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ABSTRACT
In today’s digital world, interaction with online platforms is ubiqui-
tous, and thus content moderation is important for protecting users
from content that do not comply with pre-established community
guidelines. Given the vast volume of content generated online daily,
having an e�cient content moderation system throughout every
stage of planning is particularly important. We study the short-term
planning problem of allocating human content reviewers to di�er-
ent harmful content categories. We use tools from fair division and
study the application of competitive equilibrium and leximin allo-
cation rules for addressing this problem. On top of the traditional
Fisher market setup, we additionally incorporate novel aspects that
are of practical importance. The �rst aspect is the forecasted work-
load of di�erent content categories, which puts constraints on the
allocation chosen by the planner. We show how a formulation that
is inspired by the celebrated Eisenberg-Gale program allows us to
�nd an allocation that not only satis�es the forecasted workload,
but also fairly allocates the remaining working hours from the con-
tent reviewers among all content categories. A fair allocation of
oversupply provides a guardrail in cases where the actual workload
deviates from the predicted workload. The second practical consid-
eration is time dependent allocation that is motivated by the fact
that partners need scheduling guidance for the reviewers across
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days to achieve e�ciency. To address the time component, we intro-
duce new extensions of the various fair allocation approaches for
the single-time period setting, and we show that many properties
extend in essence, albeit with some modi�cations. Lastly, related
to the time component, we additionally investigate how to satisfy
markets’ desire for smooth allocation (i.e, an allocation that does
not vary much from time to time) so that the switch in sta�ng
is minimized. We demonstrate the performance of our proposed
approaches through real-world data obtained from Meta.
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1 INTRODUCTION
Content moderation is an important challenge faced by many on-
line platforms, and it typically involves the analysis of content
generated on the platform to verify whether it is compliant with
the platform’s content policies. Examples of problematic content
categories include fake pro�les, spam, hate speech, violent content,
and harassment [8]. A key issue in this domain is the enormous
amount of content that needs to be veri�ed. For example, Meta
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reported in Q3 of 2022: “the prevalence of bullying and harassment-
related content [was] at 0.08% on Facebook” [25]; and Meta “review
millions of pieces of content across the world every day” to reduce
harmful content on its apps [19]. While arti�cial intelligence tech-
nology is necessarily used to handle this volume of content, it is not,
at least currently, accurate enough to handle content moderation
without human help. For this reason, Meta developed partnerships
with highly reputable global partners who employs hundreds of
thousands of reviewers to help analyze ambiguous content that re-
quires human veri�cation or investigation [22]. Across the internet
industry, social media companies, such as Twitter, YouTube, and
Facebook, spend billions of dollars every year on content modera-
tion [26]. In this paper, we study the short-term planning problem
of allocating reviewing capacity to di�erent harmful content cate-
gories, while taking into account uncertainty about content volume
as well as the skills (e.g., language requirement, training on com-
munity standards) of various partners supplying reviewers.

We introduce the fair work allocation (FWA) problem. We have =
content categories, each with some predicted workload 38 , referred
to as the demand of category 8 . We also have< partners for content
reviewers, each partnerwith some capacity B 9 for reviewing content;
we use B 9 because we see this capacity as analogous to supply in
the context of markets. For every partner 9 , consider all and only
the content categories for which the partner has the appropriate
language, cultural context, and necessary training to work for. For
each of these content category 8 , there is a value E8 9 which we
mostly deem as the rate of partner 9 to handle category 8 . The value
can also model, for example, the accuracy of the work. The goal
of the planner is to produce an allocation of workload capacity of
partners to categories, that satis�es predicted demand and capacity
constraint. In general, we are interested in the setting where work
capacity exceeds demand, in which case we would like to distribute
excess work capacity across the content categories “fairly”, since
each category has variable demand realizations, and have di�erent
stakeholders that care particularly about a given category.

To address the FWA problem, we propose the use of tools from
fair division. In particular, we study the application of leximin,
competitive equilibrium from equal incomes (CEEI) [27], and more
generally the max Nash welfare (MNW) allocation rule [6], for ap-
proaching this problem. However, as we will discuss next, the FWA
has many practical considerations that necessitate the development
of extensions to these tools.

