
Amortized Analysis via Coinduction
Harrison Grodin # Ñ

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Robert Harper # Ñ

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Amortized analysis is a program cost analysis technique for data structures in which the cost of
operations is specified in aggregate, under the assumption of continued sequential use. Typically,
amortized analyses are presented inductively, in terms of finite sequences of operations. We give an
alternative coinductive formulation and prove that it is equivalent to the standard inductive definition.
We describe a classic amortized data structure, the batched queue, and outline a coinductive proof
of its amortized efficiency in calf , a dependent type theory for cost analysis.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation →
Logic and verification; Software and its engineering → Functional languages; Theory of computation
→ Program reasoning; Theory of computation → Categorical semantics

Keywords and phrases amortized analysis, coinduction, data structure, mechanized proof

Digital Object Identifier 10.4230/LIPIcs.CALCO.2023.23

Category Early Ideas

Supplementary Material
Software (Source Code): https://github.com/jonsterling/agda-calf [18], archived at swh:1:
dir:7750187b111d75acca1980e9abffae2d63ffbe69

Funding This material is based upon work supported by the United States Air Force Office of
Scientific Research under grant number FA9550-21-0009 (Tristan Nguyen, program manager) and
the National Science Foundation under grant number CCF-1901381. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the AFOSR or NSF.

Acknowledgements We are grateful to Yue Niu, Max New, and David Spivak for insightful discussions
about this research.

1 Introduction

The calf framework is a dependent type theory that supports verification of both correctness
conditions and cost bounds [19], based on call-by-push-value [17]. Amortized analysis is a cost
analysis technique for data structures in which the operation costs are specified in aggregate,
under the assumption of continued sequential use [23]. In this work, we demonstrate how
amortized analysis can be understood as coalgebraic in calf .

In call-by-push-value, there are two sorts of types: value types A, B, C and computation
types X, Y , Z. The type FA is a computation type classifying computations that result in
a value of type A, and the type UX is a value type classifying suspended computations of
type X. Computation types beyond FA will be essential for amortized analysis; in particular,
we will make extensive use of products X × Y , coproducts Σa:AX(a), powers A → X, and
coinductive types νX. Y (X) [2], all of which are computation types.

Semantically, we will interpret value types in Set and computation types in the category
of C-sets, where C is a monoid representing cost, as is standard for cost analysis of functional

© Harrison Grodin and Robert Harper;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 23; pp. 23:1–23:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hgrodin@cs.cmu.edu
https://www.harrisongrodin.com
https://orcid.org/0000-0002-0947-3520
mailto:rwh@cs.cmu.edu
https://www.cs.cmu.edu/~rwh/
https://orcid.org/0000-0002-9400-2941
https://doi.org/10.4230/LIPIcs.CALCO.2023.23
https://github.com/jonsterling/agda-calf
https://archive.softwareheritage.org/swh:1:dir:7750187b111d75acca1980e9abffae2d63ffbe69;origin=https://github.com/jonsterling/agda-calf;visit=swh:1:snp:970335e4251b980e4c493d29d8bb274821ef4d1e;anchor=swh:1:rev:75627cd7a08bc41ab32820eba6e3cc2d4573211a
https://archive.softwareheritage.org/swh:1:dir:7750187b111d75acca1980e9abffae2d63ffbe69;origin=https://github.com/jonsterling/agda-calf;visit=swh:1:snp:970335e4251b980e4c493d29d8bb274821ef4d1e;anchor=swh:1:rev:75627cd7a08bc41ab32820eba6e3cc2d4573211a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Amortized Analysis via Coinduction

programs [7, 8, 15, 6]. This is a simplification of calf , avoiding modalities. As in calf , we
provide a primitive effect stepc(−) that incurs c units of abstract cost, interpreted using the
C-action. The C-action associated to a computation type justifies equations describing how
steps are incorporated into its elements:

stepc
X×Y (⟨x, y⟩) = ⟨stepc

X(x), stepc
Y (y)⟩

stepc
Σa:AX(a)(⟨a, x⟩) = ⟨a, stepc

X(x)⟩

stepc
A→X(λa. x) = λa. stepc

X(x)
stepc

νX. Y (X)(gen(a. y; a0)) = gen(a. stepc
Y (νX. Y (X))(y); a0)

