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ABSTRACT

We show that Khovanov link homology s trivial 1o a range of gradings and utl-
liza relations botween Khovanov and chromatic graph homology to dotermine extreme
Khovanovy groups and corresponding coefliclents of the Jones polynomial. The extent
to which chromatic homology and the chromatic polynomial can be used to compute
integral Khovanoy homology of a link depends on the maximal glrih of ils all-positive
graphs. In this paper, we define the girth of a link, discuss relations to other knot invari-
ants, and describe possible values for girth, Analyzing girth leads to a description of
possible all-A state graphs of saoy given link; eg., If a llnk has a diagram such that the
girth of the corresponding all-A graph is eqgual to £ = 2, then the girth of the link is
equal to §

Keywerds: Categorification; chromatic graph homelogy; Jones polvmomial; Khovanoy
homology.

Mathematics Subject Classification 2020: 5TK14, 67K18, 0531

1. Introduction

Khovanov homology [14] is a bigraded homology theory which is an invariant of
knots and links, categorifying the Jones polynomial. In general, the structure of
Khovanov homology and the types of torsion which oceur may vary widely [2,20,[33]
and very little is known even about extremal gradings in Khovanov homology
(I 0T 23, Z6EH2E]. For certain links, there is a partial isomorphism between the
extreme gradings of Khovanov homology and chromatic graph homology, 8 categori-
fication of the chromatic polynomial for graphs [1 26]. The isomorphism between

*Correspondlng author.
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these two theories deseribes a part of Khovanov homology that is supported on two
diagonals and has only £o torsion, similar to the Khovanov homology of an alter-
nating link. Moreover, this correspondence allows us to describe ranks of groups in
Khovanov homology in terms of combinatorial information from a diagram, or a
graph associated to the diagram.

Khovanov homology of alternating knots is determined by the Jones polynomial
and the signature of a knot, and similarly, chromatic graph homology over the alge-
bra .4; = Elz]/(z*) is determined by the chromatic polynomial [16]. This approach
enables us to determine some extremal Khovanov homology groups based on com-
binatorial results about the chromatic polynomial of a graph which determines its
chromatic homology. The following theorem illustrates the type of the results we
obtain,

Theorem 3.3. Let D be a diagram of ¢ link L sweh that the all-positive graph of
I has girth £ and satisfies the conditions of Theorem B3R, For 0 < i < £, the ranks
of Khovanow homology groups of L are given by

; ' -2+ k .
l.kKhl—ﬂ f”].n"l+'21|:L} L Z (Pl . + ) — Hhig1 i {._I}l+]1§h,
ng;?i]:}.rgi

where py 13 the cyclomatic number of the graph, nyyy is the number of (i +1)-cycles
and 8" mensures bipartitencss.

The applicability of our results depends on a quantity defined in Sec. [ that we
call the girth of a link. We find upper bounds for the value of this invariant based
on Khovanov homology and the Jones polynomial. We prove results on the girth of
connected sums and of alternating knots, describing another upper bound in terms
of crossing number and sipnature.

Deoflnition 8 ([29)). The girth of a link L is gr(l) = max{{{G,(D))|Dis
a diagram of L} where (5, ([7) is the graph obtained from the all-positive Kanffman
state of diagram I) and £{G (1)) is the girth of graph G (D).

Analyzing girth of a link leads to a somewhat surprising characterizgation of the
types of graphs that can be obtained from a homogeneous resolution of disgrams
of a given knot (all-positive or all-A state graph).

Theorem 5.5. Let L be e nontriveal link. If D) 13 o diagram of L such that the
girth of its all-A graph ({GL(D)) < gr(L), then {{GL (D)) =1 or (G4 (D)) =2.

As a consequence, we get that if a link has a diagram such that the girth of the
corresponding graph is equal to some £ > 2, than the girth of the link is equal to
¢, see Corollary 56 In other words, this is saying that if a link L has girth greater
than two, all of the corresponding all-A graphs have girth equal to gr(L), one or

twao.
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Fig. 1. Positive and negative resolutions at a crossing,

Of independent interest is Theorem [0 proving that Khovanov homology is
trivial in certain gradings beyond the first § homological pradings, allowing us to
prove a general result about the Jones polynomial in Sec, [

2. Background
2.1. Jones polynomial

Let I be a diagram of link L. Fach crossing of I} can he resolved with a positive
or negative resolution as shown in Fig [Il The positive and negative resolutions are
sometimes referred to as the A and B resolutions, respectively (see e.g.. [6]).

The resolution of all crossings in a diagram ) produces a collection of disjoint
circles known as a Wanffman state. From any Kauffman state s, we may construct
a graph whose vertices correspond to the circles of s, and whose edges connect
circles whose arcs were obtained hy smoothing a single crossing. The Kauffman
state s, (I)) is ohtained by applying the positive resclution to every crossing in
D, and we denote the graph obtained from this state by G (I} (known as the
all-positive or all-A state graph of I[), as shown in Fig. [ Similarly, we define a
state s () with all negative resclutions along with its graph G_ (D).

We give a definition of the Jones polynomial using Kanffman states as in [20].

Definition 1. Let L be a link and I} a diagram of L with ¢, positive crossings
and ¢ negative crossings. The nnnormalized Jones polynomial of L is given by

e . N

Jol@) =g 30 (1 Y gata

{5:n_(s)=i}

Qi
Y O OO

Fig. 2. The Kauffman state sy (D} and the graph &5 (D).
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where = iz a Kanffman state of I} with n_(s) negative smoothings and |s| connected
COMPONENts.
The normalized version of the Jones polynomial is

Julg) = Jelg) /(g +q7 1),
1

! represents evaluation on the unknot, j{j{q} =qg+q .

where g + g~
Next, we introduce graph-theoretic notation.

Definition 2. The cyclomatic number py (G) of a connected graph & with v ver-
tices and F edges is equal to pi(G) = E — v+ 1. For planar graphs such as &4 ()
and G_ (D), py is equal to the number of bounded faces of the graph.

Definition 3 (8, A7]). Let D be a knot diagram with corresponding all-positive
graph G = G (D). The simplification G’ of (7 is the graph obtained by deleting
any loops in (7 and replacing each set of multiple edges with a single edge.

Define ¢t to he the number of edges in " which correspond to multiple edges
in (7.

