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ABSTRACT
Connecting genetic variation (genotype) to trait variation (phe-
notype) is a critical but often di�cult step in genetic research. A
genome-wide association study (GWAS) is a common approach
to connect underlying genetic variation to complex phenotypic
traits, allowing for phenotypic prediction. GWAS is important in
many disciplines, including identifying genetic risk factors for com-
mon, complex diseases, identifying genes underlying important
traits and predicting phenotypes from genotypes. GWAS is lim-
ited, though, in that the types of variations typically studied are
single nucleotide polymorphisms (SNPs) identi�ed relative to a
single reference genome. These limitations lead to bias and pre-
clude GWAS from studies across related species. The advent of
next-generation sequencing has brought an exponential growth
in DNA sequence data. This has led to the more comprehensive
pangenomics approach, where the entire sequence content and
variation of a population are succinctly represented independent
of a reference. In prior work, we developed a method for identify-
ing genomic regions that characterize complex variations within
pangenomic data and showed that these regions provide a more
general way to study genetic variation than existing approaches.
This work describes our initial results to develop new methods
for a new branch of genomic analysis called pangenome-wide as-
sociation studies (PWAS) that generalizes GWAS to pangenomic
datasets both within and across species. We make use of recently
developed algorithms for fast compressed De Bruijn graph construc-
tion and identifying frequented regions in these graphs that can be
used as machine-learning features to identify pangenomic regions,
overlaid with gene annotations, that relate to complex phenotypic
traits. Initial results on a pangenome composed of 100 yeast indicate
that frequented region features provide better machine-learning
regression models than SNPs for predicting phenotypic traits.
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1 INTRODUCTION
A pangenome represents the collective genomic information of mul-
tiple individuals or organisms from a related group or species [25].
While we can decode genomes, reading and interpreting those
genomes to predict physical characteristics is still di�cult. One
way to connect an organism’s DNA sequence to its physical charac-
teristics is by doing a genome-wide association study (GWAS). This
method uses a population of organisms from the same species and
tries to correlate any of the DNA di�erences among individuals with
di�erences in their physical characteristics. The full DNA sequence
is obtained for one individual (the reference) but other individu-
als only get small DNA sequence samples at intervals along the
chromosome for cost-e�ectiveness. One source of bias in a GWAS
analysis is that an organism’s DNA di�erences are all de�ned in
relation to the reference. This is akin to trying to de�ne all fruits by
how they compare to, for instance, seedless grapes. Comparing an
apple to the reference grape allows you to describe di�erences in
their stem, skin, and �esh. But because seeds are not in the reference
fruit, we cannot describe them at all and the fact that apples have
seeds is lost from the analysis. Furthermore, for fruits such as apples
that look similar to the reference, we are able to describe more simi-
larities and di�erences with the reference than more unusual fruits,
such as pineapples, where many of the di�erences are so di�erent
that they cannot be matched up to the reference and, therefore, are
lost. Likewise, in DNA analysis, highly evolved or even novel DNA
regions without a good match in the reference become lost to the
analysis. But, it is these very regions that are most likely to contain
genes or control regions that account for important di�erences in
physical characteristics, including those that allow the organism to
adapt to extreme conditions and a�ect susceptibility to disease and
chronic conditions, or even survivability.
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This work studies a recently-introduced reference-free method
for �nding genomic features [4], combined with machine-learning
integration, for the purposes of discovering phenotype associations
in a pangenomic data set. This type of analysis is termed Pangenome-
wide Association Study (PWAS). In this work, we compared the
results found to more traditional GWAS approaches based on SNPs.

In Section 2 we discuss related work and in Section 3 we provide
an overview of frequented regions and machine-learning methods.
In Section 4 we discuss our experiments and examine the results
in Section 5. Lastly, in Section 6 we discuss future work and make
closing remarks.

2 RELATEDWORK
There exist a variety of tools and techniques for performing genome-
wide association studies [2, 26]. Unfortunately, these typically only
take SNPs into consideration, disregarding structural variation.
Additionally, there has been limited exploration of the application
of machine-learning to GWAS [19, 24], and less exploration of the
application of machine-learning in the pangenomics space [4, 10,
12]. Though there has been work on pangenome-wide association
studies, it is limited in scalability and does not leverage the graphical
representation of pangenomic data [9, 13]. Lastly, tools designed
for the analysis of graphical pangenomes are currently limited
to the construction of pangenomic graphs [1, 7, 17] or moving
fundamental bioinformatic analyses into the graphical space, such
as readmapping and variant calling [8, 11]. In this work, we leverage
the FR-�nding algorithm described in [4]. Other tools exist for
�nding syntentic regions in pangenomes including [18] and could
also be used for PWAS studies.