In other words, cost at a product or power type is incurred pointwise, cost at a coproduct
type is pushed into the given summand, and cost at a coinductive type is propagated forward.
In this work, we will make use of the A-wide coproduct of a computation type X, also known
as the copower of X by A [16, 9], which we write as A ⋉ X ≜ Σ−:AX. Note that 1 ⋉ X is
isomorphic to X.

2 Cofree Comonads for Amortized Abstract Data Types

Throughout this paper, we will use queues as a running example of an abstract data type,
although the development generalizes to other sequential-use abstract data types. Queues
are an abstract type representing an ordered collection with a first-in-first-out data policy.
Let value type E be the type of elements; the queue operations can be written as follows:

enqueue[e] ∼ 1
dequeue ∼ E + 1

This signature describes an operation enqueue[e] for each e : E and an operation dequeue.
In a type theory with one sort of type, a machine offering these operations is given via

the following cofree comonad [12, 22, 21], interpreted in Set:

queue(X) ≜ νQ. (quit : X) × (enqueue : E → Q) × (dequeue : (E + 1) × Q)

Up to isomorphism, each operation corresponds to a product of its output type and Q,
using a function for an E-wide product. In call-by-push-value, though, we must distinguish
between a product of computation types and a copower of a value type and a computation
type. Since the result type of an operation is a value type, such as E + 1 for the dequeue
operation, we must use the latter. Thus, we may define the type of (amortized) queues as
follows, interpreted in the category of C-sets:

queue(X) ≜ νQ. (quit : X) × (enqueue : E → Q) × (dequeue : (E + 1) ⋉ Q)

The type queue(X) can be understood as “object-oriented” [4, 13, 5], since the use of a queue
involves a sequence of enqueue and dequeue projections terminated by a quit. Cost incurred
at this type is propagated forward, accumulating at all future quit components (of type X)
for end-of-use accounting.

3 Coinductive Amortized Analysis

Let C = (N, +, 0). We define two queue implementations of type queue(X) and prove their
amortized equivalence. Here, we let X = F1, requiring that the queues terminate with an
element of F1 (i.e., simply a cost in C).

H. Grodin and R. Harper 23:3

Listing 1 Single-list specification implementation of a queue.
spec -queue : list E → queue (F unit)
quit (spec -queue l) = ret triv
enqueue (spec -queue l) e = step 1 (spec -queue (l ++ [e]))
dequeue (spec -queue []) = ret (nothing , spec -queue [])
dequeue (spec -queue (e :: l)) = ret (just e , spec -queue l)

Listing 2 Amortized-efficient batched implementation of a queue.
batched -queue : list E → list E → queue (F unit)
quit (batched -queue bl fl) = step (Φ (bl , fl)) (ret triv)
enqueue (batched -queue bl fl) e = batched -queue (e :: bl) fl
dequeue (batched -queue bl []) with reverse bl
... | [] = ret (nothing , batched -queue [] [])
... | e :: fl = step (length bl) (ret (just e , batched -queue [] fl))
dequeue (batched -queue bl (e :: fl)) =

ret (just e , batched -queue bl fl)

▶ Example 1 (Specification Queue). One simple implementation of a queue, called spec-queue,
is given in Listing 1 by coinduction using copattern matching [1], using a single list as the
underlying representation type. The enqueue operation is annotated with one unit of cost;
however, this is unrealistic, since a full traversal of the list is performed for each enqueue
operation. We will treat this implementation as a client-facing specification, next defining a
queue that actually implements this cost model. ⌟