We consider the normalived version of the Jones polynomial and denote the
coeflicients as follows:

Jula) = Boa® + g+ Bag® + BadTE -+ BT e (1)

where O, the minimal degree of Jp(g), depends on the link L.
For a reduced alternating knot, Dasbach and Lin [6] showed that the frst three

coeflicients of the normalized Jones polynomial may be stated in terms of the all-
positive graph G4 (D). This result s restated in Theorem 1]

Theorem 2.1 (J6]). Let K be a knot with reduced alternating diagram D). Let ;m
and t; be the cyclomatic number and the number of triangles in G, (D), and let
pi be defined as above. Then the first three coefficients of Jy{g) (up to an overall
change in sign) are Gy = 1,5 = —p; and 32 = {p';l} +u—1.

The lowest-degree terms of the Jones polynomial are olien referred to as the
“tail”, while the highest-degree terms are referred to as the “head”, Note that if
the all-positive graph obtained from [} is replaced by the all-negative graph in
Theorem ] a similar result applies to the three extremal coeflicients in the head
of the Jones polynomial.

2.2, Chromatic polynomial

We now define the chromatic polynomial of a graph. Let & be a Anite, undirected
graph with vertex set V(&) and edge set E{G). We will often denote the cardinalities

2250083-4



Extremal Khovanov homology and the girth of a knot

aof these sets by v = |[V(G)| and E = |E{&)|. If & has an edge between vertices
x,y £ V(G), we write the corresponding element in E{() as {z,y}.

Definition 4 ([9]). A mapping f: V(@) — {1,.... A} is called a A-coloring of G
if for any pair of vertices @,y € V(@) such that {x, 4}  E(G), f(x) # fly). The
chromatic polynomial of the graph &, denoted Pe(A), is equal to the number of

distinet A-colorings of .

For any graph 7, the degree of Pe(A) is equal to . We will represent the terms
of the polynomial as follows:
Pold) = eh” 4eociN Y Fepadl T 4 oo gp A"V oo g (2)

The first few coefficients of Pr;(A) can be described in terms of cycles and sub-
graphs found in .

Definition 5. The girth of a graph G, denoted £{7), is the number of edges in the
shortest cycle in G

Definition 6. Let H be a subgraph of graph &. We say H is an induced subgraph
if for every {x, gy} € E(G) with =,y € V(H), the edge {x,y) isin E{H).

We adopt the convention that the girth of a tree is gero, but it is worth noting
that there are different conventions considering girth of a tree to be infinite [4, 5]

Theorem 2.2 ([19]). If G s a graph with girth £ > 2 and ny cycles of length £,
then the first £ coefficiends of the chromatic polynomial Po(A) are

(7). 0<i<e-1,

kW“&fJﬂ&izhL

Remark 1. The statement of this result in [I%, Theorem 2| is not explicitly
restricted to graphs with £ > 2. In the case ¢ = £ — 1, the proof contains an
assumption that the number of cyele-containing subgraphs with v — 1 connected

Cy—i =

components and t edges 1= zero for ¢+ > 2; this is not true for graphs with edge
multiplicities greater or equal to 3.

Theorem 2.3 (B, 00]). Let & be a graph with v vertices, E edges, t) triangles,
to induced d-cycles and t3 complete graphs of order 4. The first four coefficients
of the ehromatic polynomial Po(A) are given by the following formulas: e, = 1,
o1 =—F, ty_a=(3) —t1 ond

E
ﬂu—ﬁ — _(3) + {.EI . 2}:-] +t'2 - 21-3.

The 5th and 6th cosfficients are given by the following formulas, where §; =
the number of induced subgraphs of G isomorphic to graphs T, as shown in Figs. [3

2250083-5



Ft. Sazdancwid & 1), Seofield

A LT G
SIS
Ll
LS

Fig. 3. Graphs Ty through Ty involved in the computation of the 5th and 6th coefficients of the
chromatic polynomial 3.

and H.

E E—2 t :
cu_¢=(4) —( ) )tl+(2‘) _(E —3)s — (2F — O)t3

—tq + 85 + 24g + 3y — Gig,

e () (o) (5

— (tg — 2t3)ty — (E? — 10E + 30)t3 +ts — (E — 3)ts — 2(E — 5)tg
—3E — G}ty + 6(E — B)tg +tg — tag — 2tyg — 2by0 — t33 + 10 — 15
—3t1g — Ay — dtys + 2810 — diap — fag + dtas + a3

+digy + Slas + dbog + Gloy + Blgs + 16109 + 12855 — 2dda;.
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Tay Tag Ty Ty Tas

T Tar Tas Tag Tan Tn

Fig. 4. Graphs Thy through Tay imvolved in the computation of the 5th and 6th coeflicients of
tha chromatic polynomial [3].

2.3. Khovanov and chromatic homology and their relations

The Jones polynomial has been categorified as the Euler characteristic of a bizgraded
homology theory known as Khovanov homology. We denote the Khovanov homaol-
ogy of a link by Kh{L). The chromatic polynomial has a similar categorification
known as chromatic graph homology. An overview of these homologies and their
construction can be found in T8, Z9). In this paper, we will use only the version of
chromatic homology defined over 4s = Zlz]/(x”) and will refer to it as H.4,(G).
Since H a4, contains only £y torsion [16]. we introduce the following notation.

Definition 7. If H is a subgroup of either Khovanov or chromatic homology, torsH
denotes the order 2 torsion subgroup of H. We use rk torsH to indicate the number
of coples of Za.

There is a partial correspondence between Khovanov homelogy of a link and
the chromatic homology H 4, of an associated graph.

Theorem 2.4 ([25]). Let D be an oriented diagram of link L with c_ negative
crossings and cy positive crossings. Suppose Go(D)) has v vertices and positive
gthé. letp=i—c_andg=v—2j+cy —2c_. For 0 <i < £ and j £ &, there
15 an somorphism

HY (G (D)) = Kh"9(L).

o

Additionally, for all §j £ Z, there is an dsomorphism of torsion: I.urzHi‘i{G_l_(Dj]l
torgKh = (L).

Chromatic homology H 4, () is always homologically thin (all nontrivial homol-
ogy lies on two diagonals). If Kh(L) is homologically thin, then Khil ) also contains
only Zs torsion [31].

Theorem 2.5 ([16]). The chromatic homology H.a,(G) with coefficients in & 1s
entirely determined by the chromatic polynomiel P ().

2250083-7
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Note that Fr;(A) and Ha, (@) are both trivial if ¢ contains a loop, and bath
ignore the presence of multiple edges in . If (7 is a loopless graph ({(&) = 1)
then hoth 7 and its simplification (&' have the same chromatic invariants: Fr(d) =
Pr(A) and Hy, (G) = H4,(G'). If £(G) > 2, then we also have G = .

