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Abstract
Amortized analysis is a program cost analysis technique for data structures in which the cost of
operations is specified in aggregate, under the assumption of continued sequential use. Typically,
amortized analyses are presented inductively, in terms of finite sequences of operations. We give an
alternative coinductive formulation and prove that it is equivalent to the standard inductive definition.
We describe a classic amortized data structure, the batched queue, and outline a coinductive proof
of its amortized efficiency in calf , a dependent type theory for cost analysis.
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1 Introduction

The calf framework is a dependent type theory that supports verification of both correctness
conditions and cost bounds [19], based on call-by-push-value [17]. Amortized analysis is a cost
analysis technique for data structures in which the operation costs are specified in aggregate,
under the assumption of continued sequential use [23]. In this work, we demonstrate how
amortized analysis can be understood as coalgebraic in calf .

In call-by-push-value, there are two sorts of types: value types A, B, C and computation
types X, Y , Z. The type FA is a computation type classifying computations that result in
a value of type A, and the type UX is a value type classifying suspended computations of
type X. Computation types beyond FA will be essential for amortized analysis; in particular,
we will make extensive use of products X × Y , coproducts Σa:AX(a), powers A → X, and
coinductive types νX. Y (X) [2], all of which are computation types.

Semantically, we will interpret value types in Set and computation types in the category
of C-sets, where C is a monoid representing cost, as is standard for cost analysis of functional
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programs [7, 8, 15, 6]. This is a simplification of calf , avoiding modalities. As in calf , we
provide a primitive effect stepc(−) that incurs c units of abstract cost, interpreted using the
C-action. The C-action associated to a computation type justifies equations describing how
steps are incorporated into its elements:

stepc
X×Y (⟨x, y⟩) = ⟨stepc

X(x), stepc
Y (y)⟩

stepc
Σa:AX(a)(⟨a, x⟩) = ⟨a, stepc

X(x)⟩

stepc
A→X(λa. x) = λa. stepc

X(x)
stepc

νX. Y (X)(gen(a. y; a0)) = gen(a. stepc
Y (νX. Y (X))(y); a0)

In other words, cost at a product or power type is incurred pointwise, cost at a coproduct
type is pushed into the given summand, and cost at a coinductive type is propagated forward.
In this work, we will make use of the A-wide coproduct of a computation type X, also known
as the copower of X by A [16, 9], which we write as A ⋉ X ≜ Σ−:AX. Note that 1 ⋉ X is
isomorphic to X.

2 Cofree Comonads for Amortized Abstract Data Types

Throughout this paper, we will use queues as a running example of an abstract data type,
although the development generalizes to other sequential-use abstract data types. Queues
are an abstract type representing an ordered collection with a first-in-first-out data policy.
Let value type E be the type of elements; the queue operations can be written as follows:

enqueue[e] ∼ 1
dequeue ∼ E + 1

This signature describes an operation enqueue[e] for each e : E and an operation dequeue.
In a type theory with one sort of type, a machine offering these operations is given via

the following cofree comonad [12, 22, 21], interpreted in Set:

queue(X) ≜ νQ. (quit : X) × (enqueue : E → Q) × (dequeue : (E + 1) × Q)

Up to isomorphism, each operation corresponds to a product of its output type and Q,
using a function for an E-wide product. In call-by-push-value, though, we must distinguish
between a product of computation types and a copower of a value type and a computation
type. Since the result type of an operation is a value type, such as E + 1 for the dequeue
operation, we must use the latter. Thus, we may define the type of (amortized) queues as
follows, interpreted in the category of C-sets:

queue(X) ≜ νQ. (quit : X) × (enqueue : E → Q) × (dequeue : (E + 1) ⋉ Q)

The type queue(X) can be understood as “object-oriented” [4, 13, 5], since the use of a queue
involves a sequence of enqueue and dequeue projections terminated by a quit. Cost incurred
at this type is propagated forward, accumulating at all future quit components (of type X)
for end-of-use accounting.

3 Coinductive Amortized Analysis

Let C = (N, +, 0). We define two queue implementations of type queue(X) and prove their
amortized equivalence. Here, we let X = F1, requiring that the queues terminate with an
element of F1 (i.e., simply a cost in C).
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Listing 1 Single-list specification implementation of a queue.
spec -queue : list E → queue (F unit)
quit (spec -queue l) = ret triv
enqueue (spec -queue l) e = step 1 (spec -queue (l ++ [ e ]))
dequeue (spec -queue []) = ret ( nothing , spec -queue [])
dequeue (spec -queue (e :: l)) = ret (just e , spec -queue l)

Listing 2 Amortized-efficient batched implementation of a queue.
batched -queue : list E → list E → queue (F unit)
quit (batched -queue bl fl) = step (Φ (bl , fl)) (ret triv)
enqueue (batched -queue bl fl) e = batched -queue (e :: bl) fl
dequeue (batched -queue bl []) with reverse bl
... | [] = ret ( nothing , batched -queue [] [])
... | e :: fl = step ( length bl) (ret (just e , batched -queue [] fl))
dequeue (batched -queue bl (e :: fl)) =

ret (just e , batched -queue bl fl)

