⇥ X ):

πC(u) 2 arg min
y2C

ky� uk2
2: (17) 

Note that this issue is not discussed in Abernethy et al. [1], where the authors do not provide an efficient imple-
mentation of CBA. In this section, we show how to efficiently solve (17) for many important decision sets X . One 
of the critical components of our proofs is Moreau’s decomposition theorem (Combettes and Reyes [22]) (statement 1 
in Lemma 1), which states that πC(u) can be recovered from πC�(u) and vice versa because for any convex cone C, 
we have πC(u) +πC�(u) à u: All the proofs for this section are presented in Appendix H.

4.1. Simplex
Assume that X à �(n). This setting is standard for matrix games, where n is the number of actions of a player 
and x 2 �(n) represents a randomized decision. It is also used for extensive-form games because CFR decom-
poses regret minimization over the tree-like decision space into a set of local regret minimizations over simplexes 
(Zinkevich et al. [66]). When X à �(n), we show that πC� (u) can be computed in O(n log(n)) using a sorting trick 
similar to that for the standard simplex projection, and therefore, πC(u) can be computed in O(n log(n)) using 
Moreau’s decomposition. In particular, we provide the following closed-form expression for the polar cone C�.

Lemma 2. Let C à cone({1} ⇥ �(n)). Then, C� à {(ỹ, ŷ) 2 Rn+1 |maxi2[n]ŷi �ỹ}:
Therefore, πC�(u) is a solution to min{(ỹ� ũ)2 + kŷ� ûk2

2 | (ỹ, ŷ) 2 Rn+1, maxi2[n]ŷi �ỹ}:
Proposition 1. Let X à �(n). An optimal solution πC�(u) can be computed in O(n log(n)) arithmetic operations. Therefore, 
πC(u) can be computed in O(n log(n)) arithmetic operations.

4.2. ‘p Balls
For p � 1 and p à1, we consider the !p balls X à {x 2 Rn |kxkp  1}. This type of decision set appears in many pro-
blems in optimization, including robust optimization (Ben-Tal et al. [8]), distributionally robust logistic regres-
sion (Namkoong and Duchi [47]), !1 regression (Sidford and Tian [58]), and saddle-point reformulation of 
Markov decision processes (Jin and Sidford [38]). We first reformulate the cones C and C�. Recall that κ à
max{kxk2 |x 2 X}.
Lemma 3. Let X à {x 2 Rn |kxkp  1}, with p � 1 or p à1. Let q 2 R[ {+1} be such that 1=p + 1=q à 1. Then, 
C à {(ỹ, y) 2 R ⇥ Rn |kykp  ỹ=κ},C� à {(ỹ, y) 2 R ⇥ Rn |kykq �κỹ}:

Based on Lemma 3, we can prove the following propositions.
Proposition 2. Let X à {x 2 Rn |kxkp  1} for p 2 {1,1}. Then, πC(u) can be computed in O(n log(n)) operations.
Proposition 3. Let X à {x 2 Rn |kxk2  1}: Then, πC(u) can be computed in O(n) operations.

4.3. Ellipsoidal Confidence Region in the Simplex
Here, X is an ellipsoidal subregion of the simplex defined as X à {x 2 �(n) |kx� x0k2  ✏x}. This type of decision set is 
widely used because it is associated with confidence regions when estimating a probability distribution from 
observed data (Bertsimas et al. [9], Iyengar [37]). It can also be used in the Bellman update for robust Markov 
decision processes (Goyal and Grand-Clément [30], Iyengar [37], Wiesemann et al. [65]). We assume that the con-
fidence region is “entirely contained in the simplex”: {x 2 Rn |x>e à 1} \ {x 2 Rn |kx� x0k2  ✏x} ✓ �(n) to avoid 
degenerate components. In this case, using a change of basis, we show that it is possible to compute πC(u) in 
closed form (i.e., in O(n) arithmetic operations).
Proposition 4. Let X à {x 2 �(n) |kx� x0k2  ✏x}, and assume that {x 2 Rn |x>e à 1} \ {x 2 Rn |kx� x0k2  ✏x} ✓ �(n). 
Then, πC(u) can be computed in O(n) arithmetic operations.
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5. Numerical Experiments
In this section, we compare the performances of SP-CBA+ on real and synthetic instances of classical saddle- 
point problems from the operations research and optimization literature. We focus on bilinear matrix games, 
extensive-form games, distributionally robust logistic regression, and MDPs. Recall that we have defined 
SP-CBA+ by combining the repeated game framework from Section 2 with CBA+ as a regret minimizer, with 
uniform weights on the payoffs, linear weights on the decisions, and the alternating updates from Section 3.4. 
We justify in Appendix I that this leads to the strongest empirical performances for SP-CBA+. We first examine 
the performance of SP-CBA+ on matrix and extensive-form games, where RM+ and CFR+ are already known to 
perform extremely well empirically, and the goal of these experiments is to see whether SP-CBA+ retains that 
very strong empirical performance. The experiments on distributionally robust logistic regression and MDPs 
then show the performance on new domains where no Blackwell-based algorithms were known prior to this 
paper. To illustrate the superior performance of CBA+ compared with the vanilla CBA algorithm, in all instances 
we also run a vanilla version of SP-CBA, which corresponds to combining the repeated game framework from 
Section 2 with CBA as a regret minimizer.

5.1. Matrix Games
Matrix games have a bilinear objective function and simplexes as decision sets:

min
x2�(n)

max
y2�(m)

hx, Ayi, (18) 

where A 2 Rn⇥m is the matrix of payoffs of the game. We can view (18) as a zero-sum game between the first 
player and the second player, where the coefficient Aij 2 R represents payoff obtained by the second player when 
the first player chooses action i and the second player chooses action j.

5.1.1. Experimental Setup. We generate 100 synthetic matrices A of size Rn⇥m with (n, m) à (100, 50). Similarly, as 
in Chambolle and Pock [19] and Nesterov [50], for the coefficients of A we consider a uniform distribution in 
[0, 1] or a normal distribution of mean 0 and variance 1. We compare SP-CBA+ with SP-CBA and with RM+, 
which is known to achieve the best empirical performance compared with a wide range of algorithms, including 
Hedge and other first-order methods (Farina et al. [27], Kroer [39], Kroer et al. [40]). We also compare with two 
other scale-free and parameter-free no-regret algorithms, AdaHedge (De Rooij et al. [23]) and AdaFTRL (Ora-
bona and Pál [52]), with the !2 norm as the Bregman divergence. Similarly as for SP-CBA+, for RM+ we use the 
repeated game framework with alternation, along with linear averaging on the decisions and uniform averaging 
on the payoffs. In Figure 2, we compare the performance of the five algorithms (SP-CBA+, SP-CBA, RM+, Ada-
Hedge, and AdaFTRL) for solving (18). In Figure 2(a), we let the five algorithms run for Tà1,000 iterations, and 
we show the duality gap of the current running average as a function of the number of iterations. This shows the 
progress made by the algorithms toward solving (18) at each iteration. In Figure 2(b), we run the five algorithms 
for time max à 10 seconds, and we show the duality gap as a function of the time of computation. We average all 
the results over 50 randomly generated instances. Note that both axes are in logarithmic scale.

5.1.2. Results and Discussion. When we compare the duality gap as a function of the number of iterations 
(Figure 2(a)), we note that SP-CBA+ performs on par with RM+, and both algorithms vastly outperform SP-CBA, 

Figure 2. (Color online) Comparison of SP-CBA+, SP-CBA, RM+, AdaHedge, and AdaFTRL on instances of matrix games. We 
compare the duality gap with respect to (a) the number of iterations or (b) the computation time. The coefficients of A are chosen 
randomly, with a uniform distribution or a normal distribution. 

(a) (b)
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AdaHedge, and AdaFTRL. However, each iteration of SP-CBA+ on the simplex requires solving O(n log(n)) arith-
metic operations (see Section 4.1), whereas each iteration of RM+ can be performed in O(n) operations. Therefore, 
when we compare the duality gap as a function of the computation time (Figure 2(b)), we note that RM+ outperforms 
SP-CBA+, even though after roughly 10seconds of computation, the performances of SP-CBA+ and RM+

are equivalent.

