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 Abstract— Objective: To establish the sensitivity of magnetic 
resonance elastography (MRE) to active muscle contraction in 
multiple muscles of the forearm. Methods: We combined MRE of 
forearm muscles with an MRI-compatible device, the MREbot, to 
simultaneously measure the mechanical properties of tissues in the 
forearm and the torque applied by the wrist joint during isometric 
tasks. We measured shear wave speed of thirteen forearm muscles 
via MRE in a series of contractile states and wrist postures and fit 
these outputs to a force estimation algorithm based on a 
musculoskeletal model. Results: Shear wave speed changed 
significantly upon several factors, including whether the muscle 
was recruited as an agonist or antagonist (p=0.0019), torque 
amplitude (p=<0.0001), and wrist posture (p=0.0002). Shear wave 
speed increased significantly during both agonist (p=<0.0001) and 
antagonist (p=0.0448) contraction. Additionally, there was a 
greater increase in shear wave speed at greater levels of loading. 
The variations due to these factors indicate the sensitivity to 
functional loading of muscle. Under the assumption of a quadratic 
relationship between shear wave speed and muscle force, MRE 
measurements accounted for an average of 70% of the variance in 
the measured joint torque. Conclusion: This study shows the 
ability of MM-MRE to capture variations in individual muscle 
shear wave speed due to muscle activation and presents a method 
to estimate individual muscle force through MM-MRE derived 
measurements of shear wave speed. Significance: MM-MRE could 
be used to establish normal and abnormal muscle co-contraction 
patterns in muscles of the forearm controlling hand and wrist 
function. 
Index Terms—Force estimation, Magnetic Resonance 

Elastography, Muscle Contraction. 

I. INTRODUCTION 
BJECT manipulation allows for interactions between an 
individual and their environment, though this is one of the 

most complex motor functions that requires the proper and 
coordinated activation of skeletal muscles with high accuracy 
to perform tasks [1]. The neuromuscular system exerts control 
over the muscles to manipulate objects, which can be analyzed 
through either the inputs or outputs of neuromuscular activation 
to understand contributions to successful task completion [2]. 
Measuring the neuromuscular input signal to muscles can be 
used to understand the control of motion. However, current 
non-invasive methods used for this purpose (such as surface 
electromyography, sEMG) cannot differentiate between the 
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contributions of the signals sent to the individual muscles when 
the muscles are not superficial nor sufficiently spaced apart. 
Alternatively, the outputs of the neuromuscular system – i.e. the 
force applied by each individual muscle – can illustrate how 
muscles co-activate to perform tasks and the role each muscle 
plays in a complex movement. Since multiple muscles often 
span a single joint, it is not possible to quantify individual 
muscle force solely from measurement of joint/limb kinematics 
and kinetics. Unfortunately, direct measurement of muscle 
force is infeasible in vivo in humans as this typically requires 
removal of the tissue from its natural space [3], and other 
indirect approaches suffer from methodological limitations. 
While recent methods have been proposed for measuring in vivo 
force of specific muscles [4], these methods share the 
limitations of sEMG in that they are not able to measure 
contributions of non-superficial muscles that are very important 
for hand and wrist movements. 
Several methods have recently been proposed to estimate 

individual muscle force using indirect measurements of  muscle 
activity. The primary method used in many studies to quantify 
muscle activity has been sEMG [3], [5]. This technique has 
been used effectively in multiple studies analyzing muscle 
activation in both static [6] and dynamic [7]–[9] contraction, 
muscle recruitment [10], and limb kinematic data [11]. 
However, in cases where non-superficial muscles contribute 
significantly to joint torque production, such as it is in the case 
of the forearm muscles controlling hand and wrist motion 
responsible for object manipulation. sEMG-based estimates of 
muscle forces can be substantially inaccurate [10]. 
Another technique for analyzing the activation of individual 

muscles is shear wave elastography (SWE), an ultrasound 
technique that uses a high-intensity pulse to produce shear 
waves that propagate through the tissue, and which can be 
imaged with the ultrasound device [12]. Previous applications 
of SWE include analysis of activation of both muscles and 
tendons in healthy [13] and pathologically affected states, 
including stroke [14] and cerebral palsy [15]. While SWE can 
provide reasonable estimates of muscular activation for both 
surface and deep muscles non-invasively, the limited field of 
view (FOV) provided by ultrasound techniques does not allow 
for the simultaneous estimation of the mechanical properties of 
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a large number of muscles during a single contraction [16], as 
are used in tasks involving the hand and wrist. Therefore, any 
variation in activation between data collections will provide an 
inaccurate estimation of the total tissue response. 
As a technique similar to SWE, magnetic resonance 

