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Superconducting phases of the square-lattice extended Hubbard model
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We study the square-lattice extended Hubbard model with on-site U and nearest-neighbor V interactions
by exact diagonalization. We show that nonequilibrium quench dynamics can help determine the equilibrium
phase transition boundaries, which agree with the calculations of the fidelity metric, dynamical structure factor,
and correlation function. At half filling, the phase diagrams in the strong-coupling regime include spin density
wave and dx2−y2 -wave superconductivity at large positive U , charge density wave (extended s∗-wave supercon-
ductivity) at large positive (negative) V , and s-wave superconductivity at large negative U with vanishing V .
The energies of different particle sectors also help determine the phase separation region. With carrier doping,
charge fluctuation results in a strong competition between different orders, making it more difficult to identify
the leading instability on finite-size clusters. Nevertheless, the more exotic p-wave superconducting pairing is
found to be enhanced when the system is heavily overdoped by 37.5%–50% holes, especially in the interaction
parameter range relevant to the cuprate superconductors.
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I. INTRODUCTION

One of the most intriguing but challenging topics in con-
densed matter concerns studying correlation effects in many
interacting particles. Strongly correlated systems exhibit var-
ious symmetry-breaking states, such as superconductivity,
which can arise from the interplay of spin, charge, and lat-
tice degrees of freedom [1,2]. Already in the 1950s, the
Bardeen-Cooper-Schrieffer theory successfully explained the
mechanism of conventional superconductors through phonon-
mediated electron pairs [3]. In the late 1980s, the discovery of
copper-based high-temperature superconductors—later iden-
tified with a d-wave pairing symmetry [4]—reformed our
understanding of correlated materials [5]. Although the ulti-
mate theory for high-temperature superconductivity remains
controversial, the strong electron repulsive interactions in
copper 3d orbitals are believed to play crucial roles [6–8].
Unconventional superconductivity also has been explored in
other transition-metal oxides. For example, the infinite-layer
nickelates share similar electronic structures with the cuprates
and become superconducting at ∼20% hole doping [9]. More-
over, superconductivity in the ruthenates was identified with
a triplet p-wave pairing [10–14], although the claim was
challenged by recent experiments [15,16]. In any case, these
unconventional superconducting phases are believed to origi-
nate from strong electron correlation effects.

The simplest toy model to describe electronic correlation is
the single-band Hubbard model with a local on-site interaction
U . This simple model already can explain the behaviors of a
Mott insulator, stripe order [17–20], strange metal [21–23],
and to some extent d-wave superconductivity [24–27]. As
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a natural extension, more recent studies have considered a
nonlocal Coulomb interaction (denoted as V ) in the so-called
extended Hubbard model (EHM). A repulsive V can induce
a charge density wave (CDW), and an attractive V was ar-
gued to favor spin-triplet superconductivity [28,29]. Already
in one-dimensional (1D) systems, a p-wave superconducting
phase was predicted for repulsive U and attractive V in EHM
[30–34]. Similar studies have been explored in 2D systems
[35–40], using weak-coupling theory or with an approxima-
tion in treating the interaction effect. To understand and design
exotic phases such as p-wave superconductivity, it is neces-
sary to study EHM in the strong-coupling regime.

Moreover, recent angle-resolved photoemission spec-
troscopy (ARPES) experiments on 1D cuprate chains have
revealed a sizable attractive Coulomb interaction between
nearest-neighbor (NN) electrons [41]. Although not as strong
as the on-site Coulomb repulsion, this attractive interaction
is comparable to the electron hopping integral, and thereby
should not be ignored [42]. The structural similarities among
the cuprates also suggest that an attractive NN interaction may
exist in quasi-2D cuprate materials in general. Since electron-
phonon coupling may be its origin, this attractive interaction
should be even stronger in a 2D copper-oxide plane, because
of the richer phonon modes and stronger impact of ligands.
Therefore, studying the 2D EHM could be important for un-
derstanding the high-Tc pairing mechanism.

In this paper, we systematically study the phase diagrams
of the square-lattice EHM as functions of interaction strengths
and doping levels. Studying the strong correlation effect
is challenging, and most theoretical and computational meth-
ods are based on various levels of approximation in handling
the interaction. Here, we choose to use exact diagonalization
(ED), which has the advantage that the electron interaction
effect can be treated exactly. We employ ED to compute the
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FIG. 1. Schematic phase diagram of the square-lattice extended
Hubbard model. Depending on the on-siteU and nearest-neighborV
interactions, as well as hole doping levels, the model can support var-
ious symmetry-breaking phases, such as spin density wave (SDW),
charge density wave (CDW), s-wave superconductivity, dx2−y2 -wave
superconductivity, and the more exotic p-wave superconductivity.
A phase separation (PS) also can occur near the d-wave phase,
especially with negative V .

quench dynamics, fidelity metrics, and various correlation
functions. While the ED study is restricted to finite-size clus-
ters, we will show that the phase boundaries determined by
ED agree with the functional renormalization group (FRG)
results in the weak-coupling limit [38], and our approach
remains valid in the strong-coupling limit. Figure 1 illustrates
the main results of our study. At half filling, the spin density
wave (SDW) is dominant at positive U , and s-wave super-
conductivity is dominant at negative U and small |V |. On
the other hand, a positive V induces a charge density wave
(CDW), and a negative V can cause phase separation. When
the system is heavily overdoped by hole carriers, the more
exotic p-wave superconducting correlation can be enhanced at
large positive U and small negative V . We also determine the
phase-separated region by computing the energies of different
particle sectors. These results will be relevant to various phys-
ical systems such as the cuprates and cold-atom experiments
[43,44].

