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Abstract. The internet advertising market is a multibillion dollar industry in which adver-
tisers buy thousands of ad placements every day by repeatedly participating in auctions.
An important and ubiquitous feature of these auctions is the presence of campaign bud-
gets, which specify the maximum amount the advertisers are willing to pay over a speci-
fied time period. In this paper, we present a new model to study the equilibrium bidding
strategies in standard auctions, a large class of auctions that includes first and second price
auctions, for advertisers who satisfy budget constraints on average. Our model dispenses
with the common yet unrealistic assumption that advertisers” values are independent
and instead assumes a contextual model in which advertisers determine their values
using a common feature vector. We show the existence of a natural value pacing—based
Bayes—Nash equilibrium under very mild assumptions. Furthermore, we prove a revenue
equivalence showing that all standard auctions yield the same revenue even in the pres-
ence of budget constraints. Leveraging this equivalence, we prove price of anarchy
bounds for liquid welfare and structural properties of pacing-based equilibria that hold
for all standard auctions. In recent years, the internet advertising market has adopted first
price auctions as the preferred paradigm for selling advertising slots. Our work, thus,
takes an important step toward understanding the implications of the shift to first price
auctions in internet advertising markets by studying how the choice of the selling mecha-

nism impacts revenues, welfare, and advertisers’ bidding strategies.

History: Accepted by Itai Ashlagi, revenue management and market analytics.
Supplemental Material: The online appendix is available at https://doi.org/10.1287 /mnsc.2023.4719.
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internet advertising

1. Introduction

In 2019, the revenue from selling internet ads in the
United States surpassed $129 billion." A large fraction
of these are sold on ad platforms operated by tech
giants such as Google, Facebook, and Twitter. These
platforms facilitate the sale of ads by acting as inter-
mediaries between advertisers and publishers. Millions
of ad slots are sold every day using auctions in which
advertisers bid based on user-specific information (such
as geographical location, cookies, and historical activity,
among others). The advertisers repeatedly participate in
these auctions with the aim of using their advertising
budget to maximize their reach through a combination
of user-specific targeting and bid optimization. The
presence of budgets introduces significant challenges as
it links different auctions together.

With billions of dollars at stake, the auction format
plays a crucial role. In recent years, a major shift has
occurred toward using first price auctions as the pre-
ferred mode of selling display ads as opposed to the

earlier standard of using second price auctions. For
example, in 2019, Google, which is one of the industry
leaders, announced a shift to the first price auction for-
mat for its ad exchange.2 In 2020, Twitter also made the
move to first price auctions for the sale of mobile app
advertising slots.” First price auctions typically lead to
more complicated bidding behavior because, unlike sec-
ond price auctions, truthful bidding is not an equilib-
rium in the first price setting.

This paper attempts to capture the salient features of
these display ad auctions with a focus on the newly
adopted first price auctions. Whereas equilibrium be-
havior in first price auctions is studied extensively, very
little attention is given to the effects of budget constraints
and user-specific information. Budget constraints span the
auctions, which means that advertisers must strategize
about their bids across all auctions simultaneously.
User-specific information leads to correlation between
the valuations that different advertisers have for a par-
ticular ad opportunity, whereas the literature largely
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focuses on independent and identically distributed (i.i.d.)
valuations. Our paper aims to shed some light on these
aspects by introducing and analyzing a framework for
general standard auctions, including first price auctions,
that incorporates budgets and context-based valuations.
In particular, the main questions we tackle are as follows:
How does the auction format affect the equilibrium
strategies of budget-constrained bidders? How does
the auction format impact the revenue of the ad plat-
form and the efficiency of the market?

1.1. Main Contributions

We incorporate the availability of user-specific informa-
tion (that is common to all advertisers) via a contextual
valuation model, which allows us to capture correlation
in values. User information and buyer targeting criteria
are modeled as vectors with the value that an advertiser
gains from the advertiser’s ad being shown to the user
being given by the inner product of these vectors or a
function thereof. Each advertiser has a (possibly non-
binding) budget that must be satisfied in expectation.
Such budget constraints are well-motivated in practice
because of the large number of auctions and are the
subject of study in previous work on budget manage-
ment (Gummadi et al. 2011; Abhishek and Hosanagar
2013; Balseiro et al. 2015, 2021). Our main contribution
is to introduce a framework that allows for the study of
standard auctions, which are auctions in which the
highest bidder wins, in the presence of budget con-
straints and contextual valuations. To the best of our
knowledge, this is the first analysis of standard auctions
in the presence of average budget constraints.

Typically, the targeting criteria and budget of an adver-
tiser are not known to the advertiser’s competitors. This
motivates us to model the participation of advertisers in
the market as a nonatomic game of incomplete informa-
tion in which each advertiser assumes that the other
advertisers are being drawn from some common under-
lying distribution. In this game, the decision problem
faced by each advertiser is to optimize the advertiser’s
utility and satisfy the advertiser’s budget constraint in
expectation. This expectation is taken over all the poten-
tial auctions the advertiser could end up participating
in; that is, the expectation is over users and competing
advertisers. Our nonatomic game allows us to sidestep
the possibility of multiple buyers tying in the auction
and leads to simple and intuitive equilibrium strategies.

1.1.1. Equilibrium Analysis. A contribution of this paper
is to prove the existence of a remarkably simple Bayes—
Nash equilibrium (BNE) strategy using a novel topolog-
ical argument. In our nonatomic model, there is a con-
tinuum of advertiser types, and a strategy for each
advertiser type is a function that maps contexts to bids.
Directly proving existence of an equilibrium in this
complicated strategy space in the presence of budget

constraints turns out to be difficult. We sidestep this dif-
ficulty by establishing strong duality for the constrained
nonconvex optimization problem faced by each adver-
tiser type and characterizing the primal optimum in
terms of the dual optimum.

We propose a remarkably simple class of strategies,
which we dub value pacing-based strategies. These strat-
egies build on the symmetric equilibrium strategies of the
standard iid. setting, inheriting their interpretability in
the process. A value pacing-based strategy recommends
that each advertiser should shade the advertiser’s value
by a multiplicative factor to manage the advertiser’s bud-
get and then bid using the symmetric equilibrium strat-
egy from the standard iid. setting—as the advertiser
would in the absence of budgets—but assuming that
competitors” values are also paced. This naturally ex-
tends multiplicative bid pacing/shading, which is one
of the several ways budgets are managed in practice,
to nontruthful auctions (Balseiro et al. 2021; Conitzer
et al. 2022a, b). To the best of our knowledge, our value-
pacing approach is the first to show optimal pacing-
based strategies outside of truthful auctions.

Our nonatomic game has a pacing (dual) multiplier
for each buyer type, which are uncountably many in
cardinality. This leads to an infinite-dimensional equi-
librium space even after moving to the simpler dual
space. In infinite dimensions, establishing even the sim-
ple prerequisites of any fixed-point theorem, namely,
compactness and continuity, can be an ordeal, one
which requires careful topological arguments. Whereas
other papers also analyze equilibrium strategies in the
dual space (see, e.g., Gummadi et al. 2011, Balseiro et al.
2015), these consider settings with finitely many pacing
multipliers in which establishing compactness is a triv-
ial task. The main technical contribution of this paper is
twofold: (i) choosing the right topological space for the
pacing multipliers based on their monotonicity proper-
ties and (ii) establishing compactness and continuity in
this carefully chosen space. As we discuss in Section 3.3,
this choice of topology is far from obvious. In fact, to the
best of our knowledge, all of the topologies used in stan-
dard fixed-point arguments for infinite-dimensional
spaces (see Aliprantis and Border 2006 for examples)
prove insufficient in the setting we consider, which
compels us to carefully exploit the structural proper-
ties of pacing and work with the topological space of
multivariate functions of bounded variation. We believe
the tools developed in this paper might be useful in
other nonatomic games.

1.1.2. Standard Auctions and Revenue Equivalence. Our
framework accommodates anonymous auction formats
in which the highest bidder wins, such as second price
and all-pay auctions (even in the presence of reserve
prices). In its full generality, it acts as a powerful black
box: it takes as input any Bayes—Nash equilibrium for
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the well-studied standard ii.d. setting, composes it with
value pacing, and outputs a Bayes—Nash equilibrium
for our model. Surprisingly, we show that, for a fixed
distribution over advertisers and users, the same multi-
plicative factors can be used by the advertisers to shade
their values in the equilibrium strategies for all stan-
dard auctions. This fact allows us to compare revenues
across auction formats. We prove that, in the presence
of in-expectation budget constraints, the revenue gener-
ated in a value pacing-based equilibrium is the same
for all standard auctions. This is in sharp contrast to the
case when budget constraints are strict, in which reve-
nue equivalence is known not to hold (Che and Gale
1998). In light of the recent shift from second to first
price auctions by many ad platforms, the ability to com-
pare budget management in both first and second price
auctions is an especially relevant aspect of our frame-
work. A recent paper of Goke et al. (2021) empirically
investigates the revenue impact resulting from this
recent switch. Goke et al. (2021) find that, after a brief
adjustment period, publishers’ revenues under first
price auctions returned to the same levels as they were
under second price auctions before the change. Because
existing revenue equivalence results do not apply to the
display-ad industry (because of budget constraints and
dependencies in valuations), our theory offers the first
principled justification for this empirical finding by
establishing revenue equivalence in the presence of con-
textual values and in-expectation budget constraints.