5.2. Extensive-Form Games
EFGs (von Stengel [63]) are used to model sequential games with imperfect information. For example, they were 
used for superhuman poker AIs in games such as Texas hold’em (Brown and Sandholm [14], Brown and Sand-
holm [16], Tammelin et al. [61]). EFGs can be written as saddle-point problems, with a bilinear objective functions 
and polytopes X ,Y encoding the players’ decision spaces. Based on the CFR framework (Zinkevich et al. [66]), 
EFGs can be solved via decomposition into simplex-based regret minimization problems.

5.2.1. Experimental Setup. For solving EFGs, we combine the CFR decomposition with CBA+ as a regret mini-
mizer on the simplex. For the sake of simplicity, we will still call the resulting algorithm SP-CBA+ (because we 
use alternation and linear averaging on the decisions), even though the algorithm relies on the CFR decomposi-
tion for EFGs (which is not necessary for solving the other saddle-point instances from Sections 5.1, 5.3, and 5.4). 
We compare SP-CBA+ with CFR+ (Bowling et al. [13]), the algorithm with the strongest empirical performance 
for solving EFGs. We also compare SP-CBA+ with SP-CBA. We compare these algorithms on two Leduc poker 
benchmark instances (Leduc 2 players (2 pl.) and 3 ranks or 5 ranks (rks)): a search game and sheriff; we refer to 
Farina et al. [28] for details about the instances. Similarly, as in Section 5.1, we compare the performance as both 
a function of computation time and the number of iterations in the repeated game framework. We run the algo-
rithms for time max à 100 seconds and Tà1,500 iterations; note that we choose time max and T larger for EFGs 
than for matrix games because the EFG instances are much larger than the matrix games from Section 5.1.

5.2.2. Results and Discussion. If we only consider the duality gap as a function of the number of iterations 
(Figure 3), SP-CBA+ performs on par with CFR+ and significantly outperforms CFR+ on some EFGs instances. 
SP-CBA is always the slowest algorithm. However, when we consider the progress made by each algorithm dur-
ing time max à 100 seconds (Figure 4), CFR+ enjoys better numerical performances than SP-CBA+ and SP-CBA. 
This is because the updates are closed form in CFR+, whereas each update of SP-CBA+ (or SP-CBA) requires us 
to solve an equation, a situation similar to that for matrix games over the simplex (Section 5.2). It is interesting to 
note that for EFGs, the difference in per-iteration computation time has a bigger impact than for matrix games; it 
is possible that this is because of our python-based implementation of SP-CBA+ compared with the C-based 
implementation of CFR+. Better implementations of SP-CBA+ for EFGs could potentially lead to better results. 
To conclude this section, we note that CFR+ enjoys the best empirical performances for solving EFGs, and it is 
not concerning that SP-CBA+ cannot outperform CFR+ on EFGs (in terms of computation time). We will see in 

Figure 3. (Color online) Comparison of SP-CBA+, SP-CBA, and CFR+ for solving extensive-form games, as regards the num-
ber of iterations. 
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the next section how SP-CBA+ carries over these very strong empirical results to instances where CFR+ does not 
apply and where SP-CBA+ can be implemented more efficiently.

5.3. Distributionally Robust Logistic Regression
Distributionally robust optimization exploits knowledge of the statistical properties of the model parameters to 
obtain risk-averse optimal solutions (Rahimian and Mehrotra [56]). We focus on the following instance of distri-
butionally robust logistic regression (Ben-Tal et al. [8], Namkoong and Duchi [47]). There are m observed feature- 
label pairs (ai, bi) 2 Rn ⇥ {�1, 1}, and we solve

min
x2Rn, kx�x0k2✏x

max
y2�(m), ky�y0k2✏y

Xm

ià1
yi!i(x) +

µ
2 kxk

2
2, (19) 

where !i(x) à log(1 + exp(�bia>i x)),µ � 0.

5.3.1. Experimental Setup. We compare SP-CBA+ with four classical FOMs: OMD, OOMD, FTRL, and OFTRL. 
We provide a detailed presentation of our implementations of these algorithms and our experimental setting 
in Appendix J; we use the !2 norm as the Bregman divergence. We also compare the performance of SP-CBA+

with SP-CBA. We compare the performances of these algorithms with SP-CBA+ on two synthetic data sets 
and two real data sets. We use parameters x0 à (1, : : : , 1)=n,✏x à 10, y0 à (1, : : : , 1)=m,✏y à 1=2m,µ à 0:1 in (19), 
and we initialize all algorithms at x0, y0. For the synthetic classification instances, we generate a vector x⇤ 2 Rn; 
we sample some vectors ai 2 Rn at random for i 2 {1, : : : , m} and set labels bi à sign(a>i x⇤), and then, we flip 10% 
of the labels. We consider two types of synthetic instances: one where aij is sampled from a uniform distribu-
tion in [0, 1] and one where aij is sampled from a normal distribution with mean 0 and variance 1. For the real 
classification instances, we use the Australian and splice data sets from the libsvm data sets library from 
https://www.csie.ntu.edu.tw/?cjlin/libsvmtools/datasets/. For the synthetic instances, we choose (m, n) à
(50, 100); for the Australian data set, we have (m, n) à (690, 14), and for the splice data set, we have (m, n) à (1, 000, 60).

One of the main motivations for SP-CBA+ is to obtain a parameter-free algorithm. In contrast, the other FOMs 
considered in this section require choosing step sizes ηt at every iteration t. This is a major limitation in practice; 
if the step sizes are too small, the iterates may be very conservative, whereas the algorithms may diverge with 
very large step sizes. We will compare the performances of the FOMs for both the fixed, theoretically correct step 
sizes and the tuned step sizes. The computation of the theoretically correct step sizes is presented in Appendix 
J.3. To tune the FOMs, we run them for the first 10 iterations, with step size ηt à α=

ÇÇÇÇÇÇÇÇÇ
t + 1

p
for OMD and FTRL and 

step size ηt à α�for OOMD and OFTRL, and we search for the best α 2 {0:01, 0:1, 1, 10, 100}. We then choose the 
value of α�that lead to the smallest duality gap after 10 iterations and use this value for the remaining Tà1,000 
iterations. Note that the tuning time and iterations (where the first 10 iterations are repeated with various values 
of α) are counted in the total computation time and number of iterations of the FOMs. We acknowledge that this 

Figure 4. (Color online) Comparison of SP-CBA+, SP-CBA, and CFR+ for solving extensive-form games, as regards the compu-
tation time. 
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tuning method is only one possibility and that the multiplicative factor α�could be chosen in many different 
ways. However, any other tuning framework would still be resource demanding and uncertain. In contrast, 
SP-CBA+ does not require any tuning, and as we will see, it outperforms even the tuned FOMs. Finally, on the y 
axis, we only report the worst-case loss of the current average x̄T; we do not report the duality gap because for a 
fixed value of y, computing the optimal x requires solving a (regularized) nominal logistic regression, which 
would be computationally intensive to do at every iteration.

5.3.2. Proximal Updates for the First-Order Methods. Note that in (19), SP-CBA+ is instantiated on an !2 ball (for 
the first player) and the intersection of an !2 ball and the simplex (for the second player). As shown in Sections 
4.2 and 4.3, this leads to closed-form updates for SP-CBA+ and SP-CBA at every iteration. In contrast, OMD, 
FTRL, OOMD, and OFTRL require binary searches for the decision of the second player at each iteration; see 
Appendix J. The functions used in the binary searches themselves require solving an optimization program (an 
orthogonal projection onto the simplex) at each evaluation. Even though computing the orthogonal projection of 
a vector onto the simplex of size m can be done in O(m log(m)), this results in slower overall running time com-
pared with SP-CBA+ and SP-CBA with closed-form updates at each iteration. The situation is even worse for 
OOMD, which requires two proximal updates at each iteration.

