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Abstract— Objective: To establish the sensitivity of magnetic
resonance elastography (MRE) to active muscle contraction in
multiple muscles of the forearm. Methods: We combined MRE of
forearm muscles with an MRI-compatible device, the MREDbot, to
simultaneously measure the mechanical properties of tissues in the
forearm and the torque applied by the wrist joint during isometric
tasks. We measured shear wave speed of thirteen forearm muscles
via MRE in a series of contractile states and wrist postures and fit
these outputs to a force estimation algorithm based on a
musculoskeletal model. Results: Shear wave speed changed
significantly upon several factors, including whether the muscle
was recruited as an agonist or antagonist (p=0.0019), torque
amplitude (p=<0.0001), and wrist posture (p=0.0002). Shear wave
speed increased significantly during both agonist (p=<0.0001) and
antagonist (p=0.0448) contraction. Additionally, there was a
greater increase in shear wave speed at greater levels of loading.
The variations due to these factors indicate the sensitivity to
functional loading of muscle. Under the assumption of a quadratic
relationship between shear wave speed and muscle force, MRE
measurements accounted for an average of 70% of the variance in
the measured joint torque. Conclusion: This study shows the
ability of MM-MRE to capture variations in individual muscle
shear wave speed due to muscle activation and presents a method
to estimate individual muscle force through MM-MRE derived
measurements of shear wave speed. Significance: MM-MRE could
be used to establish normal and abnormal muscle co-contraction
patterns in muscles of the forearm controlling hand and wrist
function.

Index Terms—Force estimation,
Elastography, Muscle Contraction.

Magnetic Resonance

I. INTRODUCTION

BJECT manipulation allows for interactions between an

individual and their environment, though this is one of the
most complex motor functions that requires the proper and
coordinated activation of skeletal muscles with high accuracy
to perform tasks [1]. The neuromuscular system exerts control
over the muscles to manipulate objects, which can be analyzed
through either the inputs or outputs of neuromuscular activation
to understand contributions to successful task completion [2].
Measuring the neuromuscular input signal to muscles can be
used to understand the control of motion. However, current
non-invasive methods used for this purpose (such as surface
electromyography, sEMG) cannot differentiate between the
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contributions of the signals sent to the individual muscles when
the muscles are not superficial nor sufficiently spaced apart.
Alternatively, the outputs of the neuromuscular system —i.e. the
force applied by each individual muscle — can illustrate how
muscles co-activate to perform tasks and the role each muscle
plays in a complex movement. Since multiple muscles often
span a single joint, it is not possible to quantify individual
muscle force solely from measurement of joint/limb kinematics
and kinetics. Unfortunately, direct measurement of muscle
force is infeasible in vivo in humans as this typically requires
removal of the tissue from its natural space [3], and other
indirect approaches suffer from methodological limitations.
While recent methods have been proposed for measuring in vivo
force of specific muscles [4], these methods share the
limitations of SEMG in that they are not able to measure
contributions of non-superficial muscles that are very important
for hand and wrist movements.

Several methods have recently been proposed to estimate
individual muscle force using indirect measurements of muscle
activity. The primary method used in many studies to quantify
muscle activity has been SEMG [3], [5]. This technique has
been used effectively in multiple studies analyzing muscle
activation in both static [6] and dynamic [7]-[9] contraction,
muscle recruitment [10], and limb kinematic data [11].
However, in cases where non-superficial muscles contribute
significantly to joint torque production, such as it is in the case
of the forearm muscles controlling hand and wrist motion
responsible for object manipulation. SEMG-based estimates of
muscle forces can be substantially inaccurate [10].

Another technique for analyzing the activation of individual
muscles is shear wave elastography (SWE), an ultrasound
technique that uses a high-intensity pulse to produce shear
waves that propagate through the tissue, and which can be
imaged with the ultrasound device [12]. Previous applications
of SWE include analysis of activation of both muscles and
tendons in healthy [13] and pathologically affected states,
including stroke [14] and cerebral palsy [15]. While SWE can
provide reasonable estimates of muscular activation for both
surface and deep muscles non-invasively, the limited field of
view (FOV) provided by ultrasound techniques does not allow
for the simultaneous estimation of the mechanical properties of
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Fig. 1. Setup for multi-muscle magnetic resonance elastography. (A) Subjects
are positioned headfirst and prone with their right arm placed in a custom MRE
driver and perform isometric contractions cued by (B) the visual feedback
system that allows the subject to visualize and maintain applied torque. (C) The
MRE driver is connected to a pneumatic actuator.

a large number of muscles during a single contraction [16], as
are used in tasks involving the hand and wrist. Therefore, any
variation in activation between data collections will provide an
inaccurate estimation of the total tissue response.