II. MODEL AND METHODS

The extended Hubbard model (EHM) reads

H = −th
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) +U

∑
i

ni↑ni↓ +V
∑
〈i j〉,
σσ ′

niσn jσ ′ .

(1)

Here, c†
iσ creates an electron with spin σ (=↑ or ↓) at lattice

site i, and niσ = c†
iσ ciσ is the corresponding fermion number

operator. 〈· · · 〉 represents a pair of near-neighbor (NN) sites.
th is the hopping amplitude. U and V are respectively the
on-site and NN interaction strengths; a positive (negative)
value corresponds to a repulsive (attractive) force. Here, th ≡
1 and we explore both positive and negative interactions in the
range |U | � 10 and |V | � 10. We note that a small, attractive
NN Coulomb interaction V has been identified in ARPES
experiments in doped cuprate chains [41]. While longer-range
interactions beyond NN might also be present, their strengths

are expected to be weaker and remain to be established ex-
perimentally. We solve Eq. (1) using the ED technique, which
can treat correlation effects exactly for arbitrary interaction
strengths. The main challenge of ED is that the Hilbert space
size grows exponentially with the lattice size, so the calcula-
tions are limited to finite-size clusters. Here, we focus on a
4 × 4 square cluster (under a periodic boundary condition),
which exhibits the proper D4 symmetry for studying the com-
petition between d-wave and p-wave superconductivity. On
this N = 16 site cluster, we study hole doping levels at 0%
(half filling with 1 electron per site on average), 12.5%, 25%,
37.5%, and 50% (quarter filling with 0.5 electron per site on
average).

The ED algorithm proceeds as follows. We first construct
the Hamiltonian matrix using an eigenbasis of the fermion
number operator. We then perform a matrix diagonalization
to obtain the ground state |Gλ〉 with interaction parameters
λ ≡ (U,V ). Depending on λ and the doping level, a ground-
state degeneracy can occur, and these degenerate states have
to be considered when computing the expectation values of
physical observables. The actual diagonalization is performed
using iterative Krylov subspace methods as implemented in
the PETSc [45,46] and SLEPc [47,48] libraries. The Krylov-
Schur technique is utilized to resolve degenerate eigenstates.

After obtaining the ground state(s) |Gλ〉 for a Hamiltonian
H0 with interactions λ = (U,V ), we next perform an inter-
action quench, where the Hamiltonian undergoes a sudden
change to H1 with interactions λ∗ = (U ∗,V ∗) at time t = 0+.
The state at time t + δt is obtained by acting the time evolu-
tion operator on the state at time t :

|ψ (t + δt )〉 = e−iH1δt |ψ (t )〉, for t � 0. (2)

Here, |ψ (t = 0)〉 ≡ |Gλ〉 is the ground state of H0. The
time evolution calculation is again performed using a
Krylov method in PETSc, which requires only repeated
matrix-vector multiplications to construct the Krylov sub-
space {|ψ (t )〉,H1

1 |ψ (t )〉,H2
1 |ψ (t )〉,H3

1 |ψ (t )〉, . . . }, without
the need to explicitly construct the matrix exponential op-
erator e−iH1δt . In our calculations, we typically evolve the
system to a final time t = 50th−1, with a time step δt =
0.01 − 0.05th−1. For selected sets of interaction parameters,
we have performed additional calculations with varying time
steps to ensure that the numerical error due to a finite-time
discretization is negligible.

With |ψ (t )〉 available, we compute the equal-time cor-
relation functions 〈ψ (t )|Ô†Ô|ψ (t )〉 for different order pa-
rameters. In particular, the correlations with the following
operators Ô are predominant at half filling:

ρq = 1√
N

∑
i

eiq·ri (c†
i↑ci↑ + c†

i↓ci↓), (3)

ρs
q = 1

2
√
N

∑
i

eiq·ri (c†
i↑ci↑ − c†

i↓ci↓), (4)

�s = 1√
N

∑
i

ci↑ci↓, (5)

�dx2−y2 = 1

2
√
N

∑
i

(ci↑ci+x̂↓ + ci↑ci−x̂↓

− ci↑ci+ŷ↓ − ci↑ci−ŷ↓). (6)
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Here, ρq (ρs
q) is the charge (spin) density operator in mo-

mentum space, relevant to a CDW (SDW) phase at ordering
vector q. �s and �dx2−y2 are real-space s-wave and dx2−y2 -wave
pairing operators, respectively. Upon doping, other supercon-
ducting instabilities can occur, and we also study the pairing
operators for extended s-wave (s∗-wave), dxy-wave, and px-
wave superconductivity:

�s∗ = 1

2
√
N

∑
i

(ci↑ci+x̂↓ + ci↑ci−x̂↓ + ci↑ci+ŷ↓ + ci↑ci−ŷ↓),

(7)

�dxy = 1

2
√
N

∑
i

(ci↑ci+x̂+ŷ↓ + ci↑ci−x̂−ŷ↓

− ci↑ci−x̂+ŷ↓ − ci↑ci+x̂−ŷ↓), (8)

�px = 1√
2N

∑
i

(ci↑ci+x̂↓ − ci↑ci−x̂↓). (9)

By symmetry, the value of the py-wave correlation is identical
to that of a px wave in our ED calculations. After obtaining
〈ψ (t )|Ô†Ô|ψ (t )〉 for the above order parameters, we Fourier
transform the time-domain data to extract the spectral features
in frequency space. As shown later, the Fourier spectra are
closely related to the equilibrium system’s charge and spin ex-
citation energies, which exhibit distinct behaviors in different
broken-symmetry phases.

To extract the charge and spin gaps of the equilibrium
system, we also compute the charge N (q, ω) and spin S(q, ω)
dynamical structure factors:

N (q, ω) = 1

π
Im

〈
Gλ∗

∣∣∣∣ρ−q
1

H1 − EG∗ − ω − i

ρq

∣∣∣∣Gλ∗

〉
,

(10)

S(q, ω) = 1

π
Im

〈
Gλ∗

∣∣∣∣ρs
−q

1

H1 − EG∗ − ω − i

ρs
q

∣∣∣∣Gλ∗

〉
. (11)

Here, |Gλ∗ 〉 is the equilibrium ground state of H1 with energy
EG∗ , and 
 is a finite spectral broadening chosen to be 0.1th in
this study.

Finally, we also compute the fidelity of the quantum state
overlap f (λ∗, λ) ≡ |〈Gλ∗ |Gλ〉|, where |Gλ〉 is the ground state
with interactions λ ≡ (U,V ), and λ∗ ≡ λ + δλ represents a
small deviation from λ. If a ground-state degeneracy oc-
curs, the fidelity value can be obtained by a singular value
decomposition of the overlap matrix with matrix elements
Mk� ≡ 〈Gλ∗,k|Gλ,�〉. Here, |Gλ,�〉 (|Gλ∗,k〉) is the �th (kth) de-
generate ground state for interaction λ (λ∗), and the largest
singular value is chosen to represent the fidelity. The fidelity
approach is powerful for determining phase transitions in
quantum many-body systems [49,50]. In particular, if |Gλ〉
and |Gλ∗ 〉 belong to the same broken-symmetry phase, f is
expected to be equal or close to unity. On the other hand, if
|Gλ〉 and |Gλ∗ 〉 have a distinct nature, f will be reduced from
unity, which thereby signals a quantum phase transition with a
small change δλ in the interaction parameters. Using quench
dynamics, spectral gaps, and fidelity metrics, we are able to
probe quantum phase transition boundaries using ED with

results in agreement with FRG in the weak-coupling limit, and
to propose phase diagrams in the strong-coupling regime.

III. RESULTS AND DISCUSSION

A. Weak-coupling limit

We first focus on a small interaction range |U | � 1
and |V | � 1, where we can benchmark ED against FRG
[38,51]. Figure 2 shows equilibrium correlation functions
〈Gλ|Ô†Ô|Gλ〉 for different order parameters in Eqs. (3)–(9) as
functions of interaction strengths λ = (U,V ). The phase sep-
aration (PS) region is determined from the energy difference
between different particle sectors (see Appendix A). Overall,
a positive V > 0 will stabilize a (π, π ) charge density wave
(CDW), as manifested in Fig. 2(a). Moreover, V > 0 with
U < 0 will further enhance the tendency towards the CDW
state. In contrast, a predominant positive U > 0 is expected
to support a (π, π ) spin density wave (SDW), as seen in
Fig. 2(c).

The ED results show several salient features for the evo-
lution of superconducting correlations with interactions. In
particular, the s-wave correlation is largely enhanced when
−0.5 � V � 0 and U < 0 [Fig. 2(b)]. The dx2−y2 -wave cor-
relation can increase when V < 0 and U > V [Fig. 2(d)].
The p-wave correlation also can increase when V < 0 and
U > 0 [Fig. 2(f)]. Other correlations with different pairing
symmetries, such as dxy or s∗, also can be suppressed or en-
hanced depending on the interactions [Figs. 2(e) and 2(g)]. As
discussed later, these more exotic superconductivity pairings
may be enhanced at larger interaction strengths or at higher
doping levels.