5.3.3. Results and Discussion. In Figure 5, we show the progress of all algorithms toward solving (19) as a func-
tion of the number of iterations when the theoretical step sizes are used for the FOMs. We notice that all FOMs 
are progressing very slowly toward an optimal solution. This is because the theoretical step sizes are very small, 
relying on upper bounds on the Lipschitz constants of the objective function of (19). In contrast, SP-CBA+

quickly converges to an optimal solution, even though we see in Figure 5 that during the first few iterations for 
the uniform instance, SP-CBA+ (and SP-CBA) may increase the objective function. SP-CBA performs almost on 
par with SP-CBA+ after the first few iterations. In Figure 6, we tune the FOMs for the first 10 iterations before 
running them (with the tuned step sizes). We note that depending on the data sets, the tuned FOMs may perform 
very well (e.g., OMD for the uniform instance, all FOMS for the normal instance, OOMD for the Australian 
instance) but may also fail to converge to an optimal solution, even after very good performances during the first 
iterations (e.g., OFTRL for the Australian instance). This is because the convergence guarantees of the FOMs may 
fail to hold for large choices of the multiplicative factor α. In Figures 7 and 8, we present the same experiments 
but where we record the computation time on the x axis. The per-iteration computation time of SP-CBA+ is 
shorter than for the FOMs because SP-CBA+ has closed-form updates in this setting, and we observe in Figures 
7 and 8 that SP-CBA+ outperforms the FOMs.

5.4. Markov Decision Processes
MDPs are used as a modeling tool for sequential decision-making problems (Puterman [55]) and have found applica-
tions in game learning (Mnih et al. [45]) and healthcare (Alagoz et al. [3], Grand-Clément et al. [34], Steimle and Denton 
[59]). In a finite MDP, the set of states is [n], and there are A actions. For each state-action pair (s, a), there is an associated 
instantaneous reward rsa as well as a distribution Psa 2 �(n) over the possible next states in [n]. We write r1 à maxs, arsa, 
and we assume, without loss of generality, that rsa � 0, ∀(s, a) 2 [n] ⇥ [A]. Given a discount factor λ 2 (0, 1) and an 

Figure 5. (Color online) Comparisons of SP-CBA+ and SP-CBA with FOMs with theoretical choices of step sizes to solve (19), 
with respect to the number of iterations. 
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initial probability distribution p0 2 �(n), the goal of the decision making is to maximize the infinite-horizon discounted 
cumulated reward. This leads to the following linear programming formulation (Puterman [55]) min{(1�λ)p>0 v |vs �
rsa +λP>

sav, ∀(s, a) 2 [n] ⇥ [A]}, which can be rewritten as (Jin and Sidford [38])

min
v2Rn, kvk2

ÇÇ
n

p
r1=(1�λ)

max
µ2�(n⇥A)

(1�λ)p>0 v +
Xn

sà1

XA

aà1
µsa(rsa +λP>

sav� vs), (20) 

where kvk2 
ÇÇÇ
n

p
r1=(1�λ) is a valid constraint for the optimal solution v⇤ 2 Rn because v⇤ satisfies 0  v⇤s 

r1=(1�λ), ∀s 2 [n].

5.4.1. Experimental Setup. We test the performances of SP-CBA+ for solving (20) on random generalized aver-
age reward nonstationary environment test bench (garnet) MDPs (Archibald et al. [4], Bhatnagar et al. [10]), a 
class of random MDP instances widely used for benchmarking sequential decision-making algorithms. Gar-
net MDPs are parametrized by a branching factor nb, which represents the proportion of reachable next states 
from each state-action pair (s, a). We choose S à 100, A à 50, nb à 50%,λ à 0:95. We average the performances 
of our algorithm over 10 random instances of garnet MDPs, where the reward parameters are drawn at ran-
dom uniformly in [0, 10]. We compare SP-CBA+ with the same first-order methods as in the previous section, 
OMD, FTRL, and their optimistic variants, with the same tuning method. We also compare SP-CBA+ with 
SP-CBA. The computation of the upper bounds Lv and Lµ for each player is detailed in Appendix K. We 
acknowledge that at the scale of the instances considered in this paper, MDPs can be solved efficiently using 
policy iteration. This algorithm is specialized to solving MDPs and differs greatly from SP-CBA+, which is 
based on the repeated game framework; for this reason, we compare SP-CBA+ with first-order methods that 

Figure 6. (Color online) Comparisons of SP-CBA+ and SP-CBA with FOMs with tuned choices of step sizes to solve (19), with 
respect to the number of iterations. 

Figure 7. (Color online) Comparisons of SP-CBA+ and SP-CBA with FOMs with theoretical choices of step sizes to solve (19), 
with respect to the computation time. 
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are widely applicable and that have been developed for larger MDP instances (e.g., online mirror descent for 
MDPs) (Jin and Sidford [38]).

5.4.2. Results and Discussion. SP-CBA+ outperforms OMD and FTRL as well as the optimistic variants, even 
after they are tuned. Choosing the best step sizes after observing the first 10 iterations may even lead to algo-
rithms that choose step sizes that are too large and algorithms that fail to converge, such as OOMD in Figures 
9(b), and tuning the FOMs requires a lot of computation time. In contrast, SP-CBA+ does not need to be tuned, 
and all the computation time in SP-CBA+ is used to make progress toward solving (20). SP-CBA does not out-
perform the FOMs.

6. Conclusion
We have proposed SP-CBA+, an algorithm based on Blackwell approachability for solving classical instances of 
saddle-point optimization. Our algorithm is (1) simple to implement for many practical decision sets, (2) 
completely parameter free and does not attempt to learn any step sizes, and (3) competitive with or even better 
than state-of-the-art approaches with both theoretical and tuned parameters. Interesting future directions of 
research include designing efficient implementations for other widespread decision sets (e.g., based on φ�diver-
gence), extending SP-CBA+ to unbounded decision sets, and developing accelerated versions based on strong 
convex-concavity or optimism.

Figure 9. (Color online) Comparisons of SP-CBA+ and SP-CBA with FOMs to solve (19) and (20), with respect to the number of 
iterations and to the computation time. The theoretical choices of step sizes are used in panel (a), and the tuned step sizes are 
used in panel (b). 

(a) (b)

Figure 8. (Color online) Comparisons of SP-CBA+ and SP-CBA with FOMs with tuned choices of step sizes to solve (19), with 
respect to the computation time. 
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Appendix A. Proof of Lemma 1
Proof of Lemma 1.

1. The fact that u�πC� (u) à πC(u) 2 C, hu�πC� (u),πC� (u)i à 0 follows from Moreau’s decomposition theorem (Combettes and 
Reyes [22]). The fact that ku�πC� (u)k2  kuk2 is a straightforward consequence of hu�πC� (u),πC� (u)i à 0.

2. We follow the lines of Abernethy et al. [1, lemma 13]. For any w 2 C� \ B2(1), we have
hu, wi  hu�πC(u), wi  kwk2ku�πC(u)k2  ku�πC(u)k2:

Conversely, because (u�πC(u))=ku�πC(u)k2 2 C�, we have
max

w2C�\B2(1)
hu, wi � ku�πC(u)k2:

This shows that
max

w2C�\B2(1)
hu, wi à ku�πC(u)k2 à d(u,C):

3. For any u 2 Rn+1, by definition we have d(u,C�) à ku�πC� (u)k2. Now, if u 2 C, we have πC� (u) à 0 so d(u,C�) à kuk2.
4. Let u 2 C. Then, u à α(κ, x) for α � 0, x 2 X . We will show that �u 2 C�. We have

�u 2 C� � h�u, u0i  0, ∀u0 2 C

� h�α(κ, x),α0(κ, x0)i  0, ∀α0 � 0, ∀x0 2 X

� κ2 + hx, x0i � 0, ∀x0 2 X

� � hx, x0i  κ2, ∀x0 2 X , 

and �hx, x0i  κ2 is true by Cauchy–Schwartz inequality and the definition of κ à maxx2X kxk2.
5. We start by proving (5). Let x, x0, y, y0 2 Rn+1, and assume that xC�y, x0C�y0. Then, y� x 2 C�, y0 � x0 2 C�. Because C� is a 

convex set and a cone, we have 2 · y�x
2 + y0�x0

2

⌘ ✓
2 C�. Therefore, y + y0 � x� x0 2 C� (i.e., x + x0C�y + y0).

We now prove (6). Let x, y 2 Rn+1, x0 2 C�, and assume that x + x0C�y. Then, by definition, y� x� x0 2 C�. Additionally, x0 2
C� by assumption. Because C� is convex and is a cone, 2 · y�x�x0

2 + x0
2

⌘ ✓
2 C� (i.e., y� x 2 C�). Therefore, xC�y:

6. Let x, y 2 Rn+1 such that xC�y. Then, y� x 2 C�. We have d(y,C�) àminz2C� ky� zk2  ky� (y� x)k2 à kxk2: w

Appendix B. Choice of κ�for CBA and CBA!