As a technique similar to SWE, magnetic resonance
elastography (MRE) is a magnetic resonance imaging (MRI)
technique for non-invasively imaging tissue mechanical
properties [17], [18]. MRE uses propagating shear waves from
a mechanical actuator — e.g. piezoelectric [19] or pneumatic
[20] — to quantify the viscoelastic properties of soft tissues,
including the liver and brain. Preliminary skeletal muscle MRE
studies demonstrated the relationship between apparent
material stiffness and contractile state of the muscle [21]. A
recent study by Schrank, et al. [22] used MRE to quantify
individual muscle response to activation in real-time and found
responses in shear wave velocities with contraction. Similarly,
muscle mechanics were investigated with MRE by Debernard,
et al. [23] to quantify the age-related changes in muscle stiffness
at rest and during contraction in children and middle-aged
adults, providing a reference for future analysis of diseased
tissue. However, previous uses of MRE in skeletal muscle
studies did not simultaneously measure the mechanical
properties of the entire set of muscles surrounding a human
joint, nor did they quantify an association between the
measured mechanical properties and muscle force. As such, it
is currently unclear if MRE can be used to quantify muscle
coordination strategies employed by humans for interacting
with the environment.

In this study, we use MRE to simultaneously measure the
shear wave speed in each of the forearm muscles during
isometric contractions of the wrist, a technique that we name
multi-muscle magnetic resonance elastography (MM-MRE).
The primary objective of this study is to determine the
sensitivity of MM-MRE to muscle activation and illustrate its
effectiveness in simultaneously estimating the force output of
multiple muscles active during isometric contractions. We used
MM-MRE to quantify stiffness of the individual muscles of the
forearm at different levels of muscle activation and at different
contraction states, including multiple amplitudes of wrist torque
in both flexion and extension and in different wrist postures.
We then combined all MM-MRE measurements in a model-
based estimation framework to estimate force output from each
individual muscle at each contraction state.

II. METHODS

A. Muscle Mechanics

Outcomes from MRE typically include the complex shear
modulus, G*, from which we can consider the shear stiffness,
or the square of the shear wave speed or velocity. In order to
quantify muscle-specific forces from measurements of shear
wave velocity, we need to note some preliminary considerations
about (1) the relationship between muscle force and muscle
stiffness, (2) the relationship between shear modulus and
Young’s modulus, and (3) the relationship between the shear
wave velocity and the load and stiffness of the muscle. First,
muscle force (fyr) is related to the axial stress (o) through the
muscle’s cross-sectional area (A.s):

o= (1)
Acs
The short-range stiffness model is a widely accepted model

that describes the stiffness properties of skeletal muscle during
isometric contractions to be dependent on the force produced
by that muscle [24], [25]. Short-range stiffness is derived from
the cross-bridge muscle model and suggests that an increase in
the actin-myosin cross-bridges results in an increase in the
muscle axial stress and stiffness. In the short-range stiffness
model, under isometric contractions, it is assumed that the
Young’s modulus, E, increases linearly with axial stress (o)
with slope a, from an unstressed value E:
E=aoc+E, 2)
While a linear relationship between Young’s modulus and
shear modulus is only valid for isotropic and homogeneous
materials, Eby et al. [13], showed a linear relationship between
Young’s modulus, E, and shear modulus, G, for skeletal
muscle, even though skeletal muscles are anisotropic materials.
With this approximation, we can quantify the stiffness of the
muscle based on measurements of shear modulus, provided that
the slope 8 of such a linear relationship is known.

G=2 3)

In axially isotropic tissues, such as tendon and muscle fibers,
shear wave velocity is a function of both shear modulus and
axial load. Martin, et al. [4] showed that shear wave velocity,
Vg, in tendons and muscle fibers can be described by the model

of a tensioned Timoshenko beam:
V2, = k’(;+ o )
where p is the density of the material and k' is a shear
correction factor ranging from 0 to 1. Given these premises and
substituting Eqn. (2) and (3) in Eqn. (4), it is possible to
describe the relationship between shear wave velocity and axial
load:

k’_a+ 1 !
B k By
p o+ 5 (5)
Thus, by substituting Eqn. (1) into Eqn. (5) we can describe a

relationship between shear wave velocity and muscle force:

2 _
Usny =

K a
—+1 !
2 _ B k'Eo _ -1
vé, = + = +C 6
SH = acs fur P fM’T (6)
. . _ PAcsB _Kk'Eg _
In this expression, y = VaiB and C = g are muscle

specific constants accounting for the linear relationship
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between shear wave speed squared and force. This relationship
can be inverted to calculate muscle force given measurements
of shear wave speed as:
fur = vény —k (7
All considered, individual muscle force can be estimated from
measurements of shear wave velocity once having determined
the set of muscle-specific proportionality constants y and £.