elastography (MRE) is a magnetic resonance imaging (MRI) 
technique for non-invasively imaging tissue mechanical 
properties [17], [18]. MRE uses propagating shear waves from 
a mechanical actuator – e.g. piezoelectric [19] or pneumatic 
[20] – to quantify the viscoelastic properties of soft tissues, 
including the liver and brain. Preliminary skeletal muscle MRE 
studies demonstrated the relationship between apparent 
material stiffness and contractile state of the muscle [21]. A 
recent study by Schrank, et al. [22] used MRE to quantify 
individual muscle response to activation in real-time and found 
responses in shear wave velocities with contraction. Similarly, 
muscle mechanics were investigated with MRE by Debernard, 
et al. [23] to quantify the age-related changes in muscle stiffness 
at rest and during contraction in children and middle-aged 
adults, providing a reference for future analysis of diseased 
tissue. However, previous uses of MRE in skeletal muscle 
studies did not simultaneously measure the mechanical 
properties of the entire set of muscles surrounding a human 
joint, nor did they quantify an association between the 
measured mechanical properties and muscle force. As such, it 
is currently unclear if MRE can be used to quantify muscle 
coordination strategies employed by humans for interacting 
with the environment. 
In this study, we use MRE to simultaneously measure the 

shear wave speed in each of the forearm muscles during 
isometric contractions of the wrist, a technique that we name 
multi-muscle magnetic resonance elastography (MM-MRE). 
The primary objective of this study is to determine the 
sensitivity of MM-MRE to muscle activation and illustrate its 
effectiveness in simultaneously estimating the force output of 
multiple muscles active during isometric contractions. We used 
MM-MRE to quantify stiffness of the individual muscles of the 
forearm at different levels of muscle activation and at different 
contraction states, including multiple amplitudes of wrist torque 
in both flexion and extension and in different wrist postures. 
We then combined all MM-MRE measurements in a model-
based estimation framework to estimate force output from each 
individual muscle at each contraction state. 

II. METHODS 

A. Muscle Mechanics 
Outcomes from MRE typically include the complex shear 
modulus, G*, from which we can consider the shear stiffness, 
or the square of the shear wave speed or velocity. In order to 
quantify muscle-specific forces from measurements of shear 
wave velocity, we need to note some preliminary considerations 
about (1) the relationship between muscle force and muscle 
stiffness, (2) the relationship between shear modulus and 
Young’s modulus, and (3) the relationship between the shear 
wave velocity and the load and stiffness of the muscle. First, 
muscle force (𝑓!") is related to the axial stress (σ) through the 
muscle’s cross-sectional area (𝐴#$): 

𝜎 = %!"
&#$
 (1) 

The short-range stiffness model is a widely accepted model 
that describes the stiffness properties of skeletal muscle during 
isometric contractions to be dependent on the force produced 
by that muscle [24], [25]. Short-range stiffness is derived from 
the cross-bridge muscle model and suggests that an increase in 
the actin-myosin cross-bridges results in an increase in the 
muscle axial stress and stiffness. In the short-range stiffness 
model, under isometric contractions, it is assumed that the 
Young’s modulus, E, increases linearly with axial stress (σ) 
with slope 𝛼, from an unstressed value 𝐸': 

𝐸 = 𝛼𝜎 + 𝐸' (2) 
While a linear relationship between Young’s modulus and 

shear modulus is only valid for isotropic and homogeneous 
materials, Eby et al. [13], showed a linear relationship between 
Young’s modulus, E, and shear modulus, G, for skeletal 
muscle, even though skeletal muscles are anisotropic materials. 
With this approximation, we can quantify the stiffness of the 
muscle based on measurements of shear modulus, provided that 
the slope 𝛽 of such a linear relationship is known. 

𝐺 = (
)
 (3) 

In axially isotropic tissues, such as tendon and muscle fibers, 
shear wave velocity is a function of both shear modulus and 
axial load. Martin, et al. [4] showed that shear wave velocity, 
𝑣$*, in tendons and muscle fibers can be described by the model 
of a tensioned Timoshenko beam: 

𝑣$*, = -%./	1
2
 (4) 

where ρ is the density of the material and 𝑘3 is a shear 
correction factor ranging from 0 to 1. Given these premises and 
substituting Eqn. (2) and (3) in Eqn. (4), it is possible to 
describe the relationship between shear wave velocity and axial 
load: 

𝑣$*, =
&%'
( /	4

2
𝜎 + -%()

)2
 (5) 

Thus, by substituting Eqn. (1) into Eqn. (5) we can describe a 
relationship between shear wave velocity and muscle force: 

𝑣$*, =
&%'
( /	4

2&#$
𝑓!" +

-%()
2)

= 𝛾54𝑓!" + 𝐶 (6) 

In this expression, 𝛾 = 2&#$)
-%6/)

 and 𝐶 = -%()
2)
 are muscle-

specific constants accounting for the linear relationship 

Fig. 1.  Setup for multi-muscle magnetic resonance elastography. (A) Subjects 
are positioned headfirst and prone with their right arm placed in a custom MRE 
driver and perform isometric contractions cued by (B) the visual feedback 
system that allows the subject to visualize and maintain applied torque. (C) The 
MRE driver is connected to a pneumatic actuator. 
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between shear wave speed squared and force. This relationship 
can be inverted to calculate muscle force given measurements 
of shear wave speed as: 

𝑓!" = 𝑣$*, 𝛾 − 𝑘  (7) 
All considered, individual muscle force can be estimated from 
measurements of shear wave velocity once having determined 
the set of muscle-specific proportionality constants γ and k.  