In this appendix, we introduce two extensions of CBA and CBA+ parametrized by a positive scalar λ, and we compare 
their regret guarantees with the algorithms introduced in Section 3.1. Let us call CBAλ�and CBA+

λ�two new versions of 
CBA and CBA+, where C à cone({λ} ⇥ X) and the instantaneous payoffs are defined as vt à hf t,xti

λ , � f t

⌘ ✓
.

B.1. Guarantee for CBA#

Following the steps of the proof of Theorem 2, we obtain the following regret guarantee for CBAλ.

Theorem B.1. Let (xt)t�1 be the sequence of decision generated by CBAλ�with weights (ωt)t�1 on the instantaneous payoff vectors, 
and let St à

Pt
τà1ωτ�for any t � 1. Then,

PT
tà1ωthf t, xti�minx2X

PT
tà1ωthf t, xi

ST
 κ

2 +λ2

λ
L

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1ωt

:

Choosing λ à κ�recovers the guarantees of Theorem 2. We note that choosing λ à κ�minimizes the term λ !̀ κ2+λ2

λ� appear-
ing in the upper bound on the regret in Theorem B.1.

B.2. Theoretical Guarantee for CBA!
#

We now turn to analyzing the performances of CBA+
λ. In the case θt+1

θt
� ωt+1
ωt 

(i.e., when we choose potentially different 
weights (θt)t�1 for the decisions and (ωt)t�1 for the payoffs), to obtain a regret guarantee for CBA+

λ, we need the follow-
ing assumption.

Assumption B.1.
hx, x0i + λ2 � 0, ∀x, x0 2 X : (B.1) 

Under this assumption, we obtain the following regret guarantees for CBA+
λ�by following the same steps as the proof of 

Theorem 3.

Theorem B.2. Let Assumption B.1 hold. Let (xt)t�1 be the sequence of decision generated by CBA+ with weights (ωt)t�1 on the 
instantaneous payoff vectors. Let (θt)t�1 be the weights on the decisions and ST à

PT
tà1 θt. Assume that θt+1

θt
� ωt+1
ωt

, ∀t � 1. Then,
PT

tà1 θthf t, xti�minx2X
PT

tà1θthf t, xi
ST

 κ
2 +λ2

λ
LθT
ωT

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1 θt

:
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Let us explain the role of Assumption B.1. The proof of Theorem 3 requires statement 4 in Lemma 1 to show that � θt+1
ωt+1
� θt
ωt

⌘ ✓
ut 2

C� using the fact that u 2 C )�u 2 C�. Note that for C à cone({λ} ⇥ X) and u à α(λ, x) for α > 0 and x 2 X , we have

�u 2 C� � λ2 + hx, x0i � 0, ∀x0 2 X :

Note that with λ à κ, Cauchy–Schwarz inequality directly yields that Assumption B.1 holds and therefore, that u 2 C )
�u 2 C�, which we use in our proof of Theorem 3. However, for λ < κ, Assumption B.1 may fail to hold, and we are not 
able to guarantee the convergence of CBA+

λ�with different weights (θt)t�1 on the decisions and (ωt)t�1 on the payoffs, 
which empirically perform better than using the same weights on both the decisions and the payoffs, as we show in 
Figure B.1, in Appendix I, and in our numerical experiments in Section 5.

Note that when θt à ωt, ∀t � 1, we simply have � θt+1
ωt+1
� θt
ωt

⌘ ✓
ut à 0, and because 0 2 C�, we obtain that � θt+1

ωt+1
� θt
ωt

⌘ ✓
ut 2 C�

without any assumption. This yields the following theorem for the convergence guarantees of CBA+
λ�when using the 

same weights on both the decisions and payoffs.

Theorem B.3. Let (xt)t�1 be the sequence of decisions generated by CBA+
λ�with weights (ωt)t�1 on both the decisions and the 

instantaneous payoff vectors, and let St à
Pt
τà1ωτ�for any t � 1. Then,

PT
tà1ωthf t, xti�minx2X

PT
tà1ωthf t, xi

ST
 κ

2 +λ2

λ
L

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1ωt

:

B.3. Empirical Comparison
We illustrate in Figure B.1 the performances of CBAλ�and CBA+

λ�for various values of λ > 0; in the case of small matrix 
games (n, m) à (30, 30), the coefficients of A are drawn at random with a normal distribution, and CBAλ�and CBA+

λ�are 
used to solve minx2�(n)maxy2�(m)hx, Ayi. Recall that κà1 in this setup. We average the performances over 10 random 
instances. We present experiments for λ 2 {0:5, 1, 2} for CBAλ�with uniform weights (Figure B.1(a)), CBA+

λ�with uniform 
weights on both the decisions and the payoffs and alternation (Figure B.1(b)), and CBA+

λ�with uniform weights on the 
payoffs and linear weights on the decisions and alternation (Figure B.1(c)). As a reference, we also show the perfor-
mances of RM+ with linear averaging and alternation. We note that the choice of λ à κ à 1 performs well compared with 
the other choices of λ, with λ à 0:5 being slightly better than the choice λà1 in the early iterations and all choices of 
{0:5, 1, 2} having comparable performances after 103 iterations of the repeated game framework.

Appendix C. Proof of Theorem 4
Proof of Theorem 4. Let z? 2 σK be the sequence attaining the minimum in

min
z2σK

XT

tà1
θthf t, zti:

We first partition the set {1, : : : , T} into subintervals where z? is constant. In particular, we can partition {1, : : : , T} into K 
intervals I1, : : : ,IK, such that

z?t à z?t0 , ∀t, t0 2 I !, ∀! 2 [K]:
With this notation, we have

XT

tà1
θthf t, xti�min

z2σK

XT

tà1
θthf t, zti à

XK

!à1

X

t2I !
θthf t, xti�

X

t2I !
θthf t, z?!i

à
XK

!à1

X

t2I !
θthf t, xti�min

z2X

X

t2I !
θthf t, zi

Figure B.1. (Color online) Comparison of the empirical performances of CBAλ�and CBA+
λ�for various values of λ�and various 

weighting schemes. (a) CBA, ωt à 1. (b) CBA+, ωt à 1,θt à 1. (c) CBA+, ωt à 1,θt à t. 

(a) (b) (c)
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because each z?!�attains minz2X
P

t2I !θthf t, zi (otherwise, z? would not be optimal). Similarly as in the proof of Theorem 3, 
we obtain, for all ! 2 [K],

X

t2I !
θthf t, xti�min

z2X

X

t2I !
θthf t, zi 

ÇÇÇ
2

p
κd

X

t2I !
θtvt,C�

 !

:

Let us call top(!) and down(!) the largest and smallest integers in each interval I !, respectively. The same proof as for 
Theorem 3 shows that

X

t2I !
θtvt à

Xtop(!)

tàdown(!)
θtvt �C�

θtop(!)
ωtop(!)

utop(!) �
θdown(!)
ωdown(!)

udown(!), 

and from (6) in statement 5 in Lemma 1, we conclude that
X

t2I !
θtvt �C�

θtop(!)
ωtop(!)

utop(!):

Overall, from statement 6 in Lemma 1, we obtain that for each ! 2 [K],

d
X

t2I !
θtvt,C�

 !

 θtop(!)
ωtop(!)

kutop(!)k2:

By assumption, θtop(!)
ωtop(!)

 θT
ωT

, and following (15), we have

kutop(!)k2 
ÇÇÇ
2

p
L

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
Xtop(!)

tà1
ω2

t

vuut 
ÇÇÇ
2

p
L

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
XT

tà1
ω2

t

vuut :

Because this holds for any ! 2 [K], we conclude that
PT

tà1 θthf t, xti�minz2σK

PT
tà1θthf t, zti

ST
 2κLKθT

ωT

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1 θt

: w 

Appendix D. Proof of Theorem 5
Proof of Theorem 5. We prove the theorem for each part separately. 

1. Let

x̄T à
1

ST

XT

tà1
ωtxt, ȳT à

1
ST

XT

tà1
ωtyt:

Because F is convex-concave, we first have

max
y2Y

F(x̄T, y)�min
x2X

F(x, ȳT) 
1

ST
max
y2Y

XT

tà1
ωtF(xt, y)�min

x2X

XT

tà1
ωtF(x, yt)

 !