Theorem ] allows 1us to compute explicit formulae for extremal gradings of
Khovanov homalogy, subject to combinatorial conditions on the Kauffman state of
a link diagram. In [T 23 Z6], the following gradings of Khovanov homology are
explicitly computed for diagrams when the isomorphism theorem holds,

Proposition 2.6 ([23L 26]). Let D be a diagram of L with ¢y posttive crossings,
o_ negative crossings and |s | circles in the all-positive Kauffman state of D, Let
N =—|ay| +ey — 20 and let pr.ty denote the eyelomatic number and number of
triangles in G (D), respectively,
If the girth of G (D) is at least 2, then extreme Khovanow hormoalogy groups are
e by
&, GLIN bipartite,
f(_h_c_ ¥ tL] = Eq Kh—c_ JN+2 [L} = +|: :I P
0, otherwise,
7P G (D) bipartite,
KI.]—C...N+2[LJ — +|: :I e
ZP—l o Fo,  otherwise.
If in addition, the girth of G (I}) is at least 3, then we have an additional grading
in Khovanow homology:
Khﬂ— B ,N+¢{L} | E{?J & Egl 1 G+{D} b:lpaﬂﬂ‘e'u
A i EEI_I, otherwese.

The following result is a restaternent of [29, Theorem 5.4], deseribing the 4th
and 5th homoelogical gradings of Kh{L) in terms of the associated graph.

Theorem 2.7 ([29]). Let D be a diagram of L as in Proposition 20 Using con-
ventions from Theorem under the assumption that G (1)) has girth at least 4
we have the following gradings in Khovanow homology:

rkKh* = M *6(L) = rktorsKh' = +5(L)

mt (ﬁ : 1) — tg, G (D) bipartite,

+1
m+ (Pl q ) —ty— 1, otherwise.

3. Khovanov Homology Computations

In this section, we use ideas from chromatic graph homology to extend results from
Pratyveli's Theorem to show that Khovanov homolopy is trivial in a certain

2250083-8
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range of gradings that are not determined by chromatic homology, see Theorem B,
Then we improve our results stated in Theorem B3 to obtain explicit formmlas for
Khovanov homology in several additional extremal gradings using the formulas
found in Theorem B3 This approach can be extended to further groups on the
diagonal using the method of [3] but it appears to be computationally challenging.

Theorem 3.1. Let I be a diagram of L as in Proposition [L0. Suppose also thal
G D) has girth at least 5 with cyclomatic number py and subgraphs T} denoted as
in Theorem (I3l Let the cogfficients ay_y and ay_5 be as in Theorem B3 Then we
have the following relotions in the Khovanov homology of L:

(%) +os D ipartie
rk}('hd.—r.'.. _.J"+H{LJ L Tktorgmlﬁ—;_'_ AN -|-1LI{‘L'} o

({;) + aty_q + 1, otheriise,

If in addition, the girth of G (D) is at least 6, then we also have the following
T_]{thl—c_ .N+]U{‘L} _ rkmr:a]{hﬁ—ﬂ_-.h'-l-l'.i[‘L}
+1 ) :
p1+ (m i ) — @y_5, G4 (D) bapartite,

n + 1
P+ (; ';_ ) — ay—g — 1, otheruise.

Theorem [.1]is an immediate conzequence of Theorem 3 and the isomorphism
theorem for diagrams whose all-positive graphs have girth at least 5 or 6.

Theorem 3.2, Let 7 be a simple graph with cyclomatic number py and subgraphs
T, denoted as in Theorem [Z3 Then we have the following groups in the chromatic
homology of 2

(p 1) 4 B g G bipartite,
KHS 40 = Bom—E = 2
rkH y, (G) —Ik‘t-ﬂ.l'ﬂHA2 (G)=

(1;1) —t1 + 1+ ay_q, otherimse,

tkH 5 "3(G) = thtborsH " 4(@)

1
™+ (p] ;r ) — i3 — ty_s, G bipartite,

1
Py + (Pl;‘ ) 3 il{f-’l —1)—ta+2t3 — 1 —@y_5, otherwise,

2250083-9
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The coefficients a,_y and a,_5 are given by

wi= (D) -2(3) +(5) ) (*37) +ersto- 9t s
s (5) =803 )+(5) ) (57) +oe('2)

+ep—i(v —4) + cvs.

Proof. Let the chromatic polynomial of & have the form given in Eq. [@). We
change variables to A = g+ 1 to match the graded Euler characteristic of H 4, ().
The coefficient of "~ in this polynomial will be denoted a;,

Pol@)=(g+1)" +evile+ 1"+ +eala+ 1) +earfa+1)
=q¢" +ay_1¢""" +-+ + aaq® + o190+ an.

We proceed as in the proof of [29, Theorem 5.3], using the formulas for the s
in Theorem Z3] and the equivalence of Pzig) with chromatic homoelogy. Note that
iy = t3 = 0 if G iz bipartite. O

The following theorem completely describes the part of Khovanov homology
which is ohtained from the isomorphism in Theorem 23]

Theorem 3.3. Let D be a diagram of e link L with o, positive crossings, o
negative crossings and |5, | circles in the all-positive Kauffman state, and let N =
—|sy| + oy — 2. Suppose that G (I)) satisfies the conditions of Theorem [IH (in
particular, the girth £ of G4 (D)) is greater than 2). For 0 < i < £, we have the
following ranks of the Khovanov homaology of L:

TkKhi—ﬂ_ ,N+2I{L} = Z (Pl _f o k‘) S 3 {_ 1 }'H—-lﬁb_.‘ |:3}
20,
O k=1—2r<1

where py s the cyelomatic number of the graph, ne )y is the number of (i+1)-eyeles,
and 8% = 1 if G (1)) is bipartite and 0 otherurise,

Based on Theorem A and [I6], formula {[&) also gives the num-
ber of Fa-torsion groups on the next pgrading of this disagonal: rktorg
Khit1-e-—laplter —2e 426+ 1y If we consider the all-negative state graph
(1), an analogous statement holds for the highest homological gradings in
Kh({L}.