B. Experimental methods 
We collected data on human participants using a Siemens 3T 

Prisma MRI scanner (Siemens Healthineers; Erlangen, 
Germany). Participants were positioned headfirst and prone, as 
seen in Fig. 1A, with their right arm forward in a custom-built 
actuation device. This device incorporated a passive driver for 
delivering vibrations to the tissue through the muscle belly of 
the forearm and was connected to the Resoundant active 
pneumatic actuator (Rochester, MN) in the MRI control room, 
Fig. 1C. Additionally, the device held the flexible MRI coil that 
wrapped around the forearm and had a pair of supports and 
restraints for the hand and wrist. The participant’s forearm 
rested on the passive driver, approximately below the ulna, and 
the flexible coil was gently wrapped around the arm to apply 
minimal pre-compression to the tissue. The participant’s hand 
and wrist were constrained by an MRI-compatible robotic 
device, referred to as the MREbot [26]. A force/torque sensor 
(Mini27Ti, ATI Industrial Automation, Apex, NC) was 
connected to the base of the hand support to which force was 
applied by the participant, with visual feedback, as seen in Fig. 
1B, provided to cue the proper application of joint torque during 
scanning through a VisuaStimDigital (Resonance Technology) 
audio-visual system. Additional details on the setup and device 
are provided in our previous publication [26]. 
We scanned thirteen healthy, young adult participants (11/2 

M/F; age range: 22-35 years, BMI range: 21.5-27.4 kg/m2) 
through the wrist activation protocol. The study was approved 
by the Institutional Review Board of the University of Delaware 
(IRBNet ID: 1465242-5) and each participant provided written 
informed consent before participation. The inclusion criteria of 
the study included no history of central nervous system disease 
or brain injury, no condition affecting bones, tendons, 
ligaments, or muscles in the arm, no acute or chronic back pain, 
non-pregnant, and no conditions compromising safety in the 
MRI. The protocol consisted of 45 MRE scans divided between 
three wrist postures as defined by the angle about the 
flexion/extension (FE) axis, 𝜃7( = [−15, 0, 15]°. A positive 
angle indicates a flexed wrist, a negative angle indicates an 
extended wrist, and zero indicates a neutral position. The wrist 
was held in a neutral angle about the radial/ulnar direction 
(RUD) axis. To achieve these wrist postures, subjects manually 
adjusted the device by unlocking from one posture and then 
adjusting the wrist angle and relocking the hand support into the 
new posture. The order of wrist posture was neutral, extended, 
then flexed for all subjects. At each wrist posture, 15 MRE 
scans were collected with three scans at each of the five 
activation states, defined by joint torque values [𝜏7(; 𝜏89:] =
[{−1; 0}, {−0.5; 0}, {0; 0}, {0.5; 0}, {1; 0}] N×m. Thus, torque 
was applied in both wrist flexion and extension, at two 

magnitudes, but no torque was applied about the axis of 
radial/ulnar deviation. Also, MRE data were collected in a rest 
condition. The order of the 15 scans performed in each wrist 
posture was randomized for each subject. During each of these 
scans, the subjects were cued to apply and hold the designated 
contraction condition for the entire duration of the scan (i.e., 21 
s) through the visual feedback system. The subject was given 
time to relax during each of the anatomical scans for each 
posture. 
 We used an echo-planar imaging MRE sequence with the 

following parameters:  2 x 2 x 3 mm3 voxel size; FOV = 128 x 
128 mm2; 15 slices; TR/TE = 1314/41 ms; vibration frequency 
= 80 Hz; 4 phase offsets; single gradient polarity; time = 21 
seconds per MRE scan. Complex-valued displacement 
amplitudes at the vibration frequency were computed by 
Fourier transform across the 4 phase offsets. For each posture, 
an anatomical scan was also performed after the MRE scans to 
allow for region-of-interest (ROI) identification. The 
anatomical scan was a T2-weighted BLADE (motion 
insensitive, multi-shot, turbo spin echo) sequence, acquired 
with the following parameters: 1 x 1 x 3 mm3 voxel size; FOV 
= 128 x 128 mm2; slices = 60; TR/TE = 9520/79 ms. Each T2-
weighted anatomical scan required 210 s of acquisition time. 
The total scan time per subject was approximately 35 minutes. 

C. MRE image analysis 
Muscle tissue, like other biological tissues, is known to 

exhibit viscoelastic behavior, with both energy storage (elastic) 
and loss (viscous) characteristics [27], [28], and both 
parameters affect the propagation of shear waves in the tissue. 
We used the imaged displacement fields from MRE (Fig. 2B) 
to estimate the shear wave speed through the viscoelastic 
muscle tissue of the forearm using the nonlinear inversion 
algorithm (NLI) [29]. NLI determines tissue mechanical 
properties using a finite element-based inverse problem solved 
by iteratively minimizing the objective function: 
Φ(𝜃) = 	∑ @A𝑢;(=) − 𝑢?(=)(𝜃)C A𝑢;(=) − 𝑢?(=)(𝜃)C

∗
DA*

=B4  (8) 
where 𝑢;(=) represents the complex-valued amplitude of the ith 
displacement measurement location, 𝑢?(=)(𝜃) is the analogous 
displacement computed from a finite element model using 
current estimate of the properties, q, 𝑁; is the number of 
measurements and * represents the complex conjugate [27]. 
NLI models the material as a heterogeneous, isotropic, linear 
viscoelastic material which is governed by Navier’s equation,  