:

Now,

max
y2Y

XT

tà1
ωtF(xt, y)�min

x2X

XT

tà1
ωtF(x, yt) à max

y2Y

XT

tà1
ωtF(xt, y)�

XT

tà1
ωtF(xt, yt)

+
XT

tà1
ωtF(xt, yt)�min

x2X

XT

tà1
ωtF(x, yt):

Now, because F is convex-concave, we can upper bound each pair of terms using the subgradient inequality:

max
y2Y

XT

tà1
ωtF(xt, y)�

XT

tà1
ωtF(xt, yt)  max

y2Y
ωt
XT

tà1
hgt, yi�

XT

tà1
ωthgt, yti,

XT

tà1
ωtF(xt, yt)�min

x2X

XT

tà1
ωtF(x, yt) 

XT

tà1
ωthf t, xti�min

x2X

XT

tà1
ωthf t, xi, 
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where f t 2 @xF(xt, yt), gt 2 @yF(xt, yt) (recall the repeated game framework presented at the beginning of Section 2). We rec-
ognize the right-hand side as the regrets in the repeated game framework. For CBA with weights on both payoffs and 
decisions (Theorem 2), we have shown that

1
ST

max
y2Y

XT

tà1
ωthgt, yi�

XT

tà1
hωtgt, yti à O κL

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1ωt

0

@

1

A,

1
ST

XT

tà1
ωthf t, xti�min

x2X

XT

tà1
ωthf t, xi à O κL

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1ωt

0

@

1

A:

Recall that ωt à tp. Because t !̀ tp is an increasing function, we have
Z k

0
tpdt 

Xk

tà1
tp 

Z k+1

0
tpdt:

Therefore, we can conclude that
XT

tà1
ω2

t àO 1
p + 1 T2p+1
◆ 

,

1
p + 1 Tp+1 

XT

tà1
ωt:

Overall, we obtain that

O κL

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇPT
tà1ω

2
t

q

PT
tà1ωt

0

@

1

A à O
κL

ÇÇÇÇÇÇÇÇÇÇ
p + 1

p
ÇÇÇ
T

p
 !

:

2. This proof is mostly similar to the first part. We have

θT à Tq,
Tq+1

q + 1 
XT

tà1
θt,

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
XT

tà1
ω2

t

vuut à O 1ÇÇÇÇÇÇÇÇÇÇÇ
p + 1

p Tp+1=2

 !
,

ωT à Tp:

Combining all this, we obtain that an upper bound of

O κL (q + 1)Tq

Tq+1
Tp+1=2
ÇÇÇÇÇÇÇÇÇÇÇ
p + 1

p
Tp

 !

is equal to O κL(q+1)ÇÇÇÇÇÇ
p+1

p ÇÇÇ
T

p

◆ 
: w

Appendix E. Proof for Theorem 6
Proof of Theorem 6. The proof of Theorem 6 is similar to the proof of Theorem 5 presented in Appendix D. Let

x̄T à
1

ST

XT

tà1
θt+1xt+1, ȳT à

1
ST

XT

tà1
θt+1yt:

Because F is convex-concave, we first have

max
y2Y

F(x̄T, y)�min
x2X

F(x, ȳT) 
1

ST
max
y2Y

XT

tà1
θt+1F(xt+1, y)�min

x2X

XT

tà1
θt+1F(x, yt)

 !

:
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Now, we can rewrite

max
y2Y

XT

tà1
θt+1F(xt+1, y)�min

x2X

XT

tà1
θt+1F(x, yt)

as

max
y2Y

XT

tà1
θt+1F(xt+1, y)�

XT

tà1
θt+1F(xt+1, yt)

+
XT

tà1
θt+1F(xt+1, yt)�

XT

tà1
θt+1F(xt, yt)

+
XT

tà1
θt+1F(xt, yt)�min

x2X

XT

tà1
θt+1F(x, yt):

Now, because F is convex-concave, we can use the following upper bound:

max
y2Y

XT

tà1
θt+1F(xt+1, y)�

XT

tà1
θt+1F(xt+1, yt)  max

y2Y
θt+1

XT

tà1
hgt, yi�

XT

tà1
θt+1hgt, yti,

XT

tà1
θt+1F(xt, yt)�min

x2X

XT

tà1
θt+1F(x, yt) 

XT

tà1
θt+1hf t, xti�min

x2X

XT

tà1
θt+1hf t, xi, 

where f t 2 @xF(xt, yt), gt 2 @yF(xt+1, yt). This concludes the proof of Theorem 6. w

Appendix F. Proof of Theorem 7
We start with the following lemma. It shows that once a nondegenerate update has been chosen (ut ≠ 0 for CBA+ and 
πC(ut) ≠ 0 for CBA), all the future updates are also nondegenerate.

Lemma F.1.
1. Let (ut)t�1 2 (Rn+1)N be the sequence of aggregate payoffs generated by CBA with weights (ωt)t�1 on the instantaneous payoff vectors. 

Let t � 1. If πC(ut) ≠ 0, then for all t0 � t, we also have πC(ut0 ) ≠ 0.
2. Let (ut)t�1 2 (Rn+1)N be the sequence of aggregate payoffs generated by CBA+ with weights (ωt)t�1 on the instantaneous payoff vec-

tors. Let t � 1. If ut ≠ 0, then for all t0 � t, we also have ut0 ≠ 0.

Proof of Lemma F.1.
1. Assume that πC(ut) ≠ 0. Let "t à (π̃t, "̂t) such that "t à πC(ut). In this case, we can define xt+1 à (κ=π̃t)"̂t. By definition of 

the updates in CBA, we have
ut+1 à ut +ωt+1vt+1, 

for vt+1 à hf t+1,xt+1i
κ , � f t+1

⌘ ✓
: We will show that ut+1 ∉ C�. By definition,

ut+1 ∉ C� � 9z 2 C, hz, ut+1i > 0:

If we take z à "t, we have
h"t, ut+1i à h"t, ut +ωt+1vt+1i à h"t, uti

because by definition of xt+1, we have h"t, vt+1i à 0. Now,

h"t, uti à hπC(ut),πC(ut) +πC� (ut)i à hπC(ut),πC(ut)i à kπC(ut)k2
2 > 0:

This shows that ut+1 ∉ C�. Because ut+1 à πC(ut+1) +πC� (ut+1), this also shows that πC(ut+1) ≠ 0. By induction, we have 
shown that πC(ut) ≠ 0) πC(ut0 ) ≠ 0, ∀t0 � t.
2. The proof is very similar to the proof of the first statement. Suppose that ut ≠ 0. In this case, we can define xt+1 à (κ=ũt)ût. 
Note that by definition of the updates in CBA+, we have

ut+1 à πC(ut +ωt+1vt+1):

We will show that
ut +ωt+1vt+1 ∉ C�:
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By definition of C�,
ut +ωt+1vt+1 ∉ C � 9z 2 C, hz, ut + vt+1i > 0:

For z à ut, we obtain

hut, ut +ωt+1vt+1i à hut, uti à kutk2
2 > 0, 

where
hut, vt+1i à 0 

follows from the choice of xt+1 as in Blackwell approachability framework (see (11) in the proof of Theorem 2 for more 
details). Therefore, for any t � 1, we have ut ≠ 0) ut+1 ≠ 0. This concludes the proof of Lemma F.1 by induction. w

We are now ready to prove Theorem 7.

Proof of Theorem 7. Assume that (x, y) !̀ F(x, y) is linear in x. 
1. We start with the case ux

t à 0. In this case, by definition of xt+1 as xt+1 à CHOOSEDECISIONCBA+ (ux
t ), we have xt+1 à x0. 

From Lemma F.1, we know that ux
t�1 à 0 (i.e., xt à x0). This shows that xt+1 à xt and therefore, that F(xt, yt)� F(xt+1, yt) à 0.

We now consider the case ux
t ≠ 0. We want to prove that

F(xt, yt) � F(xt+1, yt) +
κ

ωtkutk1
kut � ut�1k2

2: (F.1) 

Let t � 1. Recall that

xt à CHOOSEDECISIONCBA+ (ut�1),
xt+1 à CHOOSEDECISIONCBA+ (ut):

We consider the following two cases.

Case F.1. ut à 0. From Lemma F.1, we must have ut�1 à 0, in which case xt+1 à xt à x0 (the default value for the decisions 
of the first player) so that (F.1) holds because every term is 0, with the convention that 0=0 à 0 (in case ut+1 à 0).