1.1.3. Price of Anarchy (PoA) and Structural Results. We
leverage our revenue equivalence result to establish effi-
ciency guarantees and structural properties that hold
for all standard auctions. In particular, we prove a
(1/2)-lower bound for the price of anarchy of liquid
welfare (a notion of efficiency that incorporates budget
constraints) for our value pacing-based equilibria. Our
result implies that the liquid welfare of a pacing equilib-
rium is at most 1/2 of the liquid welfare of the best pos-
sible allocation. On the structural front, we study how
value pacing-based equilibrium strategies change with
buyer type, which consists of a weight vector (repre-
senting targeting criteria) and a budget. We show that
budget-constrained buyers with identical budgets and
colinear weights for features get paced to the same
value in equilibrium. This shows that any enhancement
in the ad quality without changing its targeting criteria,
which corresponds to scaling up the weight vector, is
futile in the absence of an increase in budget. Moreover,
we also study how advertisers should change their tar-
geting criteria (as represented by their weight vector) to
maximize their utility.

1.1.4. Numerical Experiments. To test our model, we
run numerical experiments after making appropriate
discretizations. The outcomes of these experiments are

strikingly close to our theoretical predictions. In particu-
lar, despite the discontinuities introduced by discretiza-
tion, budget violations are small, and moreover, the
equilibrium strategies are in strong adherence to the
structural properties derived theoretically.

1.2. Related Work

Beyond the works already mentioned, there is a large lit-
erature on online auctions. We discuss the existing work
that is most closely related to ours. In keeping with pre-
vious work on auctions, from now on, we use the terms
“buyers” and “items” in place of advertisers and users.

Auctions with budget-constrained buyers are mod-
eled in a variety of ways, most of which are focused on
second price auctions. From a technical standpoint, the
closest to our work is Balseiro et al. (2015), which con-
siders randomly arriving budget-constrained buyers in
a fluid mean field setting. They show equilibrium exis-
tence for second price auctions in which buyers use
pacing-based strategies. Their model assumes a finite-
type space and independence of the value distributions
of the buyers, whereas our context-based model allows
for correlation between buyer values. Several other
works also study repeated second price auctions with
budgets under various models that are less related to
ours (Gummadi et al. 2011, Balseiro and Gur 2019,
Chen et al. 2021a, Balseiro et al. 2021, Ciocan and Iyer
2021, Conitzer et al. 2022a). Beyond second price auc-
tions, Aggarwal et al. (2019) consider affine constraints
(which include budget constraints as a special case) in mul-
tislot truthful auctions; they show existence of a bid-pacing
equilibrium under restrictive assumptions. Babaioff et al.
(2021) consider a general model of non—quasi-linear
buyers participating in mechanisms that are truthful for
quasi-linear buyers. Their model also captures the case
of budget constraints as a special case. Moreover, they
too prove the existence of a pacing-based equilibrium in
their model. None of the aforementioned existing work
addresses strategic bidding in nontruthful auctions, such
as first price auctions with budget-constrained buyers.

Conitzer et al. (2022b) and Borgs et al. (2007) study
pacing in a first price context, but both disregard strate-
gic behavior on behalf of the buyers. This is also the
case for a long line of work that models repeated auc-
tions among budget-constrained buyers as an online
matching problem with capacity constraints (see Mehta
2013 for a survey).

Another direction of research considers buyers with
ex post budget constraints (also called strict budget con-
straints). There, first price (Kotowski 2020), standard
(Che and Gale 1998), and optimal (Pai and Vohra 2014)
auctions and auctions with combinatorial constraints
(Goel et al. 2015) are studied. In contrast to our revenue
equivalence results, Che and Gale (1998) show that, with
strict budget constraints, first price auctions yield higher
revenue than second price auctions. These models are
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different from our setting, which only requires budget
constraints to hold in expectation at the interim stage.
In-expectation budget constraints are more appropriate
for modeling repeated ad auctions and yield simpler and
more interpretable equilibrium strategies.

Contextual models in which values are based on fea-
ture vectors are widely used in the multiarmed bandit
literature (for example, see Langford and Zhang 2007,
Li et al. 2010) and in pricing (Lobel et al. 2018, Chen
et al. 2021b, Golrezaei et al. 2021). Vector-based valuation
models are also connected to low-rank models, which
have received attention in previous market design work
(see, e.g., McMahan et al. 2013, Kroer et al. 2022).

Our work also contributes to the literature on equilib-
rium analysis for nonatomic games. Because of the pres-
ence of a continuum of buyer types in our model, the
topological arguments we develop bear resemblance to
those used in the study of nonatomic games, such as
the one addressed in Schmeidler (1973), though conti-
nuity is by assumption in Schmeidler (1973), whereas
achieving continuity is at the heart of our proof.

2. Model

We consider the setting in which a seller (i.e., the adver-
tising platform) plans to sell an indivisible item to one
of n buyers (i.e., the advertisers) using an auction. We
adopt a feature-based valuation model for the buyer.
More precisely, the item type is represented using a vec-
tor a belonging to the set A ¢ R?, where each component
of a can be interpreted as a feature. We also refer to « as
the context. Each buyer type is represented using a vec-
tor (w, B) belonging to the set ® c R**! of possible buyer
types, where the last component B denotes the buyer’s
budget and the first d components w capture the weights
the buyer assigns to each of the d features. The value
(maximum willingness to pay) that buyer type (w, B) has
for item a is given by the inner product w’a. For sim-
plicity of notation and ease of exposition, we state our
results under this linear relationship between values
and the features, but our model and results can be
extended to accommodate nonlinear response functions
(such as the logistic function) that are commonly used
in practice (see Online Appendix G for a more detailed
discussion). We use @ = maxy,pjco,aca’ @ to denote
the maximum value that a buyer can have for an item.
We assume that the context of the item to be auc-
tioned is drawn from some distribution F over the set of
possible item types A. Furthermore, the type for every
buyer is drawn according to some distribution G over
the set of possible buyer types ®, independently of the
other buyers and the choice of the item. Note that, by
virtue of our context-based valuation model, the values
of the n buyers for the item need not be independent. In
line with standard models used for Bayesian analysis of
auctions, we assume that both G and F are common

knowledge and maintain that the realized type vector
(w, B) associated with a buyer is the buyer’s private
information. Our model allows budgets to be random
and correlated with the buyer’s weight vector. In addition,
we assume that buyers are unaware of the type of their
competing buyers; this implies budgets are private.

To fix ideas, we first consider the case of a first price
auction with reserve prices and then discuss how our
results extend to standard auctions in Section 4. In a first
price auction, the seller allocates the item to the highest
bidder whenever the bid is above the reserve price, and
the winning bidder pays the bid. We assume the seller
discloses the item type a to the 1 buyers before bids are
solicited from them. As a result, the bid of a buyer on
item a can depend on a. We use r: A — R to specify the
publicly known context-dependent reserve prices, where
r(a) denotes the reserve price on item type a.

The budget of a buyer represents an upper bound on
the amount the buyer wants to pay in the auction. We
only require that each buyer satisfy the buyer’s budget
constraint in expectation over the item type and com-
peting buyer types. Similar assumptions are made in
the literature (see, e.g.,, Gummadi et al. 2011; Abhishek
and Hosanagar 2013; Balseiro et al. 2015, 2021; Conitzer
et al. 2022a). The motivation behind this modeling
choice is that budget constraints are often enforced, on
average, by advertising platforms. For example, Google
Ads allows daily budgets to be exceeded by a factor of
two in any given day, but over the course of a month,
the total expenditure never exceeds the daily budget
times the days in the month.* In-expectation budget
constraints are also motivated by the fact that, in prac-
tice, buyers typically participate in a large number of
auctions and many buyers use stationary bidding strat-
egies. Thus, by the law of large numbers, our model
can be interpreted as collapsing multiple, repeated auc-
tions in which item types are drawn ii.d. from F into a
single one-shot auction with in-expectation constraints.

2.1. Notation

We use R, and Ry to denote the set of strictly positive
and nonnegative real numbers, respectively. We use G,, to
denote the marginal distribution of w when (w,B) ~ G,
that is, G, (K) := G({(w, B) € ®|w € K}) for all Borel sets
K c S. In a similar vein, we use ©®,, to denote the set of
w e R? such that (w,B) € ® for some B e R. (Here, we
abuse notation by using w as both a weight vector vari-
able and a subscript to denote the projection of a buyer
type onto the first d dimensions). Unless specified other-
wise, || - || denotes the Euclidean norm.

2.2. Assumptions

We assume that there exist U, By, > 0 such that the set of
possible buyer types © is given by © = (0,U)" X (Buin, U).
In a similar vein, we also assume that the set of possible
item types A is a subset of the positive orthant RY. We
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restrict our attention to d >2, which is the regime in
which our feature vector-based valuation model yields
interesting insights. To completely specify the aforemen-
tioned probability spaces, we endow A, ®, and ©,, with
the Lebesgue o—algebra. Moreover, we assume that the
distributions F and G have density functions. Note that
the distribution G can be any distribution on ©, including
one with probability zero on some regions of ©. Thus, we
can address any buyer distribution so long as it has a den-
sity and is supported on a bounded subset of the strictly
positive orthant with a positive lower bound on the possi-
ble budgets. Similarly, F can capture a wide variety of
item distributions. It is worth noting that any distribution
that lacks a density can be approximated arbitrarily well
by a distribution with a density, thereby extending the
reach of our results to arbitrary distributions.

2.3. Equilibrium Concept

Consider the decision problem faced by a buyer type
(w, B) € O if we fix the bidding strategies of all compet-
ing buyers on all possible item types: the buyer wishes
to bid on the items in a way that maximizes the buyer’s
expected utility and satisfies the buyer’s budget con-
straint in expectation (in which the expectation is taken
over items and competing buyers’ types). As is true
in the well-studied standard, budget-free, ii.d. setting
(Krishna 2009), the buyer’s optimal strategy depends
on the strategies used by the other buyer types. In the
standard setting, the symmetric Bayes—Nash equilib-
rium is an appealing solution concept for the game
formed by these interdependent decision problems
faced by the buyers. We adopt a similar approach and
define the symmetric Bayes-Nash equilibrium for our
model. A strategy f7:©® XA — Ry (a mapping that
specifies what each buyer type should bid on every
item) is a symmetric first price equilibrium (SFPE) if,
almost surely (a.s.) over all buyer types, using " is an
optimal solution to a buyer type’s decision problem
when all other buyer types also use it.