∇ ∙ H𝐺∗(∇𝑢I⃑ + ∇𝑢I⃑ ")K + ∇(𝜆∇𝑢I⃑ ) = −𝜌𝜔, (9) 
where 𝑢I⃑  is the 3D displacement field, λ is the first Lamé 
material parameter and G* is the second, or the shear modulus,	
𝜔 is the speed of the propagating shear wave, and ρ is the 
density (assumed to be 1000 kg/m3).  
NLI is typically used to estimate material properties of tissue 
from MRE data to provide metrics of structural integrity. The 
current NLI implementation uses a linear model, therefore, does 
not include higher order effects of static prestrain (such as from 
muscle activation), and returns maps of the apparent complex 
shear modulus, G*| = G’ + iG’’, from which we commonly 
calculate the shear “stiffness”, μ = 2|G*||2/(G’+|G*||). This 
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parameter is itself related to the wave speed through a 
viscoelastic material [17]. In this application, we are primarily 
interested in wave speed, as this has been shown to change with 
loading of muscle tissue [30], [31], thus we report the shear 
wave speed squared (SWSS) as 𝑣$*, = 𝜇/𝜌. 
We determined the SWSS in each condition in thirteen 

individual muscles of the forearm. Muscles were manually 
segmented to generate individual ROI masks using the T2-
weighted anatomical images as a reference. The muscle regions 
were then registered to MRE image space using FMRIB’s 
Linear Registration Tool (FLIRT) from FMRIB’s Software 
Library (FSL) [32] to create binary masks for analysis. The 13 
muscles segmented for analysis are: abductorpollicis longus 
(APL), extensor pollicis longus (EPL), extensor digitorum 
(ED), extensor digitorum minimus (EDM), extensor carpi 
radialis longus (ECRL), extensor carpi radialis brevis (ECRB), 
flexor carpi radialis (FCR), palmaris longus (PL), flexor 
digitorum sublimis (FDS), flexor carpi ulnaris (FCU), flexor 
digitorum profundus (FDP), and flexor pollicis longus (FPL), 
as shown in Fig. 2A. 
To investigate the response of MM-MRE wave speed 

outcomes to active muscle tension, we compared the estimated 
SWSS in individual muscles due to several factors: muscle 
type; activation state; and wrist posture. Additionally, these 
factors are compared at both the muscle group level and 
individual muscle level. Statistical analysis consisted of a linear 
mixed model, with fixed effects of muscle type, activation state, 
and wrist posture and the interactions of each of these factors. 
Participant and muscle were included as random effects 
(repeated measures factor), along with the interaction of muscle 
with the fixed effects of muscle type, activation state, and wrist 
posture. Factor “muscle” was used as a nested factor within 
factor “muscle type” to allow grouping of measured effects 
between muscles with a supposedly similar activation pattern 
across the other two fixed factors. Due to the complexity of the 
model output, post-hoc Tukey tests were conducted on model-
estimated coefficients for the muscle group and muscle-specific 
analysis for visualization purposes. Post-hoc Tukey tests were 
performed to determine the effect of agonist and antagonist 

contraction on SWSS for all muscles. Then, post-hoc Tukey 
tests were performed to compare SWSS at each of the different 
activation states for the extensors and flexors, separately. Post-
hoc Tukey tests were performed to compare the effect of 
activation state for both the extensors and flexors at each 
different wrist posture, separately. Finally, post-hoc Tukey tests 
were performed on the individual muscle level at each of the 
wrist postures to test for different levels of SWSS between 
torque application levels. For muscle specific analyses, Cohen’s 
D effect sizes, defined as the ratio between the mean between-
subjects change in SWSS relative to rest (for each muscle, 
posture, and contraction level) and the standard deviation of this 
change, were reported for each relationship between active 
contractions and their corresponding resting condition. 
Following post-hoc tests, all averaged SWSS values for each 
activation state were normalized by dividing the averaged 
SWSS value during the rest condition used in the post-hoc 
comparison. 

D. MRE-based force estimation 
To determine the set of muscle-specific γ and k values, we 

utilized a forward dynamics muscle force estimation procedure 
extending the one presented in previous work [33]. The muscle 
force estimator combines measurements of SWSS, wrist 
torques, and wrist postures with parameters extracted from a 
musculoskeletal model [34]. No subject-specific modifications 
or scalings were done. The musculoskeletal model includes 
thirteen muscles spanning the fingers, wrist, and elbow joints. 
A muscular Jacobian matrix, J, was obtained for each of the 13 
muscles and wrist postures from the musculoskeletal model via 
OpenSim [34]. The same muscular Jacobian matrix was used 
for all subjects. Components of matrix J are the moment arm 
values with each row corresponding to a wrist DOF, FE or 
RUD, and each column corresponding to a specific muscle, 
resulting in J being a 2 × 13 matrix. Therefore, all contractions 
at a single posture involved the same muscular Jacobian matrix. 
For estimation, a 2 × 1 wrist torque vector (𝝉 = [𝜏7(; 	𝜏89:]) 
measured during each isometric contraction is related to the 13 
× 1 muscle force vector through the equation below: 