Case F.2. ut ≠ 0. We start from
ut à πC(ut�1 +ωtvt)

with vt à hf t,xti
κ , � f t

⌘ ✓
. The optimality condition for the projection on C shows that

hut � ut�1 �ωtvt, ut � zi  0, ∀z 2 C:

We can apply this with z à ut�1 to obtain
hut � ut�1 �ωtvt, ut � ut�1i  0:

This shows that

kut � ut�1k2
2  hωtvt, ut � ut�1i:

Recall that by definition of xt and vt, we have
hvt, ut�1i à 0:

Recall that ut à αt+1(κ, xt+1), with αt+1 > 0 because ut ≠ 0. This implies that

hωtvt, ut � ut�1i à hωtvt, uti

à ωth hf t, xti
κ

, � f t

◆ 
,αt+1(κ, xt+1)i

à ωtαt+1(hf t, xti� hf t, xt+1i):
Overall, we have obtained

hf t, xti � hf t, xt+1i +
1

ωtαt+1
kut � ut�1k2

2:

Recall that by definition, ut à αt+1(κ, xt+1), with κ à max{kxk2 |x 2 X}. Therefore,
kutk1 à αt+1max{κ, kxt+1k1} à αt+1κ, 
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where the last inequality follows from kxt+1k1  kxt+1k2  κ. Overall, we have shown that

hf t, xti � hf t, xt+1i+
κ

ωtkutk1
kut � ut�1k2

2:

Recall that in the repeated game framework with alternation, we have f t à @xF(xt, yt). For an objective function that is lin-
ear in x, we obtain

hf t, xt+1i à F(xt+1, yt),
hf t, xti à F(xt, yt):

In this case, we have shown that

F(xt, yt) � F(xt+1, yt) +
κ

ωtkutk1
kut � ut�1k2

2:

This concludes the proof of the first statement of Theorem 7. 
2. The proof is identical to the first claim of this theorem. For the sake of conciseness, we omit it in this paper. w

Appendix G. Alternation for RM and RM!

In this appendix, we prove that alternation strictly improves the convergence guarantees of RM and RM+ in the repeated 
game framework. In particular, we show that our results from Theorem 7 for CBA and CBA+ extend to RM and RM+. 
We first give some more context on RM and RM+.

The RM algorithm (Hart and Mas-Colell [35]) maintains a sequence of aggregate payoffs (rt)t�0 and is presented in Algo-
rithm G.1. Here, we write [r]+ for the vector (max{0, ri})i2[n]. The RM+ algorithm is a simple variation of RM, where the 
aggregate payoffs are thresholded at every iteration (Tammelin et al. [61]). In particular, RM+ only keeps track of the nonnega-
tive components of the aggregate payoffs to compute a decision. This is analogous to the projection step of CBA+. We present 
RM+ in Algorithm G.2.

Algorithm G.1 (RM) 
1. Algorithm parameters Weights (ωt)t�0
2. Initialization t à 1, x1 2 �(n).
3. Observe f 1 then set r1 à ω1(hf 1, x1ie� f 1) 2 Rn.
4. for t � 1 do
5. If [rt]+ ≠ 0 then xt+1 à [rt]+=k[rt]+k1 else xt+1 à x0.
6. Observe the loss f t+1 2 Rn.
7. Update rt+1 à rt +ωt+1(hf t+1, xt+1ie� f t+1).
8. end for

Algorithm G.2 (RM+) 
1. Algorithm parameters Weights (ωt)t�0
2. Initialization t à 1, x1 2 �(n).
3. Observe f 1 then set q1 à [ω1(hf 1, x1ie� f 1)]

+ 2 Rn.
4. for t � 1 do
5. If qt ≠ 0 then xt+1 à qt=kqtk1 else xt+1 à x0.
6. Observe the loss f t+1 2 Rn.
7. Update qt+1 à [qt +ωt+1(hf t+1, xt+1ie� f t+1)]

+.
8. end for

We have the following theorem for RM and RM+, which provides the first result showing a strict benefit to using alter-
nation in the RM and RM+ setting; previously, it was only known that alternation does not hurt the theoretical rate 
(Burch et al. [17]). We omit the proof as it is similar to our proof of Theorem 7 for CBA and CBA+.

Theorem G.1. Assume that X à �(n),Y à �(m) and that (x, y) !̀ F(x, y) is linear in x. 
1. In the framework of Theorem 6, suppose that (xt)t�1, (yt)t�1 are generated by RM+ with weights (ωt)t�1 on the payoffs. We have, for 

t � 1,

F(xt+1, yt)� F(xt, yt) �
kqx

t � qx
t�1k

2
2

ωt · kqx
t k1

: (G.1) 

2. In the framework of Theorem 6, suppose that (xt)t�1, (yt)t�1 are generated by RM with weights (ωt)t�1 on the payoffs. We have, for 
t � 1,

F(xt+1, yt)� F(xt, yt) �
k[rx

t ]+ � [rx
t�1]

+k2
2

ωt · k[rx
t ]+k2

: (G.2) 
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Appendix H. Proofs for the Efficient Projections of Section 4
H.1. Proofs for the Simplex
Proof of Lemma 2. For X à �(n), we can choose κ àmax{kxk2 |x 2 X} à 1. Therefore, C à {α(1, x) |x 2 �(n),α � 0}. For y à
(ỹ, ŷ) 2 Rn+1, we have

y 2 C� � hy, zi  0, ∀z 2 C

� h(ỹ, ŷ),α(1, x)i  0, ∀x 2 �(n), ∀α � 0
� ỹ + hŷ, xi  0, ∀x 2 �(n)
� max

x2�(n)
hŷ, xi �ỹ

� max
ià1, : : : ,n

ŷi �ỹ: w 

Proof of Proposition 1. Let us fix ỹ 2 R, and let us first solve

min kŷ � ûk2
2

ŷ 2 Rn,
max
i2[n]

ŷi �ỹ:
(H.1) 

This is essentially the projection of û on (�1, � ỹ]n. So, a solution to (H.1) is ŷi(ỹ) à min{�ỹ, ûi}, ∀i à 1, : : : , n: Note that 
in this case, we have û � ŷ(ỹ) à (û + ỹe)+: So, overall the orthogonal projection on C� boils down to the optimization of 
the function φ : R !̀ R+ such that

φ : ỹ !̀ (ỹ � ũ)2 + k(û + ỹe)+k2
2: (H.2) 

In principle, we could use binary search with a doubling trick to compute a ✏ minimizer of the convex function φ�in 
O(log(✏�1)) calls to φ. However, it is possible to find a minimizer ỹ⇤ of φ�using the following remark.

By construction, we know that u�πC� (u) 2 C. Here, C à cone({1} ⇥ �(n)), and u�πC� (u) à (ũ � ỹ⇤, (û + ỹ⇤e)+): We first 
check if ũ à ỹ⇤. This is the case if and only if u�πC� (u) à 0 (i.e., if and only if u 2 C�), which is straightforward to check 
using Lemma 2. Now, if ũ ≠ ỹ⇤, we must have ũ > ỹ⇤ by definition of C. This also implies that

(û + ỹ⇤e)+
ũ � ỹ⇤ 2 �(n), 

which in turn, implies that

ỹ⇤ +
Xn

ià1
max{ûi + ỹ⇤, 0} à ũ: (H.3) 

We can use (H.3) to efficiently compute ỹ⇤ without using any binary search. In particular, we can sort the coefficients of 
û in O(n log(n)) arithmetic operations and use (H.3) to find ỹ⇤. w

H.2. Proofs for ‘p Balls
Proof of Lemma 3. Let us write Bp(1) à {z 2 Rn |kzkp  1}. Here, we consider X à Bp(1). Recall that κ àmax{kxk2 |x 2 X}. 
Therefore, by definition, C à {α(κ, x) |x 2 Bp(1),α � 0}.

We first provide the reformulation for C. Let y à (ỹ, ŷ) 2 C. Then, ỹ à ακ, ŷ à αx with α � 0 and with x such that kxkp  1. 
For α > 0, we have kxkp  1 � kαxkp  α� kŷkp  ỹ=κ.