The �rst practical consideration of the FWA problem is the de-
mands of the categories. In our model, these demands are hard
constraints that must be satis�ed, and the “utility” achieved by
each category is the supply of excess reviewing capacity that it
receives beyond the forecasted demand. We refer to this excess
allocation as over-allocation, and the primary goal of the planner
is to fairly over-allocate. This requires us to consider an allocation
model that is similar to the Nash bargaining model [20], where
each agent has a disagreement point, which is analogous to the
demands of categories in our model. We introduce variations on
market-equilibrium-based allocation (including CEEI) and leximin
fairness for handling these demands. We then show that, analogous
to results for the standard setting [3, 14], we have equivalence be-
tween leximin and CEEI when all categories have binary valuations,
i.e. partners can either handle a category or not; a second useful

market-equilibrium approach where the budgets are not uniform
leads to a di�erent type of allocation, however.

A second practical consideration is that of time. As discussed in
prior work on other aspects of the content moderation problem,
there is an important time component to this problem [18, 21]. The
reason for this is that the time between the creation of a piece of
content and its review can have a large impact on the platform
quality. If harmful content is visible to users before it has been
reviewed, then it negatively impacts users. Conversely, if a piece of
policy-compliant content is left in the review queue for a long time,
it negatively impacts both the content creator and users. To address
this time component, we introduce new versions of the various fair
allocation approaches that take into account this time component.

Finally, related to time is the desire for smooth allocation across
time. In practice, partners prefer to have relatively smooth allo-
cations from each category across time, as it would be easier for
sta�ng. We introduce a new variation of the market equilibrium
model that takes into account this smoothness component.

For each of the variations introduced above, we study the prop-
erties resulting from these new variations, and show that in most
cases we can still give desirable guarantees, for example by showing
that market-equilibrium interpretations of the MNW allocation are
preserved for several of these extensions. We also perform exten-
sive numerical tests on real-world content moderation data, and
study the qualitative and quantitative results derived from applying
each of the proposed models to the FWA problem.

While our paper is motivated by the FWA problem, the ideas ap-
ply more broadly to several related operational problems. Here we
mention two applications that are quite similar to the content mod-
eration problem. The �rst one is the sta�ng problem for customer
support services. The buyers here are di�erent types of issues that
need to be resolved, and each one has its own (expected) workload.
On the other hand, the sellers are customer service representatives,
and each representative can only work on a subset of the issues due
to training, and has an upper limit on how much they can work
in a day or in a week. The second application is how to schedule
workers to provide labels for content that will later be used for the
training of machine learning algorithms. Again, the buyers here
are di�erent types of content, and sellers are the workers. It is not
hard to see that for both applications, over-allocation and smooth
allocation arise as issues that must be addressed.

Relationship to Market Equilibrium. So far we have discussed the
FWA problem in its concrete context. However, for the remainder
of the paper, we will discuss our results in a more general market
equilibrium context, to be more consistent with existing literature.
To that end, we now describe how the FWA problem maps to a mar-
ket equilibrium problem. The set of content categories corresponds
to the set of buyers in a market (who now possess demands). The
set of partners corresponds to the set of items in the market, and
capacities correspond to item supplies. The value E8 9 that category
8 has for partner 9 maps directly to a valuation in the market.

1.1 Related Literature
Content moderation has gained its importance in the last decade
as we spend more time browsing on the internet. Hence, many
problems that arise from content moderation have been studied in
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the literature. The �rst is on developing reliable machine learning
(ML) algorithms to automate content moderation (see, e.g., [12, 16]).
Given that ML alone cannot solve the content moderation problem
[5], it is also important to e�ciently use the human review capacity.
Haimovich et al. [13] developed a framework to predict the popu-
larity of social network content in real-time, which could be used to
detect harmful viral content and ultimately enable timely content
moderation. Nguyen et al. [21] developed a statistical framework
that increases the accuracy for detecting harmful content, by com-
bining the decisions from multiple reviewers as well as those from
ML algorithms. Makhijani et al. [18] built simulation models for the
large-scale review systems to understand and optimize the human
review process and guide the platforms for operational decisions
(e.g., hiring additional reviewers). Garcelon et al. [11] investigated
a multi-arm bandit framework to calibrate the severity predictions
of content based on various ML models.