Definition 1. A strategy f*:©® XA — Ry is called a
symmetric first price equilibrium if g*(w,B,a) (as a
function of «) is an optimal solution to the following
optimization problem almost surely with respect to
(w.r.t) (w,B) ~G:

max B, o [0 0 b(a)) 1{b(a) > max(r(a), (§'(6, })]

s.t. By gy [b(a) 1{b(ar) = max(r(),{B°(6:, @)};)}] < B.

In the buyer’s optimization problem, the buyer wins
whenever the buyer’s bid b(a) is higher than the
reserve price r(a) and all competiting bids p*(6;, @) for
i=1,...,n—1. Because of the first price auction pay-
ment rule, each bidder pays the bidder’s bid whenever
the bidder wins. For convenience, in the definition, we
are using an infeasible tie-breaking rule that allocates

the entire good to every highest bidder. This is inconse-
quential and can be replaced by any arbitrary tie-breaking
rule because we later show (see part (d) of Lemma 6 in the
Online appendix) that ties are a zero-probability event
under our value pacing-based equilibria.

In our solution concept, it is sufficient that adverti-
sers have Bayesian priors over the maximum compet-
ing bid max;{B(6;, &)} to determine a best response. This
is aligned with practice as many advertising platforms
provide bidders with historical bidding landscapes, which
advertisers can use to optimize their bidding strategies
(Bigler 2021).” Additionally, we require that budgets are
satisfied in expectation over the contexts and buyer types.
Connecting back to our repeated auctions interpretation,
one can assume competitors’ types to be fixed throughout
the horizon, whereas contexts are drawn i.i.d. in each auc-
tion. In this case, our solution concept is appropriate if
buyers cannot observe the types of competitors and, in
turn, employ stationary strategies that do not react to
the market dynamics. Such stationary strategies are
appealing because they deplete budgets smoothly over
time and are simple to implement. Moreover, it is previ-
ously established that stationary policies approximate
well the performance of dynamic policies in nonstrate-
gic settings when the number of auctions is large and
the maximum value of each auction is small relative to
the budget (see, e.g., Talluri and Van Ryzin 2006).

When the type of bidder is fixed throughout the hori-
zon, a bidder who employs a dynamic strategy could,
in principle, profitably deviate by inferring the competi-
tors’ types and using this information to optimally
shade the bidder’s bids. Implementing such strategies
in practice is challenging because many platforms do
not disclose the identity of the winner or the bids of
competitors in real time (as we discuss, they mostly
provide historical information that is aggregated over
many auctions). Moreover, when the number of bidders
is large and each bidder competes with a random sub-
set of bidders, such deviations can be shown to be not
profitable using mean-field techniques (see, e.g., Iyer
et al. 2014, Balseiro et al. 2015) in our contextual value
model as long as values are independent across time.
Therefore, our model can be alternatively interpreted as
one in which there is a large population of active buyers
and each buyer competes with a random subset of
buyers. This assumption is well-motivated in the con-
text of internet advertising markets because the number
of advertisers actively bidding is typically large and,
because of sophisticated targeting technologies, adverti-
sers often participate only in a fraction of all auctions.

2.4. Ties and the Role of Contexts

Before moving onto the proof of existence of SFPE, we
shed some light on the role played by contexts in our
model and results. The assumption that the feature vec-
tors o are drawn from a distribution F that has a density
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is necessary for our results to hold. In fact, if there was
only one deterministic context, an SFPE may fail to exist:
we provide an example in Online Appendix A. The root
cause behind the absence of a well-behaved equilibrium
in this example is the tension between the proclivity of
budgets to cause ties with positive probability (as we
demonstrate in Section 6) and the potential lack of equilib-
ria for first price auctions under value distributions that
cause ties with a positive probability. Our example in
Online Appendix A does admit a symmetric equilibrium
for second price auctions, thereby demonstrating the
added complexity of dealing with first price auctions.

Issues of tie breaking have previously come up in a
line of related work on pacing-based equilibria in sec-
ond price auctions (Borgs et al. 2007, Balseiro et al. 2015,
Babaioff et al. 2021, Conitzer et al. 2022a), in which they
were addressed by methods that are some version of
randomly perturbing the value of each buyer and enfor-
cing the budget constraint, on average, over these per-
turbations. This causes ties to become zero-probability
events. It is possible to prove our existence and revenue
equivalence results for the case of one deterministic
context with value perturbations. However, unlike sec-
ond price auctions in which bidding truthfully is a
dominant strategy, value perturbation is not well-
suited for first price auctions because, even in the
absence of budgets, the first price auction equilibrium
strategy depends on the perturbations. Moreover, our
structural results (Propositions 3 and 4) may not hold
for arbitrary perturbations and require an unjustifiably
strong assumption that carefully coordinates the per-
turbations across buyer types. That said, if one is will-
ing to ignore ties, our results continue to hold for a
single deterministic context, and the reader can safely
continue with that setting in mind.

3. Existence of Symmetric First Price
Equilibrium

In this section, we study the existence of SFPE and
show that this existence is achieved by a compelling
solution that is interpretable. We do so in several steps.
First, we define a natural parameterized class of value
pacing-based strategies. Then, assuming that competi-
tors are using a strategy from this class, we establish
strong duality for the optimization problem faced by each
buyer type and characterize the primal optimum in terms
of the dual optimum. This leads to a substantial simplifi-
cation of the analysis because it allows us to work in the
much simpler dual space. Finally, we establish the exis-
tence of a value pacing-based SFPE by a fixed-point argu-
ment over the space of dual multipliers.

3.1. Value Pacing-Based Strategies
In this paper, pacing refers to multiplicatively scaling
down a quantity.® Consider a function u:® — Ry,

which we refer to as the pacing function. We define the
paced weight vector of a buyer with type (w, B) to be
w/(1 + p(w, B)), which is simply the true weight vector
w scaled down by the factor 1/(1 + u(w, B)). Similarly,
we define the paced value of a buyer type (w, B) for item
a as wla/(1+ p(w, B)). We use pacing to ensure that
the budget constraints of all buyer types are satisfied
and, at the same time, maintain the best response prop-
erty at equilibrium. The motivation for using pacing as
a budget management strategy becomes clear in the
next section, in which we show that the best response of a
buyer to other buyers using a value pacing-based strategy
is to also use a value pacing—based strategy. Before defin-
ing the strategy, we set up some preliminaries.

Consider a pacing function y : @ — Ry and an item
a€A. Let Al denote the distribution of paced values
wla/(1+ w(w,B)) for item a when (w,B) ~ G. Let Hj
denote the distribution of the highest value Y := max
{X1,...,X,-1} among n — 1 buyers when each X; ~ A}
is drawn independently for i € {1,...,n — 1}. Observe
that Hi((—o0,x]) = A¥((—oo, x])""! for all @ € A because
the random variables are i.i.d.

For a given item a € A, when x > r(a), define the fol-
lowing bidding function:

x pyb
of(x):=x— / Hfj (S)ds,
r(a) Hy (x)

where we interpret o} (x) to be zero if Hy(x) = 0. More-
over, when x < r(a), define o(x):=x (we make this
choice to ensure that no value below the reserve price
gets mapped to a bid above the reserve price, maintain-
ing continuity). Note that o} (x) = E[max(Y,)|Y < x]. If
Af has a density, then o} is the same as the single-
auction equilibrium strategy for a standard first price
auction without budgets when the buyer values are
drawn i.i.d. from AY and the item has a reserve price of
r(a) (see, e.g., section 2.5 of Krishna 2009). Our value
pacing-based strategy uses o4 (x) as a building block by
composing it with value pacing.

Definition 2. The value pacing-based strategy ' : © x
A — Ry for pacing function i : @ — Ry is given by

wla

Bt (w,B, ) :=ct, <1+y(w,B)> V(w,B) € ®,a € A.

The bid p*(w, B, ) is the amount that a non-budget-
constrained buyer with type (w, B) would bid on item o
if the buyer acted as if the buyer’s paced value was the
buyer’s true value (this is captured by the use of the
paced value as the argument for o) and believed that
the rest of the buyers were also acting in this way (this
is captured by the use of d}). Therefore, our strategy
has a simple interpretation: bidders pace their values
and then bid as in a first price auction in which compe-
titors” values are also paced. Consequently, under our
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strategy, bidders are shading their values twice: first
when determining their paced values w”a/(1 + p(w, B))
to account for budget constraints and then again when
adopting the bidding function o’ for the first price auc-
tion. The bidding strategy o optimally trades off two
effects: on the one hand, bidding too close to their paced
values leaves no utility to buyers because they pay their
bid in case of winning, and on the other hand, bidding
too low decreases payments at the expense of also
decreasing the chance of winning.

Observe that value pacing-based strategies greatly
reduce the degrees of freedom in the system. Instead
of specifying a bidding strategy, which is a function,
for each buyer type, we only need to specify a scalar
t(w, B) for each buyer type. In addition, our dual char-
acterization allows us to optimize over the space of all
bidding strategies without imposing any restriction
on the class of admissible functions. Having defined
value pacing-based strategies, we are now ready to
state our main existence result.

Theorem 1. There exists a pacing function p:©® — Ry
such that the value pacing—based strateqy p!':© X A —
R is an SFPE.

