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Abstract. The internet advertising market is a multibillion dollar industry in which adver-
tisers buy thousands of ad placements every day by repeatedly participating in auctions. 
An important and ubiquitous feature of these auctions is the presence of campaign bud-
gets, which specify the maximum amount the advertisers are willing to pay over a speci-
fied time period. In this paper, we present a new model to study the equilibrium bidding 
strategies in standard auctions, a large class of auctions that includes first and second price 
auctions, for advertisers who satisfy budget constraints on average. Our model dispenses 
with the common yet unrealistic assumption that advertisers’ values are independent 
and instead assumes a contextual model in which advertisers determine their values 
using a common feature vector. We show the existence of a natural value pacing–based 
Bayes–Nash equilibrium under very mild assumptions. Furthermore, we prove a revenue 
equivalence showing that all standard auctions yield the same revenue even in the pres-
ence of budget constraints. Leveraging this equivalence, we prove price of anarchy 
bounds for liquid welfare and structural properties of pacing-based equilibria that hold 
for all standard auctions. In recent years, the internet advertising market has adopted first 
price auctions as the preferred paradigm for selling advertising slots. Our work, thus, 
takes an important step toward understanding the implications of the shift to first price 
auctions in internet advertising markets by studying how the choice of the selling mecha-
nism impacts revenues, welfare, and advertisers’ bidding strategies.

History: Accepted by Itai Ashlagi, revenue management and market analytics. 
Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.4719. 

Keywords: !rst price auctions • contextual value models • budget constraints • equilibria in auctions • revenue equivalence •
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1. Introduction
In 2019, the revenue from selling internet ads in the 
United States surpassed $129 billion.1 A large fraction 
of these are sold on ad platforms operated by tech 
giants such as Google, Facebook, and Twitter. These 
platforms facilitate the sale of ads by acting as inter-
mediaries between advertisers and publishers. Millions 
of ad slots are sold every day using auctions in which 
advertisers bid based on user-specific information (such 
as geographical location, cookies, and historical activity, 
among others). The advertisers repeatedly participate in 
these auctions with the aim of using their advertising 
budget to maximize their reach through a combination 
of user-specific targeting and bid optimization. The 
presence of budgets introduces significant challenges as 
it links different auctions together.

With billions of dollars at stake, the auction format 
plays a crucial role. In recent years, a major shift has 
occurred toward using first price auctions as the pre-
ferred mode of selling display ads as opposed to the 

earlier standard of using second price auctions. For 
example, in 2019, Google, which is one of the industry 
leaders, announced a shift to the first price auction for-
mat for its ad exchange.2 In 2020, Twitter also made the 
move to first price auctions for the sale of mobile app 
advertising slots.3 First price auctions typically lead to 
more complicated bidding behavior because, unlike sec-
ond price auctions, truthful bidding is not an equilib-
rium in the first price setting.

This paper attempts to capture the salient features of 
these display ad auctions with a focus on the newly 
adopted first price auctions. Whereas equilibrium be-
havior in first price auctions is studied extensively, very 
little attention is given to the effects of budget constraints 
and user-specific information. Budget constraints span the 
auctions, which means that advertisers must strategize 
about their bids across all auctions simultaneously. 
User-specific information leads to correlation between 
the valuations that different advertisers have for a par-
ticular ad opportunity, whereas the literature largely 

1 

MANAGEMENT SCIENCE 
Articles in Advance, pp. 1–18 

ISSN 0025-1909 (print), ISSN 1526-5501 (online) https://pubsonline.informs.org/journal/mnsc 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
17

7.
22

9]
 o

n 
18

 A
ug

us
t 2

02
3,

 a
t 1

1:
16

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

mailto:srb2155@columbia.edu
https://orcid.org/0000-0002-0012-3292
mailto:christian.kroer@columbia.edu
https://orcid.org/0000-0002-9009-8683
mailto:rk3068@columbia.edu
https://orcid.org/0000-0001-7803-6861
https://doi.org/10.1287/mnsc.2023.4719


focuses on independent and identically distributed (i.i.d.) 
valuations. Our paper aims to shed some light on these 
aspects by introducing and analyzing a framework for 
general standard auctions, including first price auctions, 
that incorporates budgets and context-based valuations. 
In particular, the main questions we tackle are as follows: 
How does the auction format affect the equilibrium 
strategies of budget-constrained bidders? How does 
the auction format impact the revenue of the ad plat-
form and the efficiency of the market?

1.1. Main Contributions
We incorporate the availability of user-specific informa-
tion (that is common to all advertisers) via a contextual 
valuation model, which allows us to capture correlation 
in values. User information and buyer targeting criteria 
are modeled as vectors with the value that an advertiser 
gains from the advertiser’s ad being shown to the user 
being given by the inner product of these vectors or a 
function thereof. Each advertiser has a (possibly non-
binding) budget that must be satisfied in expectation. 
Such budget constraints are well-motivated in practice 
because of the large number of auctions and are the 
subject of study in previous work on budget manage-
ment (Gummadi et al. 2011; Abhishek and Hosanagar 
2013; Balseiro et al. 2015, 2021). Our main contribution 
is to introduce a framework that allows for the study of 
standard auctions, which are auctions in which the 
highest bidder wins, in the presence of budget con-
straints and contextual valuations. To the best of our 
knowledge, this is the first analysis of standard auctions 
in the presence of average budget constraints.

Typically, the targeting criteria and budget of an adver-
tiser are not known to the advertiser’s competitors. This 
motivates us to model the participation of advertisers in 
the market as a nonatomic game of incomplete informa-
tion in which each advertiser assumes that the other 
advertisers are being drawn from some common under-
lying distribution. In this game, the decision problem 
faced by each advertiser is to optimize the advertiser’s 
utility and satisfy the advertiser’s budget constraint in 
expectation. This expectation is taken over all the poten-
tial auctions the advertiser could end up participating 
in; that is, the expectation is over users and competing 
advertisers. Our nonatomic game allows us to sidestep 
the possibility of multiple buyers tying in the auction 
and leads to simple and intuitive equilibrium strategies.

1.1.1. Equilibrium Analysis. A contribution of this paper 
is to prove the existence of a remarkably simple Bayes– 
Nash equilibrium (BNE) strategy using a novel topolog-
ical argument. In our nonatomic model, there is a con-
tinuum of advertiser types, and a strategy for each 
advertiser type is a function that maps contexts to bids. 
Directly proving existence of an equilibrium in this 
complicated strategy space in the presence of budget 

constraints turns out to be difficult. We sidestep this dif-
ficulty by establishing strong duality for the constrained 
nonconvex optimization problem faced by each adver-
tiser type and characterizing the primal optimum in 
terms of the dual optimum.

We propose a remarkably simple class of strategies, 
which we dub value pacing–based strategies. These strat-
egies build on the symmetric equilibrium strategies of the 
standard i.i.d. setting, inheriting their interpretability in 
the process. A value pacing–based strategy recommends 
that each advertiser should shade the advertiser’s value 
by a multiplicative factor to manage the advertiser’s bud-
get and then bid using the symmetric equilibrium strat-
egy from the standard i.i.d. setting—as the advertiser 
would in the absence of budgets—but assuming that 
competitors’ values are also paced. This naturally ex-
tends multiplicative bid pacing/shading, which is one 
of the several ways budgets are managed in practice, 
to nontruthful auctions (Balseiro et al. 2021; Conitzer 
et al. 2022a, b). To the best of our knowledge, our value- 
pacing approach is the first to show optimal pacing- 
based strategies outside of truthful auctions.

Our nonatomic game has a pacing (dual) multiplier 
for each buyer type, which are uncountably many in 
cardinality. This leads to an infinite-dimensional equi-
librium space even after moving to the simpler dual 
space. In infinite dimensions, establishing even the sim-
ple prerequisites of any fixed-point theorem, namely, 
compactness and continuity, can be an ordeal, one 
which requires careful topological arguments. Whereas 
other papers also analyze equilibrium strategies in the 
dual space (see, e.g., Gummadi et al. 2011, Balseiro et al. 
2015), these consider settings with finitely many pacing 
multipliers in which establishing compactness is a triv-
ial task. The main technical contribution of this paper is 
twofold: (i) choosing the right topological space for the 
pacing multipliers based on their monotonicity proper-
ties and (ii) establishing compactness and continuity in 
this carefully chosen space. As we discuss in Section 3.3, 
this choice of topology is far from obvious. In fact, to the 
best of our knowledge, all of the topologies used in stan-
dard fixed-point arguments for infinite-dimensional 
spaces (see Aliprantis and Border 2006 for examples) 
prove insufficient in the setting we consider, which 
compels us to carefully exploit the structural proper-
ties of pacing and work with the topological space of 
multivariate functions of bounded variation. We believe 
the tools developed in this paper might be useful in 
other nonatomic games.

1.1.2. Standard Auctions and Revenue Equivalence. Our 
framework accommodates anonymous auction formats 
in which the highest bidder wins, such as second price 
and all-pay auctions (even in the presence of reserve 
prices). In its full generality, it acts as a powerful black 
box: it takes as input any Bayes–Nash equilibrium for 
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the well-studied standard i.i.d. setting, composes it with 
value pacing, and outputs a Bayes–Nash equilibrium 
for our model. Surprisingly, we show that, for a fixed 
distribution over advertisers and users, the same multi-
plicative factors can be used by the advertisers to shade 
their values in the equilibrium strategies for all stan-
dard auctions. This fact allows us to compare revenues 
across auction formats. We prove that, in the presence 
of in-expectation budget constraints, the revenue gener-
ated in a value pacing–based equilibrium is the same 
for all standard auctions. This is in sharp contrast to the 
case when budget constraints are strict, in which reve-
nue equivalence is known not to hold (Che and Gale 
1998). In light of the recent shift from second to first 
price auctions by many ad platforms, the ability to com-
pare budget management in both first and second price 
auctions is an especially relevant aspect of our frame-
work. A recent paper of Goke et al. (2021) empirically 
investigates the revenue impact resulting from this 
recent switch. Goke et al. (2021) find that, after a brief 
adjustment period, publishers’ revenues under first 
price auctions returned to the same levels as they were 
under second price auctions before the change. Because 
existing revenue equivalence results do not apply to the 
display-ad industry (because of budget constraints and 
dependencies in valuations), our theory offers the first 
principled justification for this empirical finding by 
establishing revenue equivalence in the presence of con-
textual values and in-expectation budget constraints.

1.1.3. Price of Anarchy (PoA) and Structural Results. We 
leverage our revenue equivalence result to establish effi-
ciency guarantees and structural properties that hold 
for all standard auctions. In particular, we prove a 
(1/2)-lower bound for the price of anarchy of liquid 
welfare (a notion of efficiency that incorporates budget 
constraints) for our value pacing–based equilibria. Our 
result implies that the liquid welfare of a pacing equilib-
rium is at most 1/2 of the liquid welfare of the best pos-
sible allocation. On the structural front, we study how 
value pacing–based equilibrium strategies change with 
buyer type, which consists of a weight vector (repre-
senting targeting criteria) and a budget. We show that 
budget-constrained buyers with identical budgets and 
colinear weights for features get paced to the same 
value in equilibrium. This shows that any enhancement 
in the ad quality without changing its targeting criteria, 
which corresponds to scaling up the weight vector, is 
futile in the absence of an increase in budget. Moreover, 
we also study how advertisers should change their tar-
geting criteria (as represented by their weight vector) to 
maximize their utility.