𝝉 = −𝑱𝒇𝑴𝑻 (10) 
Through substituting the relationship between muscle force 

and shear wave speed into the previous equation, we obtained 
the relationship between the measurements of SWSS and the 
wrist torques: 

𝝉 = 	−𝑱𝚪𝒗𝑺𝑯𝟐 + 𝑱𝒌 (11) 
where 𝒗𝑺𝑯𝟐  is a 13 × 1 vector that contains the measurements of 
SWSS for each muscle, 𝚪 = diag(γ4, 𝛾,, … , 𝛾4H) is a 13 × 13 
matrix that contains muscle-specific slope constants in its 
diagonal elements, and k is a 13 × 1 vector that contains the 
muscle-specific offset constants. 
Overall, Eqn. (11) is a linear equation of the form 𝑿𝒍𝜷 − 𝒚 =

𝟎, where 𝑿𝒍 = [𝑴	𝑱] is a 2 × 26 matrix obtained by horizontal 
concatenation of matrices 𝑱 (Jacobian) and 𝑴 (a 2 × 13 matrix 
with elements 𝑀=J = −𝐽=J𝑣$*,J, ); 𝜷 = [𝜸; 	𝒌] is a 26 × 1 vector 
of unknowns obtained by vertical concatenation of the 
unknown parameter vectors 𝜸 = (γ4, 𝛾,, … , 𝛾4H)" and 𝒌 =
(k4, 𝑘,, … , 𝑘4H)" and 𝒚 = 𝝉, and subscript l indicates each 

Fig. 2. (A) Each muscle of the thirteen muscles that are involved in wrist motion 
and analyzed in this study are manually segmented. A representative cross 
section with a region of interest defining each of the muscles is shown. (B) Shear 
wave motion generated throughout the forearm from actuation at 80 Hz and 
captured in 3D by the MRE sequence. (C) Map of shear wave speed squared 
estimated from wave motion by the nonlinear inversion algorithm (NLI). 
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contraction. By collecting data during N isometric contractions 
at different wrist postures, it is possible to construct a 2N × 26 
matrix 𝑿 = [𝑿4; 𝑿,; … ; 𝑿A] via vertical concatenation of the 
contraction-specific Xl matrices. For measurements of SWSS 
obtained in different postures, the different terms 𝐽𝑣$*,  in Xl  
will be linearly independent across contractions, and thus 
matrix X is guaranteed to be full-rank. Using a least squares 
regression model, it is then possible to estimate the vectors γ 
and k given measurements of joint torque, shear wave velocity, 
and knowledge of the moment arm matrix J from a 
musculoskeletal model. After estimating γ and k, the estimated 
parameters can be used to convert measurements of shear wave 
speed to estimates of muscle force using Eqn. (7).  
Under the model assumptions, the force measured from 

multiple muscles spanning the wrist joint should sum as 
described in Eqn. (11) to yield the measured value of joint 
torque. In other words, if 𝜸f and 𝒌g are the estimated muscle-
specific parameters for each participant, and 𝚪h = diag(𝛄j)  the 
joint torques resulting from the estimated muscle forces 𝝉𝒆 =
−𝑱𝚪h𝒗𝑺𝑯𝟐 + 𝑱𝒌g should be equal to joint torque values 𝜏; 
measured via the F/T sensor. For each participant, we used an 
ordinary least squares regression model based on Eqn. (11) to 
estimate the parameters 𝜸f and 𝒌g. Then, as a proxy to quantify 
the accuracy of muscle force estimation, we quantified the 
torque estimation error 𝑒L, separately, for each contraction,  

𝑒L =	‖𝝉𝒎 −	𝝉𝒆‖ (12) 
Through the linear regression model, we obtained R2 

goodness of fit values for each subject to evaluate how well the 
SWSS measurements accounted for the variability in wrist 
torque values. Finally, we quantified the average estimated 
wrist torque error for all subjects, postures, repetitions at each 
contraction state to determine the overall torque error 
associated with a contraction. 

III. RESULTS 
The results of the linear mixed model performed to assess the 

effects of muscle type and recruitment, activation state, and 
wrist posture on measured SWSS at the muscle group level are 
reported in Table 1. Multiple significant interactions were 
found at the individual and combined effect levels of 
interactions, though wrist posture appeared to be the least stable 
predictor of muscle activation, with the lowest F-value of all 
individual predictors. Extensors exhibited higher SWSS than 
flexors. Activation state appeared to be the strongest indicator 
of SWSS with the highest F value of all the individual factors.  
The differences in normalized SWSS was more apparent 

when comparing the muscles in their agonist and antagonist 
state for all subjects, wrist postures, repetitions, and muscles, as 
shown in Fig. 3, where we found significant differences in all 
important agonist-antagonist comparisons: active vs rest states, 
low vs high applied torque, and corresponding agonist and 
antagonist action at both applied torques. The data shows an 
average increase of 15% and 10% during 1.0 and 0.5 N×m of 
torque, respectively, when acting as an agonist, and 8% and 3% 
during 1.0 and 0.5 N×m of torque, respectively, when acting as 
an antagonist.  