Before proceeding with the proof of Theorem 1, we
note some of its practical prescriptions: (i) It recom-
mends that buyers should pace their value to manage
their budgets. As we later show, the equilibrium pac-
ing functions for first price auctions are identical to the
ones for second price auctions. This suggests that
pacing-based budget-management techniques devel-
oped for second price auctions (such as Balseiro and
Gur 2019) can be used for first price auctions to com-
pute the paced valued. (ii) Advertising platforms typi-
cally provide bidding landscapes to the buyers that
allow them to compute the optimal bid for a given
value. Given a context «, if P¥ represents the equilib-
rium bidding landscape (distribution of highest com-
peting bids), then we have

ot(x) € arg max(x — b)P(b).
b

Thus, the paced value can be combined with the land-
scape to compute the optimal bid p*(w, B, ).

We provide the proof of Theorem 1 in the remaining
sections. First, in Section 3.2, we show that, if all of the
competing buyers are assumed to employ a value
pacing-based strategy, then strong duality holds for the
budget-constrained utility maximization problem faced
by each buyer type. This allows us to drastically sim-
plify the equilibrium strategy space of each buyer type
from a function (mapping contexts to bids) to a single
scalar (the dual variable u(w,B)). Next, in Section 3.3,
we prove the existence of a value pacing-based equilib-
rium strategy by proving a fixed-point theorem in the
dual space of pacing functions. Despite our simplifying

move to the dual space, establishing a fixed point is by
no means a straightforward task because we are still
left with a dual variable for each buyer type, and there
are (uncountable) infinitely many of those. This leads
to an infinite-dimensional fixed-point problem that re-
quires careful topological analysis. We find that the
commonly employed general-purpose topologies fail for
our problem, and this motivates us to carefully exploit
the structure of pacing to select the right topology.

3.2. Strong Duality and Best Response
Characterization

We start by considering the optimization problem faced

by an individual buyer with type (w, B) when all com-

peting buyers use the value pacing-based strategy with

pacing function i : @ — Ryg. Denoting by Q"(w, B) the

optimal expected utility of such a buyer, we have

Q(w,B) = max E, g [(w'a—b) 1{o(a)

> max(r(a), {f"(0.)}:)}]
st By g [0@) 1{b(@)

> max(r(a), {*(6:@)};)}] < B.

Our goal in this section is to show that the value
pacing-based strategy put forward in Definition 2 is a
best response when competitors are pacing their bids
according to a pacing function u.

Remark 1. Compare Q*(w,B) to the definition of an
SFPE (Definition 1) and observe that, if we are able to
show that there exists y : @ — Ry such that g*(w, B, -)
is an optimal solution to Q*(w, B) almost surely w.r.t.
(w,B) ~ G, then B is an SFPE.

For 11 : ® — Ry and (w, B) € ©, consider the Lagrang-
ian optimization problem of Q! (w, B) in which we move
the budget constraint to the objective using the Lagrange
multiplier £ > 0. We use t to denote the multiplier of one
buyer in isolation to distinguish from 1, which is a func-
tion giving a multiplier for every buyer type. Denoting by
g"(w, B, t) the dual function, we have that

g"(w,B,t) = n;(g)x Ea,{ei}?gl [(w'a — (1 + b)) 1{b(e)
> max(r(a), {B*(0; a)};)}] +tB

wla
= (L+ ) maxE, o0 Km - b(a)) 1{b(a)

> max(r(a), {"(6) a)}i)}} +1B.

The dual problem of QF(w,B) is given by minsg
g"(w, B, t).

The next lemma states that the optimal solution to the
Lagrangian optimization problem is a value pacing-
based strategy. More specifically, for every pacing func-
tion p : ® — Ry, buyer type (w, B), and dual multiplier
t, the value pacing-based strategy oh(w’a/(1+1)) is
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an optimal solution to the Langrangian relaxation of
Qt(w, B) corresponding to multiplier ¢. Note that, in
general, t need not be equal to u(w, B).

Lemma 1. For pacing function p:® — Ry, buyer type
(w, B) € ©, and dual multiplier t > 0,
T

w wla
b n—1 _—
%a (1 + i’) < argh(r_];ax Ear{ei}izl |:(1 +t b(“)) 1{b(a)

> max(r(e), {B* (6, a)}i)}] .

In the proof of Lemma 1, we actually show something
stronger than the statement of Lemma 1: the value
pacing-based strategy is optimal pointwise for each «
and not just in expectation over a. This follows from
the observation that, once we fix an item «, we are solv-
ing the best response optimization problem faced by a
buyer with value w'a/(1+1) in the standard i.i.d. set-
ting (Krishna 2009) with competing buyer values being
drawn from AY and under the assumption that the com-
peting buyers use the strategy of. If A¥ has a strictly
positive density, then the optimality of o} (w’a/(1 + 1)) is
a direct consequence of the definition of a symmetric BNE
in the standard iid. setting. Even though the standard
results cannot be used directly because of the potential
absence of a density in the situation outlined, we show
that it is possible to adapt the techniques used in the proof
of proposition 2.2 of Krishna (2009) to show Lemma 1.

Using Lemma 1, we can simplify the expression for
the dual function g*(w, B, t). First, note that because ot
is nondecreasing, the highest competing bid can be
written as

max {p*(6;,a)}= max <o" LT& =at(Y)
i=1,... n-1 Oy a)} = i=1, . n-1 | C\1+u(0;)) f e
where Y ~ H is the maximum of n — 1 paced values.
Therefore, using that of(w”a/(1 +t)) is an optimal bid-
ding strategy, we get that

T T
B0 =1+ BB | (1504 (15))
1 {ag (?—Z) > max(r(a), GZ(Y))H +tB

wla wla
= (1+HELE va_ ufa
(1 +1)E, Y”HzKlH a“<1+t>>

1 {;U:D; > max(r(a), Y)H +1tB

wla wla wla
— A+ DE, [(Z () g (2
(1+£) “[<l+t G“<1+t>> ‘*<1+t>
wla
=S
]1{1+t_r(a)H+tB
IUT(Y

wla g
=(1+tE, ]1{—2;’(0()}/ Ht(s)ds | +tB,
1+t @)

where the second equation follows from part (c) of Lemma
6 of the Online appendix, the third from taking expec-
tations with respect to Y, and the last from our formula
for a;.

We now present the main result of this section, which
characterizes the optimal solution of Q*(w,B) in terms
of the optimal solution of the dual problem. The idea of
using value pacing-based strategies as candidates for
the equilibrium strategy owes its motivation to Proposi-
tion 1. It establishes that, if all the other buyers are using
a value pacing-based strategy with some pacing func-
tion p : @ — Ry, then a value pacing-based strategy is
a best response for a given buyer (w, B).

Proposition 1. There exists ® C © such that G(©') =1,
and for all pacing functions p: © — Ryo and buyer types
(w,B) € ®', if t* is an optimal solution to the dual problem,
that is, if t* € arg ming»oqt(w, B, t), then oh(w’a /(1 +t"))
is an optimal solution for the optimization problem Q" (w, B).

In Proposition 1, the pacing parameter t* used for
pacing in the best response can, in general, be different
from p(w,B). This caveat requires a fixed-point argu-
ment to resolve, which is the subject matter of the next
section.

Remark 2. Restricting to the measure-one set © is
without loss. Recall that, according to Definition 1, a
strategy constitutes an SFPE if, almost surely over
(w,B) ~ G, using B* is an optimal solution to the opti-
mization problem when all other buyer types also use
it. As a consequence of this definition, we show that it
suffices to show strong duality for a subset of buyer
types ® € ® such that G(®') = 1. In the absence of
reserve prices r(a) for the items, Proposition 1 holds
for all (w,B) € ®. Reserve prices introduce some dis-
continuities in the utility and payment term. The sub-
set @ C O captures a collection of buyer types for
which these discontinuities are inconsequential and
maintains G(®) = 1.

Observe that Q"(w, B) is not a convex optimization
problem, so in order to prove the theorem, we cannot
appeal to the well-known strong duality results estab-
lished for convex optimization. Instead, we use theorem
5.1.5 of Bertsekas et al. (1998), which states that, to
prove optimality of o (w’a/(1 + t)) for Q“(w, B), it suf-
fices to show primal feasibility of of(w a/(1 + t*)), dual
feasibility of +*, Lagrange optimality of o (w a /(1 +t))
for multiplier ', and complementary slackness. Our
approach is to show these required properties by com-
bining the differentiability of the dual function with first
order optimality conditions for one-dimensional opti-
mization problems. The key observation here is that the
derivative of the dual function is equal to the difference
between the budget of the buyer and the buyer’s
expected expenditure. Therefore, at optimality, the first
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order conditions of the dual problem imply feasibility
of the value-based pacing strategy. To prove differentia-
bility, we leverage that, in our game, the distribution of
competing bids is absolutely continuous, which is criti-
cal for our results to hold.

For t €argminsoqt(w,B,t), if we apply the first
order optimality conditions for an optimization prob-
lem with a differentiable objective function over the
domain [0, c0), we get

dq*(w, B, ) >0, t*.aqf (w,B,t) _

ot ot

The first condition can be shown to imply primal fea-
sibility, the second implies dual feasibility, and the
third implies complementary slackness. Combining
this with Lemma 1, which establishes Lagrange opti-
mality, and applying theorem 5.1.5 of Bertsekas et al.
(1998) yields Proposition 1. The complete proof of
Proposition 1 can be found in Online Appendix B.

t'>0, 0.