3 METHODS
3.1 Frequented Regions
Frequented regions were introduced in [4] as a method to identify
“hotspot” regions in a compressed De Bruijn graph (cDBG) that are
co-visited by a set of supporting paths from individual sequences
in the pangenome. Here we provide a brief restatement of the
approach, as well as discuss several adaptations that were made for
the PWAS application. Full algorithmic details can be found in [4].
The input used is a cDBG graph G and set of paths P within G (the
cdbg package [1] was used to construct G). Nodes in G represent
speci�c k-mers (or � k-mers if the graph has been compressed).
An edge (u,�) is present provided the last k � 1 nucleotides of u
match the �rst k � 1 nucleotides of � . The objective is to identify
frequented regions (FRs) (C, S) which are composed of a set of nodes
C and set of subpaths from P that each approximately traverse the
nodes in C . There are two parameters used in the de�nition: (1)
the penetrance parameter � which is the minimum fraction of the
nodes in C that each subpath must contain, and (2) the maximum
insertion parameter �, which is the maximum number of nodes
outside of C that can be visited by a supporting subpath before
the path must return to C . Subpaths that meet these conditions
are called (� ,�)-supporting subpaths. Following [4], we de�ne a
frequented region (FR) as a tuple (C, S), whereC is a set of De Bruijn
nodes and S is a set of (� ,�)-supporting subpaths of paths from P .

For eachp 2 S , let strain(p) be the speci�c pangenomic strain that
p belongs to. Since we will be doing machine-learning experiments,

we assume that there is a set of strains T that is the training set of
strains; only the paths associated with these strains are used for
scoring potential FRs. We de�ne ST = {p 2 S : strain(p) 2 T } be
the set of supporting subpaths of the FR (C, S) that belong to the
training set. We introduce another measure of an FR that was not
present in our original de�nition: For an FR (C, S) and each node
n 2 C , we de�ne �(n) = | {p2ST :n2P } |

|ST | as the fraction of subpaths in
ST that include the node n. We then compute the geometric mean
over all the nodes in C to de�ne the coverage of the FR (C, S) as
�(C, S) =Œ

n2C �(n)
1
|C | (the geometric mean was chosen over the

arithmetic mean as it will give more penalty to nodes that have low
�(n) values). Finally, we de�ne the support of an FR (C, S) as

support(C, S) = �(C, S)|ST |. (1)

The set of sequences P is also checked for reverse-complement
support, with the assumption that some of the assembled contigs
may be in reverse-complement orientation relative to the majority
in some overlapping regions. If a given sequence p 2 P has more
support in the reverse-complement direction we assume that that
is the correct orientation for that sequence and only consider its
FR support in that orientation.

Our previous work focused on �nding FRs that have high support
and high average supporting subpath length. In this work, we seek
FRs that are useful as machine-learning features, so we introduce
a new approach to computing interesting FRs (iFRs) that is based
on which strains provide support to each FR. For each FR (C, S) we
de�ne

strains(C, S) = T \
ÿ
p2S

strain(p), (2)

as the training strains that are present among the supporting sub-
paths of the FR. The FindFRs software [4], uses a bottom-up ap-
proach to identify FRs; �rst, an approximate maximal weigh match-
ing of the existing FRs (initially individual cDBGnodes) is computed,
and then new FRs are created by merged matched edges. This is
repeated until no new FRs with positive support are found. For
each observed strain set, we keep track of the FR with that strain
set that has the greatest support. Since there are potentially a large
number of strain subsets, we also assume that a limitM is set, such
that if more than M strain subsets are seen, then those with the
least support are dropped. In this way, at mostM iFRs are reported.
In this work,M was set to 50, 000.

3.2 Machine-learning with FRs
In order to explore the utility of FRs for deciphering genotype
to phenotype relationships, we use FRs in a supervised machine-
learning setting in which FRs are used as features for predicting
yeast phenotypes. Here, each instance (i.e. example) represents an
individual yeast strain. Each example is annotated with a series of
phenotypes (see Table 1). Each phenotype is a continuous target
variable. Therefore, we modeled this task of predicting phenotypes
as a multi-output regression [15] problem.