Fig. 4 shows the combined average normalized SWSS values 
across all repetitions, all wrist postures, and all subjects, but 
separated by whether the muscles are flexors or extensors. Both 
the flexor and extensor muscles showed significant increases in 
SWSS during flexion and extension activations, shown in Fig. 
4. Flexors showed an increase of 13% and 10% during 1.0 N×m 
and 0.5 N×m of flexion, respectively, and 6% and 2% during 1.0 
N×m and 0.5 N×m of extension, respectively. Extensors showed 
an increase of 10% and 4% during 1.0 N×m and 0.5 N×m of 
flexion, respectively, and 17% and 10% during 1.0 N×m and 0.5 
N×m of extension, respectively. Shown in Fig. 5 are the effects 
of altering wrist posture on the flexor and extensor muscle 
SWSS outcomes across the five activation states. Extensors 
show significantly greater SWSS during the maximum agonist 
isometric contraction compared to rest in all postures, while 
flexors show significantly greater SWSS than rest in all 
postures except wrist extension (-15°). Both muscle groups 
engage differently during contractions based upon alterations in 
wrist posture. While flexors appear to show overall increases in 
relative SWSS during activation while in the non-neutral wrist 
postures, the extensors react in an opposite manner, exhibiting 
decreased relative SWSS in the non-neutral wrist postures, 

TABLE I 
RESULTS OF THE LINEAR MIXED MODEL ANALYSIS OF SWSS PREDICTORS 

Predictor DOF F p value 

Muscle type 1 16.51 0.0019 
Activation state 4 17.31 <0.0001 
Wrist posture 2 13.31 0.0002 
Muscle type × activation state 4 8.84 <0.0001 
Muscle type × wrist posture 2 5.42 0.0122 
Activation state × wrist posture 8 8.95 <0.001 
Muscle type × activation state × wrist posture 8 3.70 0.0009 
 

Fig. 4. Normalized SWSS values for the extensor (left) and flexor (right) 
muscles during each of the contraction states, at both 0.5 and 1.0 N×m. 
Averages are denoted via colored diamonds and connected via black lines, 
while individual muscle averages are in light gray. Statistical significance 
(p<0.05) of post-hoc tests is denoted by *. 

Fig. 3. (Left) Normalized shear wave speed squared speed (SWSS) values for 
all muscles during agonist and antagonist contractions, at both 0.5 and 1.0 N∙m. 
Averages are connected via black lines while individual muscle data are 
connected via gray lines. (Right) Map of significant differences between 
activation states for agonist and antagonist muscles. Statistical significance 
(p<0.05) of post-hoc tests is denoted by *. 
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when compared at the same activation state. With the muscle 
group level variations presented in Fig. 5, we further 
investigated the effects of altering wrist posture along with 
activation state at the individual muscle level in Fig. 6.  
In Fig. 6, we show the resulting effect sizes of the individual 

muscle level comparison for those muscles that show 
significant differences between one of the activation states and 
the rest condition for each of the three wrist postures. Many of 
the forearm muscles show changes in effect size and 
significance in varying torque output during agonist action as 
the wrist angle changes, as well as occasionally during 
antagonist action. Most extensor muscles display significant 
increases in SWSS at the neutral posture, with at least one 
muscle showing changes at each activation state. The extensors 
show fewer individual muscle SWSS responses during the non-
neutral postures, though most of these significant changes occur 
at 1.0 N×m of extension. At all postures, more extensors 
increase in SWSS during extension than in flexion, supporting 
the group level analysis findings. As for the flexors, they are 
mostly consistent across the three wrist postures, with muscles 
showing increases at both 1.0 N×m and 0.5 N×m in flexion, with 
more increases in SWSS at higher levels of activation and 

during the agonist action of flexion. 
The range of goodness of fit (R2) values obtained in back-

estimating joint torques was, for the different subjects, 0.69 ± 
0.17 with an average torque estimation error of 0.32 N×m 
ranging between 0.24 N×m (Rest condition) and 0.43 N×m (1 
N×m Flexion condition). The estimation error was highly 
dependent on the type of contraction considered, with lower 
error associated with the 0.5 Nm contractions than with the 1 
Nm contraction. Graphical representations of the group level 
estimated torques are shown in Fig. 7A-B, while the mean and 
standard deviation of the cross-validation error measured for 
different contraction states are shown in Fig. 7C. The APL was 
found to be a data outlier within the model and  was excluded 
during least squares estimation.  

IV. DISCUSSION 
In this study, we introduced MM-MRE and demonstrated the 

ability to identify changes to muscular loading by measuring 

Fig. 5. Normalized SWSS for the flexor (Top) and extensor (Bottom) muscles at different wrist postures. The average of each muscle group is shown in colored 
diamonds and black lines, while the individual muscle averages are in light gray. Statistical significance (p<0.05) of post-hoc tests is denoted by *. 

Fig. 6. Cohen’s D effect size for statistical differences comparing each 
activation to the rest condition for each muscle, in each posture. Activations 
marked with an asterisks (above Dmin= 0.37) are greater than rest at p<0.05. 