In principle, correlation functions computed on a finite-
size cluster cannot determine directly the symmetry-breaking
phases, as we cannot observe true phase transitions but only
crossover phenomena. Other approaches such as a finite-size
extrapolation for all orders are needed to determine the lead-
ing instability in the thermodynamic limit [27,52–55], which
for ED is not practical beyond 16-site calculations. In our
results, however, it is clear that the regions where correlation
functions show an apparent enhancement or suppression are
already reminiscent of the actual phase boundaries obtained
by previous FRG studies [38]. Our weak-coupling phase di-
agram at half filling is summarized in Fig. 2(h). Compared
to FRG [38], our result includes additionally a PS region,
and a region with a strong p-wave superconducting instability,
which is also suggested by mean-field theory [39].

To help determine phase boundaries, we first consider
equilibrium calculations of the quantum fidelity f (λ∗, λ).
Figure 3(a) shows the fidelity calculations along the path
V : −1 → 1 at a fixedU = −1, with an interaction step δλ =
�V = 0.1. This path is depicted by the arrow line in the
figure inset. The fidelity (blue line) exhibits two dips around
V = −0.5 and 0, and the number of the ground-state degen-
eracy (green line) also changes at V = 0. We emphasize that
our correlation and fidelity calculations are always performed
on a “homogeneous state,” instead of a phase-separated one.
Our 16-site cluster at a fixed particle sector is too small to
show the spatially inhomogeneous PS with both hole-rich and
hole-deficient regions. Instead, the PS information is obtained
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FIG. 2. Correlation functions for different order parameters computed by exact diagonalization (ED) for a half-filled extended Hubbard
model in the weak-coupling regime: |U | � 1 and |V | � 1. (h) depicts the corresponding phase diagram with phase boundaries determined by
ED calculations of the fidelity metric, correlation function, and total energy. Gray dashed lines indicate regions where phase separation (PS)
would occur.

by computing the ground-state energies in different particle
sectors (see Appendix A). Therefore, although in Fig. 3(a) the
fidelity path shows a transition between d-wave and s-wave
superconductivity in the homogeneous state, it is understood
that the actual ground state of the system should be phase
separated when there is a strong negative V . Gray dashed
lines are utilized to indicate the PS region in Fig. 3. The same
understanding and labeling scheme apply to all the following
discussions and figures.

V
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(b) V=-0.2

CDWs-wave

(a)U=-1

d-wave

FIG. 3. Quantum fidelity (blue line) and the number of the
ground-state degeneracy (green line) for the extended Hubbard
model at half filling. The calculations are performed along different
paths shown by arrow lines on the inset weak-coupling phase di-
agram: (a) V : −1.0 → 1.0 at fixed U = −1.0, with an interaction
step �V = 0.1. (b) U : −1.0 → 1.0 at fixed V = −0.2, with an
interaction step �U = 0.1. Dips in the fidelity indicate phase transi-
tion boundaries. The calculations are performed on a homogeneous
state; gray dashed lines indicate regions where phase separation
would occur.

With the above caveat in mind, Fig. 3(a) together with
the correlation functions in Fig. 2 suggest that the system
starts from PS at (U = −1,V = −1), transits to s-wave su-
perconductivity around (U = −1,V = −0.5), and enters the
(π, π ) CDW state at (U = −1,V > 0). Since s-wave super-
conductivity and the (π, π ) CDW phase are expected to be
degenerate when V = 0 and U < 0, this explains why our
calculations appear to show a broader boundary near V = 0.

Figure 3(b) shows the fidelity calculations along the path
U : −1 → 1 at a fixed V = −0.2, with an interaction step
�U = 0.1. The fidelity exhibits three dips around U = −0.2,
0.1, and 0.3, while the ground state remains nondegenerate
throughout the whole path (indicated by the arrow line in the
figure inset). In accord with our phase diagram in Fig. 2(h),
the system starts from the s-wave phase at (U = −1,V =
−0.2), transits to dx2−y2 -wave superconductivity around (U =
−0.2,V = −0.2), and enters the (π, π ) SDW state at (U =
0.3,V = −0.2). We note that the fidelity calculation and cor-
relation functions in Fig. 2 appear to show the additional
presence of a p-wave state. Since our ground state is a true
quantum many-body wave function, both leading and sublead-
ing instabilities may be picked up in the ED calculations. In
fact, since dx2−y2 - and p-wave superconductivities have sim-
ilar mean-field energies when V < 0 and U > 0 [39], these
different orders may coexist in certain regions of the phase
diagram.

We next discuss using nonequilibrium quench dynamics
to determine equilibrium phase boundaries. Unlike the fi-
delity metric, which is mainly a theoretical tool, quantum
quench of the interaction can be prepared for example in
optical-lattice or ultrafast experiments [56–59], and the sub-
sequent dynamics can be obtained by measuring correlation
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FIG. 4. (a) Time evolution of the equal-time correlation function
for (π, π ) charge order for the extended Hubbard model at half
filling. The initial parameters (U,V ) = (−1, 1) at time t < 0 are
quenched to (U ∗,V ∗) = (−1, 0.9) at t = 0+. (b)–(e) Fourier spec-
tra of the equal-time measurements for (π, π ) CDW, (π, π ) SDW,
s-wave, d-wave superconducting correlations, respectively. The hor-
izontal axis represents V ∗ after the quench. Vertical dashed red lines
indicate phase boundaries near V = 0 and V = −0.6, which agree
well with the fidelity calculations. The calculations are performed on
a homogeneous state; gray dashed lines indicate regions where phase
separation would occur.