As our machine-learning algorithm, we use the random for-
est (RF) [3] algorithm for the regression problem. The Random
Forest algorithm has been used with genomic data in several stud-
ies [3, 5, 27]. It known to work well with high-dimensional genomic
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datasets [22]. In this case, a separate single-output random forest
regressor is learned for each phenotype from the training data.

The outline of the regression model can be given as follows. The
input to the regression model consists ofm examples/strains. Each
of those examples have n features which are, in this case, iFRs or,
for comparison, single nucleotide polymorphisms (SNPs) for each
strain. Therefore, each example is represented as an n-dimensional
vector (n is the total number of FRs used) in which each individual
component of a vector corresponds to the number of times a certain
FR occurs with that genome. We use these vectors as input to our
regression model for training. Then the trained model is used for
making predictions on the phenotype values for a previously unseen
set of strain genomes by the model. Performance is evaluated by
comparing the predicted phenotype values with the actual values
(see Section 5 for results of this study).

4 EXPERIMENTS
4.1 Data
Sequencing and phenotypic data were obtained from [23] for 100
yeast strains and 49 phenotypes. Data for 49 phenotypic traits
across the 100 yeast strains was quantile normalized using the
preprocessCore R library [16].

In order to compare to standard GWAS methods, we called bial-
lelic SNPs to create a set that could be used both in the GWAS
analysis as well as machine-learning. Unlike in [23], we chose not
to include additional features in the GWAS, such as the presence
and absence of genes, in order to replicate a more typical GWAS ex-
periment, in which low coverage sequencing is su�cient to identify
SNPs in the genome but not to generate whole genome assemblies.

To generate SNPs, sequencing read pairs were �rst individu-
ally aligned to the reference yeast strain (Saccharomyces cerevisiae
S288C, baker’s yeast) using the BWA [14] alignment program with
default parameters. FreeBayes [7], a Bayesian genetic variant de-
tector designed to �nd SNPs was used to generate variant calls. All
alignments �les were called at the same time so that FreeBayes
could use information from all the strains to report SNPs. A total
of 489,150 SNPs were reported across all 99 samples compared to
the reference. Genotypes for the reference strain were coded as
homozygous for the reference allele, making a total of 100 yeast
strains. A subset of 50,000 random SNPs were used for all analyses.

GWAS, including phenotypic prediction, was performed using a
Baysian sparse linear mixed model implemented in GEMMA [28],
with 250,000 burn-in steps. Population structure is corrected for
by GEMMA using a centered relatedness matrix. Phenotypic pre-
diction used the estimated SNP breeding values. GWAS and phe-
notypic prediction was run using the same tests sets described for
the machine-learning experiments (see below), with the other 80
samples used for the training set.

4.2 Experimental Setup
In the experimental setup, the inputs to the regression model con-
sist of the set of features and labels. The FR data for each yeast
genome are used as features and each yeast strain considered as an
example in the dataset creating 100 examples. Since this is super-
vised learning, 49 phenotype values corresponding to the 100 yeast

strains are used as labels. For comparison, we also used SNPs as
features as well as traditional SNP-based GWAS and prediction.

We used the random forest regressor with default parameters
for our experiments. The implementation of the machine-learning
process was done using Scikit-learn [20] library for Python pro-
gramming language.

4.3 Validation
In order to evaluate the FRs on their ability to predict phenotypes,
we use the 5-fold cross-validation setup shown in Figure 1. The
dataset is composed of 100 strains/examples and those strain names
were initially randomized and divided into 5 folds. In each iteration,
three of the training folds (shown in blue) are �rst used to generate
80 models corresponding to the 80 sets of parameter values for
k-mers, � , and � (i.e. a grid search procedure). These models are
compared using the average RMSE taken from the 49 RMSE values
(de�ned below) by testing on the validation set (shown in orange)
to �nd the most optimum set of parameter values. Then, a separate
model is re-trained on both the training and validation folds using
this “best” set of parameters. This �nal model is then evaluated us-
ing RMSE by testing on the test set (shown in green). RMSE values
across the 5 iterations are averaged to obtain the overall perfor-
mance metric. This form of “nested” cross-validation procedure [6]
produces the most unbiased estimation of the model performance
because the test sets are not touched during the internal param-
eter optimization process. Ideally, each fold used for parameter
optimization needs to be iteratively picked as the validation set.
However, this was omitted due to the increased runtimes. Similarly,

Figure 1: Overview of the 5-fold cross-validation procedure.

using features generated from SNPs in place of FRs, experiments
were repeated, for the purpose of comparing the power of FRs vs
SNPs. But note that SNPs did not involve parameter tuning, and
therefore, the internal grid search was omitted for SNPs.