Fig. 7. (A) Estimated torque obtained through muscle force estimation. 
Average torque estimated across repeats and posture from each participant is 
reported via a small marker, filled with the color and shape corresponding to 
the cued contraction state (large markers). The ellipsoids mark the 2D 
distribution of estimated torque. (B) The average ordinary least squares fit per 
subject and (C) least squared error per contraction state help provide an overall 
picture of the models fit. 
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the shear wave speed in multiple muscles simultaneously, at a 
variety of activation conditions. Specifically, we compared the 
effects of agonist vs. antagonist action, activation state, and 
wrist posture on the shear wave speed measures. Through a 
musculoskeletal model, we used the measured shear wave 
speeds to estimate force from individual muscles in performing 
the wrist tasks. This study demonstrates how MM-MRE can 
provide insight into the individual and group level responses of 
muscles during contractile states and study how the muscles in 
the forearm coordinate to generate isometric force. MM-MRE 
is a new tool that can be used for elucidating fundamental 
principles of muscle coordination for tasks involving hand and 
wrist function, and for quantifying impairment in muscle 
coordination for hand-wrist muscles in patients affected by 
neuromotor conditions such as stroke [35]–[37] .  
 The primary objective of this study was to determine the 

sensitivity of MM-MRE to muscle activation, specifically by 
using MM-MRE to measure shear wave speed within the 
muscles in the forearm under different conditions of muscle 
activation, conditioned via generation of multiple levels of wrist 
joint torque.  We found significant differences when comparing 
the activation states with applied torque to the resting states, 
indicating that increases in the SWSS and apparent stiffness of 
muscles change with muscular activation and loading, a finding 
supported by previous MRE [21], [22] and ultrasound 
elastography research [31], [38]. By taking data points at 
multiple torque application states, we determined that the 
SWSS changed significantly with intensity of torque output. 
We found significantly higher shear wave speeds for applied 
torque of 1.0 N×m compared to 0.5 N×m, with both being 
significantly higher than in the rest condition. This change in 
shear wave speed results primarily from isometric contraction 
through which the muscle fibers increase tissue loading, but do 
not alter in length. This increased loading of the tissue is a 
phenomenon known as “cross-bridging” [39], [40], which 
describes myosin chains attaching to bonding sites on actin 
creating cross-bridges between the two proteins, thus increasing 
the velocity of propagation of shear waves in the tissue.  
Muscular co-contraction is when two groups of muscles, on 

opposite sides of a joint, are simultaneously activated to 
regulate joint stability [41]. During co-contraction, muscles are 
classified into one of two roles: agonist or antagonist. Muscles 
are considered agonists when the muscles are being used as a 
primary driver of motion and force application in a direction, 
and they are considered antagonists when the muscles are being 
recruited to support and stabilize in response to the agonistic 
activation. We found significant differences in how the muscles 
responded by comparing how the flexor and extensor muscles 
acted in their agonist and antagonist states. Both flexors and 
extensors showed significant increases in shear wave speed 
during both agonistic and antagonistic action compared to the 
rest condition, indicating that both are being recruited as a part 
of co-contraction and that MM-MRE is sensitive to such 
activation. We also found that all forearm muscles showed 
significantly higher shear wave speed when being recruited for 
their agonist action as the primary force output compared to 
when these muscles are acting as antagonists or are in a 

primarily stabilizing role, as expected.  
Researchers studying muscular co-contraction with other 

methods including sEMG and SWE have found similar results 
to those found in this study, though with key differences. For 
instance, Raiteri, et al. [38] used SWE along with sEMG to 
quantify agonistic and antagonistic responses of the lateral 
gastrocnemius of the calf and also found a higher shear wave 
speed during agonist action. However, though the study found 
increased sEMG outputs during antagonist activation, they did 
not detect increased shear wave speed, instead finding 
negligible changes. Using an MRE technique, Schrank, et al. 
[22] found overall similar results to the outcomes found in this 
study with increases in measured shear wave speed in lower leg 
muscles during both agonist and antagonist conditions, with 
agonist action resulting in higher wave speed than antagonist.  
Another important aspect of measuring these shear wave 

speed outcomes in skeletal muscles is the level of pre-loading 
due to initial tension level. Every muscle has a resting level of 
tension when at a neutral posture, as opposed to being slack or 
overstretched [42], which can affect whether muscles appear to 
have significantly higher SWSS during contraction. In this 
study, we aimed to quantify if and how changes to these tension 
levels altered the responses of the measured shear wave speed 
by changing the wrist posture and inducing passive flexion and 
extension. We subsequently found differences in the response 
of the forearm muscles both at the muscle group and individual 
muscle level of response. As shown in this study, we found 
higher percentage changes in shear wave speed and larger effect 
sizes when muscles were passively shortened and given slack 
with the opposite occurring during increased tension levels. We 
hypothesize this response is due in part to two biological 
effects: either (A) higher rest condition shear wave speed due 
to increased passive tension or (B) the muscle length or tension 
level alters the ability of the muscles to generate the necessary 
force during isometric contraction.  
Previous studies have shown a positive correlation between 