▶ Example 1 (Specification Queue). One simple implementation of a queue, called spec-queue,
is given in Listing 1 by coinduction using copattern matching [1], using a single list as the
underlying representation type. The enqueue operation is annotated with one unit of cost;
however, this is unrealistic, since a full traversal of the list is performed for each enqueue
operation. We will treat this implementation as a client-facing specification, next defining a
queue that actually implements this cost model. ⌟

▶ Example 2 (Batched Queue). Now, we define an amortized-efficient implementation which
only incurs one large cost infrequently [10, 11, 3, 20]. This underlying representation type
of the implementation is two lists: the “front list”, fl, and the “back list”, bl. Elements
are enqueued to bl and dequeued from fl; if fl is empty when attempting to dequeue, the
current bl is reversed and used in place of fl going forward. The calf implementation, called
batched-queue, is shown in Listing 2. The quit case uses a potential function Φ(bl, fl) =
length(bl), as in the physicist’s method of amortized analysis [23], accounting for elements
enqueued on bl that were never moved to fl. ⌟

The amortized analysis is proved via a bisimulation; the theorem statement is analogous
to the traditional amortized analysis, using the potential function to accumulate payment [23].
Every enqueue to spec-queue pushes one unit of cost forward, while batched-queue pushes
length(bl) units of cost forward only on the occasional dequeue, retroactively using its surplus
potential from previous enqueue operations.

▶ Theorem 3 (Amortized Analysis of Batched Queue). For all lists bl and fl,

batched-queue bl fl = stepΦ(bl,fl)(spec-queue (fl ++ reverse bl)).

Proof. By routine coinduction, propagating cost forward over computation types. ◀

4 Relation to Inductive Amortized Analysis

Amortized analysis is typically framed algebraically, describing the cost incurred by a finite
sequence of operations. In the preceding sections we observed that the analysis is naturally
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Listing 3 Program evaluation at a queue.
eval : queue - program A → U (queue X) → A ⋉ X
eval ( return a ) q = a , Queue.quit q
eval ( enqueue e p) q = eval p (Queue. enqueue q e)
eval ( dequeue k ) q =

bind (k (proj 1 (Queue. dequeue q))) λ p →
eval p (proj 2 (Queue. dequeue q))

viewed as coalgebraic. In fact these perspectives are equivalent. Define the free monad
corresponding to the queue operation signature given in Section 2:

program(A) ≜ µP. (return : A) + (enqueue : E × P ) + (dequeue : U(E + 1 → FP ))

An element of program(A) is a finite sequence of queue instructions terminated by returning
a value of type A. We may evaluate a program on a queue, by induction on the program:

eval : program(A) → U(queue(X)) → A ⋉ X

This expresses the usual notion of running a sequence of operations on a data structure; the
code is in Listing 3. Semantically, this definition corresponds to a morphism

program(A) ⋉ queue(X) → A ⋉ X

resembling a monad-comonad interaction law [21, 14], here adjusted for call-by-push-value.
Using eval, we may define an alternative notion of queue equivalence. Let q1, q2 : queue(X):

▶ Definition 4 (Sequence-of-Operations Queue Equivalence). Say q1 ≈ q2 iff for all types A

and programs p : program(A), it is the case that eval(p, q1) = eval(p, q2).

▶ Theorem 5 (Amortizing Sequences of Operations). It is the case that q1 = q2 iff q1 ≈ q2.

Proof. By routine (⇒) induction and (⇐) coinduction. ◀

Thus, coalgebraic amortized equivalence coincides with the traditional algebraic notion.
Unsurprisingly, a proof that q1 ≈ q2 shares the same core reasoning as a proof that q1 = q2;
however, it requires the auxiliary definitions of program(A) and eval.

5 Conclusion

Here, we developed a computation type of amortized queues in calf as the cofree comonad
of a functor based on the product, power, and copower computation type constructors,
built to propagate cost forward for end-of-use accounting. We defined specification and
amortized queue implementations and stated a theorem relating them via the physicist’s
method of amortized analysis. Finally, we observed that coinductive bisimulation coincides
with traditional sequence-of-operations reasoning in amortized analysis. Our results for
queues and two other simple amortized data structures are formalized in calf , which is
embedded in Agda [18].

In future work, we hope to extend this approach to support abstract data types with
binary and parallel operations, infinite sequences of operations, and situations in which an
amortized implementation may be less costly than the specification. Additionally, we hope
to better characterize the given constructions, accounting for the asymmetry present in
call-by-push-value. As abstract data types are described via a comonad on the category of
algebras for a monad, we also hope to connect to bialgebraic presentations of operational
semantics [24].
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