1.1.4. Numerical Experiments. To test our model, we 
run numerical experiments after making appropriate 
discretizations. The outcomes of these experiments are 

strikingly close to our theoretical predictions. In particu-
lar, despite the discontinuities introduced by discretiza-
tion, budget violations are small, and moreover, the 
equilibrium strategies are in strong adherence to the 
structural properties derived theoretically.

1.2. Related Work
Beyond the works already mentioned, there is a large lit-
erature on online auctions. We discuss the existing work 
that is most closely related to ours. In keeping with pre-
vious work on auctions, from now on, we use the terms 
“buyers” and “items” in place of advertisers and users.

Auctions with budget-constrained buyers are mod-
eled in a variety of ways, most of which are focused on 
second price auctions. From a technical standpoint, the 
closest to our work is Balseiro et al. (2015), which con-
siders randomly arriving budget-constrained buyers in 
a fluid mean field setting. They show equilibrium exis-
tence for second price auctions in which buyers use 
pacing-based strategies. Their model assumes a finite- 
type space and independence of the value distributions 
of the buyers, whereas our context-based model allows 
for correlation between buyer values. Several other 
works also study repeated second price auctions with 
budgets under various models that are less related to 
ours (Gummadi et al. 2011, Balseiro and Gur 2019, 
Chen et al. 2021a, Balseiro et al. 2021, Ciocan and Iyer 
2021, Conitzer et al. 2022a). Beyond second price auc-
tions, Aggarwal et al. (2019) consider affine constraints 
(which include budget constraints as a special case) in mul-
tislot truthful auctions; they show existence of a bid-pacing 
equilibrium under restrictive assumptions. Babaioff et al. 
(2021) consider a general model of non–quasi-linear 
buyers participating in mechanisms that are truthful for 
quasi-linear buyers. Their model also captures the case 
of budget constraints as a special case. Moreover, they 
too prove the existence of a pacing-based equilibrium in 
their model. None of the aforementioned existing work 
addresses strategic bidding in nontruthful auctions, such 
as first price auctions with budget-constrained buyers.

Conitzer et al. (2022b) and Borgs et al. (2007) study 
pacing in a first price context, but both disregard strate-
gic behavior on behalf of the buyers. This is also the 
case for a long line of work that models repeated auc-
tions among budget-constrained buyers as an online 
matching problem with capacity constraints (see Mehta 
2013 for a survey).

Another direction of research considers buyers with 
ex post budget constraints (also called strict budget con-
straints). There, first price (Kotowski 2020), standard 
(Che and Gale 1998), and optimal (Pai and Vohra 2014) 
auctions and auctions with combinatorial constraints 
(Goel et al. 2015) are studied. In contrast to our revenue 
equivalence results, Che and Gale (1998) show that, with 
strict budget constraints, first price auctions yield higher 
revenue than second price auctions. These models are 
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different from our setting, which only requires budget 
constraints to hold in expectation at the interim stage. 
In-expectation budget constraints are more appropriate 
for modeling repeated ad auctions and yield simpler and 
more interpretable equilibrium strategies.

Contextual models in which values are based on fea-
ture vectors are widely used in the multiarmed bandit 
literature (for example, see Langford and Zhang 2007, 
Li et al. 2010) and in pricing (Lobel et al. 2018, Chen 
et al. 2021b, Golrezaei et al. 2021). Vector-based valuation 
models are also connected to low-rank models, which 
have received attention in previous market design work 
(see, e.g., McMahan et al. 2013, Kroer et al. 2022).

Our work also contributes to the literature on equilib-
rium analysis for nonatomic games. Because of the pres-
ence of a continuum of buyer types in our model, the 
topological arguments we develop bear resemblance to 
those used in the study of nonatomic games, such as 
the one addressed in Schmeidler (1973), though conti-
nuity is by assumption in Schmeidler (1973), whereas 
achieving continuity is at the heart of our proof.

2. Model
We consider the setting in which a seller (i.e., the adver-
tising platform) plans to sell an indivisible item to one 
of n buyers (i.e., the advertisers) using an auction. We 
adopt a feature-based valuation model for the buyer. 
More precisely, the item type is represented using a vec-
tor α�belonging to the set A ⇢ Rd, where each component 
of α�can be interpreted as a feature. We also refer to α�as 
the context. Each buyer type is represented using a vec-
tor (w, B) belonging to the set Θ ⇢ Rd+1 of possible buyer 
types, where the last component B denotes the buyer’s 
budget and the first d components w capture the weights 
the buyer assigns to each of the d features. The value 
(maximum willingness to pay) that buyer type (w, B) has 
for item α�is given by the inner product wTα. For sim-
plicity of notation and ease of exposition, we state our 
results under this linear relationship between values 
and the features, but our model and results can be 
extended to accommodate nonlinear response functions 
(such as the logistic function) that are commonly used 
in practice (see Online Appendix G for a more detailed 
discussion). We use ω à max(w,B)2Θ,α2AwTα�to denote 
the maximum value that a buyer can have for an item.

We assume that the context of the item to be auc-
tioned is drawn from some distribution F over the set of 
possible item types A. Furthermore, the type for every 
buyer is drawn according to some distribution G over 
the set of possible buyer types Θ, independently of the 
other buyers and the choice of the item. Note that, by 
virtue of our context-based valuation model, the values 
of the n buyers for the item need not be independent. In 
line with standard models used for Bayesian analysis of 
auctions, we assume that both G and F are common 

knowledge and maintain that the realized type vector 
(w, B) associated with a buyer is the buyer’s private 
information. Our model allows budgets to be random 
and correlated with the buyer’s weight vector. In addition, 
we assume that buyers are unaware of the type of their 
competing buyers; this implies budgets are private.

To fix ideas, we first consider the case of a first price 
auction with reserve prices and then discuss how our 
results extend to standard auctions in Section 4. In a first 
price auction, the seller allocates the item to the highest 
bidder whenever the bid is above the reserve price, and 
the winning bidder pays the bid. We assume the seller 
discloses the item type α�to the n buyers before bids are 
solicited from them. As a result, the bid of a buyer on 
item α�can depend on α. We use r : A ! R to specify the 
publicly known context-dependent reserve prices, where 
r(α) denotes the reserve price on item type α.

The budget of a buyer represents an upper bound on 
the amount the buyer wants to pay in the auction. We 
only require that each buyer satisfy the buyer’s budget 
constraint in expectation over the item type and com-
peting buyer types. Similar assumptions are made in 
the literature (see, e.g., Gummadi et al. 2011; Abhishek 
and Hosanagar 2013; Balseiro et al. 2015, 2021; Conitzer 
et al. 2022a). The motivation behind this modeling 
choice is that budget constraints are often enforced, on 
average, by advertising platforms. For example, Google 
Ads allows daily budgets to be exceeded by a factor of 
two in any given day, but over the course of a month, 
the total expenditure never exceeds the daily budget 
times the days in the month.4 In-expectation budget 
constraints are also motivated by the fact that, in prac-
tice, buyers typically participate in a large number of 
auctions and many buyers use stationary bidding strat-
egies. Thus, by the law of large numbers, our model 
can be interpreted as collapsing multiple, repeated auc-
tions in which item types are drawn i.i.d. from F into a 
single one-shot auction with in-expectation constraints.

2.1. Notation
We use R+ and R�0 to denote the set of strictly positive 
and nonnegative real numbers, respectively. We use Gw to 
denote the marginal distribution of w when (w, B) ~ G, 
that is, Gw(K) :à G({(w, B) 2Θ |w 2 K}) for all Borel sets 
K ⇢ S. In a similar vein, we use Θw to denote the set of 
w 2 Rd such that (w, B) 2Θ�for some B 2 R. (Here, we 
abuse notation by using w as both a weight vector vari-
able and a subscript to denote the projection of a buyer 
type onto the first d dimensions). Unless specified other-
wise, k · k denotes the Euclidean norm.

2.2. Assumptions
We assume that there exist U, Bmin > 0 such that the set of 
possible buyer types Θ�is given by Θ à (0,U)d ⇥ (Bmin, U). 
In a similar vein, we also assume that the set of possible 
item types A is a subset of the positive orthant Rd

+. We 
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restrict our attention to d � 2, which is the regime in 
which our feature vector-based valuation model yields 
interesting insights. To completely specify the aforemen-
tioned probability spaces, we endow A, Θ, and Θw with 
the Lebesgue σ�algebra. Moreover, we assume that the 
distributions F and G have density functions. Note that 
the distribution G can be any distribution on Θ, including 
one with probability zero on some regions of Θ. Thus, we 
can address any buyer distribution so long as it has a den-
sity and is supported on a bounded subset of the strictly 
positive orthant with a positive lower bound on the possi-
ble budgets. Similarly, F can capture a wide variety of 
item distributions. It is worth noting that any distribution 
that lacks a density can be approximated arbitrarily well 
by a distribution with a density, thereby extending the 
reach of our results to arbitrary distributions.

2.3. Equilibrium Concept
Consider the decision problem faced by a buyer type 
(w, B) 2Θ�if we fix the bidding strategies of all compet-
ing buyers on all possible item types: the buyer wishes 
to bid on the items in a way that maximizes the buyer’s 
expected utility and satisfies the buyer’s budget con-
straint in expectation (in which the expectation is taken 
over items and competing buyers’ types). As is true 
in the well-studied standard, budget-free, i.i.d. setting 
(Krishna 2009), the buyer’s optimal strategy depends 
on the strategies used by the other buyer types. In the 
standard setting, the symmetric Bayes–Nash equilib-
rium is an appealing solution concept for the game 
formed by these interdependent decision problems 
faced by the buyers. We adopt a similar approach and 
define the symmetric Bayes–Nash equilibrium for our 
model. A strategy β⇤ :Θ ⇥ A ! R�0 (a mapping that 
specifies what each buyer type should bid on every 
item) is a symmetric first price equilibrium (SFPE) if, 
almost surely (a.s.) over all buyer types, using β⇤ is an 
optimal solution to a buyer type’s decision problem 
when all other buyer types also use it.