Corollary 3.4, Let D be a reduced diagram of L that satisfies the conditions of
Theorem B3] If in addition, G.(I})} is & non-bipartite graph, then the sequence of

2250083-10
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ranks
{80, .., 8r_a} = {rkHE G (D)) }ocice—z = {rkKh' ™" (L) Jocicr 2
(4)

ts given by the first £ — 1 coefficienis of the generating function m

For graphs of girth £, Theorem 3 provides a succinct description of the first
{ coefficients of the chromatic polynomial. We first translate this statement into a
description of the ranks of chromatic homology in the first £ homological gradings.
Az a corollary, we ohtain the entire part of Khovanov homology that is determined
by the all-positive or all-negative state graph as in Theorem 33

Theorem 3.5. Let & be a simple graph with girth § > 2, cyclomatic number py
and 1y denoting the number of t-cycles in G, Then, for O < ¢ < £, we have the
following ranks of the chromatic homology of G:

-1 m—2+k i
I‘RH:‘L: {G’} — 1; ( 1 s ) g (—1) +l{5b. (5]
O<k—1—2r<i

where 8° = 1 if G is bipartite and 0 otherwise,

Proof. For 1 = 1,2, 3. this statement follows from [28, [29]. We show by induction
that it holds for 1 = 3.

A= above, let ay_; denote the coellicient of Fg(g) derived from the quantum
grading j = v—1 [see Table[D)). For 0 < ¢ < £ — 1, we use Theorem 23 to compute:

T v—1 v— i i w—k

“Zor - ()

and for ¢ = £ — 1, a similar computation shows that a,_g_yy = (=1)*!
({p1—2+(£—1}] - ﬂ.g}. For i < £ — 1, we have nyyq = 0, and thus we can say

i—1
) —a |
fly i = {_ l}# ((Pl ; + 1) o 1":4_1)
forD<di<é—1.

Suppose that 3 < ¢ < £ and that Eq. (8 holds for all homological gradings less
than i. We show that Eq. (@) also holds for rkH Y ™"(G). Since chromatic homology
ig thin, each coefficient is the difference of the ranks of the two homology groups in
the grading § = » — i,

ay—i = (—1) " tkH 1 THG) + (- 1)k H I H(G). (6)

2250083-11



Ft. Sazdancwid & 1), Seofield

Table 1. Schematic representation of chromatic homol-
ogy H4,(G (D)), The symbol B indicates isomorphism
with Khovanov homology and Ol indicates possible nontriv-
lal homology outslde the reglon determined by Khovanov
homaology, The coofficient a,_; of the chromatic polyno-
mial obtained from each j-grading s displayed on the right.

if 0 1 e | E—1 [
v [ ] iy
w—1 | B a1
::—.é'+1 [ ] [ ] Hu—e+ll
T —1 L] |
|

By the knight move isomorphism of [5], rkH'"* (@) = rkH' > """ 2(G).
We make this substitution into Fq. (@), along with the value of a,_, derived above:

(1P ((PI _.EH) —H~1+1) = (=1 AkH TG + (1) kNG,

L 1

(:i’-'l —2+ !-) — ness = —rkH2V 6D (@) | arte (@),

T
i A e o n — 244
kHY (G = kH (@) + (“ : )—nﬂl.

By the induction assumption

R e — 24k .
ke = b (p‘ + ) IR (A
k
r=0,
(<€k={i—3)—2r<i—0
We may drop the term n;_) = U since we are assuming i <0 £. Finally, we collect all
binomial coeflicients into the summation and pote that ¢ — 1 has the same parity
asi+ 1,

5 —2+k 3
kHYH(C) = X (p’ k+ ) + (—1)i-1gt
r=0,
ugn={1—§]“—:arggi—2
— 2+
+: (ﬁ ; ) — it
iy ;
= Z (PL j,-+ ) —n:+:+{—1]‘+15h- 5
=i,
O k=t—r=<1

2250083-12
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Fig. 6. Diagram of 11362 with all-positive state graph & (0.

Example 1. Let K be the knot 112362 (Dowker—Thistlethwaite notation) with
diagram [) depicted in Fig. B The all-positive state graph G (1)) has girth £ =6
and cyvelomatic mumber py = 2. The Khovanov homology Khi ') is shown in Table
and the chromatic homology A4, (G (D)) in Table[3

The graph (D) is bipartite with ¢ = 11 and ¥ = —32. The groups shown
in hold in Table @ are those which correspond to chromatic homology groups in
H (G (D). Theorem B3 deseribes the ranks of these Khovanov homology groups
which are located on the lower diagonal. For 1 = 1 through i =¢ - 2 =4

rkKht—e- V42 (1) = Z (2 = i-l— k) + (1)
r=n,
k\{rga:T_zr‘_::i

rlr -
= A +{—1}‘+1=E+1J+{—1}‘+1

r>0,
l\frEk:!—?rE!

while fori=¢ -1 =25:

rkKhP =My = | Y 1] =g+ (-1 = E +1J — 1+ (—1)f =3,
u‘_:_ngirg:

Observe that if one ignores the 8 term that keeps track of the bipartite property,
the first £ — 1 ranks given by the formmla arve 1,1,2,2,3 which are the first 5
cocfficients of the generating function m (see Corollary E4]).

The following result allows us to prove that Khovanov homology is trivial in
certain gradings beyond the first £ homological gradings, allowing us to prove a
general result about the Jones polynomial in Sec. @

2250083-13
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Tablo 2. Khovanov homology Kh{11a362), An entry of k represents a summand 2% and kg
represents & summand of Z%. Entries in bold, from —11 to —5, are isomorphic to gradings

in chromatic homology of (4 (1) via Theorem 3]

QP =11 [ =I0] =9 | =8 | =7 | =6 | =5 | =4 | =8 [ —2 | =1 ] 0
=y 1
—10 13
—12 3| 1
—14 1 E
—16 3 | 3 1z
—18 3 | 1,82
—a0 T [ 3,32
—23 3T | 322
—aa 1 | 233
=T 7 | 3,1%
— 98 1,23
30 | 1 3
—32 1

Tabla 3. Chromatic homolomy H 4, (7 (3]} for the graph in Example
[ An entry of k represents a summand Z% and ks represents a summand
of E.f Entries in bold are isomorphic to gradings in Khovanov homology

(see Table .
jaJoJ1 2 3 4 5 [} T 8
10 | 1
[ 12
E 1.2
ki F] W Y
6 1 2. 3q
6 3 3.2
4 2 2,33
3 El 1,2
2 2 1z
1 1

Theorem 3.6. Let D be a diagram of a link L such thef the all-A state graph
Gy (D) has girth € > 2, N = —|s |+ —2c_, with ey, c_ is the number of positive
and negafive crossings, respectively, and |5 the number of circles in Kouffman
state s, (D)) oblained by applying positive smoothings to all crossings in D. Then
Khovanov homology KhP3(L) is trivial when p > (£ — 1) —c_ and g < N + 2£.