B. Experimental methods

We collected data on human participants using a Siemens 3T
Prisma MRI scanner (Siemens Healthineers; Erlangen,
Germany). Participants were positioned headfirst and prone, as
seen in Fig. 1A, with their right arm forward in a custom-built
actuation device. This device incorporated a passive driver for
delivering vibrations to the tissue through the muscle belly of
the forearm and was connected to the Resoundant active
pneumatic actuator (Rochester, MN) in the MRI control room,
Fig. 1C. Additionally, the device held the flexible MRI coil that
wrapped around the forearm and had a pair of supports and
restraints for the hand and wrist. The participant’s forearm
rested on the passive driver, approximately below the ulna, and
the flexible coil was gently wrapped around the arm to apply
minimal pre-compression to the tissue. The participant’s hand
and wrist were constrained by an MRI-compatible robotic
device, referred to as the MREbot [26]. A force/torque sensor
(Mini27Ti, ATI Industrial Automation, Apex, NC) was
connected to the base of the hand support to which force was
applied by the participant, with visual feedback, as seen in Fig.
1B, provided to cue the proper application of joint torque during
scanning through a VisuaStimDigital (Resonance Technology)
audio-visual system. Additional details on the setup and device
are provided in our previous publication [26].

We scanned thirteen healthy, young adult participants (11/2
M/F; age range: 22-35 years, BMI range: 21.5-27.4 kg/m?)
through the wrist activation protocol. The study was approved
by the Institutional Review Board of the University of Delaware
(IRBNet ID: 1465242-5) and each participant provided written
informed consent before participation. The inclusion criteria of
the study included no history of central nervous system disease
or brain injury, no condition affecting bones, tendons,
ligaments, or muscles in the arm, no acute or chronic back pain,
non-pregnant, and no conditions compromising safety in the
MRI. The protocol consisted of 45 MRE scans divided between
three wrist postures as defined by the angle about the
flexion/extension (FE) axis, 8y = [—15,0,15]°. A positive
angle indicates a flexed wrist, a negative angle indicates an
extended wrist, and zero indicates a neutral position. The wrist
was held in a neutral angle about the radial/ulnar direction
(RUD) axis. To achieve these wrist postures, subjects manually
adjusted the device by unlocking from one posture and then
adjusting the wrist angle and relocking the hand support into the
new posture. The order of wrist posture was neutral, extended,
then flexed for all subjects. At each wrist posture, 15 MRE
scans were collected with three scans at each of the five
activation states, defined by joint torque values [Tgg; Tryp] =
[{—1;0},{—0.5; 0},{0; 0},{0.5; 0},{1; 0}] N-m. Thus, torque
was applied in both wrist flexion and extension, at two

magnitudes, but no torque was applied about the axis of
radial/ulnar deviation. Also, MRE data were collected in a rest
condition. The order of the 15 scans performed in each wrist
posture was randomized for each subject. During each of these
scans, the subjects were cued to apply and hold the designated
contraction condition for the entire duration of the scan (i.e., 21
s) through the visual feedback system. The subject was given
time to relax during each of the anatomical scans for each
posture.

We used an echo-planar imaging MRE sequence with the
following parameters: 2 x 2 x 3 mm?® voxel size; FOV = 128 x
128 mm?; 15 slices; TR/TE = 1314/41 ms; vibration frequency
= 80 Hz; 4 phase offsets; single gradient polarity; time = 21
seconds per MRE scan. Complex-valued displacement
amplitudes at the vibration frequency were computed by
Fourier transform across the 4 phase offsets. For each posture,
an anatomical scan was also performed after the MRE scans to
allow for region-of-interest (ROI) identification. The
anatomical scan was a Tz-weighted BLADE (motion
insensitive, multi-shot, turbo spin echo) sequence, acquired
with the following parameters: 1 x 1 x 3 mm?® voxel size; FOV
=128 x 128 mm?; slices = 60; TR/TE = 9520/79 ms. Each T»-
weighted anatomical scan required 210 s of acquisition time.
The total scan time per subject was approximately 35 minutes.

C. MRE image analysis

Muscle tissue, like other biological tissues, is known to
exhibit viscoelastic behavior, with both energy storage (elastic)
and loss (viscous) characteristics [27], [28], and both
parameters affect the propagation of shear waves in the tissue.
We used the imaged displacement fields from MRE (Fig. 2B)
to estimate the shear wave speed through the viscoelastic
muscle tissue of the forearm using the nonlinear inversion
algorithm (NLI) [29]. NLI determines tissue mechanical
properties using a finite element-based inverse problem solved
by iteratively minimizing the objective function:

() = Zi\[:"i {(um(i) — Uy (9)) (um(i) — Ue(p (9)) }(8)
where u,,; represents the complex-valued amplitude of the ith
displacement measurement location, u.(;(#) is the analogous
displacement computed from a finite element model using
current estimate of the properties, 8, N,, is the number of
measurements and * represents the complex conjugate [27].
NLI models the material as a heterogeneous, isotropic, linear
viscoelastic material which is governed by Navier’s equation,

V- (G*(Vu +vu")) + V(AVa) = —pw? 9)
where U is the 3D displacement field, A is the first Lamé
material parameter and G* is the second, or the shear modulus,
w is the speed of the propagating shear wave, and p is the
density (assumed to be 1000 kg/m?).