3.3. Fixed-Point Argument

In light of Proposition 1, the proof of Theorem 1 (the
existence of a value pacing-based SFPE) boils down to
showing that there exists a pacing function p : ©® — Ry
such that almost surely w.r.t. (w,B)~G, u(w,B) is
an optimal solution to the dual optimization problem
mingoq" (w, B, t). In other words, given that everybody
else acts according to u, a buyer (w, B) that wishes to
minimize the dual function is best off acting according
to . More specifically, in Proposition 1, we show that,
starting from a pacing function p : © — Ry, if u*(w, B)
constitutes an optimal solution to the dual problem
mingoqt(w, B,t) almost surely w.r.t. (w,B) ~G, then
oh@a/(1+ u*(w,B))) is an optimal solution for the
optimization problem Q(w,B) almost surely w.r.t.
(w,B) ~G. In other words, bidding according to ah
and pacing according to u*:® — Ry is a utility-
maximizing strategy for buyer (w, B) ~ G almost surely
given that other buyers bid according to o5 with paced
values obtained from u. The following theorem estab-
lishes the existence of a pacing function u:® — Ry
for which u itself fills the role of u* in the previous
statement, thereby implying the optimality of o} (w’a/
(1+ u(w, B))) almost surely w.r.t. (w,B) ~ G.

Proposition 2. There exists u:® — Ryo such that
w(w, B) € arg minsoq* (w, B, t) almost surely w.r.t. (w,B) ~ G.

We prove this statement using an infinite-dimensional
fixed-point argument on the space of pacing functions
with a carefully chosen topology. Informally, we need to
show that the correspondence that maps a pacing function
U:0 — Ry to the set of dual-optimal pacing functions
U0 — Ry that satisfy p*(w,B) € arg mingsoq*(w, B, t)
has a fixed point. However, unlike finite-dimensional
fixed-point arguments, establishing the sufficient con-
ditions of convexity and compactness needed to apply

infinite-dimensional fixed-point theorems requires a
careful topological argument.

Lemma 8 in the online appendix shows that all dual
optimal functions u* : ® — Ryo map to a range that is a
subset of [0, w/Bmin]. Therefore, any pacing function y :
© — Ry that is a fixed point, that is, satisfies p(w, B) €
arg min»oq* (w, B, t) almost surely w.r.t. (w, B) ~ G must
also satisfy range(u) C [0, w/Bmin]. Hence, it suffices to
restrict our attention to pacing functions of the form
t:©® —[0,w/Bmin]-

Consider the set of all potential pacing functions

X = {u € Ly(O®)|u(w,B) € [0,0/Bmin] V¥ (w,B) € O},

where L1(®) is the space of functions f: ©® — R with
finite L; norm w.r.t. the Lebesgue measure. Here, by the
Ly norm of f w.r.t. the Lebesgue measure, we mean
Ifllz, = [olf(6)|d6. Our goal is to find a u € X such that
almost surely w.r.t. (w, B) ~ G we have

w(w,B) € argmin g"(w, B, t).
t€[0, /Bmin]

Dealing with infinitely many individual optimization
problems minye(g /5,,.19"(w, B,t), one for each (w, B),
makes the analysis hard. To remedy this issue, we com-
bine these optimization problems by defining the objec-
tivef: X x X — Rforall p, I € X as follows:

f(.u/ ﬁ) = E(ZU,B) [q“ (ZU, B, ‘ll (ZU, B))] .

For a fixed y € X, we then get a single optimization
problem mingcy f(u, 1) over functions in X" instead of
one optimization problem for each of the infinitely
many buyer types (w,B) € ©. Later, in Lemma 5, we
show that any optimal solution to the combined op-
timization problem is also an optimal solution to the
individual optimization problems almost surely w.r.t.
(w, B) ~ G. Thus, shifting our attention to the combined
optimization problem is without any loss (because sub-
optimality on zero-measure sets is tolerable).

With f as before, we proceed to define the correspon-
dence that is used in our fixed-point argument. The
optimal solution correspondence C* : X =3 X' is given by
C*(u) := argmingey f(u, @) (which could be empty) for
all 4 € X. In Lemma 5, we show that the proof of Propo-
sition 2 boils down to showing that C* has a fixed point,
which is our next step.

Our proof culminates with an application of the
Kakutani-Glicksberg-Fan theorem on a suitable version
of C* to show the existence of a fixed point. An applica-
tion of this result (or any other infinite-dimensional
fixed-point theorem) requires intricate topological con-
siderations. In particular, we need to endow & with a
topology that satisfies the following conditions:

L. The set X is compact and convex and C*(u) is a
nonempty subset of X forall u € X.
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II. The correspondence C* is a Kakutani map; that is,
it is upper hemicontinuous, and C*(u) is compact and
convex for all u € X.

In the case of infinite dimensions, bounded sets in
many spaces, such as the L,(Q2) spaces, are not compact.
In particular, X' is not compact as a subset of L,(Q2)
for any 1<p < oc0. One possible way around it is to
consider the weak* topology on X C L.,(QQ) in which
bounded sets are compact. This choice runs into trouble
because it is difficult to show the upper hemicontinuity
of C* (property II) under the weak convergence notion
of the weak* topology. Alternatively, one could impose
structural properties and restrict to a subset of X, such
as the space of Lipschitz functions, in which both com-
pactness and continuity can be established. The issue with
this approach is that the correspondence operator may, in
general, not preserve these properties; that is, property I
might not hold. For example, even if y is Lipschitz, C*(u)
might not contain any Lipschitz functions.

We strike a delicate balance between properties I and
II by picking a space in which we can establish com-
pactness of X and upper hemicontinuity of C* and, at
the same time, ensuring that C*(u) contains at least one
element from this space. It turns out that the right space
that works for our proof is the space of bounded varia-
tion. To motivate this topology on the space of pacing
functions, we state some properties of the “smallest”
dual optimal pacing function. For p1: ©® — [0,w/Bmin],
we define £* : ©@ — [0, w/Bmin] as

*(w,B) := mjn{s € argmin g*(w,B, t)}
t€[0, /Bmin]

for all (w,B) € ©. The minimum always exists because
g"(w, B, t) is continuous as a function of ¢ (see Corollary
1 in the online appendix for a proof), and the feasible
set of the dual problem is compact.

We first show that {* varies nicely with w and B
along individual components.

Lemma 2. For pu:© — [0,w/Bmin], the following state-
ments hold:

1. &' :©® — [0,w/Bmin] is nondecreasing in each compo-
nent of w.

2.6":© — [0, w/Bmin] is nonincreasing as a function of B.

The proof applies results from comparative statics,
which characterize the way the optimal solutions be-
have as a function of the parameters, to the family of
optimization problems mine[o,.,z,,,19" (W, B,t) parame-
terized by (w, B) € ©.

Now, we wish to show bounded variation of ¢. It is
a well-known fact that monotonic functions of one vari-
able have finite total variation. Moreover, functions of
bounded total variation also form the dual space of the
space of continuous functions with the Lo, norm, which
allows us to invoke the Banach-Alaoglu theorem to
establish compactness in the weak* topology. These

results for single variable functions, although not directly
applicable to the multivariable setting, act as a guide in
choosing the appropriate topology for our setting.

Because pacing functions take as input several vari-
ables, we need to look at multivariable generalizations
of total variation. To this end, we state one of the stan-
dard definitions (there are multiple equivalent ones) of
total variation for functions of several variables (see sec-
tion 5.1 of Evans and Gariepy 2015) and then follow it
up by a lemma that gives a bound on the total variation
of the component-wise monotonic function ¢*.

Definition 3. For an open subset ) C R", the total vari-
ation of a function u € L1(Q) is given by

V(u,Q) :=sup {/Qu(a))div (;b(cu)da)’qb eCHQ,RY),

9l s1},

where C!(Q,R") is the space of continuously differen-
tiable vector functions ¢ of compact support contained

inQanddivp =57, g%f is the divergence of ¢.

Lemma 3. For any pacing function u:® — [0,@/Bminl,
the following statements hold:

1. 6" € L1(©).

2. V(£",8) <V, where Vy:=(d+ 1)U '@ /By is a
fixed constant.

Motivated by this lemma, we define the set of pacing
functions that allow us to use our fixed-point argument.
Define Xy ={ue X|V(u,®)<Vy} to be the subset of
pacing functions with variation at most V. Note that
" € Xy. Define Cjy:Xo= X as Cy(u):=argmingey,
f(u, ) for all ueXy. We now state the properties
satisfied by X that make it compatible with the
Kakutani—-Fan—Glicksberg fixed-point theorem.

Lemma 4. The following statements hold:

1. Xy is nonempty, compact, and convex as a subset of
L1(©).

2. f: Xy X Xy — R is continuous when Xy X X is end-
owed with the product topology.

3. Cj : Xo 3 Xy is upper hemicontinuous with nonempty,
convex, and compact values.

Finally, with this lemma in place, we can apply the
Kakutani-Fan-Glicksberg theorem to establish the exis-
tence of a p € Xy such that u € Cj(Xy). The following
lemma completes the proof of Proposition 2 by showing
that the fixed point is also almost surely optimal for
each type. It follows from the fact that, for u € X that
satisfy p € Cj(u), we have ¢ € Ci(u).

Lemma 5. If u € Cy(u) = arg mingexf(u, 1), then u(w, B)
is almost surely optimal for each type; that is, p(w,B)e
arg minye(o /B, 19" (W, B, t) as. wr.t. (w, B) ~ G.

As mentioned earlier, Proposition 2 combined with

Proposition 1 implies Theorem 1.
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4. Standard Auctions and Revenue

Equivalence
In this section, we move beyond first price auctions and
generalize our results to anonymous standard auctions
with reserve prices. An auction A = (Q, M) with alloca-
tion rule Q : RY, — [0,1]", payment rule M : RZ, — RZ,,
and reserve price r is called an anonymous standard
auction if the following conditions are satisfied:

e Highest bidder wins: When the buyers bid (b4, ...,
b,), the allocation received by buyer i is given by Q;
(by,...,by) =1(b; >1,b; > b]' Vje [n]) foralli € [n].

e Anonymity: The payments made by a buyer do not
depend on the identity of the buyer. More formally, if
the buyers bid (by,...,b,), then for any permutation
7 of [n] and buyer i< [n], we have M;(by,...,b,) =
Miy(br1y, - - -, br(ny); that is, the payment made by the
ith buyer before the bids are permuted equals the pay-
ment made by the bidder 7(i) after the bids have been
permuted.