Proof. The proof splits naturally into three cases based on the gradings: see regions
labeled by +, 7y and 72 in Table d

Let my be the minimal quantum grading of any enhanced state in homolog-
ical grading p. Then my, < mp 1. Groups Kh"¥(L) are trivial for p > ¢ — e_
and g < N + 2(f — 1) because g < w1y = myp (see bigradings labeled + in
Table H).

To show that Kh!® ===~ 2Ly Jabeled %y in Table @, is trivial, note that
the Khovanov chain group in grading ((f — 1) — o, N + 2(F — 1)), labeled 7y, is
1somorphic to the chromatic homology chain group in bigrading (£ —1, v — (£ —1}),
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Table 4. Homological gradings i = ¢_ through § = (£+ 1) —c_ of Khovanov homology Kh{ L),
The syinbol W indicates gradings o which Khovanoy homology I= lsomorphic to chromatic
homology, while [ indicates additional gradings in which Khovanov homology may be non-
trivial, The svmbals ¥x, Ty, Tz indicate pradings discussed in the proof of Thoorom ES The
chromatic polynommial coefficient o, for the unnormalized Jones polynomial is displayed on the

right (comparn with chromatic coefficient @, _; in Tabla [dI).

q/p —_ |- [ {f=2)—c_ [{[f-Tj—c_ [f—e_ [[I+1)—c_
O O
N +2 ] O O
Nt+2af—1) ) Tx Ty i ¢ _1 = fy_f1
N+2E-—2) [ | - " g3 = Qp_g41
N+2 ] s * M= el
N [ ] . " g = Oy

where v is the number of vertices in G (). The generators of these chain groups
correspond to spanning subgraphs of & (D) with £—1 edges and v—(£— 1) connected
components, each labeled with an & in chromatic homology, and enhanced states
with |sy| — (£ — 1) connected components, all labeled with = in Khovanov link
homology. For grading reasons, all generators of Khovanov chain group in position
Ty are obtained by splitting a cycle from the state corresponding to a generator of
Khovanov chain group in position Ty, Sinee this differential is surjective, Khovanov
homology Kh'*'—--¥+2=U 1y must be trivial.

Next, we prove that KIL(HI}_L’N"'EH_”{L} 18 trivial (see grading labeled 7z
in Table d). Since my_yy)_, =N + 2(€ — 1) we have gy = N +2(0—1).
e y_r. =N +2(f—1) then there exists an enhanced state Sppq with exactly
£+ 1 positive resclutions in position labeled 7z in Table [ We will show by means
of contradiction that such a state cannot exist; otherwise, the girth of G4 (D) would
be less than £,

Suppose that such state 5p1) exists. Then there must also exist an enhanced
state Sp;_; with £ — 1 positive resolutions in grading labeled by 7y thal turns
into S¢ry by changing two positive resolutions to negative resolutions that both
increase the pumber of circles in the Kauffman states. Let Sy be an enhanced state
in grading ?y such that 5; is obtained from S;_; and S, is obtained from S;.
As stated above, S; has a set of negative resolutions that correspond to the edges
of a length £ cycle. Thus, S; consists of an inner and outer circle [corresponding
to closing the shortest cyele in &, ([})) and possibly a collection of other Kaufman
circles, related to each other and to the outer circle only by positively resolved
crossings, with all circles labeled by x. The only way to obtain 5S¢y is by splitting
one of the two Kautfman cireles corresponding to the shortest cycle of G (1Y) which
implies the existence of a cyele with fewer than £ edges in G+ (D) and contradicts
the fact that the girth of (D) is £. Therefore, no such 5 exists and we cannot
obtain the enhanced state Sy in grading 7z in Tabledl Thus, the Khovanov chain
group in grading 7z is trivial, which completes the proof. O
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4. More on the Head and Tail of the Jones Polynomial

Theorem B3 ean be used to compute the £ extremal coefficients in the head or tail
of the Jones polynomial for any link L. As shown in Table, if Kh™(L) is trivial for
p=(f—1)—c_ and g < N + 24, then the extremal coeflicients of the nninormalized
Jones polynomial are determined precisely by the ranks deseribed in Theorem B3
which come from chromatic homology.

Theorem 4.1. Let D be a diagram of a link L such tha!l G (D) has girth £ > 2,
with cyclomatic number p1 and number of -cycles ng. Then the first £ coefficients
in the tail of Jp are given by the formula

{—1}“”-{”3'(“_.1“), 0<i<e—2,
i

b= (7)
(—1)t-1-e-(D) ((Fi = lft"f 2 ”) —n.g)T i—i—1

If we consider the all-negative state graph (D), an analogous statement holds
for the first J{(7_ (D)) coefficients in the head of Jy..

Proof. Since chromatic homology over algebra Ay is thin, TheoremZd tells us that
Khovanov homology Kh( L) is thin in gradings ranging from i = ¢ through ¢ = (£ -
1) — ¢_. Theorem B8 says that Khovanov hemology KhP¥( L) is trivial for p > (€ —
1)—e_ and g < N +2¢ 50 that the first £ coethicients of the Jones polynomial depend
only on groups isomorphic to chromatic homology (black squares in Table ). Let
R: = rkKh' ==L given by the formula in Theorem B3

R‘i =rkKh' " 'N+2i|:L} = Z (PI _l: + k) — iy + {_ ]_Ji+‘l‘51l.n {S}
uggkﬁ[-!irgu

for 0 < ¢ < £. We also assign Ry = 1, the rank of Kh™*" ’NI[L] for any L satisfying
the above condition on girth. For notational convenience we let [y = 0 for 1 < 0.