NLI is typically used to estimate material properties of tissue
from MRE data to provide metrics of structural integrity. The
current NLI implementation uses a linear model, therefore, does
not include higher order effects of static prestrain (such as from
muscle activation), and returns maps of the apparent complex
shear modulus, G* = G’ + iG"’, from which we commonly
calculate the shear “stiffness”, 4 = 2|G**/(G™+G*||). This
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Fig. 2. (A) Each muscle of the thirteen muscles that are involved in wrist motion
and analyzed in this study are manually segmented. A representative cross
section with a region of interest defining each of the muscles is shown. (B) Shear
wave motion generated throughout the forearm from actuation at 80 Hz and

captured in 3D by the MRE sequence. (C) Map of shear wave speed squared
estimated from wave motion by the nonlinear inversion algorithm (NLI).
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parameter is itself related to the wave speed through a
viscoelastic material [17]. In this application, we are primarily
interested in wave speed, as this has been shown to change with
loading of muscle tissue [30], [31], thus we report the shear
wave speed squared (SWSS) as v2, = u/p.

We determined the SWSS in each condition in thirteen
individual muscles of the forearm. Muscles were manually
segmented to generate individual ROI masks using the Ta-
weighted anatomical images as a reference. The muscle regions
were then registered to MRE image space using FMRIB’s
Linear Registration Tool (FLIRT) from FMRIB’s Software
Library (FSL) [32] to create binary masks for analysis. The 13
muscles segmented for analysis are: abductorpollicis longus
(APL), extensor pollicis longus (EPL), extensor digitorum
(ED), extensor digitorum minimus (EDM), extensor carpi
radialis longus (ECRL), extensor carpi radialis brevis (ECRB),
flexor carpi radialis (FCR), palmaris longus (PL), flexor
digitorum sublimis (FDS), flexor carpi ulnaris (FCU), flexor
digitorum profundus (FDP), and flexor pollicis longus (FPL),
as shown in Fig. 2A.

To investigate the response of MM-MRE wave speed
outcomes to active muscle tension, we compared the estimated
SWSS in individual muscles due to several factors: muscle
type; activation state; and wrist posture. Additionally, these
factors are compared at both the muscle group level and
individual muscle level. Statistical analysis consisted of a linear
mixed model, with fixed effects of muscle type, activation state,
and wrist posture and the interactions of each of these factors.
Participant and muscle were included as random effects
(repeated measures factor), along with the interaction of muscle
with the fixed effects of muscle type, activation state, and wrist
posture. Factor “muscle” was used as a nested factor within
factor “muscle type” to allow grouping of measured effects
between muscles with a supposedly similar activation pattern
across the other two fixed factors. Due to the complexity of the
model output, post-hoc Tukey tests were conducted on model-
estimated coefficients for the muscle group and muscle-specific
analysis for visualization purposes. Post-hoc Tukey tests were
performed to determine the effect of agonist and antagonist

contraction on SWSS for all muscles. Then, post-hoc Tukey
tests were performed to compare SWSS at each of the different
activation states for the extensors and flexors, separately. Post-
hoc Tukey tests were performed to compare the effect of
activation state for both the extensors and flexors at each
different wrist posture, separately. Finally, post-hoc Tukey tests
were performed on the individual muscle level at each of the
wrist postures to test for different levels of SWSS between
torque application levels. For muscle specific analyses, Cohen’s
D effect sizes, defined as the ratio between the mean between-
subjects change in SWSS relative to rest (for each muscle,
posture, and contraction level) and the standard deviation of this
change, were reported for each relationship between active
contractions and their corresponding resting condition.
Following post-hoc tests, all averaged SWSS values for each
activation state were normalized by dividing the averaged
SWSS value during the rest condition used in the post-hoc
comparison.