We now provide the reformulation for C�. Note that for y à (ỹ, ŷ) 2 Rn+1, we have

y 2 C� � hy, zi  0, ∀z 2 C

� h(ỹ, ŷ),α(κ, x)i  0, ∀x 2 Bp(1), ∀α � 0
� κỹ + hŷ, xi  0, ∀x 2 Bp(1),
� max

x2Bp(1),
hŷ, xi �κỹ

� kŷkq �κỹ, 

and k · kq is the dual norm of k · kp. w
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Proof of Proposition 2. For pà 1, we have k · kq à k · k1, and we can choose κà1. Let us compute the projection of (ũ, û)
on C� using the reformulation of Lemma 3:

min (ỹ � ũ)2 + kŷ� ûk2
2

ỹ 2 R, ŷ 2 Rn,
kŷk1 �ỹ:

(H.4) 

For a fixed ỹ 2 R, we want to compute min{kŷ � ûk2
2 | ŷ 2 Rn, kŷk1 �ỹ}: This projection can be computed in closed form 

as ŷ⇤(ỹ) à min{�ỹ, max{ỹ, û}} because this is simply the orthogonal projection of û onto the !1 ball of radius �ỹ. Let us 
call φ : R !̀ R such that

φ(ỹ) à (ỹ � ũ)2 + kŷ⇤(ỹ)� ûk2
2:

Note that ŷ⇤(ỹ)� û à (û + ỹe)+, so we have

φ : ỹ !̀ (ỹ � ũ)2 + k(û + ỹe)+k2
2:

Assume that we have ordered the coefficients of û 2 Rn in decreasing order. This can be done in O(n log(n)) arithmetic 
operations. Then, on each of the n+1 intervals I1 à (�1, � û1),I2 à (�û1, � û2), : : : ,In+1 à (�ûn, +1), the map φ�is a 
second-order polynomial in ỹ, with a nonnegative coefficient in front of ỹ2. Therefore, for each i 2 [n + 1], we can find a 
closed-form expression for the minimum φ⇤i of φ�on I i and the scalar ỹ⇤i attaining this minimum. We can then simply 
search for a global minimum of φ�among the scalars

{ỹ⇤i | i 2 [n + 1]}[ {�ûi | i 2 [n]}:
Once we have found ỹ⇤, the minimizer of φ, we obtain the solution of πC� (u) as πC� (u) à (ỹ⇤, ŷ⇤(ỹ)), and we can recover 
πC(u) from πC(u) à u�πC� (u).

Let us now focus on the case p à1. We know that k · k1 and k · k1 are dual norms to each other. Therefore, from 
Lemma 3, it is as computationally demanding to compute orthogonal projections onto C� (when pà1) and onto C (when 
p à1). Therefore, the method described in the first part of this proof for computing πC� (u) for pà1 can be applied for 
computing πC(u) in the case p à1. w

Proof of Proposition 3. First, we check if u 2 C (i.e., we check if kûk2  ũ). If this is the case, then πC(u) à u. Second, we 
check if u 2 C� (i.e., we check if kûk2 �ũ). If this is the case, then πC(u) à 0. Else, we have kûk2 > | ũ | , and we can provide 
a closed-form solution to πC(u). Let us fix ỹ 2 R, and define ŷ⇤(ỹ) as the vector attaining the minimum in min{kŷ�
ûk2

2 | ŷ 2 Rn, kŷk2  ỹ}: With this notation, we want to find the minimum of φ : R !̀ R defined as

φ(ỹ) à (ỹ � ũ)2 + kŷ⇤(ỹ)� ûk2
2:

If ỹ � kûk2, then ŷ⇤(ỹ) à û. This shows that the minimum of φ�on [kûk2,+1) is attained at ỹ1 à kûk2 at a value of 
φ(ỹ1)) à (kûk2 � ũ)2. When ỹ 2 [0, kûk2], we have ŷ⇤(ỹ) à (ỹ=kûk2)û. Note that here, ỹ !̀ ŷ⇤(ỹ) is differentiable. Therefore, 
φ : ỹ !̀ (ỹ � ũ)2 + kŷ⇤(ỹ)� ûk2

2 is also differentiable. The first-order optimality conditions yield a closed-form solution for 
the minimum of φ�on [0, kûk2], with ỹ2 à

ũ+kûk2
2 . For this value of ỹ2, we obtain φ(ỹ2) à (1=2)(kûk2 � ũ)2: Therefore, the 

global minimum of φ�on [0, +1) is attained at ỹ2, yielding

πC(u) à ũ + kûk2
2 , ũ + kûk2

2
û
kûk2

◆ 
: w 

H.3. Proofs for Confidence Regions in the Simplex
Proof of Proposition 4. We can write X à x0 + ✏B̃, where B̃ à {z 2 Rn |z>e à 0, kzk2  1}:

Suppose we made a sequence of decisions x1, : : : , xT, which can be written as xt à x0 + ✏zt for zt 2 B̃: Then, it is clear 
that for any sequence of losses f 1, : : : , f T, we have

XT

tà1
ωthf t, xti�min

x2X

XT

tà1
ωthf t, xi à ✏x

XT

tà1
ωthf t, zti�min

z2B̃

XT

tà1
ωthf t, zi

 !
: (H.5) 

Therefore, if we run CBA+ on the set B̃ to obtain O(
ÇÇÇ
T

p
) growth of the right-hand side of (H.5), we obtain a no-regret algorithm 

for X . We now show how to run CBA+ for the set B̃. Let V à {v 2 Rn |v>e à 0}: We use the following orthonormal basis of V; let 
v1, : : : , vn�1 2 Rn be the vectors vi à

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
i=(i + 1)

p
(1=i, : : : , 1=i, � 1, 0, : : : , 0), ∀i à 1, : : : , n� 1, where the component 1=i is repeated i 

times. The vectors v1, : : : , vn�1 are orthonormal and constitute a basis of V (Egozcue et al. [25]). Writing V à (v1, : : : , vn�1) 2
Rn⇥(n�1) and noting that V>V à I, we can write B̃ à {Vs |s 2 Rn�1, ksk2  1}: Now, if x à x0 + ✏xzt with zt 2 V, we have zt à Vst 
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for st 2 Rn�1 and ksk2  1. Finally, 
PT

tà1ωthf t, xti�minx2X
PT

tà1ωthf t, xi is equal to

✏x
XT

tà1
ωthV>f t, sti� min

s2Rn�1, ksk21

XT

tà1
ωthV>f t, si

 !

: (H.6) 

Therefore, to obtain a regret minimizer for (H.6) with observed losses (f )t�1, we can run CBA+ on the right-hand side, 
where the decision set is an !2 ball and the sequence of observed losses is (V>f t)t�1. In the previous section, we showed 
how to efficiently instantiate CBA+ in this setting (see Proposition 3). w

Remark H.1. In this section, we have highlighted a sequence of reformulations of the regret from (H.5) to (H.6). We 
essentially showed how to instantiate CBA+ for settings where the decision set X is the intersection of an !2 ball with a 
hyperplane for which we have an orthonormal basis.

Appendix I. Strongest Empirical Setup for SP-CBA!

In this appendix, we empirically highlight the benefits of using alternation and linear averaging (i.e., linear weights on 
the decisions and uniform weights on the instantaneous payoff vectors) when implementing SP-CBA+ for solving 
saddle-point problems. To keep things simple, we focus on the simplest instances that we use in our numerical experi-
ments, solving matrix games (Section 5.1) with random distributions for the coefficients of the matrix A 2 Rn⇥m (uniform 
or normal), with (n, m) à (30, 30). Figure I.1 shows the performance of three variations of SP-CBA+. The first algorithm is 
a vanilla implementation (vanilla SP-CBA+), where we use CBA+ as a regret minimizer in the repeated game framework, 
without alternation and with uniform averaging on both the instantaneous payoffs and the decisions. The second algo-
rithm (vanilla SP-CBA+ (alt.)) improves upon vanilla SP-CBA+ by using alternation and uniform averaging on both the 
instantaneous payoffs and the decisions. The third algorithm, which we call SP-CBA+ in this figure and in Section 5, cor-
responds to using CBA+ in the repeated game framework, as well as alternation and linear averaging on the decisions 
and uniform weights on the instantaneous payoffs. As seen in the figure, SP-CBA+ has by far the strongest empirical 
performance, and thus, we use alternation and linear averaging in all our simulations in Section 5. The same observations 
have been made for solving extensive-form games with CFR+, which combines RM+ as a regret minimizer with alterna-
tion and linear averaging.

Appendix J. Details on OMD, FTRL, and Optimistic Variants
J.1. Algorithms
For solving our instances of distributionally robust optimization, we compare SP-CBA+ with the following four state-of- 
the-art algorithms; at iteration t � 1, for a step size ηt > 0, the updates are as follows. 