Since the part of Kh{L) determined by this equation is homologically thin, we
gel the ranks on the second diagonal from the knight move isomorphism:

R = kKR .."-'+‘21'{L'J . rkthHl]—{'_ ..."-'-|-2{1'+‘2]{L}‘ {9}

which is valid for 1 <4 < £ — 2 if &, (D) is bipartite and 0 < ¢ < § — 2 otherwise.
Passing to Khovanov homology over &g coeflicients, we can replace “knight move”
pairs of = with “tetrominoes” of Zas, see [16, 31]:

rktnrgl{_h;"' 'N"‘E‘fL] = rktDrgK_h;:D' .N+2{i+n|:L}

(10}

28 i=1, G.(D) bipartite,
R, 1+ R, otherwise, 0 <4d <
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Using 30 Corollary 3.2C] and the fact that reduced Khovanov homology is the
same over Z and &y for this thin part, we obtain the reduced integer Khovanov
homology:

— e, 1 Ry, i =1 d & () hi ite,
i H+2+HL)::{ 1s i an +(12) bipartite, (11)

R+ R;, otherwise, 0-<i <,

Taking the graded Euler characteristic of ﬁl{L} yields the following coeflicients

in the tail of Jg(q):
B = {[—1}"‘:' y, i=1 and &(D) bipartite, (12)

(=107 (R + Ry), otherwise, 0 <1< £

Equation ([} holds for ¢+ = 0, and for the bipartite cose when ¢ = 1 by direct
calculation:

-2+ K —1 —1+1
Ry = p 3 (Pl . )+{—1‘F =(F’11 )+1=(1Erl ; )
r=0,
0<k=1—2r<1

For all ather cases with 1 << i < £ — 1, we compute R; ; + Ry

> (") eeva

i,
Ok={1—1)—2r<i—1

¥ 5 (P‘ f*k) + (1),

r>0,
U b=i—2r<i

where 8® = 1 if G (D) is bipartite and 0 otherwise. For i = £ — 1, nyy1 = ny is
nonzero so that B o+ [y 1 = {m—:_—iflf—-l}} — M. O

Example 2. Let K be the knot 112362 a= in Example[ll The unnormalized Jones
polynomial .Jx (g} is the graded Euler characteristic of Kh{K):

j;{-{rﬂl 2= _I’I_32 4 q—.'iﬂl = u—ES-_l_q—Eﬁ 2 q—:zd = q—ﬂ[r = 2._!,— 18 u—ld +2q—12 + q—ﬂ.

Table [ illustrates how the first six terms in the tail (including one zero term) arise
from the part of Kh{K') that agrees with the chromatic homology of G, (1), The
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Table 5. Lowest gradings of the Khovanov homology Kh(11a362), Entries in
bold are isomorphic to gradings o chromatic homology of O3 (10} via Theo-
rem ] The monomials in g, shown to the right, represent terms of the graded
Eulor charactoristic which agree with the chromatic polbmomial of GGo{ ).

ap | -1l - | -8 ] —8 | -7 | =6 | —5 | —4

—16

—18 3

—H 2 3, 33

—23 3 | 3.2, {0)g—22
—2a IEREE (—1)g24
T 2 | 3,1z [ 13g—48
—28 1,22 [—1jg—2d
—an 1 3 (1)g—20
—® 1 [—1jg—32

normalized Jones polynomial i=s given by
Tr(q) = Jx(@)/lg +97") = fog™ + A1g™™ + Bag™™
+fag P4 Bag P+ Fag T+
= _q—S'I _'_Eq—ﬂ _Eq—l‘? +4q—'25 _Eq—ﬁﬂ- S Eq—;ﬂ.
_ Eq‘]" _|___1q—1? _ 4@"5 +3q"”‘ . q-n _|_q—111

Any phis-adequate diagram of K must have the same numhber of negative crossings
(e~ = 11) as diagram D |[I5]. The coefficients 3; agree with the formulas given in
ThecremAXfor0 < i< f—1=5.

5. Girth of a Link

Each planar diagram Y of a link I has an associated state graph G (1Y) whose chro-
matic homology is related to Khovanov homology by the correspondence described
in Theorem I Notice that the girth of G () depends on the diagram of a knot.
For example, adding a right-hand twist to any strand of I using a Reidemeister 1
move creates a loop in G4 (D), reducing the girth of this graph to 1.

The applicability of Theorem EJ depends on the girth of G [D); therefore,
given any link I, we are interested in finding a diagram I? that maximizes the
contribution of chromatic homology to Khovanov homology.

The largest such contribution made to Kh( L)} comes from the diagram for which
4 (D) has the largest possible girth, This fact motivated the following definition
that allows us to explicitly state the extent of the correspondence between Khovanoy
homology and the Jones polynomial with chromatic homology and the chromatic
polynomial, respectively.

Definition 8 ([29]). The girth of a link L is gr{l) = max{{(G.(D))|Disa
diagram of L}, where G, (I}) is the graph oblained from the all-positive Kauffman
state of diagram I and £G (1)) is the girth of graph & (17).
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Proposition 5.1 ([28]). The girth gr(L) of any link L is finite.

Proof. The nontrivial groups in H 4, (G (D)) span at least £{G.(D))) — 1 homo-
logical gradings [29], which are isomorphic to £(G (1)) — 1 corresponding gradings
in Kh{L}. Since the span of KhiL) is bounded above, so are the possible girths of
G.o(D). O

Girth can alternatively he defined by taking the maximum wvalue of £{G_{1}))
over all diagrams of L. or both values can be considered. A proof similar to that of
Proposition (1] shows this invariant is also finite for any L.

In the rest of this section, we analyze properties and bounds on girth coming
from the Jones polynomial and Khovanov homology, as well as types of graphs that
can appear as state graphs for diagrams of a given link.

6.1. Bounds on the girth

As with many knot invariants defined as a maximom or a minimum over all dia-
grams of a given knot, one bound is much easier to prove than the other, In the
case of girth, any knot diagram gives a lower bound. Theorems B3 and 7] provide
some insight into what the upper bound on the girth of a link might be and the
properties of a graph (7 which realizes the pirth,

Corollary 5.2. Let I be a link and let My be the greatest number such that

hb—2+k
i—e_ V424 — _1yit1
rkKh (E) = ;; ( ‘ ) +(—1)"H§ (13)
0 k=i — e i
JorallD<i< Mg —2, 050, and cither § =0 or § =1 for all i. Then
gril) < Mg. (14)

Equivalently, let L be any link with Jones polynomial Ji(q) as in Definition[I.
Let M; be the greatest number such that |5 = {h_:'H:] for some b, with signs
alternating, for all 0 <1 < M;— 2. Then M; = Mg and

gr(l) < M;. (15

In Example @l we demonstrate that the npper bound for ge(&) provided by
Khovanov homology and the Jones coefficients are not necessarily achieved by any
diagram of K.