D. MRE-based force estimation

To determine the set of muscle-specific y and k values, we
utilized a forward dynamics muscle force estimation procedure
extending the one presented in previous work [33]. The muscle
force estimator combines measurements of SWSS, wrist
torques, and wrist postures with parameters extracted from a
musculoskeletal model [34]. No subject-specific modifications
or scalings were done. The musculoskeletal model includes
thirteen muscles spanning the fingers, wrist, and elbow joints.
A muscular Jacobian matrix, J, was obtained for each of the 13
muscles and wrist postures from the musculoskeletal model via
OpenSim [34]. The same muscular Jacobian matrix was used
for all subjects. Components of matrix J are the moment arm
values with each row corresponding to a wrist DOF, FE or
RUD, and each column corresponding to a specific muscle,
resulting in J being a 2 x 13 matrix. Therefore, all contractions
at a single posture involved the same muscular Jacobian matrix.
For estimation, a 2 x 1 wrist torque vector (T = [Tgg; Trypl)
measured during each isometric contraction is related to the 13
x 1 muscle force vector through the equation below:

T=—Jfur (10)
Through substituting the relationship between muscle force
and shear wave speed into the previous equation, we obtained
the relationship between the measurements of SWSS and the
wrist torques:
= —JTvi, +Jk (11)
where v2 is a 13 x 1 vector that contains the measurements of
SWSS for each muscle, I' = diag(y,, ¥z, ---,¥13) is a 13 x 13
matrix that contains muscle-specific slope constants in its
diagonal elements, and k is a 13 x 1 vector that contains the
muscle-specific offset constants.
Overall, Eqn. (11) is a linear equation of the form X; —y =
0, where X; = [M J] is a 2 x 26 matrix obtained by horizontal
concatenation of matrices J (Jacobian) and M (a 2 x 13 matrix
with elements M;; = —]UUSZH_]-); B =1[v; k] isa26 x 1 vector
of unknowns obtained by vertical concatenation of the
unknown parameter vectors ¥ = (Yq, V3, ., ¥13). and k =
(ky, ky, ..., ky3)T and y =, and subscript / indicates each
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contraction. By collecting data during N isometric contractions
at different wrist postures, it is possible to construct a 2N x 26
matrix X = [X;; X,; ...; Xy] via vertical concatenation of the
contraction-specific X; matrices. For measurements of SWSS
obtained in different postures, the different terms JvZ, in Xi
will be linearly independent across contractions, and thus
matrix X is guaranteed to be full-rank. Using a least squares
regression model, it is then possible to estimate the vectors y
and k given measurements of joint torque, shear wave velocity,
and knowledge of the moment arm matrix J from a
musculoskeletal model. After estimating y and &, the estimated
parameters can be used to convert measurements of shear wave
speed to estimates of muscle force using Eqn. (7).

Under the model assumptions, the force measured from
multiple muscles spanning the wrist joint should sum as
described in Eqn. (11) to yield the measured value of joint
torque. In other words, if 9 and k are the estimated muscle-
specific parameters for each participant, and T' = diag(y) the
joint torques resulting from the estimated muscle forces 7, =
—JTv%, + Jk should be equal to joint torque values 7,
measured via the F/T sensor. For each participant, we used an
ordinary least squares regression model based on Eqn. (11) to
estimate the parameters 9 and k. Then, as a proxy to quantify
the accuracy of muscle force estimation, we quantified the
torque estimation error e;, separately, for each contraction,

€r = ”Tm - Te” (12)

Through the linear regression model, we obtained R?
goodness of fit values for each subject to evaluate how well the
SWSS measurements accounted for the variability in wrist
torque values. Finally, we quantified the average estimated
wrist torque error for all subjects, postures, repetitions at each
contraction state to determine the overall torque error
associated with a contraction.

III. RESULTS

The results of the linear mixed model performed to assess the
effects of muscle type and recruitment, activation state, and
wrist posture on measured SWSS at the muscle group level are
reported in Table 1. Multiple significant interactions were
found at the individual and combined effect levels of
interactions, though wrist posture appeared to be the least stable
predictor of muscle activation, with the lowest F-value of all
individual predictors. Extensors exhibited higher SWSS than
flexors. Activation state appeared to be the strongest indicator
of SWSS with the highest F value of all the individual factors.

The differences in normalized SWSS was more apparent
when comparing the muscles in their agonist and antagonist
state for all subjects, wrist postures, repetitions, and muscles, as
shown in Fig. 3, where we found significant differences in all
important agonist-antagonist comparisons: active vs rest states,
low vs high applied torque, and corresponding agonist and
antagonist action at both applied torques. The data shows an
average increase of 15% and 10% during 1.0 and 0.5 N-m of
torque, respectively, when acting as an agonist, and 8% and 3%
during 1.0 and 0.5 N-m of torque, respectively, when acting as
an antagonist.
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Fig. 3. (Left) Normalized shear wave speed squared speed (SWSS) values for
all muscles during agonist and antagonist contractions, at both 0.5 and 1.0 N'm.
Averages are connected via black lines while individual muscle data are
connected via gray lines. (Right) Map of significant differences between
activation states for agonist and antagonist muscles. Statistical significance
(p<0.05) of post-hoc tests is denoted by *.