passive muscle tension and muscle length [38], which agrees 
with the changes in wrist posture shown in this study. 
Additionally, recent MRE studies showed a positive 
relationship between shear wave speed and muscle length 
during passive flexion and lengthening in the calf [43],[44]. The 
mechanism for this increase in muscle tension is possibly tied 
to a third structural protein within sarcomeres known as titin 
[45], [46]. Multiple studies have shown that titin is a primary 
cause of passive force enhancement during isometric 
contraction as it acts as a molecular spring, altering stiffness 
during muscular activation and maintaining force in muscles 
that are stretched to long lengths, such as those during changing 
wrist postures. Another possible cause for this change in muscle 
tension is the stretching of collagen based structures, such as 
epi-, peri- and endomysium and muscle fiber extracellular 
matrices [47]. 
In addition to the MRE-based component of this study, we 

presented a muscle force estimation framework that converts 
measurements of SWSS to individual muscle forces based on 
the linear relationship between muscle stiffness and force as 
accepted in the short-range stiffness model of skeletal muscles. 
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Via the muscle force estimation framework, we were able to 
establish that the measured changes in shear wave speed were 
indeed associated with changes in muscle force. With the 
muscle force estimator validation analysis, some subjects have 
a strong goodness of fit value, representing a strong linear 
relationship between shear wave speed squared and wrist 
torque. This observation provides support for the idea that shear 
wave speed can be used to accurately estimate muscle force, 
provided that the geometric model used for describing the 
change in muscle moment arms in the different postures is 
correct. However, estimates from a small number of subjects 
have a weak goodness of fit to experimental data. Thus, there is 
a need to further investigate the muscle force estimation with 
experimental data before its accuracy can be validated. When 
grouping measurements from all individuals, the estimated 
torque error ranges from 40% to 80% which is substantially 
high error. This limitation may be due to the fact that the 
selected experimental design only included isometric torque 
contractions only in the flexion/extension direction, while the 
muscle force estimator was developed to use measurements 
resulting from contractions in both the flexion/extension and 
radial/ulnar deviation direction [33]. The high error may also 
come from limitations in the model used to estimate force or the 
assumption of a linear relationship between force and observed 
SWSS. Future directions include employing MM-MRE in a 
two-degree-of-freedom design with isometric wrist 
contractions applied in both the flexion/extension and 
radial/ulnar deviation directions and from this new experiment 
we expect to improve the goodness of fit values and reduce the 
torque estimation error associated with muscle force estimates. 

V. LIMITATIONS 
The current version of this technique has limitations 

associated with the signal-to-noise ratio achievable within a 
given amount of time, while imaging with sufficient resolution 
to capture individual wrist muscles [48], [49]. Muscle 
contraction presents a unique problem within the realm of MRE 
as it limits the possible acquisition time of each scan before 
muscle fatigue sets in from excessive loading, particularly at 
larger loads [45]. Once muscle fatigue occurs, the data is prone 
to additional noise and artifacts from subject motion. To 
account for this, the scanning time is shortened to acquire the 
best data possible in the limited time frame.  
Another data quality challenge of MM-MRE is the inclusion 

of the bones within the acquired volume and the size of the 
bones compared to the forearm muscles. Forearm muscles are 
relatively small when compared to those in other appendages 
and though the bones are also smaller, their size relative to the 
muscles is larger. The material model used in NLI does not 
apply to bone as bone is several orders of magnitude stiffer than 
the surrounding tissues of interest, thus causing data-model 
mismatch and uncertainty in the outcomes. An effect of this 
data quality challenge was the removal of the APL during the 
modeling process. The APL primarily resides within the gap 
between the ulna and radius and mostly sits, as seen in Fig. 2A, 
with the extensor muscles, even though its agonist motion is 

flexion. Due to these two issues, SWSS results in the APL were 
heavily affected by noise and were also significantly different 
than other flexor muscles, prompting APL removal from 
modeling. 
Using isotropic models for skeletal muscle will suffer some 

bias as apparent stiffness changes due to muscle forces are 
expected primarily along the muscle axis, whereas the isotropic 
stiffness estimates are an average of stiffness in each direction 
(weighted by the proportion of wave energy propagating in each 
direction) [50], [51]. Recent studies have utilized mechanically 
anisotropic material models for parameter estimation because 
of the fibrous nature of the tissue and directionally applied 
stresses [43], [44], [52]–[54]. In this study we used an isotropic 
MRE approach due the imaging time requirement for 
anisotropic MRE including diffusion MRI data in addition to 
MRE with at least two different displacement fields at each 
condition [55]. Future studies of the forearm MRE problem 
using anisotropic techniques may produce more accurate force 
estimates by capturing stiffness changes in each direction 
independently.  

VI. CONCLUSION 
In this study, we quantify the sensitivity of MM-MRE to the 

activation of skeletal muscles in the forearm by collecting MRE 
data during a variety of contraction conditions and wrist 
postures. The MM-MRE outcomes of SWSS are then used with 
a muscular model to estimate the individual contributions of 
each of the forearm muscles. MM-MRE showed increases of 
SWSS during varying levels of contraction and signs of co-
contraction activation with agonist and antagonist activity, 
including significant differences between how a muscle reacts 
when being recruited into one of these two functions. 
Furthermore, we discovered how changing the posture of the 
wrist, and therefore the length of the muscles, affected the 
different muscle activations. We showed promising results 
while using the SWSS estimations from MM-MRE to estimate 
the force contributions of the individual muscles. Future 
directions of this work include application of this technique to 
quantify motor impairment of individuals with stroke and 
cerebral palsy. 
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