5.2. On all-positive state graphs

The following corollary of Theorem [33] states that if Khovanov and chromatic
homology apree on 3 or more gradings, this agreement imposes a restriction on the
type of graphs that realize the isomorphism.
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Corollary 5.3. Suppose that the link L has a diagram D such that G4 (D)) has
girth £ > 2. Then:

(1) 23] G(D) is bipartite if and only if rkKh™"¥+3(L) = 1.
(2) 23] The cyclomatic number of G (L)) is
p1 = kKR!~ ML) — rkKh ML) 41

(3) The number of £-cycles in GL(D) is equal to

— = (m —f+k)

r=0,
O k={f—1]—2r<(£—1)

£ (—1)%kKh N H2 (L) — (kKR De- N2 )y
A similar result exizts for the Jones polynomial via Theorem [@1]

Corollary 5.4, Suppose that link I has Jones polynomiol given by

Ti(q) = Bog® + Prg®+2 + Bag®Ht 4 BagtHe 4.

and that 13 iz a disgram of L such that G (D) has givth £ = 2. Then the cyclomalic
number of G (D) is squal to || and the number of £-eyeles in G (D)) is equal to
{|.|31]—£1+1{5—1]J i |.S!J

Example 3. Let K = 11362 as in Examples[ and @ From the Khovanov homol-
ogy in Table B we see that tkKh™'*~*(K) =2 = (}) + 1,tkKh > (K) =1 =
() + (o) - LK 728(K) = 3= (5) + (") + 1 and Kb~ (k) = 2=
)+ G+ () -1

These ranks agree with Eq. (3 for the values b = 2, 4 = 1 and 0 < 1 < 4.
However, there is no agreement for i = 5, since

rkKh =%~ 2(K) =3,
bt

T (e =@+ (1) =

20,
0€k=5—12r<5

Using Corollary B2 we conclude that Mg = 442 = 6 is an upper bound for ge( &),
We can obtain the same upper bound for gr{K') using the Jones coeflicients and
the second part of Corollary B3 From Example[E we have

fo=-1, H=2 [h=-3 H=4 H=-5

These cocflicients alternate in sign and their absolute values satisfy the formula
{h"":_l} for b=2,0<1 < 4 Thus, we derive an upper bound of M; =44 2=6.
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Suppose ) is a diagram of K such that G, (D)) realizes the maximum
girth of 6. Using Corollary B3] we determine G (D) must he bipartite since
kKh """ K) = 1. The cyclomatic number of &, (D) must he

pr = tkKh "MK — fkKh (K +1 =2
while the mumber of G-cycles in &4 (D) must be

2-2+& _11— —6—
ng = v ( : ) + (—1)PkKh ¥ K) — rkKh = "(K)
20,
O<k=5-2r<5
=3+1-3=1

Together, these statements imply that G (1) must be a bipartite graph containing
exactly two cyeles: one cyele of length 6 and another cycle of length n, where n > 6

15 ever.,

The following example demonstrates that inequalities (I} and [IH) may be
strict; i.e., there may be no diagram for a link that realizes the npper bound for
girth given in Corollary B3

Example 4. The knot K = 12n821 is non-alternating with Jones polynomial
g — 2070+ 3¢ — 42 + 5~ — 5+ 5¢ + 49 — 3¢° + 2¢ + ¢°. By Corollary 53
applied to the first 5 coefficients, we find an upper bound M; = 6 for the girth of
K. However, we can show that no diagram of K exists which achieves this upper
bound,

Suppose that K has a diagram [ such that G, (D) has girth greater than 2,
Then this diagram is both plus-adequate and non-alternating, so & must have a cut-
vertex [32]. By Corollary B3], g (G (D)) = 2. Since G (D) has o loops or multiple
edges, it must be a vertex join of two cyeles, Py, « Py, Any koot diagram with all-
positive graph P, + Py, is o diagram of an alternating knot: either a connected sum
of torus links or a rational knot, But K has no alternating diagram, so the girth of
121821 must be less than or equal to 2.

In addition, the same arpgument can be applied to show that the girth of any
all-negative state praph for this knot is less than or equal to 2,

The 2nd coefficient of the Jones polynomial, which captures the cyclomatic
number of ¢ (D), uniquely determines the first gr{L) — 1 coefficients. In a similar
fashion, the first two homological gradings of Kh{L) determine the first gr(L) grad-
ings. This leads to a somewhat surprising result showing that all-A state graphs
associated to diagrams of nontrivial link can hawve girth one, two, or be equal to the

girth of the link.

Theorem 5.5. Let [} be a dingram of e nontrivial link [ such that the girth of its
all-A graph (G (D)) < gr(L), then (G (D)) =1 or 8(G L (D)) = 2.
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Proof. The result holds for 1 < gr{L) < 3, since nontrivial diagrams cannot have
trees as their all-A graphs. Next, assume that gr(L) = M > 3. Then there exists a
diagram Dy, of L auch that 0 = G4 {Dyax) has girth M. Suppose that there
exists another diagram I of L such that G = G (D)) has givth b, with 2 < h < M.
Theorem H 1] applied to diagram Dy, for i =h — 1 gives

. CGrmax) — 1 -1
Bhq = (—1)-1)—e :nm,‘,;(rul[ ],!;, ) 1+'[ }'>_ (16)
The same Theorem 1] applied to diagram [} yields
: G —1+(h—1
ruy = (1)@ (ORI ),

where ng (7] is the number of k-cyeles in G

Since Dyax and D are both plus-adequate, e (D) = e (D). Since £(Gax ) =
M = 2 and #(G) = h = 2, Corollary [ implies that g (Gia) = pi(G). This leads
to the contradiction between Eqs. [[H) and (TT) since n,(G) > 0 that is, & must
contain at least one eyele of length k. Thus, no such diagram 0 may exist. 0

Corollary 5.6. If L has a diagram D such that £((z (D)) = p > 3, then gr(L) = p.

Example 5 (Alternating pretzel links). Let L be an alternating pretzel link
with twist parameters (—a;, —ag,..., —@g), where g; > 1 for all i. The girth of the
graph obtained from the standard diagram is minf{ay +a; |1 <1 & j < n}. Since
this pumber is at least 4, it is equal to gr{L) by Corollary 5.0

Example 6 (3-braids). Suppose L is the closure of a negative 3-hraid v =
atal opk, a; < —1 I i € (1,2} and i # 454, for all j, then £(G (v)) = 3
126, Proposition 5.1] and so gr(l) = £(G L (%)) by Corollary GH.

5.3. Girth and related knol invarianis

It turns out that girth behaves well under connected sum. Recall that the connected
sum of two oriented knote K, K is well-defined for any choice of planar diagrams
for these two knots,

Theorem 5.7. The girth of a connect sum Ki#Ks of fwo knots Ky, Ky is equal
to the minimum of the girths of these knots, provided thet grily).gr(lKsz) = 2:
gr{Ki1#Ks) = min{gr(iy), gr(a)}. In the case when gr(Ky) = 2 or gr{ka) < 2,
then min{gr(K,), gr{K2)} provides a lower bound for the girth of the connected
SUL.