1. FTRL (Abernethy et al. [2], McMahan [43]).

xt+1 2 arg min
x2X hXt

τà1
f τ, xi + 1

ηt
kxk2

2: (FTRL) 

OFTRL (Rakhlin and Sridharan [57]). Given estimation mt+1 of loss at iteration t+1, choose

xt+1 2 arg min
x2X hXt

τà1
f τ + mt+1, xi+ 1

ηt
kxk2

2: (OFTRL) 

Figure I.1. (Color online) Impact of using alternation and linear averaging on the empirical performance of SP-CBA+. (a) Uni-
form distribution. (b) Normal distribution. 

(a) (b)
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2. OMD (Beck and Teboulle [6], Nemirovski and Yudin [49]).

xt+1 2 min
x2X

hf t, xi + 1
ηt
kx� xtk2

2: (OMD) 

OOMD (Chiang et al. [20]). Given estimation mt+1 of loss at iteration t+1,

zt+1 2min
z2X

hmt+1, zi+ 1
ηt
kz� xtk2

2,

Observe the loss f t+1 related to zt+1,
xt+1 2min

x2X
hf t+1, xi+ 1

ηt
kx� xtk2

2:

(OOMD) 

Note that these algorithms can be written more generally using Bregman divergence (e.g., Ben-Tal and Nemirovski [7]). 
We choose to work with k · k2 instead of Kullback–Leibler divergence as this !2 setup is usually associated with faster 
empirical convergence rates (Chambolle and Pock [19], Gao et al. [29]). Additionally, following Chiang et al. [20] and 
Rakhlin and Sridharan [57], we use the last observed loss as the predictor for the next loss (i.e., we set mt+1 à f t).

J.2. Implementations
The proximal updates defined in the previous section need to be resolved for the decision sets of both players of the dis-
tributionally robust optimization Problem (19). We present the details of our implementation here. The results in the rest 
of this section are reminiscent to the novel tractable proximal setups presented in Grand-Clément and Kroer [31] and 
Grand-Clément and Kroer [33].
J.2.1. Computing the Projection Steps for the First Player. For X à {x 2 Rn |kx� x0k2  ✏x}, c, x0 2 Rn and a step size 
η > 0, the proximal update becomes

min
kx�x0k2✏x

hc, xi+ 1
2η kx� x0k2

2:

Using a change of variable, we find that the optimal solution x⇤ to the problem is

x⇤ à x0 + ✏x
x0 � ηc� x0

max{✏x, kx0 � ηc� x0k2}
:

J.2.2. Computing the Projection Steps for the Second Player. For Y à {y 2 �(m) |ky� y0k2  ✏y}, the proximal update 
of the second player from a previous point y0 and a step size of η > 0 becomes

min
ky�y0k2✏y,y2�(m)

hc, yi+ 1
2η ky� y0k2

2: (J.1) 

If we dualize the !2 constraint with a Lagrangian multiplier µ � 0, we obtain the relaxed problem q(µ), where

q(µ) à�(1=2)✏2
yµ+ min

y2�(m)
hc, yi+ 1

2η ky� y0k2
2 +µ2 ky� y0k

2
2: (J.2) 

Note that the arg min in

min
y2�(m)

hc, yi+ 1
2η ky� y0k2

2 +µ2 ky� y0k
2
2 

is the same arg min as in

min
y2�(m)

�����

�����y�
η

ηµ+ 1
1
η

y0 +µy0 � c
◆ �����

�����

2

2

: (J.3) 

Note that (J.3) is an orthogonal projection onto the simplex. Therefore, it can be solved efficiently (Duchi et al. [24]). We 
call y(µ) an optimal solution of (J.3). Then, q(µ) can be rewritten

q(µ) à�(1=2)✏2
yµ+ hc, y(µ)i+ 1

2η ky(µ)� y0k2
2 +µ2 ky(µ)� y0k

2
2:

We can therefore binary search q(µ) as in the previous expression. An upper bound µ for µ⇤ can be computed as follows. 
Note that

q(µ) �(1=2)✏2
yµ+ hc, y0i+

1
2η ky0 � y0k2

2:
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Because µ !̀ q(µ) is concave, we can choose µ such that q(µ)  q(0). Using the previous inequality, this yields

µ à 2
✏2

y
hc, y0i+

1
2η ky0 � y0k2

2 � q(0)
◆ 

:

In our simulations, we search for an optimal µ using the minimize_scalar function from the sklearn Python package, with 
an accuracy of ✏ à 0:001.

J.3. Computing the Theoretical Fixed Step Sizes for Section 5.3
For OMD and FTRL, in theory (e.g., Ben-Tal and Nemirovski [7]), for a player with decision set X , we can choose ηth àÇÇÇ

2
p

⌦=L
ÇÇÇ
T

p
with ⌦ àmaxx, x02Xkx� x0k2 and L an upper bound on the norm of any observed loss f t: kf tk2  L, ∀t � 1. Note 

that this requires us to know (1) the number of iterations T and (2) the upper bound L on the norm of any observed loss 
f t before the losses are generated. For OOMD, we can choose ηth à 1=

ÇÇÇ
8

p
L (Syrgkanis et al. [60, corollary 6]), and for 

OFTRL, we can choose ηth à 1=2L (Syrgkanis et al. [60, corollary 8]). We now show how to compute Lx and Ly (for the 
first player and the second player) for an instance of the distributionally robust logistic regression Problem (19). 

1. For the first player, f t à Atyt, with At the matrix of subgradients of x !̀ F(x, yt) at xt:

At
ij à
�biai, jexp(�bia>i xt)

1 + exp(�bia>i xt)
+µxj, ∀(i, j) 2 {1, : : : , m} ⇥ {1, : : : , n}:

Therefore, kf tk2  kAtk2kytk2  kAtk2 because y 2 �(m). Now, we have kAtk2  kAtkF à
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇP

i, j |At
ij |2

q
. Note that

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇX

i, j
|At

ij |2
s


X

i, j
|At

ij | :

We also have |At
ij |  |biai, j | +µ |xj | . Recall that we have x 2 Rn such that kx� x0k2  ✏x. We obtain the following upper 

bound:

Lx à
X

i, j
|biai, j | +µ · m · (kx0k1 +

ÇÇÇ
n

p
✏x):

2. For the second player, the loss f t is f t à (!i(xt))i2[1, m], with !i(x) à log(1 + exp(�bia>i x)). For each i 2 [1, m], we have |!i(x) | 
log(1 + exp( |bi |✏xkaik2)), and we can conclude that

Ly à
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
Xm

ià1
log(1 + exp( |bi |✏xkaik2))2

s

:

Appendix K. Computing the Theoretical Step Sizes for Section 5.4
In the saddle-point formulation of MDP, the objective function is F(v, $) à (1�λ)p>0 v +Pn

sà1
PA

aà1 µsa(rsa +λP>
sav� vs), for 

v 2 Rn, kvk2 
ÇÇÇ
n

p
r1=(1�λ) and µ 2 �(n ⇥ A). The function F is differentiable, and we have rvF(v, $) 2 Rn,rµF(v, $) 2 Rn⇥A 

with
⌘
rvF(v, $)

✓

s0
à (1�λ)p0s0 +λ

X

s, a
µsaPsas0 �

X

a
µs0a, ∀s0 2 [n],

⌘
rµF(v, $)

✓

sa
à rsa +λP>

sav� vs, ∀(s, a) 2 [n] ⇥ [A]:

We now provide upper bounds Lv and Lµ on krvF(v, $)k2 and krµF(v, $)k2. Using the equivalence between k · k2 and k · k1, 
we have, for $ 2 �(n ⇥ A),

krvF(v, $)k2  krvF(v, $)k1  (1�λ) +λ
X

s0,a, s
µsaPsas0 +

X

s0,a
µs0a  (1�λ) +λ+ 1  2:

For bounding krµF(v, $)k2, using Cauchy–Schwarz’s inequality and kvk2 
ÇÇÇ
n

p
r1=(1�λ), we have

krµF(v, $)k2  krk2 +
ÇÇÇ
n

p
r1

1�λ (A(λn + 1)):

Overall, we can choose

Lv à 2, Lµ à krk2 +
ÇÇÇ
n

p
r1

1� λ (A(λn + 1)):
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