To add to existing works on di�erent aspects of content mod-
eration, we study the problem of scheduling reviewers in advance
given the anticipated amount of workload, which we model as an
allocation problem. The problem of allocating divisible goods to
buyers fairly was �rst solved by Varian et al. [27] via the so-called
competitive equilibrium from equal incomes (CEEI) solution. The
CEEI solution is fair in a sense that it is envy-free [9]. Moreover, the
CEEI solutions coincide with allocations that maximize the Nash
social welfare [1] and thus can be computed in polynomial time via
the convex program given by Eisenberg and Gale [7].

In terms of utility optimization, besides maximizing Nash wel-
fare (MNW), some work investigates an egalitarian notion of util-
ities, such as max-min or more generally leximin-optimal. In the
case of binary additive valuation, the set of MNW allocations and
leximin-optimal allocations are known to coincide [3, 14]. Moreover,
leximin-optimal solutions have been shown to satisfy several fair-
ness properties in the case of indivisible goods (see, e.g., [10, 17, 24]).

The over-allocation setting of our paper is closely related to
the framework of Nash bargaining (see, e.g., [23]) with the hard
demands being interpreted as the disagreement point. A key di�er-
ence between our model and the Nash bargaining model is that
in the latter, there is the additional constraint that every buyer is
allocated with exactly one unit of items. Interestingly, such frac-
tional matching type of constraints allow the equivalence relation
between the MNW allocations and leximin-optimal allocations to
be extended to a more general setting of bi-valued valuations [2].
However, we show in Section 3.3 that this result does not hold in
our setting. The smoothness setting was also studied by [4] for the
resource allocation problem. However, their objective is to optimize
the max-min utilities where we study the MNW allocations.

2 FISHER MARKETS WITH OVER
ALLOCATION AND DISCRETE TIME

We start by introducing the standard Fisher Market setting. There
is a set of = buyers (indexed by 8), and < items (indexed by 9 ).
Each buyer has some budget denoted by ⌫8 2 R�0, and each item
has a certain supply denoted by B 9 2 R�0. Moreover, every buyer
8 has some utility function D8 (G8 ) denoting the utility that they
derive from bundle G8 = (G81, G82, · · · , G8<) 2 R<�0. We mostly be
interested in linear utilities, where D8 (G8 ) = hE8 , G8 i B

Õ
9 E8 9G8 9 ,

and E8 = (E81, E82, · · · , E8<) 2 R<�0 is buyer 8’s valuation1 of the
items, although we also consider generalizations of linear utilities
a few times in the paper. We use G 2 R=⇥<�0 to denote an allocation
of items to buyers, with row G8 denoting the bundle allocated to
buyer 8 , and G8 9 denoting how much buyer 8 gets of item 9 . The
utility pro�le of an allocation G is the set of utilities of all buyers.
Note that for utility pro�le, the ordering of buyers does not matter.

Given prices ? 2 R<�0, the demand set of a buyer 8 is the set of
optimal bundles within budget:

⇡8 (?) = argmax
G8 �0

{D8 (G8 ) |h?, G8 i  ⌫8 } .

A market equilibrium is a price-allocation pair (?, G) such that:
• every buyer 8 receives a bundle from their demand set, i.e.
G8 2 ⇡8 (?); and

• any item 9 with positive price ? 9 > 0 must be exactly allo-
cated, i.e.

Õ
8 G8 9 = B 9 .

In the standard setting, a market equilibrium not only exists,
but is also e�ciently computable via convex programming. The
celebrated Eisenberg-Gale convex program [7] achieves this:

max
G�0

’
8

⌫8 logD8 (G8 ) dual var.

s.t.
’
8

G8 9  1, 89 = 1, . . . ,< ? 9
(EG)

The market equilibrium arises by combining the optimal primal
solution with its corresponding dual variables on the supply con-
straints. The former gives an allocation that maximizes the budget-
weighted geometric mean of buyers’ utilities (i.e., [Œ8 D

⌫8
8 ]

1Õ
8 ⌫8 ), and

the dual variables act as prices.
When every buyer has a budget of one (i.e., ⌫8 = 1), the objec-

tive of (EG) is equivalent to maximizing the Nash Social Welfare
(NSW), which is de�ned as the geometric mean of buyers’ utilities.
Moreover, market equilibrium is used to de�ne one of the premier
methods for fairly allocating divisible goods: competitive equilib-
rium from equal incomes (CEEI). The reason is that allocation via
CEEI leads to several attractive fairness properties:

• Pareto optimality: there is no other allocation where every
buyer is weakly better o� (in terms of utilities) and some
buyer is strictly better o�;

• Envyfreeness: every buyer 8 prefers their own bundle to that
of any other buyer : . If budgets are not equal, then this holds
after scaling by budgets: D8 (G8 ) � ⌫8

⌫:
D8 (G: );

• Proportionality: every buyer 8 prefers their own bundle to
the one where they receive ⌫8Õ

: ⌫:
of every item.