Definition 1. A strategy β⇤ :Θ ⇥ A ! R�0 is called a 
symmetric first price equilibrium if β⇤(w, B,α) (as a 
function of α) is an optimal solution to the following 
optimization problem almost surely with respect to 
(w.r.t.) (w, B) ~ G:

max
b:A!R�0

Eα,{θi}n�1
ià1

[(wTα�b(α))1{b(α)�max(r(α),{β⇤(θi , α)}i)}]
s:t: Eα,{θi}n�1

ià1
[b(α)1{b(α)�max(r(α),{β⇤(θi , α)}i)}]B:

In the buyer’s optimization problem, the buyer wins 
whenever the buyer’s bid b(α) is higher than the 
reserve price r(α) and all competiting bids β⇤(θi,α) for 
i à 1, : : : , n� 1. Because of the first price auction pay-
ment rule, each bidder pays the bidder’s bid whenever 
the bidder wins. For convenience, in the definition, we 
are using an infeasible tie-breaking rule that allocates 

the entire good to every highest bidder. This is inconse-
quential and can be replaced by any arbitrary tie-breaking 
rule because we later show (see part (d) of Lemma 6 in the 
Online appendix) that ties are a zero-probability event 
under our value pacing–based equilibria.

In our solution concept, it is sufficient that adverti-
sers have Bayesian priors over the maximum compet-
ing bid maxi{β⇤(θi,α)} to determine a best response. This 
is aligned with practice as many advertising platforms 
provide bidders with historical bidding landscapes, which 
advertisers can use to optimize their bidding strategies 
(Bigler 2021).5 Additionally, we require that budgets are 
satisfied in expectation over the contexts and buyer types. 
Connecting back to our repeated auctions interpretation, 
one can assume competitors’ types to be fixed throughout 
the horizon, whereas contexts are drawn i.i.d. in each auc-
tion. In this case, our solution concept is appropriate if 
buyers cannot observe the types of competitors and, in 
turn, employ stationary strategies that do not react to 
the market dynamics. Such stationary strategies are 
appealing because they deplete budgets smoothly over 
time and are simple to implement. Moreover, it is previ-
ously established that stationary policies approximate 
well the performance of dynamic policies in nonstrate-
gic settings when the number of auctions is large and 
the maximum value of each auction is small relative to 
the budget (see, e.g., Talluri and Van Ryzin 2006).

When the type of bidder is fixed throughout the hori-
zon, a bidder who employs a dynamic strategy could, 
in principle, profitably deviate by inferring the competi-
tors’ types and using this information to optimally 
shade the bidder’s bids. Implementing such strategies 
in practice is challenging because many platforms do 
not disclose the identity of the winner or the bids of 
competitors in real time (as we discuss, they mostly 
provide historical information that is aggregated over 
many auctions). Moreover, when the number of bidders 
is large and each bidder competes with a random sub-
set of bidders, such deviations can be shown to be not 
profitable using mean-field techniques (see, e.g., Iyer 
et al. 2014, Balseiro et al. 2015) in our contextual value 
model as long as values are independent across time. 
Therefore, our model can be alternatively interpreted as 
one in which there is a large population of active buyers 
and each buyer competes with a random subset of 
buyers. This assumption is well-motivated in the con-
text of internet advertising markets because the number 
of advertisers actively bidding is typically large and, 
because of sophisticated targeting technologies, adverti-
sers often participate only in a fraction of all auctions.

2.4. Ties and the Role of Contexts
Before moving onto the proof of existence of SFPE, we 
shed some light on the role played by contexts in our 
model and results. The assumption that the feature vec-
tors α�are drawn from a distribution F that has a density 
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is necessary for our results to hold. In fact, if there was 
only one deterministic context, an SFPE may fail to exist: 
we provide an example in Online Appendix A. The root 
cause behind the absence of a well-behaved equilibrium 
in this example is the tension between the proclivity of 
budgets to cause ties with positive probability (as we 
demonstrate in Section 6) and the potential lack of equilib-
ria for first price auctions under value distributions that 
cause ties with a positive probability. Our example in 
Online Appendix A does admit a symmetric equilibrium 
for second price auctions, thereby demonstrating the 
added complexity of dealing with first price auctions.

Issues of tie breaking have previously come up in a 
line of related work on pacing-based equilibria in sec-
ond price auctions (Borgs et al. 2007, Balseiro et al. 2015, 
Babaioff et al. 2021, Conitzer et al. 2022a), in which they 
were addressed by methods that are some version of 
randomly perturbing the value of each buyer and enfor-
cing the budget constraint, on average, over these per-
turbations. This causes ties to become zero-probability 
events. It is possible to prove our existence and revenue 
equivalence results for the case of one deterministic 
context with value perturbations. However, unlike sec-
ond price auctions in which bidding truthfully is a 
dominant strategy, value perturbation is not well- 
suited for first price auctions because, even in the 
absence of budgets, the first price auction equilibrium 
strategy depends on the perturbations. Moreover, our 
structural results (Propositions 3 and 4) may not hold 
for arbitrary perturbations and require an unjustifiably 
strong assumption that carefully coordinates the per-
turbations across buyer types. That said, if one is will-
ing to ignore ties, our results continue to hold for a 
single deterministic context, and the reader can safely 
continue with that setting in mind.

3. Existence of Symmetric First Price 
Equilibrium

In this section, we study the existence of SFPE and 
show that this existence is achieved by a compelling 
solution that is interpretable. We do so in several steps. 
First, we define a natural parameterized class of value 
pacing–based strategies. Then, assuming that competi-
tors are using a strategy from this class, we establish 
strong duality for the optimization problem faced by each 
buyer type and characterize the primal optimum in terms 
of the dual optimum. This leads to a substantial simplifi-
cation of the analysis because it allows us to work in the 
much simpler dual space. Finally, we establish the exis-
tence of a value pacing–based SFPE by a fixed-point argu-
ment over the space of dual multipliers.

3.1. Value Pacing–Based Strategies
In this paper, pacing refers to multiplicatively scaling 
down a quantity.6 Consider a function µ :Θ! R�0, 

which we refer to as the pacing function. We define the 
paced weight vector of a buyer with type (w, B) to be 
w=(1 +µ(w, B)), which is simply the true weight vector 
w scaled down by the factor 1=(1 +µ(w, B)). Similarly, 
we define the paced value of a buyer type (w, B) for item 
α�as wTα=(1 +µ(w, B)). We use pacing to ensure that 
the budget constraints of all buyer types are satisfied 
and, at the same time, maintain the best response prop-
erty at equilibrium. The motivation for using pacing as 
a budget management strategy becomes clear in the 
next section, in which we show that the best response of a 
buyer to other buyers using a value pacing–based strategy 
is to also use a value pacing–based strategy. Before defin-
ing the strategy, we set up some preliminaries.

Consider a pacing function µ :Θ! R�0 and an item 
α 2 A. Let λµα�denote the distribution of paced values 
wTα=(1 +µ(w, B)) for item α�when (w, B) ~ G. Let Hµ

α�

denote the distribution of the highest value Y :à max 
{X1, : : : , Xn�1} among n – 1 buyers when each Xi ~ λµα�
is drawn independently for i 2 {1, : : : , n� 1}. Observe 
that Hµ

α((�1, x]) à λµα((�1, x])n�1 for all α 2 A because 
the random variables are i.i.d.

For a given item α 2 A, when x � r(α), define the fol-
lowing bidding function:

σµα(x) :à x�
Z x

r(α)

Hµ
α(s)

Hµ
α(x)

ds, 

where we interpret σµα(x) to be zero if Hµ
α(x) à 0. More-

over, when x < r(α), define σµα(x) :à x (we make this 
choice to ensure that no value below the reserve price 
gets mapped to a bid above the reserve price, maintain-
ing continuity). Note that σµα(x) à E[max(Y, r) |Y < x]. If 
λµα�has a density, then σµα�is the same as the single- 
auction equilibrium strategy for a standard first price 
auction without budgets when the buyer values are 
drawn i.i.d. from λµα�and the item has a reserve price of 
r(α) (see, e.g., section 2.5 of Krishna 2009). Our value 
pacing–based strategy uses σµα(x) as a building block by 
composing it with value pacing.
Definition 2. The value pacing–based strategy βµ :Θ ⇥
A ! R�0 for pacing function µ :Θ! R�0 is given by

βµ(w, B,α) :à σµα
wTα

1 +µ(w, B)

◆  ∀(w, B) 2Θ,α 2 A:

The bid βµ(w, B,α) is the amount that a non–budget- 
constrained buyer with type (w, B) would bid on item α�
if the buyer acted as if the buyer’s paced value was the 
buyer’s true value (this is captured by the use of the 
paced value as the argument for σµα) and believed that 
the rest of the buyers were also acting in this way (this 
is captured by the use of σµα). Therefore, our strategy 
has a simple interpretation: bidders pace their values 
and then bid as in a first price auction in which compe-
titors’ values are also paced. Consequently, under our 
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strategy, bidders are shading their values twice: first 
when determining their paced values wTα=(1 +µ(w, B))
to account for budget constraints and then again when 
adopting the bidding function σµα�for the first price auc-
tion. The bidding strategy σµα�optimally trades off two 
effects: on the one hand, bidding too close to their paced 
values leaves no utility to buyers because they pay their 
bid in case of winning, and on the other hand, bidding 
too low decreases payments at the expense of also 
decreasing the chance of winning.

Observe that value pacing–based strategies greatly 
reduce the degrees of freedom in the system. Instead 
of specifying a bidding strategy, which is a function, 
for each buyer type, we only need to specify a scalar 
µ(w, B) for each buyer type. In addition, our dual char-
acterization allows us to optimize over the space of all 
bidding strategies without imposing any restriction 
on the class of admissible functions. Having defined 
value pacing–based strategies, we are now ready to 
state our main existence result.
Theorem 1. There exists a pacing function µ :Θ! R�0 
such that the value pacing–-based strategy βµ :Θ ⇥ A !
R�0 is an SFPE.

Before proceeding with the proof of Theorem 1, we 
note some of its practical prescriptions: (i) It recom-
mends that buyers should pace their value to manage 
their budgets. As we later show, the equilibrium pac-
ing functions for first price auctions are identical to the 
ones for second price auctions. This suggests that 
pacing-based budget-management techniques devel-
oped for second price auctions (such as Balseiro and 
Gur 2019) can be used for first price auctions to com-
pute the paced valued. (ii) Advertising platforms typi-
cally provide bidding landscapes to the buyers that 
allow them to compute the optimal bid for a given 
value. Given a context α, if Pµα�represents the equilib-
rium bidding landscape (distribution of highest com-
peting bids), then we have

σµα(x) 2 arg max
b

(x� b)Pµα(b):

Thus, the paced value can be combined with the land-
scape to compute the optimal bid βµ(w, B,α).

We provide the proof of Theorem 1 in the remaining 
sections. First, in Section 3.2, we show that, if all of the 
competing buyers are assumed to employ a value 
pacing–based strategy, then strong duality holds for the 
budget-constrained utility maximization problem faced 
by each buyer type. This allows us to drastically sim-
plify the equilibrium strategy space of each buyer type 
from a function (mapping contexts to bids) to a single 
scalar (the dual variable µ(w, B)). Next, in Section 3.3, 
we prove the existence of a value pacing–based equilib-
rium strategy by proving a fixed-point theorem in the 
dual space of pacing functions. Despite our simplifying 

move to the dual space, establishing a fixed point is by 
no means a straightforward task because we are still 
left with a dual variable for each buyer type, and there 
are (uncountable) infinitely many of those. This leads 
to an infinite-dimensional fixed-point problem that re-
quires careful topological analysis. We find that the 
commonly employed general-purpose topologies fail for 
our problem, and this motivates us to carefully exploit 
the structure of pacing to select the right topology.