As in our definition of SFPE, we are using an infe-
asible tie-breaking rule that allocates the entire good to
every highest bidder. As with SFPE, ties are a zero-
probability event under our value pacing-based equi-
libria, and our results hold for arbitrary tie-breaking
rules.

For consistency of notation, we modify the preceding
notation slightly to better match the one used in previ-
ous sections. Exploiting the anonymity of auction A, we
denote the payment made by a buyer who bids b when
the other 1 — 1 buyers bid {b;}/",' by M(b, {b;}/-}"); that
is, we use the first argument for the bid of the buyer
under consideration and the other arguments for the
competitors’ bids. Also, as the reserve price completely
determines the allocation rule of a standard auction, in
the rest of the section, we omit the allocation rule when
discussing anonymous standard auctions and represent
them as a tuple A = (r, M) of reserve price and payment
rule.

To avoid delving into the inner workings of the auc-
tion, we assume the existence of an oracle that takes as
an input an atomless distribution H over [0, w] and out-
puts a bidding strategy ¥’ : [0,w] — R, satisfying the
following properties:

1. The strategy ¢'* is a single-auction equilibrium for
the auction A when the values are drawn ii.d. from
H, that is, ¥ (x) € arg maxysoEx,-[x 1{b > max(r, {i"*
(Xi)})}— M(b, {9 (X))

2. The strategy ¢’!(x) is nondecreasing in x, and
P"(x) > rif and only if x > 7.

3. The payoff for a bidder who has zero value for the
object is zero at the single-auction equilibrium.

4. The distribution of {"(x) when x ~ H is atomless.

Our results produce a pacing-based equilibrium bid-
ding strategy for budget-constrained buyers by invok-
ing 1" as a black box. To make the discussion more

concrete, let A be a second price auction with reserve
price r. For a given atomless distribution H, define
"(v) = v to be the truthful bidding strategy. Then, ¢!
is a single-auction equilibrium because bidding truth-
fully is a dominant strategy in second price auctions.
Moreover, ¢’ is nondecreasing, 1)"(x) > r if and only if
x > 1, a bidder with zero value bids zero to attain a pay-
off of zero, and finally the distribution of 1"(x) when x ~
'H is simply H, which is atomless. Thus, second price auc-
tions with reserve prices satisfy the assumptions.

In our analysis, we allow the seller to condition on
the feature vector and choose a different mechanism for
each context a € A. Let {A, = (r(a), Ma)}4ea be a family
of anonymous standard auctions such that a +— r(a)
is measurable. Moreover, suppose that, for any mea-
surable bidding function a +— b(a) and any collection
of measurable competing bidding functions & > b;(«)
for ie[n—1], the payment function ar— M,(b(a),
{bi(az)}?z_ll is also measurable. We define the equilib-
rium notion for the family {A.},c4a of anonymous
standard auctions.

Definition 4. A strategy f':@xA — R is called a
symmetric equilibrium for the family of standard auc-
tions {Ay}een if B(w,B,a) (as a function of «) is an
optimal solution to the following optimization prob-
lem almost surely w.r.t. (w, B) ~ G:

max E, 01 [wTa 1{b(a) > max(r(a),{B*(6:, @)};)}

b:A—Rxg
— Ma(b(a), {B*(wi, Bi, a)};)]
s.t. Ea,{ez}?:f [Ma(b(a)/ {,B*(wi/ Bi/ a)}l)] <B.

Observe that this definition reduces to Definition 1 if
we take {As},ea to be the set of first price auctions
with reserve price r(«). Next, we show that the equi-
librium existence and characterization results of the
previous sections apply to all standard auctions that
satisfy the required assumptions. To do this, we first
need to define value-pacing strategies for anonymous
standard auctions. These are a natural generalization
of the value pacing-based strategies used for first
price auctions.

Recall that, for a pacing function, i :® — Ryy and
a €A, Al denotes the distribution of paced values for
item &, and Hj; denotes the distribution of the highest
value for &« among n — 1 buyers. For ease of notation,
we use Y! to denote the single-auction equilibrium
strategy for auction A, when values are drawn from
H=AL or, more formally, 5 = tpif'. For a pacing
function p: ® — Ry, (w,B) € © and a € A, define

wla ), )

\If“(w, B, CY) = ll)g (m

to be our candidate equilibrium strategy. This strategy
is well-defined because, by Lemma 6 of the Online
appendix, A4 is atomless almost surely w.r.t. a. As
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before, the bid W (w, B, ) is the amount a non-budget-
constrained buyer with type (w, B) bids on item « if the
buyer’s paced value is the buyer’s true value when
competitors are pacing their values accordingly. In
other words, bidders in the proposed equilibrium first
pace their values and then bid according to the single-
auction equilibrium of auction 4, in which competi-
tors” values are also paced.

With the definition of value pacing-based strategies
in place, we can now state the main result of this sec-
tion. Recall that, Cj: Xy = Xy is given by Cpj(u):=
arg mingey, f(u, f1) for all € Xy, where f is the ex-
pected dual function in the case of a first price auction
as defined in Section 3.3.

Theorem 2 (Revenue and Pacing Equivalence). For any
pacing function p € Xy such that u € Cy(u) is an equilib-
rium pacing function for first price auctions, the value
pacing-based strateqy W : @ X A — Ry is a symmetric
equilibrium for the family of auctions {Ay},es. Moreover,
the expected payment made by buyer © under this equilib-
rium strategy is equal to the expected payment made by
buyer 0 in first price auctions under the equilibrium strat-
egy B : O X A — Ry, that is,

E, oyt [Ma(WH(6,0), {W(6;,a)},)]
=E, oy [(6,0) L{B"(6,0) = max(r(a), {8(6, a)})}]

The key step in the proof involves showing that the dual
of the budget-constrained utility-optimization problem
faced by a buyer is identical for all standard auctions when
the other buyers use the equilibrium strategy W* of the
standard auction under consideration. To establish this
key step, we exploit the separable structure of the Lagrang-
ian optimization problem and apply the known utility
equivalence result for standard auctions in the single-
auction iid. setting once for each item o € A. Then, we
establish the analogue of Proposition 1 for standard auc-
tions. Combining this with p € Cj(u) yields Theorem 2.

Our revenue equivalence relies on three critical as-
sumptions: risk neutrality, independence of weight vec-
tors, and symmetry. As in the classic setting, revenue
equivalence fails if buyers are risk-averse (see, e.g.,
Krishna 2009). We emphasize that, in contrast to the
classic revenue equivalence result, buyers’ values w’a
are not independent. Our result does require that weight
vectors are independent across buyers. Buyers in our
model are ex ante homogeneous because buyer types are
drawn from the same population. We remark, however,
that buyers are heterogenous in the interim sense: the
buyers competing in an auction can have different bud-
gets and weight vectors. Revenue equivalence fails if
buyers are ex ante heterogenous, that is, if competitors are
drawn from different populations.

Before ending this section, we state some important
implications of Theorem 2. If the pacing function u

allows buyers to satisfy their budget constraints in some
standard auction, then the same pacing function u
allows buyers to satisfy their budgets in every other
standard auction. In other words, the equilibrium pac-
ing functions are the same for all standard auctions.
This means that, in order to calculate an equilibrium
pacing function p that satisfies € Cjy(u), it suffices to
compute it for any standard auction (in particular, one
could consider a second price auction for which bidding
truthfully is a dominant-strategy equilibrium in the
absence of budget constraints). This fact is especially
pertinent in view of the recent shift in auction format
used for selling display ads from second to first price
auctions because it states that, in equilibrium, buyers
can use the same pacing function even after the change.
Moreover, the same pacing function continues to work
even if the family {A,},c4 is an arbitrary collection of
first and second price auctions (or any other combina-
tion of standard auctions); that is, Theorem 2 states that,
not only can one pacing function be used to manage
budgets in first and second price auctions, the same
pacing function also works in the intermediate transi-
tion stages in which buyers may potentially participate
in some mixture of these auctions.

Another important takeaway is that all standard auc-
tions with the same allocation rule yield the same reve-
nue to the seller. We remark, however, that the revenue
of the seller does depend on the allocation, and the
seller could, thus, maximize revenue by optimizing
over the reserve prices. We leave the question of optimiz-
ing the auction design as a future research direction.

The revenue equivalence in the presence of in-
expectation budget constraints is driven by the invari-
ance of the pacing function over all standard auctions and
the classic revenue equivalence result for the uncon-
strained iid. setting, which shows that—on average—
payments are the same across standard auctions. Whereas
revenue equivalence is known to hold for standard auc-
tions without budget constraints, Che and Gale (1998)
show that, when budget constraints are hard, first price
auctions lead to higher revenue than second price auc-
tions. The intuition for their result is that, because bids are
higher in second than in first price auctions, hard budget
constraints are more likely to bind in the former, which
reduces the seller’s revenue. Surprisingly, Theorem 2
shows that, when budget constraints are in expectation
(and values are feature-based), we recover revenue equiv-
alence. To better understand the difference between the
two types of constraints, consider the following example.