functions in the time domain. Figure 4(a) shows an example
equal-time measurement for charge correlation with (π, π )
ordering N (π, π, t ) [corresponding to the operator in Eq. (3)].
The original equilibrium system at time t < 0 is the ground
state of Hamiltonian H0 with interactions (U = −1,V = 1),
which support a (π, π ) CDW. At time t = 0+, the Hamilto-
nian is quenched to H1 with interactions (U = −1,V = 0.9).
N (π, π, t ) then oscillates in time at t > 0. For each quenched
calculation, we perform Fourier transformations for different
equal-time correlations for the operators in Eqs. (3)–(9), in
order to extract the characteristic oscillation frequencies asso-
ciated with quenched dynamics.

Figures 4(b)–4(e) show the resulting Fourier spectra of
quenched dynamics for CDW, SDW [for q = (π, π )], s-wave,
and dx2−y2 -wave superconductivity [for q = (0, 0)], respec-
tively. The horizontal axis represents the postquench value
of V . We follow the same path as depicted in the Fig. 3(a)

FIG. 5. The charge N (q, ω) and spin S(q, ω) dynamical structure
factors at q = (π, π ) for the extended Hubbard model at half filling.
The false-color intensities are plotted in a log scale. The strong elastic
peak in N (q, ω) for V � 0 is caused by doubly degenerate ground
states in a (π, π ) CDW phase. The calculations are performed on a
homogeneous state; gray dashed lines indicate regions where phase
separation would occur.

inset: V : −1 → 1 at a fixed U = −1, with a quench step
of �V = 0.1. The Fourier spectra exhibit distinct behaviors
depending on the quenched Hamiltonian. In Fig. 4(b), the
Fourier spectra of charge correlation N (π, π ) show a clear
gap forV � 0. The gap size rises with increasingV , changing
from ∼3.7 at V = 0.0 to ∼7.7 at V = 1. In Fig. 4(c), the
Fourier spectra of spin correlation S(π, π ) also show a similar
gap forV � 0. The spectral intensity of this gap is largely sup-
pressed between −0.5 � V � 0. Noticeably, new low-energy
modes emerge below V � −0.5. In general, the Fourier spec-
tra of quenched s-wave [Fig. 4(d)] and dx2−y2 -wave [Fig. 4(e)]
superconducting correlations resemble those of the charge
and spin correlations. We note again that the calculations are
performed on a homogeneous state; gray dashed lines in the
figure indicate regions where phase separation would occur.
Based on the quench behaviors, Figs. 4(b)–4(e) can be sepa-
rated into three regions (indicated by the vertical dashed red
lines): a phase-separated state for V � −0.5, s-wave super-
conductivity for −0.5 � V � 0, and (π, π ) CDW for V � 0.
The quench calculations agree well with the fidelity results,
demonstrating the applicability of using a different nonequi-
librium approach to probe equilibrium phase transitions.

To understand the spectral features of quenched measure-
ments, we compute the charge N (q, ω) and spin S(q, ω)
dynamical structure factors at the ordering vector q = (π, π ).
Here, |Gλ∗ 〉 in Eqs. (10) and (11) is the equilibrium ground
state of H1 (the Hamiltonian with the afterquench interac-
tions). As seen in Fig. 5(a), N (q, ω) shows a clear charge gap
for V � 0, and the gap behaves similarly as that in Fig. 4(b):
The gap starts as ∼3.7 atV = 0 and increases with increasing
V , and it reaches ∼7.7 at V = 1. For V � 0, the system
develops (π, π ) CDW order by spontaneously breaking the
discrete charge symmetry, so it lacks a low-energy excitation
(Goldstone mode). On the other hand, N (q, ω) exhibits a
strong elastic peak for V � 0. This elastic peak in the CDW
phase is due to doubly degenerate ground states: one with zero
momentum and the other with momentum (π, π ). As seen
in Fig. 5(a), N (q, ω) changes its behavior for V � 0, where
the elastic peak disappears and the charge gap increases with
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FIG. 6. Correlation functions for different order parameters computed by exact diagonalization (ED) for half-filled extended Hubbard
model in the strong-coupling regime: |U | � 10 and |V | � 10. (h) depicts the corresponding phase diagram with phase boundaries determined
by ED calculations of the fidelity metric, correlation function, and total energy. Gray dashed lines indicate regions where phase separation (PS)
would occur.

decreasing V . The result implies a phase transition near V =
0. Another phase boundary near V = −0.5 can be inferred
from S(q, ω) in Fig. 5(b), where a low-energy mode emerges
below V � −0.5. The above results show that the Fourier
spectra of equal-time correlations after quantum quench can
track the excitation energies in N (q, ω) and S(q, ω). However,
while dynamical correlations provide information on the un-
derlying broken-symmetry phase (if there is one), they cannot
inform directly how close the ground state is to a phase transi-
tion, which instead can potentially be inferred by experiments
with varying strengths of a quenched interaction to examine
whether the system resides in proximity to a phase boundary
or in a deeply ordered state.