3.2. Strong Duality and Best Response 
Characterization

We start by considering the optimization problem faced 
by an individual buyer with type (w, B) when all com-
peting buyers use the value pacing–based strategy with 
pacing function µ :Θ! R�0. Denoting by Qµ(w, B) the 
optimal expected utility of such a buyer, we have

Qµ(w, B) à max
b:A!R�0

Eα,{θi}n�1
ià1

[(wTα� b(α))1{b(α)

� max(r(α), {βµ(θi,α)}i)}]

s:t: Eα,{θi}n�1
ià1

[b(α)1{b(α)

� max(r(α), {βµ(θi,α)}i)}]  B:

Our goal in this section is to show that the value 
pacing–based strategy put forward in Definition 2 is a 
best response when competitors are pacing their bids 
according to a pacing function µ.
Remark 1. Compare Qµ(w, B) to the definition of an 
SFPE (Definition 1) and observe that, if we are able to 
show that there exists µ :Θ! R�0 such that βµ(w, B, ·)
is an optimal solution to Qµ(w, B) almost surely w.r.t. 
(w, B) ~ G, then βµ is an SFPE.

For µ :Θ! R�0 and (w, B) 2Θ, consider the Lagrang-
ian optimization problem of Qµ(w, B) in which we move 
the budget constraint to the objective using the Lagrange 
multiplier t � 0. We use t to denote the multiplier of one 
buyer in isolation to distinguish from µ, which is a func-
tion giving a multiplier for every buyer type. Denoting by 
qµ(w, B, t) the dual function, we have that
qµ(w, B, t) à max

b(·)
Eα,{θi}n�1

ià1
[(wTα� (1 + t)b(α))1{b(α)

� max(r(α), {βµ(θi, α)}i)}] + tB

à (1 + t)max
b(·)

Eα,{θi}n�1
ià1

wTα
1 + t� b(α)
◆ 

1{b(α)
�

� max(r(α), {βµ(θi, α)}i)}
�
+ tB:

The dual problem of Qµ(w, B) is given by mint�0 
qµ(w, B, t).

The next lemma states that the optimal solution to the 
Lagrangian optimization problem is a value pacing– 
based strategy. More specifically, for every pacing func-
tion µ :Θ! R�0, buyer type (w, B), and dual multiplier 
t, the value pacing–based strategy σµα(wTα=(1 + t)) is 
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an optimal solution to the Langrangian relaxation of 
Qµ(w, B) corresponding to multiplier t. Note that, in 
general, t need not be equal to µ(w, B).
Lemma 1. For pacing function µ :Θ! R�0, buyer type 
(w, B) 2Θ, and dual multiplier t � 0,

σµα
wTα
1 + t

◆ 
2 arg max

b(·)
Eα,{θi}n�1

ià1

wTα
1 + t� b(α)
◆ 

1{b(α)
�

� max(r(α), {βµ(θi, α)}i)}
�
:

In the proof of Lemma 1, we actually show something 
stronger than the statement of Lemma 1: the value 
pacing–based strategy is optimal pointwise for each α�
and not just in expectation over α. This follows from 
the observation that, once we fix an item α, we are solv-
ing the best response optimization problem faced by a 
buyer with value wTα=(1 + t) in the standard i.i.d. set-
ting (Krishna 2009) with competing buyer values being 
drawn from λµα�and under the assumption that the com-
peting buyers use the strategy σµα. If λµα�has a strictly 
positive density, then the optimality of σµα(wTα=(1 + t)) is 
a direct consequence of the definition of a symmetric BNE 
in the standard i.i.d. setting. Even though the standard 
results cannot be used directly because of the potential 
absence of a density in the situation outlined, we show 
that it is possible to adapt the techniques used in the proof 
of proposition 2.2 of Krishna (2009) to show Lemma 1.

Using Lemma 1, we can simplify the expression for 
the dual function qµ(w, B, t). First, note that because σµα�
is nondecreasing, the highest competing bid can be 
written as

max
ià1, : : : ,n�1

{βµ(θi,α)} à max
ià1, : : : ,n�1

σµα
wT

i α
1 +µ(θi)

◆ � ⌧
à σµα(Y), 

where Y ~ Hµ
α�is the maximum of n – 1 paced values. 

Therefore, using that σµα(wTα=(1 + t)) is an optimal bid-
ding strategy, we get that

qµ(w, B, t) à (1 + t)EαEY~Hµ
α

wTα
1 + t� σ

µ
α

wTα
1 + t

◆ ◆ �

1 σµα
wTα
1 + t

◆ 
� max(r(α),σµα(Y))

� ⌧�
+ tB

à (1 + t)EαEY~Hµ
α

wTα
1 + t� σ

µ
α

wTα
1 + t

◆ ◆ �

1
wTα
1 + t � max(r(α), Y)
� ⌧�

+ tB

à (1 + t)Eα
wTα
1 + t� σ

µ
α

wTα
1 + t

◆ ◆ 
Hµ
α

wTα
1 + t

◆ �

1
wTα
1 + t � r(α)
� ⌧�

+ tB

à (1 + t)Eα 1
wTα
1 + t � r(α)
� ⌧Z wTα

1+t

r(α)
Hµ
α(s)ds

" #

+ tB, 

where the second equation follows from part (c) of Lemma 
6 of the Online appendix, the third from taking expec-
tations with respect to Y, and the last from our formula 
for σµα.

We now present the main result of this section, which 
characterizes the optimal solution of Qµ(w, B) in terms 
of the optimal solution of the dual problem. The idea of 
using value pacing–based strategies as candidates for 
the equilibrium strategy owes its motivation to Proposi-
tion 1. It establishes that, if all the other buyers are using 
a value pacing–based strategy with some pacing func-
tion µ :Θ! R�0, then a value pacing–based strategy is 
a best response for a given buyer (w, B).

Proposition 1. There exists Θ0 ⇢Θ�such that G(Θ0) à 1, 
and for all pacing functions µ :Θ! R�0 and buyer types 
(w, B) 2Θ0, if t⇤ is an optimal solution to the dual problem, 
that is, if t⇤ 2 arg mint⇤�0qµ(w, B, t), then σµα(wTα=(1 + t⇤))
is an optimal solution for the optimization problem Qµ(w, B).

In Proposition 1, the pacing parameter t⇤ used for 
pacing in the best response can, in general, be different 
from µ(w, B). This caveat requires a fixed-point argu-
ment to resolve, which is the subject matter of the next 
section.

Remark 2. Restricting to the measure-one set Θ0 is 
without loss. Recall that, according to Definition 1, a 
strategy constitutes an SFPE if, almost surely over 
(w, B) ~ G, using β⇤ is an optimal solution to the opti-
mization problem when all other buyer types also use 
it. As a consequence of this definition, we show that it 
suffices to show strong duality for a subset of buyer 
types Θ0 ⇢Θ�such that G(Θ0) à 1. In the absence of 
reserve prices r(α) for the items, Proposition 1 holds 
for all (w, B) 2Θ. Reserve prices introduce some dis-
continuities in the utility and payment term. The sub-
set Θ0 ⇢Θ�captures a collection of buyer types for 
which these discontinuities are inconsequential and 
maintains G(Θ0) à 1.

Observe that Qµ(w, B) is not a convex optimization 
problem, so in order to prove the theorem, we cannot 
appeal to the well-known strong duality results estab-
lished for convex optimization. Instead, we use theorem 
5.1.5 of Bertsekas et al. (1998), which states that, to 
prove optimality of σµα(wTα=(1 + t⇤)) for Qµ(w, B), it suf-
fices to show primal feasibility of σµα(wTα=(1 + t⇤)), dual 
feasibility of t⇤, Lagrange optimality of σµα(wTα=(1 + t⇤))
for multiplier t⇤, and complementary slackness. Our 
approach is to show these required properties by com-
bining the differentiability of the dual function with first 
order optimality conditions for one-dimensional opti-
mization problems. The key observation here is that the 
derivative of the dual function is equal to the difference 
between the budget of the buyer and the buyer’s 
expected expenditure. Therefore, at optimality, the first 
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order conditions of the dual problem imply feasibility 
of the value-based pacing strategy. To prove differentia-
bility, we leverage that, in our game, the distribution of 
competing bids is absolutely continuous, which is criti-
cal for our results to hold.

For t⇤ 2 arg mint�0qµ(w, B, t), if we apply the first 
order optimality conditions for an optimization prob-
lem with a differentiable objective function over the 
domain [0,1), we get

@qµ(w, B, t⇤)
@t � 0, t⇤ � 0, t⇤ · @qµ(w, B, t⇤)

@t à 0:

The first condition can be shown to imply primal fea-
sibility, the second implies dual feasibility, and the 
third implies complementary slackness. Combining 
this with Lemma 1, which establishes Lagrange opti-
mality, and applying theorem 5.1.5 of Bertsekas et al. 
(1998) yields Proposition 1. The complete proof of 
Proposition 1 can be found in Online Appendix B.

3.3. Fixed-Point Argument
In light of Proposition 1, the proof of Theorem 1 (the 
existence of a value pacing–based SFPE) boils down to 
showing that there exists a pacing function µ :Θ! R�0 
such that almost surely w.r.t. (w, B) ~ G, µ(w, B) is 
an optimal solution to the dual optimization problem 
mint�0qµ(w, B, t). In other words, given that everybody 
else acts according to µ, a buyer (w, B) that wishes to 
minimize the dual function is best off acting according 
to µ. More specifically, in Proposition 1, we show that, 
starting from a pacing function µ :Θ! R�0, if µ⇤(w, B)
constitutes an optimal solution to the dual problem 
mint�0qµ(w, B, t) almost surely w.r.t. (w, B) ~ G, then 
σµα(wTα=(1 +µ⇤(w, B))) is an optimal solution for the 
optimization problem Qµ(w, B) almost surely w.r.t. 
(w, B) ~ G. In other words, bidding according to σµα�
and pacing according to µ⇤ :Θ! R�0 is a utility- 
maximizing strategy for buyer (w, B) ~ G almost surely 
given that other buyers bid according to σµα�with paced 
values obtained from µ. The following theorem estab-
lishes the existence of a pacing function µ :Θ! R�0 
for which µ itself fills the role of µ⇤ in the previous 
statement, thereby implying the optimality of σµα(wTα=
(1 +µ(w, B))) almost surely w.r.t. (w, B) ~ G.
Proposition 2. There exists µ :Θ! R�0 such that 
µ(w, B) 2 arg mint�0qµ(w, B, t) almost surely w.r.t. (w, B) ~ G.