Example 1. Consider two buyers with values drawn
uniformly from the unit interval [0,1]. Moreover, let
the budget of the buyer with value v be given by 0.5 +
ev for some small € > 0. First, observe that, in the
absence of budget constraints, bidding truthfully is a
dominant strategy in a second price auction, and
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bidding half of one’s value is a Bayes—Nash equilibrium
in a first price auction. Moreover, from the standard
revenue-equivalence result, a buyer with value x spends
x?/2 in expectation over the other buyer’s type in both
auctions. Now, because this expected expenditure is less
than 1/2 for all types, the in-expectation budget con-
straints are nonbinding and the equilibria remain un-
changed even when in-expectation budget constraints
are imposed. On the other hand, consider the case when
the budget constraints are hard. The first price auction
equilibrium remains unchanged because every buyer
type bids less than 0.5, so the constraint is always satis-
fied. But, for second price auctions, this is not the case:
with hard budget constraints, the equilibrium strategy
for the buyers is to bid the minimum of their value and
budget, thereby leading to lower revenue compared
with the truthful-bidding equilibrium.

We conclude this section with a discussion of exten-
sions and alternative models. First, even though we
only consider anonymous standard auctions in this
work, our equilibrium existence and revenue equiva-
lence results can be extended to other anonymous
allocation rules Q, which (i) admit an oracle that out-
puts an equilibrium bidding strategy for traditional i.i.d.
settings and satisfies properties 14 listed at the begin-
ning of this section and (ii) lead to continuous nonde-
creasing interim-allocation rules for every buyer—item
pair when other buyers follow a value pacing-based
strategy analogous to the one defined in Equation (1).
Second, the argument developed in the section also
implies the existence of value pacing-based equilibria
and revenue equivalence for standard auctions in the
symmetric special case of the models studied in Balseiro
et al. (2015, 2021), which consider buyers with ex ante
budget constraints that hold in expectation over a buyer’s
own value and the values of others (see Online Appendix
C.1 for a detailed description).

5. Worst Case Efficiency Guarantees
In this section, we use our framework to characterize
the price of anarchy, that is, the worst case ratio of the
efficiency of a pacing equilibrium relative to the efficiency
of the best possible allocation. We measure efficiency of
an allocation using the notion of liquid welfare introduced
by Dobzinski and Leme (2014), which captures the maxi-
mum revenue that can be extracted by a seller who knows
the values in advance. We use liquid welfare as a measure
of efficiency instead of social welfare because the latter
can have arbitrarily small price of anarchy (see Online
Appendix D for an example). Throughout this section, we
assume that the reserve price is zero for each item; that is,
r(a) =0 forall o € A.

We begin by defining the appropriate notion of liquid
welfare of an allocation for our model motivated by the
original definition of Dobzinski and Leme (2014). Here,

an allocation simply refers to a measurable function
x:Ax@" — A", where A" = {y e R} |} [y = 1} is the
n-simplex and x;(«, 6 ) denotes the fraction of the item «
allocated to buyer i when the buyer types are given by
the profile 6 = (64, ...,0,). In our setting, the liquid wel-
fare of a buyer is equal to the minimum of the value
obtained by the buyer from the allocation and the buyer’s
budget.

Definition 5. For an allocation x: A x©®" — A", we
define its liquid welfare as

n
LW(x) = Y Eo[min{Eyg_[w] - xi(a, 6;,0 )], Bi}].
i=1

Next, we define price of anarchy with respect to liquid
welfare for pacing-based equilibria. Our definition is
an instantiation of the general definition of price of
anarchy introduced in Koutsoupias and Papadimi-
triou (2009). Before proceeding with the definition, it
is worth noting an important consequence of our reve-
nue equivalence result (Theorem 2): given an equilib-
rium pacing function p, that is, a fixed point of Cj, the
allocation under the equilibrium parameterized by u
is the same for all standard auctions. Thus, the equi-
librium allocation is determined by the pacing func-
tion and is independent of the pricing rule of the
standard auction, which is reflected in the following
definition. For an equilibrium pacing function u, we
use x* to denote the allocation under the equilibrium
parameterized by u; again, this allocation is the same
for all standard auctions without reserve prices.

Definition 6. The price of anarchy of pacing-based
equilibria (for all standard auctions) is defined as the
ratio of the worst case liquid welfare across all pacing
equilibria and the optimal liquid welfare

PoA = infy:yeca(y) LW(.X‘“)
sup, LW(x) /

where the supremum in the denominator is taken over
all measurable allocations x.

Because the PoA of pacing-based equilibria does
not depend on the payment rule, we can work with
the most convenient standard auction to prove a
lower bound on the PoA, which in this case happens
to be the second price auction. Azar et al. (2017) study
the PoA of pure-strategy Nash equilibria of second
price auctions in a non-Bayesian multi-item setting with
budgets and provide a lower bound of 1/2 for it. Unfortu-
nately, their result hinges on the “no overbudgeting”
assumption that requires the sum of equilibrium bids to
be bounded above by the budget, which need not hold
for pacing-based equilibria, thereby necessitating new
proof ideas. Moreover, their bound may be vacuous
for some parameter values because a pure-strategy Nash
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equilibrium is not guaranteed to exist in their setting.
To get around this, they study mixed-strategy and
Bayes—Nash equilibria and bound their PoA, but the
lower bound they obtain for these equilibria is much
worse (less than 0.02). Our model does not suffer from
the problem of existence: a pure-strategy pacing-based
equilibrium is always guaranteed to exist (Theorem 1).
This makes the following lower bound on the PoA,
which provides a worst case guarantee of 1/2, more
appealing.

Theorem 3. The PoA of pacing-based equilibria of any
standard auction is greater than or equal to 1/2.

The proof, which is in Online Appendix D, leverages
the complementary slackness condition of pacing-based
equilibria to bound the PoA. Interestingly, our proof
does not use a hypothetical deviation to another bid-
ding strategy, a technique commonly found in PoA
bounds (see Roughgarden et al. 2017 for a survey) and,
thus, may be of independent interest.

6. Structural Properties

In this section, we show that pacing-based equilibria
satisfy certain monotonicity and geometric properties
related to the space of value vectors. It is worth noting
that, in light of the revenue equivalence result of the
preceding section, the properties established in this sec-
tion hold for pacing equilibria of all standard auctions.
As in Section 5, we assume that the reserve price for
each item is zero, that is, r(a) = 0 for all &« € A. Without
this assumption, similar results hold, but they become
less intuitively appealing and harder to state. Moreover,
we also assume that the support of G, denoted by 6(G),
is a convex compact subset of R’i“. This assumption is
made to avoid having to specify conditions on the pac-
ing multipliers of types with probability zero of occur-
ring. Moreover, we consider a pacing function u: © —
[0, w/Bmin] such that u(w, B) is the unique optimal solu-
tion for the dual minimization problem for each (w, B)
in the support of G, that is, p(w, B) = arg minefo,q/p,,.]
g"(w, B, t) for all (w,B) € 6(G). We remark that we are
assuming that the best response is unique rather than
the equilibrium being unique. The former can be shown
to hold under fairly general conditions.

First, in Lemma 2, we showed that the pacing func-
tion associated with an SFPE is monotone in the buyer
type. In particular, when the best response is unique,
this result implies that u(w, B) is nondecreasing in each
component of the weight vector w and nonincreasing in
the budget B. Intuitively, if the budget decreases, a
buyer needs to shade bids more aggressively to meet
the buyer’s constraints. Alternatively, when the weight
vector increases, the advertiser’s paced values increase,
which results in more auctions won and higher pay-
ments. Therefore, to meet the advertiser’s constraints,

the advertiser needs to respond by shading bids more
aggressively. Furthermore, when the best response is
unique, it can also be shown that u is continuous (see
Lemma 14 in the online appendix).

The next theorem further elucidates the structure
imposed on u by virtue of it corresponding to the
optima of the family of dual optimization problems
parameterized by (w, B). In what follows, we refer to a
buyer (w, B) with u(w,B) =0 as an unpaced buyer and
call the buyer a paced buyer otherwise.

Proposition 3. Consider a unit vector @ € RY and budget
B > 0 such that w/||w|| =@ for some (w,B) € 6(G). Then,
the following statements hold:

1. Paced buyers with budget B and weight vectors lying
along the same unit vector W have identical paced feature
vectors in equilibrium. Specifically, if (w1, B), (w2, B) € 6(G)
with w /||wr]| = wa/llwal| = @ and p(wy, B), u(w, B) >0,
then wy /(1 + u(wq,B)) = wa /(1 + u(wy, B)).

2. Suppose there exists an unpaced buyer (w,B) € 5(G)
with w/||w|| =@ and p(w,B) = 0. Let wy = arg max{||w]||
weRY; w(w,B)=0 and w/|[w|| =} be the largest un-
paced weight vector along the direction . Then, all paced
weight vectors get paced down to wy, that is, w/(1+
w(w,B)) = wy for all wed(G) with w/|lw||=® and
w(w,B) > 0.

In combination with complementary slackness, the
first part states that, in equilibrium, buyers who have
the same budget, have positive pacing multipliers, and
have feature vectors that are scalar multiples of each
other get paced down to the same type at which they
exactly spend their budget. In other words, scaling up
the feature vector of a budget-constrained buyer and
keeping the buyer’s budget the same does not affect the
equilibrium outcome. The second case of Proposition 3
addresses the directions of buyers that have a mixture
of paced and unpaced buyers. In this case, there is a
critical buyer type who exactly spends the buyer’s bud-
get when unpaced, and all buyer types that have
weight vectors with larger norm (but the same budget)
get paced down to this critical buyer type; that is, their
paced weight vector equals the critical buyer type’s
weight vector in equilibrium. The buyer types that have
a smaller norm are unpaced.

Our nonatomic model also allows us to answer the
following question: keeping the competition fixed, how
should an advertiser modify the advertiser’s targeting
criteria or ad (as captured by the weight vector) in order
to maximize the advertiser’s utility? This result is espe-
cially important for online display ad auctions, in which
the weight vector is estimated with the goal of predict-
ing the click-through rate and advertisers routinely
modify their ads to attract more clicks. The following
theorem states that the gradient w.r.t. the weight vector
of the equilibrium utility of a buyer with type (w, B) is
given by the expected feature vector that the buyer
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wins in equilibrium. This is because strong duality (Prop-
osition 1) implies that the utility of every buyer type is
given by the optimal dual value g*(w, B, (w, B)). From a
practical perspective, an advertiser should focus on im-
proving the weights of those features that have the largest
average among the contexts won. It is worth noting that
these quantities can be easily computed using data avail-
able to an advertiser.