4.4 Performance Measures
The performance of the regression model was evaluated using
RMSE (Root Mean Square Error). RMSE was used to select the best
set of parameters as well as to evaluate the performance of the �nal
models.

RMSE =

vut
1
N

N’
i=1

(O � P)2 (3)
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In the above equation, O represents the actual values for the phe-
notype and P represents the predicted value from the regressor.

Since there are 49 phenotype values predicted, that gave 49
corresponding RMSE values. In order to compare the sets of RMSE
values for validation, average RMSE was used as the performance
measure. For that, the average value of the 49 RMSE values per
dataset was calculated and compared to all the other datasets.

5 EXPERIMENTAL RESULTS
5.1 Phenotypic Prediction
As shown in Figure 3, the “best” set of (k, alpha, kappa) parameters
found during the �ve iterations of the cross-validation process are
as follows: (100, 0.8, 3), (500, 0.9, 3), (100, 0.7, 0), (25, 0.7, 3), (1000,
0.6, 1).

As shown in Figure 4 and Table 1, FRs have a stronger classi-
�cation power over SNPs for predicting phenotypes. FRs provide
better RMSEs for 42/49 phenotypes. There is a signi�cant di�erence
(p-value: 3.703E-10 from a two-tailed paired t-test) between the
average RMSE with FRs (5.38) versus SNPs (5.74). The improvement
in predictive accuracy due to FRs is 6%.

FRs (average RMSE=5.38) also had a slightly better classi�cation
power, overall, compared to GWAS SNPs (average RMSE=5.41)
(Table 1), though for some phenotypes FRs clearly was the better
method (an example is shown in Figure 2. Although the di�erence
was not signi�cant (p-value: 0.67), it is encouraging that initial
attempts using FRs matched that of GWAS-based predictions.

Figure 2: Dotplot comparing actual and predicted values for
copper sulfate (0.075 mM) across all 100 samples and the
three analysis methods. Each dot represents a single yeast
strain and colors indicate the analysis method.

5.2 FRs & Annotations
Additionally, we investigated subpaths and FRs that were associated
with yeast genes. To do this we used a tool called “intersect” which is
a part of the BEDTOOLS [21] package. The intersect command takes

Table 1: Phenotype prediction performance comparison be-
tween Machine-learning using FRs (FRs) and SNPs (SNPs)
and GWAS SNPs (SNPsG) on the task of predicting pheno-
types. Lower RMSEs are better.