Fig. 4 shows the combined average normalized SWSS values
across all repetitions, all wrist postures, and all subjects, but
separated by whether the muscles are flexors or extensors. Both
the flexor and extensor muscles showed significant increases in
SWSS during flexion and extension activations, shown in Fig.
4. Flexors showed an increase of 13% and 10% during 1.0 N-m
and 0.5 N-m of flexion, respectively, and 6% and 2% during 1.0
N-m and 0.5 N-m of extension, respectively. Extensors showed
an increase of 10% and 4% during 1.0 N-m and 0.5 N-m of
flexion, respectively, and 17% and 10% during 1.0 N-m and 0.5
N-m of extension, respectively. Shown in Fig. 5 are the effects
of altering wrist posture on the flexor and extensor muscle
SWSS outcomes across the five activation states. Extensors
show significantly greater SWSS during the maximum agonist
isometric contraction compared to rest in all postures, while
flexors show significantly greater SWSS than rest in all
postures except wrist extension (-15°). Both muscle groups
engage differently during contractions based upon alterations in
wrist posture. While flexors appear to show overall increases in
relative SWSS during activation while in the non-neutral wrist
postures, the extensors react in an opposite manner, exhibiting
decreased relative SWSS in the non-neutral wrist postures,

TABLEI
RESULTS OF THE LINEAR MIXED MODEL ANALYSIS OF SWSS PREDICTORS
Predictor DOF F p value
Muscle type 1 16.51 0.0019
Activation state 4 17.31 <0.0001
Wrist posture 2 13.31 0.0002
Muscle type x activation state 4 8.84 <0.0001
Muscle type X wrist posture 2 5.42 0.0122
Activation state X wrist posture 8 8.95 <0.001
Muscle type X activation state X wrist posture 8 3.70 0.0009
Extensor Muscles Flexor Muscles
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Fig. 4. Normalized SWSS values for the extensor (left) and flexor (right)
muscles during each of the contraction states, at both 0.5 and 1.0 N-m.
Averages are denoted via colored diamonds and connected via black lines,
while individual muscle averages are in light gray. Statistical significance
(p<0.05) of post-hoc tests is denoted by *.
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Fig. 5. Normalized SWSS for the flexor (Top) and extensor (Bottom) muscles at different wrist postures. The average of each muscle group is shown in colored
diamonds and black lines, while the individual muscle averages are in light gray. Statistical significance (p<0.05) of post-hoc tests is denoted by *.

when compared at the same activation state. With the muscle
group level variations presented in Fig. 5, we further
investigated the effects of altering wrist posture along with
activation state at the individual muscle level in Fig. 6.

In Fig. 6, we show the resulting effect sizes of the individual
muscle level comparison for those muscles that show
significant differences between one of the activation states and
the rest condition for each of the three wrist postures. Many of
the forearm muscles show changes in effect size and
significance in varying torque output during agonist action as
the wrist angle changes, as well as occasionally during
antagonist action. Most extensor muscles display significant
increases in SWSS at the neutral posture, with at least one
muscle showing changes at each activation state. The extensors
show fewer individual muscle SWSS responses during the non-
neutral postures, though most of these significant changes occur
at 1.0 N-m of extension. At all postures, more extensors
increase in SWSS during extension than in flexion, supporting
the group level analysis findings. As for the flexors, they are
mostly consistent across the three wrist postures, with muscles
showing increases at both 1.0 N-m and 0.5 N-m in flexion, with
more increases in SWSS at higher levels of activation and
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Fig. 6. Cohen’s D effect size for statistical differences comparing each
activation to the rest condition for each muscle, in each posture. Activations
marked with an asterisks (above Duin=0.37) are greater than rest at p<0.05.

during the agonist action of flexion.

The range of goodness of fit (R?) values obtained in back-
estimating joint torques was, for the different subjects, 0.69 +
0.17 with an average torque estimation error of 0.32 N-m
ranging between 0.24 N-m (Rest condition) and 0.43 N-m (1
N-m Flexion condition). The estimation error was highly
dependent on the type of contraction considered, with lower
error associated with the 0.5 Nm contractions than with the 1
Nm contraction. Graphical representations of the group level
estimated torques are shown in Fig. 7A-B, while the mean and
standard deviation of the cross-validation error measured for
different contraction states are shown in Fig. 7C. The APL was
found to be a data outlier within the model and was excluded
during least squares estimation.

IV. DISCUSSION

In this study, we introduced MM-MRE and demonstrated the
ability to identify changes to muscular loading by measuring
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Fig. 7. (A) Estimated torque obtained through muscle force estimation.
Average torque estimated across repeats and posture from each participant is
reported via a small marker, filled with the color and shape corresponding to
the cued contraction state (large markers). The ellipsoids mark the 2D
distribution of estimated torque. (B) The average ordinary least squares fit per
subject and (C) least squared error per contraction state help provide an overall
picture of the models fit.
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the shear wave speed in multiple muscles simultaneously, at a
variety of activation conditions. Specifically, we compared the
effects of agonist vs. antagonist action, activation state, and
wrist posture on the shear wave speed measures. Through a
musculoskeletal model, we used the measured shear wave
speeds to estimate force from individual muscles in performing
the wrist tasks. This study demonstrates how MM-MRE can
provide insight into the individual and group level responses of
muscles during contractile states and study how the muscles in
the forearm coordinate to generate isometric force. MM-MRE
is a new tool that can be used for elucidating fundamental
principles of muscle coordination for tasks involving hand and
wrist function, and for quantifying impairment in muscle
coordination for hand-wrist muscles in patients affected by
neuromotor conditions such as stroke [35]-[37] .