Proposition 4. Assume that A is compact. Let 1i:0© —
Ry be an equilibrium pacing function, that is, 1 : © — Rxg
such that u(w,B) € arg mingoq*(w, B,t) almost surely
w.r.t. (w,B) ~G. Then, for all (w,B) € ®, we have V,q"
(w, B, u(w,B)) =E, 1,1 [a 1{p*((w, B), @) > B(0;a); Vi}].

7. Analytical Example and Numerical

Experiments

In this section, we illustrate our theory by providing a
stylized example in which we can determine the equi-
librium bidding strategies in closed form and then
conduct some numerical experiments to verify our the-
oretical results. The purpose of the analytical example is
to confirm our structural results and also help validate
that our numerical procedures converge to an approxi-
mate version of the equilibrium strategies proposed in
our paper.

7.1. Analytical Example

We provide an instructive (albeit stylized) example
with two-dimensional feature vectors to illustrate the
structural property described in Section 6. For 1 <a <,
define the set of buyer types as (see the gray region in
Figure 1 for a visualization of this set)

2wl — wy —
0= {(w,B)eRioxRJr asllwusb,B:M}.

In this example, weight vectors lie in the intersection of
a disk with the nonnegative quadrant. Observe that all
buyer types whose weight vectors are colinear (i.e., they
lie along the same unit vector) have identical budgets.
Let the number of buyers in the auction be 1 = 2. More-
over, define the set of item types as the two standard
basis vectors A :={ej,e;}. Finally, let G (distribution
over buyer types) and F (distribution over item types)
be the uniform distribution on ® and A, respectively.
Because A is discrete and F does not have a density, this
example does not satisfy the assumptions we make in
our model. Nonetheless, in the next claim, we show
that not only does a pacing equilibrium exist, but we
can also state it in closed form. The proof of the claim
can be found in Online Appendix F.

Claim 1. The pacing function u:0© — R defined as
t(w, B) = ||lw|| — 1 for all (w,B) € © is an equilibrium, that
is, B as given in Definition 1, is an SFPE.

Because HY(") is a strictly increasing function for all
a € A, it is easy to check that u(w, B) is the unique opti-
mal to the dual optimization problem min;cjoq/B,,]
q(u,w, B, t) for all (w, B) € 6(G). Therefore, this example
falls under the purview of part 1 of Proposition 3.
As expected, conforming to Proposition 3, the buyers
whose weight vectors are colinear get paced down to
the same point on the unit arc as shown in Figure 1.

7.2. Numerical Experiments

We now describe the simulation-based experiments we
conducted to verify our theoretical results. As is necessi-
tated by computer simulations, we studied a discretized
version of our problem in these experiments. More pre-
cisely, in our experiments, we used discrete approxima-
tions to the buyer type distribution G and item type

Figure 1. (Color online) Example from Section 7.1 witha =2,b =3

3.0 1 AAA
AAA:AAAAA Aa, A Unpaced
AAAA“AAAAAAAAAAA e Paced
25 MAA““ A
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0.0 4
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Notes. The unpaced and paced buyer weight vectors are uniformly distributed in the gray (triangle) and black (circle) regions, respectively. Each
plot shows the distribution of two-dimensional buyer weight vectors. The weight vectors before pacing are depicted in gray (triangles), and the
paced weight vectors are depicted in black (circles). The left plot shows the theoretical results of Section 7.1. In the left plot, the buyer weight vec-
tors lying on the dotted line get paced down to the point. The right plot shows the results of best response iteration on the corresponding discre-

tized problem.
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distribution F. Moreover, for all item types a, we set the
reserve price r(a) = 0. One of the primary objectives of
our simulations is to demonstrate that, despite the dis-
cretization, a buyer type can obtain the buyer’s optimal
bidding strategy by finding the optimal solution to the
dual problem as our theory suggests. In other words, to
compute an equilibrium, it suffices to best respond in
the dual space, which has the advantage of being much
simpler than the primal space. To do so, for each discre-
tized instance, we run best response dynamics in the
dual space by iterating over buyer types: computing
each buyer type’s optimal dual solution, keeping every-
one else’s pacing-based strategy fixed, and then using
this optimal dual solution to determine the buyer’s
pacing-based bidding strategy. This approach is not
guaranteed to converge. In fact, because of the discreti-
zation, strong duality may fail to hold, and a pure
strategy equilibrium may not even exist. Nevertheless,
despite the lack of theoretical guarantees, our experi-
ments demonstrate that our analytical results and the
dual best-response algorithm they inspire continue to
work well in discrete settings.

As a first step and to validate our best response
dynamics, we ran the algorithm on the discrete approxi-
mation of the example discussed in Section 7.1, for
which we already analytically determined a pacing
equilibrium in Claim 1. The problem was discretized by
picking 320 points lying in the set of buyer types ©
defined in Section 7.1. In Figure 1, we provide plots for
the case when a =2,b =3. We see that the theoretical
predictions from Claim 1 are replicated almost exactly
by the solution computed by the best response iteration
on the discretized problem. Moreover, colinear buyer
types converge to the same paced-type vector, thereby
validating Proposition 3.

We conducted experiments to verify the structural
properties described in Proposition 3. Here, we consider
instances with 1 = 3 buyers per auction, 4 = 2 features,
the buyer type distribution G given by the uniform dis-
tribution on (1,2) X (1,2) X {0.6}, and the item type dis-
tribution F given by the uniform distribution on the
one-dimensional simplex {(x,y)|x,y = 0; x + y = 1}. These

Figure 2. (Color online) Numerical Experiment from Section 7.2
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were discretized taking a uniform grid with 10 points
along each dimension. The results are portrayed in Figure
2. The structural properties discussed in Proposition 3 are
clearly evident in Figure 2. In this scenario, the buyer
types are uniformly distributed on (1,2) x (1,2) x {0.6},
and as a consequence, all buyers have identical budgets
equal to 0.6. At equilibrium, it can be seen that the colinear
buyer types (i.e., buyers whose weight vectors w are colin-
ear) who have a positive multiplier get paced down to the
critical buyer type who exactly spends the buyer’s budget.
Moreover, at equilibrium, the boundary that separates the
paced buyer types from the unpaced buyer types—the
curve in which the critical buyer types lie—can be clearly
observed in the left-hand plot in Figure 2. Finally, we con-
structed random discrete instances by uniformly sampling
50 buyer weight vectors and 20 item feature vectors from
the square (1,2) x (1,2) and setting the number of buyers
to be n = 3 and the budget of all buyer types to be B = 2.
We found that our dual-based dynamics always con-
verged within 250 iterations to pacing-based bidding
strategies that, on average, were within 2.5% of the
utility-maximizing budget feasible bidding strategy.

8. Conclusion and Future Work

This paper introduces a natural contextual valuation
model and characterizes the equilibrium bidding be-
havior of budget-constrained buyers in first price auc-
tions in this model. We extend this result to other
standard auctions and establish revenue equivalence
among them. Because of the extensive focus on second
price auctions, previous work endorses bid pacing as
the framework of choice for budget management in the
presence of strategic buyers. Our results suggest that
value pacing, which coincides with bid pacing in sec-
ond price auctions, is an appropriate framework to
manage budgets across all standard auctions.

An important open question we leave unanswered is
that of optimizing the reserve prices to maximize seller
revenue under equilibrium bidding. In general, optimiz-
ing under equilibrium constraints is challenging, so it is
interesting to explore whether our model possesses addi-
tional structure that allows for tractability. Another related
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Notes. The left plot depicts how the multiplicative shading factor 1/(1 + u(w, B)) varies with buyer weight vector w (budget B = 0.6 is the same
for every buyer type). On the right, we plot the paced weight vectors of the buyer types.
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question is that of characterizing the revenue-optimal
mechanism for our model. Our contextual-value model
can capture multi-item auctions with additive valuations
as a special case (by interpreting each context as a differ-
ent item), which is a notoriously hard setting for revenue
maximization even in the absence of budget constraints.
Investigating dynamics in first price auctions with strate-
gic budget-constrained buyers is another interesting open
direction worth exploring. We also leave open the ques-
tion of efficient computation of the pacing-based equilibria
discussed in this paper. Addressing this question will
likely require choosing a suitable method of discretization
and tie breaking without which equilibrium existence
may not be guaranteed (see, e.g., Babaioff et al. 2021, Con-
itzer et al. 2022a). Finally, another interesting research
direction is to develop conditions that guarantee uni-
queness of an equilibrium. In light of recent results by
Conitzer et al. (2022a), we conjecture that, without further
assumptions, the equilibrium would generally not be
unique.

Endnotes
1 See hitps: //www.emarketer.com/content/us-digital-ad-spending-2019.

2Gee https://www.blog.google/products/admanager /rolling-out-
first-price-auctions-google-ad-manager-partners/.

3 See https: //www.mopub.com/en/blog/ first-price-auction.

*The Google Ads Help page defines “average daily budget” at
https://support.google.com/google-ads/answer/6312?hl=en.

5See, for example, hitps://www.blog.google/products/admanager/
rolling-out-first-price-auctions-google-ad-manager-partners/.

® We use the term “value pacing-based” strategies to differentiate it
from bid pacing/shading, which is previously studied in the con-
text of truthful auctions (Borgs et al. 2007; Balseiro et al. 2015, 2021;
Conitzer et al. 2022a, b).
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