▶ Example 2 (Batched Queue). Now, we define an amortized-efficient implementation which
only incurs one large cost infrequently [10, 11, 3, 20]. This underlying representation type
of the implementation is two lists: the “front list”, fl, and the “back list”, bl. Elements
are enqueued to bl and dequeued from fl; if fl is empty when attempting to dequeue, the
current bl is reversed and used in place of fl going forward. The calf implementation, called
batched-queue, is shown in Listing 2. The quit case uses a potential function Φ(bl, fl) =
length(bl), as in the physicist’s method of amortized analysis [23], accounting for elements
enqueued on bl that were never moved to fl. ⌟

The amortized analysis is proved via a bisimulation; the theorem statement is analogous
to the traditional amortized analysis, using the potential function to accumulate payment [23].
Every enqueue to spec-queue pushes one unit of cost forward, while batched-queue pushes
length(bl) units of cost forward only on the occasional dequeue, retroactively using its surplus
potential from previous enqueue operations.

▶ Theorem 3 (Amortized Analysis of Batched Queue). For all lists bl and fl,

batched-queue bl fl = stepΦ(bl,fl)(spec-queue (fl ++ reverse bl)).

Proof. By routine coinduction, propagating cost forward over computation types. ◀

4 Relation to Inductive Amortized Analysis

Amortized analysis is typically framed algebraically, describing the cost incurred by a finite
sequence of operations. In the preceding sections we observed that the analysis is naturally

CALCO 2023

23:4 Amortized Analysis via Coinduction

Listing 3 Program evaluation at a queue.
eval : queue - program A → U (queue X) → A ⋉ X
eval (return a) q = a , Queue.quit q
eval (enqueue e p) q = eval p (Queue. enqueue q e)
eval (dequeue k) q =

bind (k (proj 1 (Queue. dequeue q))) λ p →
eval p (proj 2 (Queue. dequeue q))

viewed as coalgebraic. In fact these perspectives are equivalent. Define the free monad
corresponding to the queue operation signature given in Section 2:

program(A) ≜ µP. (return : A) + (enqueue : E × P) + (dequeue : U(E + 1 → FP))

An element of program(A) is a finite sequence of queue instructions terminated by returning
a value of type A. We may evaluate a program on a queue, by induction on the program:

eval : program(A) → U(queue(X)) → A ⋉ X

This expresses the usual notion of running a sequence of operations on a data structure; the
code is in Listing 3. Semantically, this definition corresponds to a morphism

program(A) ⋉ queue(X) → A ⋉ X

resembling a monad-comonad interaction law [21, 14], here adjusted for call-by-push-value.
Using eval, we may define an alternative notion of queue equivalence. Let q1, q2 : queue(X):

▶ Definition 4 (Sequence-of-Operations Queue Equivalence). Say q1 ≈ q2 iff for all types A

and programs p : program(A), it is the case that eval(p, q1) = eval(p, q2).

▶ Theorem 5 (Amortizing Sequences of Operations). It is the case that q1 = q2 iff q1 ≈ q2.

Proof. By routine (⇒) induction and (⇐) coinduction. ◀

Thus, coalgebraic amortized equivalence coincides with the traditional algebraic notion.
Unsurprisingly, a proof that q1 ≈ q2 shares the same core reasoning as a proof that q1 = q2;
however, it requires the auxiliary definitions of program(A) and eval.

5 Conclusion

Here, we developed a computation type of amortized queues in calf as the cofree comonad
of a functor based on the product, power, and copower computation type constructors,
built to propagate cost forward for end-of-use accounting. We defined specification and
amortized queue implementations and stated a theorem relating them via the physicist’s
method of amortized analysis. Finally, we observed that coinductive bisimulation coincides
with traditional sequence-of-operations reasoning in amortized analysis. Our results for
queues and two other simple amortized data structures are formalized in calf , which is
embedded in Agda [18].

In future work, we hope to extend this approach to support abstract data types with
binary and parallel operations, infinite sequences of operations, and situations in which an
amortized implementation may be less costly than the specification. Additionally, we hope
to better characterize the given constructions, accounting for the asymmetry present in
call-by-push-value. As abstract data types are described via a comonad on the category of
algebras for a monad, we also hope to connect to bialgebraic presentations of operational
semantics [24].