B. Strong-coupling regime

After establishing the abilities of using quantum fidelity
and quench dynamics to probe the phase boundaries in the
weak-coupling limit, we now focus on the strong-coupling
regime: |U | � 10 and |V | � 10. Figure 6 shows equilibrium
correlation functions 〈Gλ|Ô†Ô|Gλ〉, which exhibit overall four
distinct regions: A positive V > 0 will favor a (π, π ) CDW
[Fig. 6(a)], and together with U < 0 it will further enhance
the CDW state. In contrast, a predominant positive U > 0
will stabilize a (π, π ) SDW [Fig. 6(c)], and the SDW phase
boundary along the V axis is enlarged with increasing |V |. In
the atomic limit, on a half-filled N-site square lattice, the en-
ergy of the CDW state isU × N/2 (since there are N/2 doubly
occupied sites), while that of the SDW phase isV × 2N (since
there are 2N distinct interaction bonds without double count-
ing). Therefore, the CDW to SDW transition boundary should
occur at U � 4V , which is consistent with our calculations
and previous studies [36,37,60].

Near V ∼ 0 and U < 0, the system exhibits strong s-wave
pairing correlations, as indicated by the dark red stripe. in
Fig. 6(b). When V < 0, the phase diagram has a substan-
tial region dominated by dx2−y2 -wave pairing [Fig. 6(d)].
However, we note that with a predominant negative V , the
system will tend to be phase separated (into hole-rich and
hole-deficient regions) [60], which again can be understood
qualitatively using an energy consideration in the atomic limit.
The actual phase boundary between a homogeneous ground
state and a phase-separated one can be quantitatively deter-
mined from the total energy calculations in different particle
sectors (see Appendix A). Based on the above results, we
depict the strong-coupling half-filled EHM phase diagram in
Fig. 6(h).

Following the strategy used in the weak-coupling system,
we first resort to fidelity calculations to help determine the
phases boundaries. For U < 0, the ED correlation functions
in Fig. 6 suggest that the phase diagram consists of three
regions, separated by phase boundaries around V = 0. The
evolutions of correlation strengths for different order param-
eters as functions of V (with U = 8) and of U (with V =
−0.2) are further displayed in Fig. 7. Figure 8(a) shows the
fidelity (blue line) and the number of degenerate ground states
(green line) along the path V : −1.4 → 1.4 at U = −6, as
depicted in the figure inset. The fidelity deviates from unity
between −0.6 � V � 0.4, and the number of ground-state
degeneracy also changes accordingly. Therefore, based on the
correlation function and fidelity results, the system begins
as PS at (U = −6,V � −0.6), then transits to the s-wave
phase at (U = −6,−0.6 � V � 0.4), and reaches the CDW
state at (U = −6,V � 0.4). Compared to theU = −1 case in
Fig. 3(a), a more attractive U will slightly enlarge the s-wave
phase boundary along the V axis.
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FIG. 7. (a) Evolution of correlation strengths for different order
parameters as a function of V forU = 8 at half filling. The gray area
nearV ∼ −4 indicates the phase separation regime (same as the gray
dashed regime in Fig. 6). (b) Same as (a) but for the evolution along
the U direction with V = −0.2, which is above the phase separation
boundary.

For U > 0, the s-wave pairing is largely suppressed, and
the phase diagram shows three regions consisting of CDW,
SDW, and PS. Figure 8(b) shows the fidelity and the number
of ground-state degeneracy along the path V : − 4.8 → 2.4 at
U = 8, as depicted in the figure inset. The fidelity basically
remains unity except at the critical values V = −4.3 and
2.2, where the fidelity drops to almost zero, signaling two
phase transition boundaries. Therefore, the system begins as
PS at (U = 8,V � −4.3), transits to the (π, π ) SDW phase
at (U = 8,−4.3 � V � 2.2), and reaches the CDW state at
(U = 8,V � 2.2). Overall, the phase boundaries suggested
by fidelity match the regions where correlation functions
change more abruptly.

We next discuss the quench dynamics. Figure 9(a) shows
the equal-time measurement for charge correlation at (π, π ).
The original system at time t < 0 is the ground state of Hamil-
tonian H0 with interactions (U = 8,V = 2.6), which supports
a (π, π ) CDW. At time t = 0+, the Hamiltonian is quenched
to H1 with interactions (U = 8,V = 2.5). N (π, π, t ) then
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FIG. 8. Quantum fidelity (blue line) and the number of ground-
state degeneracy (green line) for the extended Hubbard model at half
filling. The calculations are performed along different paths shown
by arrow lines on the inset strong-coupling phase diagram: (a) V :
−1.4 → 1.4 at fixed U = 6, with an interaction step �V = 0.2.
(b)V : −5 → 2.8 at fixedU = 8, with an interaction step �V = 0.1.
Dips in the fidelity indicate phase transition boundaries. The cal-
culations are performed on a homogeneous state; gray dashed lines
indicate regions where phase separation would occur.