Phenotype FRs SNPs SNPsG
Bio�lm 5.82 6.06 5.91
0.07mM_copper_sulfate 4.73 5.82 5.79
0.1mM_copper_sulfate 4.74 5.84 5.74
0.25mM_copper_sulfate 5.37 6.08 5.86
amphotericin_B_15mM 5.20 5.75 5.18
cycloheximide_0.25mM 5.55 5.97 5.01
cycloheximide_0.5mM 5.62 6.20 5.39
ketoconazole_10mM 5.17 5.52 4.93
ketoconazole_20mM 5.73 6.10 5.69
natamycin_3mM 5.51 5.96 5.88
�occulation 6.01 5.84 5.93
50mM_lithium_chloride 4.92 5.43 5.41
pH8.0 5.59 6.41 5.84
1M_sodium_chloride 5.68 5.87 5.60
%4-spored,_KAc_plates_25C 5.44 5.49 5.11
%4-spored,_KAc_plates_30C 5.39 5.58 5.41
%4-spored,_diet_KAc_plates_25C 5.63 5.99 5.59
%4-spored,_diet_KAc_plates_30C 5.94 6.24 5.87
%4-spored,_liquid_KAc25C 5.45 5.62 5.30
%4-spored,_liquid_KAc30C 5.36 5.91 5.34
%sporulation,_KAc_plates_25C 5.17 5.49 4.87
%sporulation,_KAc_plates_30C 4.83 5.53 4.75
%sporulation,_diet_KAc_plates_25C 4.88 5.48 4.65
%sporulation,_diet_KAc_plates_30C 5.65 5.74 5.02
%sporulation,_liquid_KAc25C 5.41 5.58 5.12
%sporulation,_liquid_KAc30C 5.40 5.94 5.16
Sul�te 3mM 5.79 6.26 5.93
Sul�te 6mM 5.22 5.73 4.49
Sul�te 9mM 5.59 5.93 5.75
Temperature sd_15C 5.42 6.13 5.50
Temperature sd_37C 5.57 5.17 5.21
Temperature sd_39C 5.18 5.71 5.37
Temperature seg_15C 5.85 6.23 5.81
Temperature seg_37C 6.05 6.00 5.71
Temperature seg_39C 5.50 5.87 5.68
Temperature ypd_15C 5.58 5.71 5.32
Temperature ypd_37C 4.96 5.29 5.03
Temperature ypd_39C 5.53 5.42 5.53
Temperature ypeg_15C 5.93 6.36 6.00
Temperature ypeg_37C 5.50 5.78 5.51
Temperature ypeg_39C 5.04 5.69 5.24
biotin 5.11 5.82 5.10
inositol 4.87 4.87 5.46
niacin 3.47 3.66 4.62
p-aminobenzoic_acid,_-folic_acid 5.58 5.59 5.51
pantothenate 5.44 6.00 5.45
pyridoxine 4.80 5.20 5.11
ribo�avin 5.72 5.65 5.66
thiamine 5.96 5.64 5.66
Mean 5.38 5.74 5.41

a BED (Browser Extensible Data) �le generated by the FindFRs

program [4] and intersects it with the combined annotation �le in
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GFF (General Feature Format) format for the 100 yeast strains used
in this study and reports iFRs that overlaps with genic coordinates
in the yeast gene annotations. The BED �le generated running the
FR algorithm with the following parameters, k-mer= 25; alpha=0.7;
kappa=3; minimum support=1; maximum iFRs to report=50,000 was
intersected with the GFF �le. Using a minimum overlap of 50 base
pairs there were a total of 644,236 sub-paths distributed in 3,115
FRs that overlapped the yeast genes. Out of the 3,115 FRs, 3,078
overlapped with multiple genes, whereas 37 FRs overlapped with
exactly one gene. We also ran this analysis on a BED �le generated
running the FR algorithm for the largest k-mer, 1000 base pairs. The
rest of the parameters included the following, alpha=0.7; kappa=3;
minimum support=1; maximum iFRs to report=50,000 and found
out that out of the 3,040,550 subpaths from 50,000 iFRs reported in
the BED �le, 2,592,521 (85%) subpaths overlapped with a gene with
at least a minimum threshold of 50%.

If gene annotation is available for a set of genomes of interest,
then using this approach we can e�ectively use FRs to understand
the population of genomes not only at the genome level but also at
the gene level and start understanding and associating functions to
FRs and their related phenotypes.

6 CONCLUSIONS
Using a pangenomic approach allows for the unbiased incorpora-
tion of all the genetic variation present in the sequenced members
of a species. Applying this rich source of variation to phenotypic
prediction should improve our ability to �nd genetic variation
driving phenotypic di�erences. Indeed, using FRs as features for
machine-learning prediction improved prediction accuracy over
using SNPs, which have an inherent bias toward variation seen in
the reference, as features. This is especially encouraging due to the
use of simple FR counts as features and the default values for the
regressor parameters. We expect that as we improve our strategies
for applying machine-learning algorithms using FR features, pre-
diction rates should improve and outpace GWAS-based prediction
methods. In addition, applying FR-based machine-learning methods
to larger training sets should also improve prediction power and
take advantage of the strengths of machine-learning.
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Figure 3: Distribution of the average RMSE per each parameter combination. The alpha and kappa parameters are depicted in
x- and y-axis, respectively. Each sub matrix depicts the all parameter combinations of alpha and kappa for a speci�c k value
and the speci�c iteration, indicated by i. Each cell indicates the ranking (1-80) received by a parameter combination within
the speci�c iteration. Green-white-red conditional formatting is used within each iteration and the ranking “1” represents the
best combination for each iteration.

Figure 4: Improvement in performance for FRs over SNPs on the task of predicting phenotypes. Impro�ement = 100 ·
RMSESNP�RMSEFR

RMSESNP
.
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