We prove this statement using an infinite-dimensional 
fixed-point argument on the space of pacing functions 
with a carefully chosen topology. Informally, we need to 
show that the correspondence that maps a pacing function 
µ :Θ! R�0 to the set of dual-optimal pacing functions 
µ⇤ :Θ! R�0 that satisfy µ⇤(w, B) 2 arg mint�0qµ(w, B, t)
has a fixed point. However, unlike finite-dimensional 
fixed-point arguments, establishing the sufficient con-
ditions of convexity and compactness needed to apply 

infinite-dimensional fixed-point theorems requires a 
careful topological argument.

Lemma 8 in the online appendix shows that all dual 
optimal functions µ⇤ :Θ! R�0 map to a range that is a 
subset of [0,ω=Bmin]. Therefore, any pacing function µ :
Θ! R�0 that is a fixed point, that is, satisfies µ(w, B) 2
arg mint�0qµ(w, B, t) almost surely w.r.t. (w, B) ~ G must 
also satisfy range(µ) ⇢ [0,ω=Bmin]. Hence, it suffices to 
restrict our attention to pacing functions of the form 
µ :Θ! [0,ω=Bmin].

Consider the set of all potential pacing functions

X à {µ 2 L1(Θ) |µ(w, B) 2 [0,ω=Bmin] ∀ (w, B) 2 Θ}, 

where L1(Θ) is the space of functions f :Θ! R with 
finite L1 norm w.r.t. the Lebesgue measure. Here, by the 
L1 norm of f w.r.t. the Lebesgue measure, we mean 
kf kL1 à

R
Θ | f (θ) |dθ. Our goal is to find a µ 2 X such that 

almost surely w.r.t. (w, B) ~ G we have

µ(w, B) 2 arg min
t2[0,ω=Bmin]

qµ(w, B, t):

Dealing with infinitely many individual optimization 
problems mint2[0,ω=Bmin]qµ(w, B, t), one for each (w, B), 
makes the analysis hard. To remedy this issue, we com-
bine these optimization problems by defining the objec-
tive f : X ⇥ X ! R for all µ, µ̂ 2 X as follows:

f (µ, µ̂) :à E(w,B)[qµ(w, B, µ̂(w, B))]:

For a fixed µ 2 X , we then get a single optimization 
problem minµ̂2X f (µ, µ̂) over functions in X instead of 
one optimization problem for each of the infinitely 
many buyer types (w, B) 2Θ. Later, in Lemma 5, we 
show that any optimal solution to the combined op-
timization problem is also an optimal solution to the 
individual optimization problems almost surely w.r.t. 
(w, B) ~ G. Thus, shifting our attention to the combined 
optimization problem is without any loss (because sub-
optimality on zero-measure sets is tolerable).

With f as before, we proceed to define the correspon-
dence that is used in our fixed-point argument. The 
optimal solution correspondence C⇤ : X ⇉ X is given by 
C⇤(µ) :à argminµ̂2X f (µ, µ̂) (which could be empty) for 
all µ 2 X . In Lemma 5, we show that the proof of Propo-
sition 2 boils down to showing that C⇤ has a fixed point, 
which is our next step.

Our proof culminates with an application of the 
Kakutani–Glicksberg–Fan theorem on a suitable version 
of C⇤ to show the existence of a fixed point. An applica-
tion of this result (or any other infinite-dimensional 
fixed-point theorem) requires intricate topological con-
siderations. In particular, we need to endow X with a 
topology that satisfies the following conditions: 

I. The set X is compact and convex and C⇤(µ) is a 
nonempty subset of X for all µ 2 X .
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II. The correspondence C⇤ is a Kakutani map; that is, 
it is upper hemicontinuous, and C⇤(µ) is compact and 
convex for all µ 2 X .

In the case of infinite dimensions, bounded sets in 
many spaces, such as the Lp(⌦) spaces, are not compact. 
In particular, X is not compact as a subset of Lp(⌦)
for any 1  p 1. One possible way around it is to 
consider the weak* topology on X ⇢ L1(⌦) in which 
bounded sets are compact. This choice runs into trouble 
because it is difficult to show the upper hemicontinuity 
of C⇤ (property II) under the weak convergence notion 
of the weak* topology. Alternatively, one could impose 
structural properties and restrict to a subset of X , such 
as the space of Lipschitz functions, in which both com-
pactness and continuity can be established. The issue with 
this approach is that the correspondence operator may, in 
general, not preserve these properties; that is, property I 
might not hold. For example, even if µ is Lipschitz, C⇤(µ)
might not contain any Lipschitz functions.

We strike a delicate balance between properties I and 
II by picking a space in which we can establish com-
pactness of X and upper hemicontinuity of C⇤ and, at 
the same time, ensuring that C⇤(µ) contains at least one 
element from this space. It turns out that the right space 
that works for our proof is the space of bounded varia-
tion. To motivate this topology on the space of pacing 
functions, we state some properties of the “smallest” 
dual optimal pacing function. For µ :Θ! [0,ω=Bmin], 
we define 'µ :Θ! [0,ω=Bmin] as

'µ(w, B) :à min
�

s 2 arg min
t2[0,ω=Bmin]

qµ(w, B, t)
⌧

for all (w, B) 2Θ. The minimum always exists because 
qµ(w, B, t) is continuous as a function of t (see Corollary 
1 in the online appendix for a proof), and the feasible 
set of the dual problem is compact.

We first show that 'µ varies nicely with w and B 
along individual components.
Lemma 2. For µ :Θ! [0,ω=Bmin], the following state-
ments hold: 

1. 'µ :Θ! [0,ω=Bmin] is nondecreasing in each compo-
nent of w.

2. 'µ :Θ! [0,ω=Bmin] is nonincreasing as a function of B.

The proof applies results from comparative statics, 
which characterize the way the optimal solutions be-
have as a function of the parameters, to the family of 
optimization problems mint2[0,ω=Bmin]qµ(w, B, t) parame-
terized by (w, B) 2Θ.

Now, we wish to show bounded variation of 'µ. It is 
a well-known fact that monotonic functions of one vari-
able have finite total variation. Moreover, functions of 
bounded total variation also form the dual space of the 
space of continuous functions with the L1 norm, which 
allows us to invoke the Banach–Alaoglu theorem to 
establish compactness in the weak* topology. These 

results for single variable functions, although not directly 
applicable to the multivariable setting, act as a guide in 
choosing the appropriate topology for our setting.

Because pacing functions take as input several vari-
ables, we need to look at multivariable generalizations 
of total variation. To this end, we state one of the stan-
dard definitions (there are multiple equivalent ones) of 
total variation for functions of several variables (see sec-
tion 5.1 of Evans and Gariepy 2015) and then follow it 
up by a lemma that gives a bound on the total variation 
of the component-wise monotonic function 'µ.
Definition 3. For an open subset ⌦ ⇢ Rn, the total vari-
ation of a function u 2 L1(⌦) is given by

V(u, ⌦) :à sup
�Z

⌦
u(ω)div φ(ω)dω

����φ 2 C1
c (⌦,Rn),

kφk1  1
⌧

, 

where C1
c (⌦,Rn) is the space of continuously differen-

tiable vector functions φ�of compact support contained 
in ⌦ and div φ àPn

ià1
@φi
@xi 

is the divergence of φ.

Lemma 3. For any pacing function µ :Θ! [0,ω=Bmin], 
the following statements hold: 

1. 'µ 2 L1(Θ).
2. V('µ,Θ)  V0, where V0 :à (d + 1)Ud+1ω=Bmin is a 

fixed constant.

Motivated by this lemma, we define the set of pacing 
functions that allow us to use our fixed-point argument. 
Define X0 à {µ 2 X |V(µ,Θ)  V0} to be the subset of 
pacing functions with variation at most V0. Note that 
'µ 2 X0. Define C⇤

0 : X 0 ⇉ X 0 as C⇤
0(µ) :à arg minµ̂2X0 

f (µ, µ̂) for all µ 2 X 0. We now state the properties 
satisfied by X 0 that make it compatible with the 
Kakutani–Fan–Glicksberg fixed-point theorem.
Lemma 4. The following statements hold: 

1. X 0 is nonempty, compact, and convex as a subset of 
L1(Θ).

2. f : X 0 ⇥ X 0 ! R is continuous when X 0 ⇥ X 0 is end-
owed with the product topology.

3. C⇤
0 : X0 ⇉ X 0 is upper hemicontinuous with nonempty, 

convex, and compact values.

Finally, with this lemma in place, we can apply the 
Kakutani–Fan–Glicksberg theorem to establish the exis-
tence of a µ 2 X 0 such that µ 2 C⇤

0(X0). The following 
lemma completes the proof of Proposition 2 by showing 
that the fixed point is also almost surely optimal for 
each type. It follows from the fact that, for µ 2 X 0 that 
satisfy µ 2 C⇤

0(µ), we have 'µ 2 C⇤
0(µ).

Lemma 5. If µ 2 C⇤
0(µ) à arg minµ̂2X0 f (µ, µ̂), then µ(w, B)

is almost surely optimal for each type; that is, µ(w, B) 2
arg mint2[0,ω=Bmin]qµ(w, B, t) a.s. w.r.t. (w, B) ~ G.

As mentioned earlier, Proposition 2 combined with 
Proposition 1 implies Theorem 1.
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4. Standard Auctions and Revenue 
Equivalence

In this section, we move beyond first price auctions and 
generalize our results to anonymous standard auctions 
with reserve prices. An auction A à (Q, M) with alloca-
tion rule Q : Rn

�0 ! [0, 1]n, payment rule M : Rn
�0 ! Rn

�0, 
and reserve price r is called an anonymous standard 
auction if the following conditions are satisfied: 

• Highest bidder wins: When the buyers bid (b1, : : : , 
bn), the allocation received by buyer i is given by Qi 
(b1, : : : , bn) à 1(bi � r, bi � bj ∀j 2 [n]) for all i 2 [n].

• Anonymity: The payments made by a buyer do not 
depend on the identity of the buyer. More formally, if 
the buyers bid (b1, : : : , bn), then for any permutation 
π�of [n] and buyer i 2 [n], we have Mi(b1, : : : , bn) à
Mπ(i)(bπ(1), : : : , bπ(n)); that is, the payment made by the 
ith buyer before the bids are permuted equals the pay-
ment made by the bidder π(i) after the bids have been 
permuted.

As in our definition of SFPE, we are using an infe-
asible tie-breaking rule that allocates the entire good to 
every highest bidder. As with SFPE, ties are a zero- 
probability event under our value pacing–based equi-
libria, and our results hold for arbitrary tie-breaking 
rules.

For consistency of notation, we modify the preceding 
notation slightly to better match the one used in previ-
ous sections. Exploiting the anonymity of auction A, we 
denote the payment made by a buyer who bids b when 
the other n – 1 buyers bid {bi}n�1

ià1 by M(b, {bi}n�1
ià1 ); that 

is, we use the first argument for the bid of the buyer 
under consideration and the other arguments for the 
competitors’ bids. Also, as the reserve price completely 
determines the allocation rule of a standard auction, in 
the rest of the section, we omit the allocation rule when 
discussing anonymous standard auctions and represent 
them as a tuple A à (r, M) of reserve price and payment 
rule.