FIG. 9. (a) Time evolution of the equal-time correlation func-
tion for (π, π ) charge ordering computed for the extended Hubbard
model at half filling. The initial parameters (U,V ) = (8, 2.6) at time
t < 0 are quenched to (U ∗,V ∗) = (8, 2.5) at t = 0+. (b)–(e) Fourier
spectra of the equal-time measurements for (π, π ) CDW, (π, π )
SDW, s-wave, d-wave superconducting correlations, respectively.
The horizontal axis represents V ∗ after the quench. Vertical dashed
red lines indicate phase boundaries nearV = −4.6 andV = 2, which
agree with the fidelity calculations. The calculations are performed
on a homogeneous state; gray dashed lines indicate regions where
phase separation would occur.

oscillates in time at t > 0. Figures 9(b)–9(e) show the result-
ing Fourier spectra of quenched dynamics for (π, π ) CDW,
(π, π ) SDW, s-wave, and dx2−y2 -wave superconductivity, re-
spectively. The horizontal axis represents the postquench
value of V . Here, we follow the same path as depicted in the
inset of Fig. 8(b), V : −4.8 → 2.4 at a fixed U = 8, with a
quench step of �V = 0.1. As shown in Fig. 9(b), the “charge
gap” behaves quite differently below V � −4.6 and above
V � 2.0. AboveV � 2, the gap is enhanced byV , showing an
increasingly more robust CDW phase. Between −4.6 � V �
2, the spectra for the S(π, π ) correlation in Fig. 9(c) exhibits
low-energy excitation (Goldstone mode) of the spontaneous
spin symmetry-breaking (π, π ) SDW state. We note again
that the calculations are performed on a homogeneous state;
gray dashed lines in the figure indicate regions where phase
separation would occur. Overall, the quench dynamics spectra
can track the charge and spin gaps in the dynamical structure
factors N (q, ω) and S(q, ω) shown in Fig. 10.
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FIG. 10. The charge N (q, ω) and spin S(q, ω) dynamical struc-
ture factors at q = (π, π ) for the extended Hubbard model at half
filling for strong coupling. The false-color intensities are plotted in
a log scale. The strong elastic peak in N (q, ω) for V � 0 is caused
by doubly degenerate ground states in a (π, π ) CDW phase. The
vertical lines indicate phase boundaries near V = 0 and V = −0.6.
The calculations are performed on a homogeneous state; gray dashed
lines indicate regions where phase separation would occur.

C. Doped systems

As shown above, the phase boundaries determined by
fidelity and quench dynamics agree well with the correla-
tion function calculations. In hole-doped systems, we thereby
use mainly the correlation function results with additional
fidelity calculations. We note that in doped systems, since
the momentum dependence and the competition with electron
itinerary become more important, it can become challenging
to determine the leading instability on a finite-size cluster.

Therefore, instead of specifying the exact phases, we will
focus on the trends of different order parameters evolving with
the interaction strength. In particular, we concentrate on the
heavily overdoped regime with 50% hole doping. In this case,
the system exhibits a strong p-wave superconductivity cor-
relation in the interaction parameter space (U,V ) = (8,−1)
relevant to the cuprate superconductors [41]. In general, the
boundaries of the phase transition (or crossover phenomenon
on a finite-size cluster) evolve smoothly from the half-filled
phase diagram in Fig. 6 to the 50% hole-doped system in
Fig. 11. The results for other hole fillings are shown in
Appendix B.

Figure 11 shows the correlation functions for different
order parameters computed at 50% hole doping in the strong-
coupling regime: |U | � 10 and |V | � 10. When V > 0, the
correlations are dominated by CDW for U > 0 and s-wave
superconductivity for U < 0. The dxy-pairing correlation is
also found to be enhanced when V > 0 and U > 0, and it
may be the leading instability for a small, positive V [36].
When V < 0, most of the phase diagram resides in the PS re-
gion, especially for U < 0. The PS boundary for each doping
is determined from the total energy calculations in different
particle sectors and is shown in Appendix A. Even if U is
positive but with U < |V | (where V is negative), the system
remains phase separated. Interestingly, whenU is positive and
dominates over |V |, both p-wave and d-wave superconducting
correlations can be strongly enhanced.