H. Grodin and R. Harper 23:5

References
1 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Program-

ming infinite structures by observations. ACM SIGPLAN Notices, 48(1):27–38, January
2013. URL: https://dl.acm.org/doi/10.1145/2480359.2429075, doi:10.1145/2480359.
2429075.

2 Adriana Balan and Alexander Kurz. On Coalgebras over Algebras. Electronic Notes in
Theoretical Computer Science, 264(2):47–62, August 2010. URL: https://www.sciencedirect.
com/science/article/pii/S1571066110000721, doi:10.1016/j.entcs.2010.07.013.

3 F. Warren Burton. An efficient functional implementation of FIFO queues. Information Pro-
cessing Letters, 14(5):205–206, July 1982. URL: https://www.sciencedirect.com/science/
article/pii/0020019082900151, doi:10.1016/0020-0190(82)90015-1.

4 William R. Cook. Object-oriented programming versus abstract data types. In J. W. de
Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages,
Lecture Notes in Computer Science, pages 151–178, Berlin, Heidelberg, 1991. Springer. doi:
10.1007/BFb0019443.

5 William R. Cook. On understanding data abstraction, revisited. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’09, pages 557–572, New York, NY, USA, October 2009. Association
for Computing Machinery. doi:10.1145/1640089.1640133.

6 Joseph W. Cutler, Daniel R. Licata, and Norman Danner. Denotational recurrence ex-
traction for amortized analysis. Proceedings of the ACM on Programming Languages,
4(ICFP):97:1–97:29, August 2020. URL: https://dl.acm.org/doi/10.1145/3408979, doi:
10.1145/3408979.

7 Nils Anders Danielsson. Lightweight semiformal time complexity analysis for purely functional
data structures. ACM SIGPLAN Notices, 43(1):133–144, January 2008. URL: https://dl.
acm.org/doi/10.1145/1328897.1328457, doi:10.1145/1328897.1328457.

8 Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. Denotational cost semantics for
functional languages with inductive types. In Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2015, pages 140–151, New York, NY,
USA, August 2015. Association for Computing Machinery. doi:10.1145/2784731.2784749.

9 Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. Enriching an Effect Calculus
with Linear Types. In Erich Grädel and Reinhard Kahle, editors, Computer Science Logic,
Lecture Notes in Computer Science, pages 240–254, Berlin, Heidelberg, 2009. Springer. doi:
10.1007/978-3-642-04027-6_19.

10 David Gries. The Science of Programming. Springer New York, April 1989.
11 Robert Hood and Robert Melville. Real-time queue operations in pure LISP. Information

Processing Letters, 13(2):50–54, November 1981. URL: https://www.sciencedirect.com/
science/article/pii/0020019081900302, doi:10.1016/0020-0190(81)90030-2.

12 Bart Jacobs. Mongruences and cofree coalgebras. In V. S. Alagar and Maurice Nivat, editors,
Algebraic Methodology and Software Technology, Lecture Notes in Computer Science, pages
245–260, Berlin, Heidelberg, 1995. Springer. doi:10.1007/3-540-60043-4_57.

13 Bart Jacobs. Objects And Classes, Co-Algebraically. In Burkhard Freitag, Cliff B. Jones,
Christian Lengauer, and Hans-Jörg Schek, editors, Object Orientation with Parallelism and
Persistence, The Kluwer International Series in Engineering and Computer Science, pages
83–103. Springer US, Boston, MA, 1996. doi:10.1007/978-1-4613-1437-0_5.

14 Shin-ya Katsumata, Exequiel Rivas, and Tarmo Uustalu. Interaction Laws of Monads and
Comonads. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’20, pages 604–618, New York, NY, USA, July 2020. Association for Computing
Machinery. doi:10.1145/3373718.3394808.

15 G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. Recurrence
extraction for functional programs through call-by-push-value. Proceedings of the ACM on
Programming Languages, 4(POPL):15:1–15:31, December 2019. doi:10.1145/3371083.