To avoid delving into the inner workings of the auc-
tion, we assume the existence of an oracle that takes as 
an input an atomless distribution H over [0,ω] and out-
puts a bidding strategy ψH : [0,ω]! R, satisfying the 
following properties: 

1. The strategy ψH is a single-auction equilibrium for 
the auction A when the values are drawn i.i.d. from 
H, that is, ψH(x) 2 arg maxb�0EXi~H[x 1{b � max(r, {ψH 

(Xi)}i)}�M(b, {ψH(Xi)}i)].
2. The strategy ψH(x) is nondecreasing in x, and 

ψH(x) � r if and only if x � r.
3. The payoff for a bidder who has zero value for the 

object is zero at the single-auction equilibrium.
4. The distribution of ψH(x) when x ~ H is atomless.
Our results produce a pacing-based equilibrium bid-

ding strategy for budget-constrained buyers by invok-
ing ψH as a black box. To make the discussion more 

concrete, let A be a second price auction with reserve 
price r. For a given atomless distribution H, define 
ψH(v) à v to be the truthful bidding strategy. Then, ψH 

is a single-auction equilibrium because bidding truth-
fully is a dominant strategy in second price auctions. 
Moreover, ψH is nondecreasing, ψH(x) � r if and only if 
x � r, a bidder with zero value bids zero to attain a pay-
off of zero, and finally the distribution of ψH(x) when x ~ 
H is simply H, which is atomless. Thus, second price auc-
tions with reserve prices satisfy the assumptions.

In our analysis, we allow the seller to condition on 
the feature vector and choose a different mechanism for 
each context α 2 A. Let {Aα à (r(α), Mα)}α2A be a family 
of anonymous standard auctions such that α !̀ r(α)
is measurable. Moreover, suppose that, for any mea-
surable bidding function α !̀ b(α) and any collection 
of measurable competing bidding functions α !̀ bi(α)
for i 2 [n� 1], the payment function α !̀ Mα(b(α), 
{bi(α)}n�1

ià1 ) is also measurable. We define the equilib-
rium notion for the family {Aα}α2A of anonymous 
standard auctions.

Definition 4. A strategy β⇤ :Θ ⇥ A ! R is called a 
symmetric equilibrium for the family of standard auc-
tions {Aα}α2A if β⇤(w, B,α) (as a function of α) is an 
optimal solution to the following optimization prob-
lem almost surely w.r.t. (w, B) ~ G:

max
b:A!R�0

Eα,{θi}n�1
ià1

[wTα1{b(α) � max(r(α), {β⇤(θi, α)}i)}
�Mα(b(α), {β⇤(wi, Bi, α)}i)]

s:t: Eα,{θi}n�1
ià1

[Mα(b(α), {β⇤(wi, Bi, α)}i)]  B:

Observe that this definition reduces to Definition 1 if 
we take {Aα}α2A to be the set of first price auctions 
with reserve price r(α). Next, we show that the equi-
librium existence and characterization results of the 
previous sections apply to all standard auctions that 
satisfy the required assumptions. To do this, we first 
need to define value-pacing strategies for anonymous 
standard auctions. These are a natural generalization 
of the value pacing–based strategies used for first 
price auctions.

Recall that, for a pacing function, µ :Θ! R�0 and 
α 2 A, λµα�denotes the distribution of paced values for 
item α, and Hµ

α�denotes the distribution of the highest 
value for α�among n – 1 buyers. For ease of notation, 
we use ψµα�to denote the single-auction equilibrium 
strategy for auction Aα�when values are drawn from 
H à λµα�or, more formally, ψµα :à ψλ

µ
α
α . For a pacing 

function µ :Θ! R�0, (w, B) 2Θ�and α 2 A, define

Ψµ(w, B,α) :à ψµα
wTα

1 +µ(w, B)

◆ 
, (1) 

to be our candidate equilibrium strategy. This strategy 
is well-defined because, by Lemma 6 of the Online 
appendix, λµα�is atomless almost surely w.r.t. α. As 
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before, the bid Ψµ(w, B,α) is the amount a non–budget- 
constrained buyer with type (w, B) bids on item α�if the 
buyer’s paced value is the buyer’s true value when 
competitors are pacing their values accordingly. In 
other words, bidders in the proposed equilibrium first 
pace their values and then bid according to the single- 
auction equilibrium of auction Aα�in which competi-
tors’ values are also paced.

With the definition of value pacing–based strategies 
in place, we can now state the main result of this sec-
tion. Recall that, C⇤

0 : X 0 ⇉ X 0 is given by C⇤
0(µ) :à

arg minµ̂2X0 f (µ, µ̂) for all µ 2 X 0, where f is the ex-
pected dual function in the case of a first price auction 
as defined in Section 3.3.

Theorem 2 (Revenue and Pacing Equivalence). For any 
pacing function µ 2 X 0 such that µ 2 C⇤

0(µ) is an equilib-
rium pacing function for first price auctions, the value 
pacing–based strategy Ψµ :Θ ⇥ A ! R�0 is a symmetric 
equilibrium for the family of auctions {Aα}α2A. Moreover, 
the expected payment made by buyer θ�under this equilib-
rium strategy is equal to the expected payment made by 
buyer θ�in first price auctions under the equilibrium strat-
egy βµ :Θ ⇥ A ! R�0, that is,
Eα,{(θi)}n�1

ià1
[Mα(Ψµ(θ,α), {Ψµ(θi, α)}i)]

à Eα,{(θi)}n�1
ià1

[βµ(θ,α)1{βµ(θ,α) � max(r(α), {βµ(θi, α)}i)}]:

The key step in the proof involves showing that the dual 
of the budget-constrained utility-optimization problem 
faced by a buyer is identical for all standard auctions when 
the other buyers use the equilibrium strategy Ψµ of the 
standard auction under consideration. To establish this 
key step, we exploit the separable structure of the Lagrang-
ian optimization problem and apply the known utility 
equivalence result for standard auctions in the single- 
auction i.i.d. setting once for each item α 2 A. Then, we 
establish the analogue of Proposition 1 for standard auc-
tions. Combining this with µ 2 C⇤

0(µ) yields Theorem 2.
Our revenue equivalence relies on three critical as-

sumptions: risk neutrality, independence of weight vec-
tors, and symmetry. As in the classic setting, revenue 
equivalence fails if buyers are risk-averse (see, e.g., 
Krishna 2009). We emphasize that, in contrast to the 
classic revenue equivalence result, buyers’ values wTα�
are not independent. Our result does require that weight 
vectors are independent across buyers. Buyers in our 
model are ex ante homogeneous because buyer types are 
drawn from the same population. We remark, however, 
that buyers are heterogenous in the interim sense: the 
buyers competing in an auction can have different bud-
gets and weight vectors. Revenue equivalence fails if 
buyers are ex ante heterogenous, that is, if competitors are 
drawn from different populations.

Before ending this section, we state some important 
implications of Theorem 2. If the pacing function µ

allows buyers to satisfy their budget constraints in some 
standard auction, then the same pacing function µ
allows buyers to satisfy their budgets in every other 
standard auction. In other words, the equilibrium pac-
ing functions are the same for all standard auctions. 
This means that, in order to calculate an equilibrium 
pacing function µ that satisfies µ 2 C⇤

0(µ), it suffices to 
compute it for any standard auction (in particular, one 
could consider a second price auction for which bidding 
truthfully is a dominant-strategy equilibrium in the 
absence of budget constraints). This fact is especially 
pertinent in view of the recent shift in auction format 
used for selling display ads from second to first price 
auctions because it states that, in equilibrium, buyers 
can use the same pacing function even after the change. 
Moreover, the same pacing function continues to work 
even if the family {Aα}α2A is an arbitrary collection of 
first and second price auctions (or any other combina-
tion of standard auctions); that is, Theorem 2 states that, 
not only can one pacing function be used to manage 
budgets in first and second price auctions, the same 
pacing function also works in the intermediate transi-
tion stages in which buyers may potentially participate 
in some mixture of these auctions.

Another important takeaway is that all standard auc-
tions with the same allocation rule yield the same reve-
nue to the seller. We remark, however, that the revenue 
of the seller does depend on the allocation, and the 
seller could, thus, maximize revenue by optimizing 
over the reserve prices. We leave the question of optimiz-
ing the auction design as a future research direction.

The revenue equivalence in the presence of in- 
expectation budget constraints is driven by the invari-
ance of the pacing function over all standard auctions and 
the classic revenue equivalence result for the uncon-
strained i.i.d. setting, which shows that—on average— 
payments are the same across standard auctions. Whereas 
revenue equivalence is known to hold for standard auc-
tions without budget constraints, Che and Gale (1998) 
show that, when budget constraints are hard, first price 
auctions lead to higher revenue than second price auc-
tions. The intuition for their result is that, because bids are 
higher in second than in first price auctions, hard budget 
constraints are more likely to bind in the former, which 
reduces the seller’s revenue. Surprisingly, Theorem 2
shows that, when budget constraints are in expectation 
(and values are feature-based), we recover revenue equiv-
alence. To better understand the difference between the 
two types of constraints, consider the following example.
Example 1. Consider two buyers with values drawn 
uniformly from the unit interval [0, 1]. Moreover, let 
the budget of the buyer with value v be given by 0:5 +
✏v for some small ✏ > 0. First, observe that, in the 
absence of budget constraints, bidding truthfully is a 
dominant strategy in a second price auction, and 
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bidding half of one’s value is a Bayes–Nash equilibrium 
in a first price auction. Moreover, from the standard 
revenue-equivalence result, a buyer with value x spends 
x2=2 in expectation over the other buyer’s type in both 
auctions. Now, because this expected expenditure is less 
than 1/2 for all types, the in-expectation budget con-
straints are nonbinding and the equilibria remain un-
changed even when in-expectation budget constraints 
are imposed. On the other hand, consider the case when 
the budget constraints are hard. The first price auction 
equilibrium remains unchanged because every buyer 
type bids less than 0.5, so the constraint is always satis-
fied. But, for second price auctions, this is not the case: 
with hard budget constraints, the equilibrium strategy 
for the buyers is to bid the minimum of their value and 
budget, thereby leading to lower revenue compared 
with the truthful-bidding equilibrium.

We conclude this section with a discussion of exten-
sions and alternative models. First, even though we 
only consider anonymous standard auctions in this 
work, our equilibrium existence and revenue equiva-
lence results can be extended to other anonymous 
allocation rules Q, which (i) admit an oracle that out-
puts an equilibrium bidding strategy for traditional i.i.d. 
settings and satisfies properties 1–4 listed at the begin-
ning of this section and (ii) lead to continuous nonde-
creasing interim-allocation rules for every buyer–item 
pair when other buyers follow a value pacing–based 
strategy analogous to the one defined in Equation (1). 
Second, the argument developed in the section also 
implies the existence of value pacing–based equilibria 
and revenue equivalence for standard auctions in the 
symmetric special case of the models studied in Balseiro 
et al. (2015, 2021), which consider buyers with ex ante 
budget constraints that hold in expectation over a buyer’s 
own value and the values of others (see Online Appendix 
C.1 for a detailed description).