The primary objective of this study was to determine the
sensitivity of MM-MRE to muscle activation, specifically by
using MM-MRE to measure shear wave speed within the
muscles in the forearm under different conditions of muscle
activation, conditioned via generation of multiple levels of wrist
joint torque. We found significant differences when comparing
the activation states with applied torque to the resting states,
indicating that increases in the SWSS and apparent stiffness of
muscles change with muscular activation and loading, a finding
supported by previous MRE [21], [22] and ultrasound
elastography research [31], [38]. By taking data points at
multiple torque application states, we determined that the
SWSS changed significantly with intensity of torque output.
We found significantly higher shear wave speeds for applied
torque of 1.0 N-m compared to 0.5 N-m, with both being
significantly higher than in the rest condition. This change in
shear wave speed results primarily from isometric contraction
through which the muscle fibers increase tissue loading, but do
not alter in length. This increased loading of the tissue is a
phenomenon known as “cross-bridging” [39], [40], which
describes myosin chains attaching to bonding sites on actin
creating cross-bridges between the two proteins, thus increasing
the velocity of propagation of shear waves in the tissue.

Muscular co-contraction is when two groups of muscles, on
opposite sides of a joint, are simultancously activated to
regulate joint stability [41]. During co-contraction, muscles are
classified into one of two roles: agonist or antagonist. Muscles
are considered agonists when the muscles are being used as a
primary driver of motion and force application in a direction,
and they are considered antagonists when the muscles are being
recruited to support and stabilize in response to the agonistic
activation. We found significant differences in how the muscles
responded by comparing how the flexor and extensor muscles
acted in their agonist and antagonist states. Both flexors and
extensors showed significant increases in shear wave speed
during both agonistic and antagonistic action compared to the
rest condition, indicating that both are being recruited as a part
of co-contraction and that MM-MRE is sensitive to such
activation. We also found that all forearm muscles showed
significantly higher shear wave speed when being recruited for
their agonist action as the primary force output compared to
when these muscles are acting as antagonists or are in a

primarily stabilizing role, as expected.

Researchers studying muscular co-contraction with other
methods including SEMG and SWE have found similar results
to those found in this study, though with key differences. For
instance, Raiteri, et al. [38] used SWE along with sSEMG to
quantify agonistic and antagonistic responses of the lateral
gastrocnemius of the calf and also found a higher shear wave
speed during agonist action. However, though the study found
increased SEMG outputs during antagonist activation, they did
not detect increased shear wave speed, instead finding
negligible changes. Using an MRE technique, Schrank, et al.
[22] found overall similar results to the outcomes found in this
study with increases in measured shear wave speed in lower leg
muscles during both agonist and antagonist conditions, with
agonist action resulting in higher wave speed than antagonist.

Another important aspect of measuring these shear wave
speed outcomes in skeletal muscles is the level of pre-loading
due to initial tension level. Every muscle has a resting level of
tension when at a neutral posture, as opposed to being slack or
overstretched [42], which can affect whether muscles appear to
have significantly higher SWSS during contraction. In this
study, we aimed to quantify if and how changes to these tension
levels altered the responses of the measured shear wave speed
by changing the wrist posture and inducing passive flexion and
extension. We subsequently found differences in the response
of the forearm muscles both at the muscle group and individual
muscle level of response. As shown in this study, we found
higher percentage changes in shear wave speed and larger effect
sizes when muscles were passively shortened and given slack
with the opposite occurring during increased tension levels. We
hypothesize this response is due in part to two biological
effects: either (A) higher rest condition shear wave speed due
to increased passive tension or (B) the muscle length or tension
level alters the ability of the muscles to generate the necessary
force during isometric contraction.

Previous studies have shown a positive correlation between
passive muscle tension and muscle length [38], which agrees
with the changes in wrist posture shown in this study.
Additionally, recent MRE studies showed a positive
relationship between shear wave speed and muscle length
during passive flexion and lengthening in the calf [43],[44]. The
mechanism for this increase in muscle tension is possibly tied
to a third structural protein within sarcomeres known as titin
[45], [46]. Multiple studies have shown that titin is a primary
cause of passive force enhancement during isometric
contraction as it acts as a molecular spring, altering stiffness
during muscular activation and maintaining force in muscles
that are stretched to long lengths, such as those during changing
wrist postures. Another possible cause for this change in muscle
tension is the stretching of collagen based structures, such as
epi-, peri- and endomysium and muscle fiber extracellular
matrices [47].