In this paper, we are interested in two variations on the standard
Fisher market setting.

Allocation with hard demands from buyers. Each buyer 8 has some
required utility demand 38 . We are required to �nd an allocation
where every buyer 8 gets utility at least 38 , and subject to feasibility,
the goal is to fairly allocate the excess utility, where the utility by
which we measure fairness is D8 (G8 ) = hE8 , G8 i � 38 . We discuss and
compare di�erent fairness solution concepts in Section 3.

1If buyer 8 is not eligible for item 9 (i.e., in the application of content moderation, if
a partner does not have the appropriate language and cultural context or necessary
training for a content category), valuation E8 9 will be zero.

27



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Amine Allouah et al.

Allocation over multiple time periods. We are interested in set-
tings where there is a temporal component: there are ) time steps,
and items have supply constraints both per time step, and across all
time steps. In particular, let GC8 9 denote how much of item 9 buyer 8
receives at time C . Then, for every time step C , we must satisfy the
per-time-step supply constraint

Õ
8 G
C
8 9  BC9 , and additionally satisfy

the overall supply constraint
Õ
8,C G

C
8 9  B 9 . Note that the temporal

component only matters if B 9 <
Õ
C B
C
9 , since otherwise we could

split each item up into ) separate items each with supply speci�ed
by its per-time-step supply. We discuss di�erent ways to model
buyers’ overall utility in Section 4 and show how to satisfy markets’
desire for smooth allocation overtime in Section 5.

3 FAIR ALLOCATION OF OVERSUPPLY
Here we assume that there’s a hard demand 38 on utilities for each
buyer 8 , and then they have additional soft demand for getting
additional supply. The goal is to �nd an allocation that satis�es
every hard demand, and furthermore fairly allocate the oversupply
to buyers as soft demands. To model fair allocation of oversupply,
we de�ne the utility of buyer 8 given bundle G8 as

D8 (G8 ) B
’
9

E8 9G8 9 � 38 .

In this section, we consider two solution concepts: market equilib-
rium and leximin rules.

3.1 Solution via Market Equilibrium
For market equilibrium, we can apply the same idea as in (EG) and
give the formulation below, which maximizes the budget-weighted
geometric mean of buyers’ utilities. By scaling, we additionally
assume without loss of generality that the supply B 9 = 1 for all
sellers.

max
G�0

’
8

⌫8 log(
’
9

E8 9G8 9 � 38 ) dual var.

B .C .
’
8

G8 9  1, 89 = 1, . . . ,< ? 9
(EG-demand)

The objective in the formulation resembles that for Nash bar-
gaining (see, e.g., [23]) with the hard demands being interpreted
as the disagreement point. However, our problem is fundamentally
di�erent from Nash bargaining, which enforces a fractional match-
ing type of constraints and requires that every buyer is allocated to
exactly one unit of goods. As a result, the solution spaces between
our formulation and the Nash bargaining formulation are di�erent,
and results from the Nash bargaining setting do not immediately
extend to our setting.

For the rest of the paper, we impose the following regularity
assumption, which ensures that the maximum budget-weighted
geometric mean of buyers’ utilities is strictly positive, and the
(EG-demand) problem does not take logarithm of zeros.

A��������� 1. There exists an allocation G such that D8 (G8 ) > 0
for all buyer 8 .

To simplify the notation for the rest of the section, we let D8 BÕ
9 E8 9G8 9 � 38 be the utility of agent 8 . Then, by the stationarirty of

the KKT conditions, we get that

⌫8
E8 9
D8
� ? 9 � 0 88 = 1, . . . ,=; 9 = 1, . . . ,<, (1)

where equality holds if G8 9 > 0 due to complementary slackness.
One property of the traditional �sher market (i.e., demand 38 = 0

for all buyers) is that with price vector ? , every buyer spends their
entire budget. Here, we show a similar property, but with demand-
in�ated budgets.

L���� 3.1. The market prices (? 9 ) verify ⌫8
⇣
1 + 38

D8

⌘
=
Õ
9 ? 9G8 9 ,

for all buyer 8 .