Proof. First we show that min]er(R),gr(R2)} = er(Ky#K3). Let Dy be a
disgram of Ky, I)s be a diagram of K5 such that §(GL(I4)) = gr{K;) and
HGL(Da)) = gr{Ks). When we perform the connected sum operation on Iy and
D3, the all-positive state graph of the new diagram consists of &, (D) and G, (1)
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joined at a single vertex, with girth min{gr(K;), gr(K2)}. This gives a lower bound
for the girth of K4 K.

To prove equality under the assumption that gr{K; ), gr{K2) > 2, we nse Carol-
lary B2 to show that gr{K#FK2) < min{gr(R:),gr(K2)}. Recall that Jx wkx, =
Ji, Ty, [15]. Let g3 = gr(K;), g2 = gr(K2) and assume without loss of generality
that g1 = go. Then the tail of Ji, has the form

Ji(g) = (—1)" (Pog® — Pig®*? - (- 1)P 1P, _1gO P21 )

(18)

g1
= (_1)8[ (Z(_]]IH!ICHJ-E{_'___)J I:].H'J
=
where P, = (") for 0 <4 < g1 — 2, P = ("7 1) — g, (Theorem BT
and sy, O, by > 0,ng, > 0 all depend on K.
Similarly, the tail of the Jones polynomial J, has the form

gi—1
Jie,lg) = (-1)" (z (—1)'Qug™* ™ + - ')1 (20)
1=0
where (), = [""3""'") for 0 < i < g2 -2 Qg1 = {ﬁ‘:]ﬂﬂf‘”} — ng, and sq,

O, by > 0,1y, > 0 all depend on K.

Theorem B deseribes the first g, coeflicients of Jx, and the first go coeflicients
of Jg;. The tail coeflicients of S, 25, = Ji, Jk, result from combinations of the
coetficients in Egs. (I8) and ). We write the product as

T arc,(g) = (1)1 +52 (Rygtr 702 — Big@i+tarl ..
+(—1)9 'Ry, 1g T O Ly, (21)

where Ity = E;‘:DP"Qi,_“ for 0 < ¢ < gy — 1. Recalling ouwr assumption that
g1 = ga, observe that we cannot say anything about the coeflicients that follow
Ry, —1 because we only have Fy through Fy, _; for the first polynomial,

For 0 < ¢ < gy — 2, we compute the following, using a modified form of the
Chu-Vandermonde identity (see [12, Table 3]):

Xy I e i T L

n=l} n=[}
(22)
while on the other hand for i = g — 1:
-1 g—2
-Rg| -1 = Z Pn{;][g]—‘l}—:: — Z REQ[_E,“ —1j—mn T+ Pg, —IQ'L'I'- {23]
=0 =0k
Since Fy, 1 = (h"_:'{_gl‘_”} —1tg, withng, >0, Hy _; does not agree with the for-

mula in Eq. [EZ) that describes the coefficients from ¢ = 0 to 1 = g1 — 2. Thus,

2250083-23



Ft. Sazdancwid & 1), Seofield

the sequence of coefficients Ry for Jy, g, along with the alternating signs in
Eq. ([EI) satisty the conditions of Corollary B3 for 0 < § = ¢ — 2. Henee, the
upper bound for gr(K#K0) given by the tail of Jo, e, s My =(n —2)+2=
o = min{gr(Ky ), er(Ka)}. |

For a reduced knot diagram 0, the knot signature and numbers of crossings
give upper bounds on the girths of G (D) and G_ (D), the graphs related to the
all-positive and all-negative Kanffman states s ([0}) and s_ (D). Recall that o{L)
is a link invariant given by the signature of the Seifert matrix obtained from any
diagram of L. We denote the pumber of crossings in a diagram by o D) and the
numbers of positive and negative crossings by co (L}, e (D), respectively, using the
crossing conventions from [15].

Theorem 5.8. Let K be o nontrivial knot with an oriented, reduced diagram [,
Then

20(D)
UG DN = Ty a1

Proof. We first show that the inequality holds in the case when £(G (D)) = 2.
The graph 7. (I}) is planar and connected, so the girth £{G (D)) is related to the
mumhber of edges and vertices by the inequality F < T(%%ll—z[u— 2), see ez, [H].
This inequality provides the following bound on the girth: £(G (D)) < E.'—EE:M' The
number of edges E of & (D) is the number of crossings o(1}), and the number of

vertices is the number of connected components s, in the all-positive smoothing of

D. Using the inequality o(K) < s (D) —co (D) — 1 [7] we obtain the following:

(24)

28 2D 240)
Ul g~ D D) 72 - D) - T

In the case when F{(5, (1)) = 1, this inequality still holds becanze |o(K)| <
2u(K) < (D) — 1, see [ZI]. Consequently, c (D) —a{K)+1 < c_ (D) + (c(D) —
1)+ 1< 200 D). O

A similar proof using o(K) < —s_ (D)1 +c_(D) + | gives an npper bound for
the girth of G_(I)).

Corollary 5.9. Given an oriented, reduced, positive knot diagram [ then:
G (D)) = %C[DJ. Note that this inequality 15 sharp.

Proof. Since D is positive, (D) =0 and oK) < —2 [23]. The standard diagram
of the (=3, —3, —3) pretzel knot, which has 9 positive crossings, ¢ = —2 and G4 (V)
with girth 6 provides an example, where the equality £(G (V) = %c(ﬂ} iz achieved.

O
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Example 7. As an application, we observe that a positive alternating knot can
never have a dingram [} such that G/ (1) is a eyele graph. Such a diagram would
have £(G, (D)) = (D), a contradiction by Corollary [E3,

If we restrict our attention to alternating links, we can get more specific results
about girths of alternating diagrams. In particular, the following theorem states
that any two reduced diagrams of a prime alternating link have the same girth.

Theorem 5.10. Let L be @ prime alternating link, If D, 1Y are two redueed alter-
nating diagrams of L, then G (D), G (1Y) have the same givth,

Proof. The Tait Ayping conjecture states that any two reduced alternating dia-
arams of L are related by flypes [15]. Flypes may he expressed as a series of muta-
tions, which induce Whitney flips on the corresponding graph [13]. Thus, & (D)
and 7, (") are 2-izomorphic graphs. Girth is an invariant of the cycle matroid
[22], so G (D) and G4 (D') have the same girth. O
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