CALCO 2023

https://dl.acm.org/doi/10.1145/2480359.2429075
https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1145/2480359.2429075
https://www.sciencedirect.com/science/article/pii/S1571066110000721
https://www.sciencedirect.com/science/article/pii/S1571066110000721
https://doi.org/10.1016/j.entcs.2010.07.013
https://www.sciencedirect.com/science/article/pii/0020019082900151
https://www.sciencedirect.com/science/article/pii/0020019082900151
https://doi.org/10.1016/0020-0190(82)90015-1
https://doi.org/10.1007/BFb0019443
https://doi.org/10.1007/BFb0019443
https://doi.org/10.1145/1640089.1640133
https://dl.acm.org/doi/10.1145/3408979
https://doi.org/10.1145/3408979
https://doi.org/10.1145/3408979
https://dl.acm.org/doi/10.1145/1328897.1328457
https://dl.acm.org/doi/10.1145/1328897.1328457
https://doi.org/10.1145/1328897.1328457
https://doi.org/10.1145/2784731.2784749
https://doi.org/10.1007/978-3-642-04027-6_19
https://doi.org/10.1007/978-3-642-04027-6_19
https://www.sciencedirect.com/science/article/pii/0020019081900302
https://www.sciencedirect.com/science/article/pii/0020019081900302
https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/10.1007/3-540-60043-4_57
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/3371083

23:6 Amortized Analysis via Coinduction

16 Gregory Maxwell Kelly. Basic Concepts of Enriched Category Theory. CUP Archive, February
1982.

17 Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Springer Nether-
lands, Dordrecht, 2003. URL: http://link.springer.com/10.1007/978-94-007-0954-6,
doi:10.1007/978-94-007-0954-6.

18 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. calf : A Cost-Aware Logical
Framework. URL: https://github.com/jonsterling/agda-calf.

19 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A Cost-Aware Logical
Framework. Proceedings of the ACM on Programming Languages, 6(POPL):9:1–9:31, January
2022. doi:10.1145/3498670.

20 Chris Okasaki. Purely Functional Data Structures. PhD thesis, Carnegie Mellon University,
1996. doi:10.1007/3-540-61628-4_5.

21 Gordon Plotkin and John Power. Tensors of Comodels and Models for Operational
Semantics. Electronic Notes in Theoretical Computer Science, 218:295–311, October
2008. URL: https://www.sciencedirect.com/science/article/pii/S157106610800412X,
doi:10.1016/j.entcs.2008.10.018.

22 John Power and Olha Shkaravska. From Comodels to Coalgebras: State and Ar-
rays. Electronic Notes in Theoretical Computer Science, 106:297–314, December
2004. URL: https://www.sciencedirect.com/science/article/pii/S1571066104051813,
doi:10.1016/j.entcs.2004.02.041.

23 Robert Endre Tarjan. Amortized Computational Complexity. SIAM Journal on Algebraic
Discrete Methods, 6(2):306–318, April 1985. URL: https://epubs.siam.org/doi/abs/10.
1137/0606031, doi:10.1137/0606031.

24 D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proceedings of
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 280–291, June 1997.
doi:10.1109/LICS.1997.614955.

,

http://link.springer.com/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6
https://github.com/jonsterling/agda-calf
https://doi.org/10.1145/3498670
https://doi.org/10.1007/3-540-61628-4_5
https://www.sciencedirect.com/science/article/pii/S157106610800412X
https://doi.org/10.1016/j.entcs.2008.10.018
https://www.sciencedirect.com/science/article/pii/S1571066104051813
https://doi.org/10.1016/j.entcs.2004.02.041
https://epubs.siam.org/doi/abs/10.1137/0606031
https://epubs.siam.org/doi/abs/10.1137/0606031
https://doi.org/10.1137/0606031
https://doi.org/10.1109/LICS.1997.614955

	1 Introduction
	2 Cofree Comonads for Amortized Abstract Data Types
	3 Coinductive Amortized Analysis
	4 Relation to Inductive Amortized Analysis
	5 Conclusion