The evolution of the correlation strengths for different or-
der parameters as a function of V (at fixed U = 8) is shown
in Fig. 11(h). For the parameter set U = 8 with a nega-
tive V (∼ − 1) relevant to the cuprates, p-wave and d-wave

FIG. 11. Correlation functions for different order parameters computed by exact diagonalization (ED) for 50% hole-doped extended
Hubbard model in the strong-coupling regime: |U | � 10 and |V | � 10. (h) depicts the evolution of correlation strengths for different order
parameters as a function of V (at fixed U = 8). The path is also specified by the dashed arrow in (a). The gray shade indicates the phase
separation region.
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FIG. 12. False-color intensity plot of the energy difference �E for determining the phase separation boundary as discussed in
Appendix A. A sign change (from negative to positive) in �E would signal a transition to a phase-separated state.

correlations have comparable strengths. In general, a repul-
siveU will favor an intersite phase-changing superconducting
order parameter (such as p-wave or d-wave pairing), and an
attractive V can enhance superconducting correlations while
suppressing other competing states such as CDW [61]. This
enhancement of superconductivity by V is beyond the impact
of a next-nearest-neighbor hopping [27,61]. An attractive V
can further favor p-wave superconductivity due to enhanced
NN triplet states, especially near 50% hole doping [34]. In
mean-field calculations [39], the two phases could possibly
coexist. This is consistent with the dominance of the p-
wave instability in 1D systems [28,29,34], where the d-wave
competitor is geometrically forbidden. Therefore, it would
be interesting to investigate more extensively near this pa-
rameter regime both theoretically and experimentally, which
may hold the promise of realizing the more exotic p-wave
superconductivity.

IV. CONCLUSION

We have performed extensive exact diagonalization (ED)
calculations to study the extended Hubbard model (EHM)
for both attractive and repulsive U and V values, ranging
from weak- to strong-coupling regimes. We have utilized
the correlation functions and fidelity metrics to explore how
different superconducting phases and their boundaries evolve
with the interaction parameters and doping levels. We also
have shown that a more experimentally accessible nonequilib-
rium quench approach can help determine the phase boundary
of the equilibrium system. While our ED studies are limited
to finite-size clusters, the resulting phase boundaries agree
well with other numerical techniques such as functional renor-
malization group [38] in the weak-coupling limit. The ED
approach remains valid in the strong-coupling limit, and the
results should be reliable at a semiquantitative level. The
quenched dynamics in general cannot be easily and accurately
computed by other numerical methods, either. Therefore, our
exact treatment of the model in finite-size systems also pro-
vides systematic benchmark results for other computational
techniques [62,63] capable of addressing the thermodynamic
limit, and an experimental roadmap for exploring different
superconducting order parameters.

Our results indicate that the EHM is a potential plat-
form to realize the more exotic p-wave superconductivity in
the repulsive-U and (slightly) attractive-V parameter regime,
especially when the system is heavily overdoped by hole

carriers. This study is timely, since an attractiveV ∼ −1th has
recently been identified experimentally in doped 1D cuprate
chains [41]. The parameter regime (U,V ) = (8th,−1th) is
also where p-wave superconductivity shows strong instability
in our calculations. In the actual cuprate materials, the U
and V values can behave differently in response to external
stimuli, such as strain, pressure, and laser field, so it is likely
to induce transitions near a phase boundary to favor certain
instability via heterostructure, high-pressure, or ultrafast tech-
niques. Studying a possible p-wave state in EHM using other
computational approaches or experiments can be an intriguing
and important area for future research.
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APPENDIX A: PHASE SEPARATION REGION

Our exact diagonalization calculations are performed on a
square-lattice N = 16-site cluster, with a fixed particle sector
at a given filling. The cluster size is too small to observe
directly the inhomogeneous separation of hole-rich and hole-
deficient regions. Instead, the PS information for a given set of
interaction parameters (U,V ) can be obtained by computing
the total energies in different particle sectors. For example, at
the filling with Ne electrons on an N-site cluster, the energy
difference �E is computed:

�E = E (Ne) − Ne

2N
× [E (2N ) + E (0)]. (A1)

Here, E (Ne) is the energy of the homogeneous ground state
with electron occupation number Ne; E (0) and E (2N ) are
respectively the energies of the hole-rich and hole-deficient
states on an N-site cluster. Figure 12 shows the �E false-color
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FIG. 13. Correlation functions for different order parameters computed by exact diagonalization (ED) for a 12.5% hole-doped extended
Hubbard model in the strong-coupling regime: |U | � 10 and |V | � 10. (h) depicts the evolution of correlation strengths for different order
parameters as a function of V (at fixed U = 8). The path is also specified by the dashed arrow in (a). The gray shade indicates the phase
separation region.

intensity plots as functions of (U,V ) for different hole-doped
systems. A sign change (from negative to positive) in �E
would signal a transition to a phase-separated state, which
helps determine the phase boundary of the PS region.

APPENDIX B: CORRELATION FUNCTIONS
AT OTHER DOPING LEVELS

The correlation functions for different order parame-
ters computed in the strong-coupling regime (|U | � 10 and
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FIG. 14. Correlation functions for different order parameters computed by exact diagonalization (ED) for a 25% hole-doped extended
Hubbard model in the strong-coupling regime: |U | � 10 and |V | � 10. (h) depicts the evolution of correlation strengths for different order
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|V | � 10) for 12.5%, 25%, and 37.5% hole-doped systems
are shown in Figs. 13–15, respectively. As discussed above,
the PS region for each doping is determined from the

energy difference calculation in different particle sectors and
is indicated by the gray shade in Figs. 13(h), 14(h), and
15(h).
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