P����. Multiplying both sides of Equation (1) by G8 9 and sum-

ming over 9 , we get that ⌫8
Õ

9 E8 9G8 9
D8

=
Õ
9 ? 9G8 9 . Since

Õ
9 E8 9G8 9 =

D8 + 38 , we conclude the result. ⇤

Note that for when buyers do not have hard demands (i.e.,38 = 0),
the equality in Lemma 3.1 recovers the property that every buyer
spends all their budget: ⌫8 =

Õ
9 ? 9G8 9 .

We next show the primal and dual solution pair (G, ?) to problem
(EG-demand) forms a market equilibrium under a slightly di�erent
de�nition of demand sets as a consequence of Lemma 3.1. The proof
can be found in the appendix.

T������ 3.2. Let G, ? be a solution to (EG-demand). The pair
(G, ?) is a market equilibrium where the demand sets are de�ned with
respect to the demand-in�ated budgets – that is, for each buyer 8 ,

⇡8 (?) B argmaxG8 �0
⇢
D8 (G8 ) B

Õ
9 E8 9G8 9 � 38

���� Õ9 ? 9G8 9  ⌫8 (1 + 38
D8 (G8 ) )

�
.

Before we continue to the next solution concept, we would like to
point out that there are two interesting choices for buyers’ budgets
and both result in solutions with interesting properties. The �rst
one is when all buyers have budgets of one, and in this case, the
objective of (EG-demand) is simply the Nash welfare. The second
choice is when buyers’ budgets are equal to their demands.

P���������� 3.3. Assume E8 9 = 1 for all buyers 8 and sellers 9 .
Then,

(i) when ⌫8 = 1 for all buyers 8 , the di�erence
Õ
9 G8 9 � 38 is

constant for all buyers 8 ;
(ii) when ⌫8 = 38 for all buyers 8 , the ratio

Õ
9 G8 9
38

is constant for
all buyers 8 .

P����. First note that the fact every buyer is assigned with a
bundle in their demand set, as we have shown in Theorem 3.2,
implies that all items have the same price, which we denote by ?̄ .
Let Ḡ8 B

Õ
9 G8 9 denote the amount of items allocated to buyer 8 .

Then the property in Lemma 3.1 becomes ⌫8 Ḡ8
Ḡ8�38 = ?̄Ḡ8 (‡). For (i),

we can simplify (‡) as Ḡ8 �38 = 1
?̄ for all buyers 8; and for (ii), we can

simplify (‡) as Ḡ838 = 1+ 1
?̄ for all buyers 8 . These two simpli�cations

conclude the proof. ⇤

For more general non-complete graphs, we anticipate similar
results hold in a sense that the solution will try to be as fair as
possible, additivelywhen budgets are one andmultiplicativelywhen
budgets are equal to demands. Indeed, we observe this phenomenon
in our experiments (see Section 3.4 for details).
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3.2 Solution via Leximin Fairness Concept
In this section, we introduce another fairness solution concept,
called the leximin-optimal allocation.

Consider two vectors of equal length E = (E1, E2, · · · , E=) and
Ẽ = (Ẽ1, Ẽ2, · · · , Ẽ=). Let E⇤ denoted an ordered vector of E so that
E⇤1  E⇤2  · · · E⇤= (ties breaking randomly), and similarly let Ẽ⇤ be
an ordered vector of Ẽ . We say E is leximin-greater than Ẽ , denoted
by E �lex Ẽ , if there exists : 2 [=] such that E⇤8 = Ẽ⇤8 for all 8 < : ,
and E⇤: > Ẽ⇤: .

For any allocation G , let A (G) be the vector of budget-weighted
utilities, where A8 (G) = D8 (G8 )⌫8 . An allocation G is said to be
leximin-optimal if there is no other allocation G̃ such that A (G̃) �lex
A (G). In other words, the leximin-optimal solution �rst maximizes
the minimum component in the A (G) vector, then among all al-
locations where the minimum component in the A (G) vector is
maximized, it maximizes the second minimum value, etc.

Leximin is a re�nement of the max-min fairness and a leximin-
optimal allocation can be found by iteratively solving a sequence
of max-min convex problems [28]. See Algorithm 1 for details.

ALGORITHM 1: Leximin-optimal solution

1: �  [=] {set of free variables}
2: Initialize the optimization problem

max
G�0

min
82�

A8 (G)
B .C .