5. Worst Case Efficiency Guarantees
In this section, we use our framework to characterize 
the price of anarchy, that is, the worst case ratio of the 
efficiency of a pacing equilibrium relative to the efficiency 
of the best possible allocation. We measure efficiency of 
an allocation using the notion of liquid welfare introduced 
by Dobzinski and Leme (2014), which captures the maxi-
mum revenue that can be extracted by a seller who knows 
the values in advance. We use liquid welfare as a measure 
of efficiency instead of social welfare because the latter 
can have arbitrarily small price of anarchy (see Online 
Appendix D for an example). Throughout this section, we 
assume that the reserve price is zero for each item; that is, 
r(α) à 0 for all α 2 A.

We begin by defining the appropriate notion of liquid 
welfare of an allocation for our model motivated by the 
original definition of Dobzinski and Leme (2014). Here, 

an allocation simply refers to a measurable function 
x : A ⇥Θn ! �n, where �n à {y 2 Rn

+ |Pn
kà1 yk à 1} is the 

n-simplex and xi(α,θ
!

) denotes the fraction of the item α�
allocated to buyer i when the buyer types are given by 
the profile θ

!
à (θ1, : : : ,θn). In our setting, the liquid wel-

fare of a buyer is equal to the minimum of the value 
obtained by the buyer from the allocation and the buyer’s 
budget.

Definition 5. For an allocation x : A ⇥Θn ! �n, we 
define its liquid welfare as

LW(x) à
Xn

ià1
Eθi[min{Eα,θ�i[wT

i α · xi(α,θi,θ�i)], Bi}]:

Next, we define price of anarchy with respect to liquid 
welfare for pacing-based equilibria. Our definition is 
an instantiation of the general definition of price of 
anarchy introduced in Koutsoupias and Papadimi-
triou (2009). Before proceeding with the definition, it 
is worth noting an important consequence of our reve-
nue equivalence result (Theorem 2): given an equilib-
rium pacing function µ, that is, a fixed point of C⇤

0, the 
allocation under the equilibrium parameterized by µ
is the same for all standard auctions. Thus, the equi-
librium allocation is determined by the pacing func-
tion and is independent of the pricing rule of the 
standard auction, which is reflected in the following 
definition. For an equilibrium pacing function µ, we 
use xµ to denote the allocation under the equilibrium 
parameterized by µ; again, this allocation is the same 
for all standard auctions without reserve prices.

Definition 6. The price of anarchy of pacing-based 
equilibria (for all standard auctions) is defined as the 
ratio of the worst case liquid welfare across all pacing 
equilibria and the optimal liquid welfare

PoA à
infµ:µ2C⇤

0(µ) LW(xµ)
supx LW(x) , 

where the supremum in the denominator is taken over 
all measurable allocations x.

Because the PoA of pacing-based equilibria does 
not depend on the payment rule, we can work with 
the most convenient standard auction to prove a 
lower bound on the PoA, which in this case happens 
to be the second price auction. Azar et al. (2017) study 
the PoA of pure-strategy Nash equilibria of second 
price auctions in a non-Bayesian multi-item setting with 
budgets and provide a lower bound of 1/2 for it. Unfortu-
nately, their result hinges on the “no overbudgeting” 
assumption that requires the sum of equilibrium bids to 
be bounded above by the budget, which need not hold 
for pacing-based equilibria, thereby necessitating new 
proof ideas. Moreover, their bound may be vacuous 
for some parameter values because a pure-strategy Nash 
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equilibrium is not guaranteed to exist in their setting. 
To get around this, they study mixed-strategy and 
Bayes–Nash equilibria and bound their PoA, but the 
lower bound they obtain for these equilibria is much 
worse (less than 0.02). Our model does not suffer from 
the problem of existence: a pure-strategy pacing-based 
equilibrium is always guaranteed to exist (Theorem 1). 
This makes the following lower bound on the PoA, 
which provides a worst case guarantee of 1/2, more 
appealing.
Theorem 3. The PoA of pacing-based equilibria of any 
standard auction is greater than or equal to 1/2.

The proof, which is in Online Appendix D, leverages 
the complementary slackness condition of pacing-based 
equilibria to bound the PoA. Interestingly, our proof 
does not use a hypothetical deviation to another bid-
ding strategy, a technique commonly found in PoA 
bounds (see Roughgarden et al. 2017 for a survey) and, 
thus, may be of independent interest.

6. Structural Properties
In this section, we show that pacing-based equilibria 
satisfy certain monotonicity and geometric properties 
related to the space of value vectors. It is worth noting 
that, in light of the revenue equivalence result of the 
preceding section, the properties established in this sec-
tion hold for pacing equilibria of all standard auctions. 
As in Section 5, we assume that the reserve price for 
each item is zero, that is, r(α) à 0 for all α 2 A. Without 
this assumption, similar results hold, but they become 
less intuitively appealing and harder to state. Moreover, 
we also assume that the support of G, denoted by δ(G), 
is a convex compact subset of Rd+1

+ . This assumption is 
made to avoid having to specify conditions on the pac-
ing multipliers of types with probability zero of occur-
ring. Moreover, we consider a pacing function µ :Θ!
[0,ω=Bmin] such that µ(w, B) is the unique optimal solu-
tion for the dual minimization problem for each (w, B) 
in the support of G, that is, µ(w, B) à arg mint2[0,ω=Bmin]
qµ(w, B, t) for all (w, B) 2 δ(G). We remark that we are 
assuming that the best response is unique rather than 
the equilibrium being unique. The former can be shown 
to hold under fairly general conditions.

First, in Lemma 2, we showed that the pacing func-
tion associated with an SFPE is monotone in the buyer 
type. In particular, when the best response is unique, 
this result implies that µ(w, B) is nondecreasing in each 
component of the weight vector w and nonincreasing in 
the budget B. Intuitively, if the budget decreases, a 
buyer needs to shade bids more aggressively to meet 
the buyer’s constraints. Alternatively, when the weight 
vector increases, the advertiser’s paced values increase, 
which results in more auctions won and higher pay-
ments. Therefore, to meet the advertiser’s constraints, 

the advertiser needs to respond by shading bids more 
aggressively. Furthermore, when the best response is 
unique, it can also be shown that µ is continuous (see 
Lemma 14 in the online appendix).

The next theorem further elucidates the structure 
imposed on µ by virtue of it corresponding to the 
optima of the family of dual optimization problems 
parameterized by (w, B). In what follows, we refer to a 
buyer (w, B) with µ(w, B) à 0 as an unpaced buyer and 
call the buyer a paced buyer otherwise.

Proposition 3. Consider a unit vector ŵ 2 Rd
+ and budget 

B > 0 such that w=kwk à ŵ for some (w, B) 2 δ(G). Then, 
the following statements hold: 

1. Paced buyers with budget B and weight vectors lying 
along the same unit vector ŵ have identical paced feature 
vectors in equilibrium. Specifically, if (w1, B), (w2, B) 2 δ(G)
with w1=kw1k à w2=kw2k à ŵ and µ(w1, B),µ(w2, B) > 0, 
then w1=(1 +µ(w1, B)) à w2=(1 +µ(w2, B)).

2. Suppose there exists an unpaced buyer (w, B) 2 δ(G)
with w=kwk à ŵ and µ(w, B) à 0. Let w0 à arg max{kwk |
w 2 Rd; µ(w, B) à 0 and w=kwk à ŵ} be the largest un-
paced weight vector along the direction ŵ. Then, all paced 
weight vectors get paced down to w0, that is, w=(1 +
µ(w, B)) à w0 for all w 2 δ(G) with w=kwk à ŵ and 
µ(w, B) > 0.

In combination with complementary slackness, the 
first part states that, in equilibrium, buyers who have 
the same budget, have positive pacing multipliers, and 
have feature vectors that are scalar multiples of each 
other get paced down to the same type at which they 
exactly spend their budget. In other words, scaling up 
the feature vector of a budget-constrained buyer and 
keeping the buyer’s budget the same does not affect the 
equilibrium outcome. The second case of Proposition 3
addresses the directions of buyers that have a mixture 
of paced and unpaced buyers. In this case, there is a 
critical buyer type who exactly spends the buyer’s bud-
get when unpaced, and all buyer types that have 
weight vectors with larger norm (but the same budget) 
get paced down to this critical buyer type; that is, their 
paced weight vector equals the critical buyer type’s 
weight vector in equilibrium. The buyer types that have 
a smaller norm are unpaced.

Our nonatomic model also allows us to answer the 
following question: keeping the competition fixed, how 
should an advertiser modify the advertiser’s targeting 
criteria or ad (as captured by the weight vector) in order 
to maximize the advertiser’s utility? This result is espe-
cially important for online display ad auctions, in which 
the weight vector is estimated with the goal of predict-
ing the click-through rate and advertisers routinely 
modify their ads to attract more clicks. The following 
theorem states that the gradient w.r.t. the weight vector 
of the equilibrium utility of a buyer with type (w, B) is 
given by the expected feature vector that the buyer 
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wins in equilibrium. This is because strong duality (Prop-
osition 1) implies that the utility of every buyer type is 
given by the optimal dual value qµ(w, B,µ(w, B)). From a 
practical perspective, an advertiser should focus on im-
proving the weights of those features that have the largest 
average among the contexts won. It is worth noting that 
these quantities can be easily computed using data avail-
able to an advertiser.
Proposition 4. Assume that A is compact. Let µ :Θ!
R�0 be an equilibrium pacing function, that is, µ :Θ! R�0 
such that µ(w, B) 2 arg mint�0qµ(w, B, t) almost surely 
w.r.t. (w, B) ~ G. Then, for all (w, B) 2Θ, we have rwqµ
(w, B,µ(w, B)) à Eα,{θi}n�1

ià1
[α1{βµ((w, B),α) � βµ(θi ,α)i ∀i}].

7. Analytical Example and Numerical 
Experiments

In this section, we illustrate our theory by providing a 
stylized example in which we can determine the equi-
librium bidding strategies in closed form and then 
conduct some numerical experiments to verify our the-
oretical results. The purpose of the analytical example is 
to confirm our structural results and also help validate 
that our numerical procedures converge to an approxi-
mate version of the equilibrium strategies proposed in 
our paper.