In addition to the MRE-based component of this study, we
presented a muscle force estimation framework that converts
measurements of SWSS to individual muscle forces based on
the linear relationship between muscle stiffness and force as
accepted in the short-range stiffness model of skeletal muscles.
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Via the muscle force estimation framework, we were able to
establish that the measured changes in shear wave speed were
indeed associated with changes in muscle force. With the
muscle force estimator validation analysis, some subjects have
a strong goodness of fit value, representing a strong linear
relationship between shear wave speed squared and wrist
torque. This observation provides support for the idea that shear
wave speed can be used to accurately estimate muscle force,
provided that the geometric model used for describing the
change in muscle moment arms in the different postures is
correct. However, estimates from a small number of subjects
have a weak goodness of fit to experimental data. Thus, there is
a need to further investigate the muscle force estimation with
experimental data before its accuracy can be validated. When
grouping measurements from all individuals, the estimated
torque error ranges from 40% to 80% which is substantially
high error. This limitation may be due to the fact that the
selected experimental design only included isometric torque
contractions only in the flexion/extension direction, while the
muscle force estimator was developed to use measurements
resulting from contractions in both the flexion/extension and
radial/ulnar deviation direction [33]. The high error may also
come from limitations in the model used to estimate force or the
assumption of a linear relationship between force and observed
SWSS. Future directions include employing MM-MRE in a
two-degree-of-freedom  design  with  isometric ~ wrist
contractions applied in both the flexion/extension and
radial/ulnar deviation directions and from this new experiment
we expect to improve the goodness of fit values and reduce the
torque estimation error associated with muscle force estimates.

V. LIMITATIONS

The current version of this technique has limitations
associated with the signal-to-noise ratio achievable within a
given amount of time, while imaging with sufficient resolution
to capture individual wrist muscles [48], [49]. Muscle
contraction presents a unique problem within the realm of MRE
as it limits the possible acquisition time of each scan before
muscle fatigue sets in from excessive loading, particularly at
larger loads [45]. Once muscle fatigue occurs, the data is prone
to additional noise and artifacts from subject motion. To
account for this, the scanning time is shortened to acquire the
best data possible in the limited time frame.

Another data quality challenge of MM-MRE is the inclusion
of the bones within the acquired volume and the size of the
bones compared to the forearm muscles. Forearm muscles are
relatively small when compared to those in other appendages
and though the bones are also smaller, their size relative to the
muscles is larger. The material model used in NLI does not
apply to bone as bone is several orders of magnitude stiffer than
the surrounding tissues of interest, thus causing data-model
mismatch and uncertainty in the outcomes. An effect of this
data quality challenge was the removal of the APL during the
modeling process. The APL primarily resides within the gap
between the ulna and radius and mostly sits, as seen in Fig. 2A,
with the extensor muscles, even though its agonist motion is

flexion. Due to these two issues, SWSS results in the APL were
heavily affected by noise and were also significantly different
than other flexor muscles, prompting APL removal from
modeling.

Using isotropic models for skeletal muscle will suffer some
bias as apparent stiffness changes due to muscle forces are
expected primarily along the muscle axis, whereas the isotropic
stiffness estimates are an average of stiffness in each direction
(weighted by the proportion of wave energy propagating in each
direction) [50], [51]. Recent studies have utilized mechanically
anisotropic material models for parameter estimation because
of the fibrous nature of the tissue and directionally applied
stresses [43], [44], [52]-[54]. In this study we used an isotropic
MRE approach due the imaging time requirement for
anisotropic MRE including diffusion MRI data in addition to
MRE with at least two different displacement fields at each
condition [55]. Future studies of the forearm MRE problem
using anisotropic techniques may produce more accurate force
estimates by capturing stiffness changes in each direction
independently.

VI. CONCLUSION

In this study, we quantify the sensitivity of MM-MRE to the
activation of skeletal muscles in the forearm by collecting MRE
data during a variety of contraction conditions and wrist
postures. The MM-MRE outcomes of SWSS are then used with
a muscular model to estimate the individual contributions of
each of the forearm muscles. MM-MRE showed increases of
SWSS during varying levels of contraction and signs of co-
contraction activation with agonist and antagonist activity,
including significant differences between how a muscle reacts
when being recruited into one of these two functions.
Furthermore, we discovered how changing the posture of the
wrist, and therefore the length of the muscles, affected the
different muscle activations. We showed promising results
while using the SWSS estimations from MM-MRE to estimate
the force contributions of the individual muscles. Future
directions of this work include application of this technique to
quantify motor impairment of individuals with stroke and
cerebral palsy.
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