7.1. Analytical Example
We provide an instructive (albeit stylized) example 
with two-dimensional feature vectors to illustrate the 
structural property described in Section 6. For 1  a < b, 
define the set of buyer types as (see the gray region in 
Figure 1 for a visualization of this set)

Θ :à (w, B) 2 R2
�0 ⇥ R+

����a  kwk  b, B à 2kwk�w1 �w2
πkwk

� ⌧
:

In this example, weight vectors lie in the intersection of 
a disk with the nonnegative quadrant. Observe that all 
buyer types whose weight vectors are colinear (i.e., they 
lie along the same unit vector) have identical budgets. 
Let the number of buyers in the auction be n à 2. More-
over, define the set of item types as the two standard 
basis vectors A :à {e1, e2}. Finally, let G (distribution 
over buyer types) and F (distribution over item types) 
be the uniform distribution on Θ�and A, respectively. 
Because A is discrete and F does not have a density, this 
example does not satisfy the assumptions we make in 
our model. Nonetheless, in the next claim, we show 
that not only does a pacing equilibrium exist, but we 
can also state it in closed form. The proof of the claim 
can be found in Online Appendix F.
Claim 1. The pacing function µ :Θ! R defined as 
µ(w, B) à kwk� 1 for all (w, B) 2Θ�is an equilibrium, that 
is, βµ as given in Definition 1, is an SFPE.

Because Hµ
α(·) is a strictly increasing function for all 

α 2 A, it is easy to check that µ(w, B) is the unique opti-
mal to the dual optimization problem mint2[0,ω=Bmin]
q(µ, w, B, t) for all (w, B) 2 δ(G). Therefore, this example 
falls under the purview of part 1 of Proposition 3. 
As expected, conforming to Proposition 3, the buyers 
whose weight vectors are colinear get paced down to 
the same point on the unit arc as shown in Figure 1.

7.2. Numerical Experiments
We now describe the simulation-based experiments we 
conducted to verify our theoretical results. As is necessi-
tated by computer simulations, we studied a discretized 
version of our problem in these experiments. More pre-
cisely, in our experiments, we used discrete approxima-
tions to the buyer type distribution G and item type 

Figure 1. (Color online) Example from Section 7.1 with a à 2, b à 3 

Notes. The unpaced and paced buyer weight vectors are uniformly distributed in the gray (triangle) and black (circle) regions, respectively. Each 
plot shows the distribution of two-dimensional buyer weight vectors. The weight vectors before pacing are depicted in gray (triangles), and the 
paced weight vectors are depicted in black (circles). The left plot shows the theoretical results of Section 7.1. In the left plot, the buyer weight vec-
tors lying on the dotted line get paced down to the point. The right plot shows the results of best response iteration on the corresponding discre-
tized problem.
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distribution F. Moreover, for all item types α, we set the 
reserve price r(α) à 0. One of the primary objectives of 
our simulations is to demonstrate that, despite the dis-
cretization, a buyer type can obtain the buyer’s optimal 
bidding strategy by finding the optimal solution to the 
dual problem as our theory suggests. In other words, to 
compute an equilibrium, it suffices to best respond in 
the dual space, which has the advantage of being much 
simpler than the primal space. To do so, for each discre-
tized instance, we run best response dynamics in the 
dual space by iterating over buyer types: computing 
each buyer type’s optimal dual solution, keeping every-
one else’s pacing-based strategy fixed, and then using 
this optimal dual solution to determine the buyer’s 
pacing-based bidding strategy. This approach is not 
guaranteed to converge. In fact, because of the discreti-
zation, strong duality may fail to hold, and a pure 
strategy equilibrium may not even exist. Nevertheless, 
despite the lack of theoretical guarantees, our experi-
ments demonstrate that our analytical results and the 
dual best-response algorithm they inspire continue to 
work well in discrete settings.

As a first step and to validate our best response 
dynamics, we ran the algorithm on the discrete approxi-
mation of the example discussed in Section 7.1, for 
which we already analytically determined a pacing 
equilibrium in Claim 1. The problem was discretized by 
picking 320 points lying in the set of buyer types Θ�
defined in Section 7.1. In Figure 1, we provide plots for 
the case when a à 2, b à 3. We see that the theoretical 
predictions from Claim 1 are replicated almost exactly 
by the solution computed by the best response iteration 
on the discretized problem. Moreover, colinear buyer 
types converge to the same paced-type vector, thereby 
validating Proposition 3.

We conducted experiments to verify the structural 
properties described in Proposition 3. Here, we consider 
instances with n à 3 buyers per auction, d à 2 features, 
the buyer type distribution G given by the uniform dis-
tribution on (1, 2) ⇥ (1, 2) ⇥ {0:6}, and the item type dis-
tribution F given by the uniform distribution on the 
one-dimensional simplex {(x, y) |x, y � 0; x + y à 1}. These 

were discretized taking a uniform grid with 10 points 
along each dimension. The results are portrayed in Figure 
2. The structural properties discussed in Proposition 3 are 
clearly evident in Figure 2. In this scenario, the buyer 
types are uniformly distributed on (1, 2) ⇥ (1, 2) ⇥ {0:6}, 
and as a consequence, all buyers have identical budgets 
equal to 0.6. At equilibrium, it can be seen that the colinear 
buyer types (i.e., buyers whose weight vectors w are colin-
ear) who have a positive multiplier get paced down to the 
critical buyer type who exactly spends the buyer’s budget. 
Moreover, at equilibrium, the boundary that separates the 
paced buyer types from the unpaced buyer types—the 
curve in which the critical buyer types lie—can be clearly 
observed in the left-hand plot in Figure 2. Finally, we con-
structed random discrete instances by uniformly sampling 
50 buyer weight vectors and 20 item feature vectors from 
the square (1, 2) ⇥ (1, 2) and setting the number of buyers 
to be n à 3 and the budget of all buyer types to be B à 2. 
We found that our dual-based dynamics always con-
verged within 250 iterations to pacing-based bidding 
strategies that, on average, were within 2.5% of the 
utility-maximizing budget feasible bidding strategy.

8. Conclusion and Future Work
This paper introduces a natural contextual valuation 
model and characterizes the equilibrium bidding be-
havior of budget-constrained buyers in first price auc-
tions in this model. We extend this result to other 
standard auctions and establish revenue equivalence 
among them. Because of the extensive focus on second 
price auctions, previous work endorses bid pacing as 
the framework of choice for budget management in the 
presence of strategic buyers. Our results suggest that 
value pacing, which coincides with bid pacing in sec-
ond price auctions, is an appropriate framework to 
manage budgets across all standard auctions.

An important open question we leave unanswered is 
that of optimizing the reserve prices to maximize seller 
revenue under equilibrium bidding. In general, optimiz-
ing under equilibrium constraints is challenging, so it is 
interesting to explore whether our model possesses addi-
tional structure that allows for tractability. Another related 

Figure 2. (Color online) Numerical Experiment from Section 7.2

Notes. The left plot depicts how the multiplicative shading factor 1=(1 +µ(w, B)) varies with buyer weight vector w (budget B à 0.6 is the same 
for every buyer type). On the right, we plot the paced weight vectors of the buyer types.
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question is that of characterizing the revenue-optimal 
mechanism for our model. Our contextual-value model 
can capture multi-item auctions with additive valuations 
as a special case (by interpreting each context as a differ-
ent item), which is a notoriously hard setting for revenue 
maximization even in the absence of budget constraints. 
Investigating dynamics in first price auctions with strate-
gic budget-constrained buyers is another interesting open 
direction worth exploring. We also leave open the ques-
tion of efficient computation of the pacing-based equilibria 
discussed in this paper. Addressing this question will 
likely require choosing a suitable method of discretization 
and tie breaking without which equilibrium existence 
may not be guaranteed (see, e.g., Babaioff et al. 2021, Con-
itzer et al. 2022a). Finally, another interesting research 
direction is to develop conditions that guarantee uni-
queness of an equilibrium. In light of recent results by 
Conitzer et al. (2022a), we conjecture that, without further 
assumptions, the equilibrium would generally not be 
unique.

Endnotes
1 See https://www.emarketer.com/content/us-digital-ad-spending-2019.
2 See https://www.blog.google/products/admanager/rolling-out- 
first-price-auctions-google-ad-manager-partners/.
3 See https://www.mopub.com/en/blog/first-price-auction.
4 The Google Ads Help page defines “average daily budget” at 
https://support.google.com/google-ads/answer/6312?hl=en.
5 See, for example, https://www.blog.google/products/admanager/ 
rolling-out-first-price-auctions-google-ad-manager-partners/.
6 We use the term “value pacing–based” strategies to differentiate it 
from bid pacing/shading, which is previously studied in the con-
text of truthful auctions (Borgs et al. 2007; Balseiro et al. 2015, 2021; 
Conitzer et al. 2022a, b).

References
Abhishek V, Hosanagar K (2013) Optimal bidding in multi-item 

multislot sponsored search auctions. Oper. Res. 61(4):855–873.
Aggarwal G, Badanidiyuru A, Mehta A (2019) Autobidding with 

constraints. Caragiannis I, Mirrokni VS, Nikolova E, eds. Web 
Internet Econom. 15th Internat. Conf. Proc. (Springer, Cham, Swit-
zerland), 17–30.

Aliprantis CD, Border KC (2006) Infinite Dimensional Analysis: A 
Hitchhiker’s Guide (Springer Science & Business Media).

Azar Y, Feldman M, Gravin N, Roytman A (2017) Liquid price of anarchy. 
Internat. Sympos. Algorithmic Game Theory (Springer, Cham, Switzer-
land), 3–15.

Babaioff M, Cole R, Hartline JD, Immorlica N, Lucier B (2021) 
Non-quasi-linear agents in quasi-linear mechanisms (extended 
abstract). Lee JR, ed. 12th Innovations Theoretical Comput. Sci. 
Conf. (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dag-
stuhl, Germany), 84:1–84:1.

Balseiro S, Kim A, Mahdian M, Mirrokni V (2021) Budget-management 
strategies in repeated auctions. Oper. Res. 69(3):859–876.

Balseiro SR, Gur Y (2019) Learning in repeated auctions with bud-
gets: Regret minimization and equilibrium. Management Sci. 
65(9):3952–3968.

Balseiro SR, Besbes O, Weintraub GY (2015) Repeated auctions with 
budgets in ad exchanges: Approximations and design. Manage-
ment Sci. 61(4):864–884.

Bertsekas DP, Hager WW, Mangasarian OL (1998) Nonlinear Pro-
gramming (Athena Scientific, Belmont, MA).

Bigler J (2021) Rolling out first price auctions to Google Ad Manager 
partners. Accessed February 17, 2021, https://www.blog.google/ 
products/admanager/rolling-out-first-price-auctions-google- 
ad-manager-partners/.

Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) 
Dynamics of bid optimization in online advertisement auctions. 
Williamson CL, Zurko ME, Patel-Schneider PF, Shenoy PJ, eds. Proc. 
16th Internat. Conf. World Wide Web (ACM, New York), 531–540.

Che Y-K, Gale I (1998) Standard auctions with financially con-
strained bidders. Rev. Econom. Stud. 65(1):1–21.

Chen X, Kroer C, Kumar R (2021a) The complexity of pacing for 
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