Õ
8 G8 9  1, 89 = 1, . . . ,<

(leximin)

3: while � < ; do
4: Solve (leximin) and let A⇤ be the optimal solution and let 8⇤

be a minimizer.
5: Add to (leximin) constraints: A8 (G) � A⇤ for all 8 2 � .
6: Remove 8⇤ from �
7: end while
8: return the latest solution of (leximin)

When buyers have equal budget and binary additive utilities, the
leximin-optimal solution is known to maximize NSW, both when
the items are indivisible [3] and when the items are divisible [14].
Therefore, we are interested in the connection between the leximin-
optimal solutions and the solutions to (EG-demand) (referred to as
EG solutions thereafter) in our setting.

3.3 Comparison
We say two allocations are equivalent if they give the same utility
pro�le. In this section, we investigate whether EG and leximin-
optimal solution are equivalent under various scenarios.

In terms of valuation, we �rst consider the special case of binary
valuations (i.e., E8 9 2 {0, 1},88, 9 ), which represents compatibility
between buyers and sellers and is commonly used in practice. Before

budget = 1 budget = demand
binary valuation 3 (Theorem 3.6) 7 (Example 3.5)

bi-valued valuation 7 (Example 3.4) 7

Table 1: This table summarizes if EG solutions are equivalent
to leximin-optimal solutions under di�erent cases.

considering the case with general valuations, we consider a slightly
more restricted generalization known as bi-valued valuations (i.e.,
E8 9 2 {U, V},88, 9 , for some U > V � 0). The reason we consider the
bi-valued setting is that in other domains such as Nash bargaining,
many interesting results arise when valuations are bi-valued (see,
e.g., [2]). However, as we show in the following, in our setting, the
leximin-optimal solution and the EG solution do not coincide for
bi-valued valuations. Hence, we no longer need to investigate the
most general setting as these negative results directly apply.

Besides di�erent cases of valuations, we also consider two cases
for budgets. The �rst one is when all buyers have equal budgets, for
which we assumewlog that every buyer has a budget of one; and the
second is when buyers’ budgets are equal to their demands. Note
that for the �rst case, EG solutions coincide with the maximum
Nash welfare (MNW) solutions, and the proof is similar to the
one presented in [14] for binary valuations in the classical setting
without hard demand constraints.

Example 3.4. This example shows that the EG solution is not the
same as the leximin-optimal solution even for bi-valued valuations.
Assume we have two items, and two buyers with zero demand
and unit budgets. All pairs have valuation one except for one pair:
E1,1 = 2 and E1,2 = E2,1 = E2,2 = 1. Both the EG solution and
the leximin-optimal solution allocate the entire second item to the
second buyer. However, for the �rst item, the EG solution allocates
the whole item to the �rst buyer, whereas the leximin-optimal
solution allocates only 2

3 units of it to the �rst buyer.

Example 3.5. The following example shows that the EG solution
is not the same as the leximin-optimal solution when budget equals
to demand, even when the valuation is binary. Consider the instance
with two buyers and two items. Each item has a supply of one. The
buyers have demand 0.1 and 0.2 respectively. The �rst buyer only
accepts the �rst item, while the second buyer accepts both items.

Under the EG solution, the amount of the �rst item allocated to
the �rst buyer is the solution for max02 [0,1] (0 � 0.1) (2 � 0 � 0.2)2 .
Therefore, the EG solution allocates 2

3 units of the �rst item to
the �rst buyer. However, under the leximin-optimal solution, the
amount of the �rst item allocated to the �rst buyer is the solution
for the equation 0 � 0.1 = (2 � 0 � 0.2)2, with 0 2 [0, 1] due to the
AM-GM inequality. The solution here is clearly not 2

3 .

T������ 3.6. With binary valuations and unit budget, for prob-
lem (EG-demand), the set of leximin-optimal solutions is the same as
the set of MNW solutions under Assumption 1.

We defer the proof to Section 4.1, where we study a more general
setting where the same result holds. That is, Theorem 3.6 may be
viewed as a corollary to the more general result in Theorem 4.3.

3.4 Application
The content quality and integrity of online content platforms play
a central role for users experience and platform growth. For that,
companies spend billions of dollars every year to contract with
di�erent partners that provide human content reviews [26]. In this
and the following application sections, we demonstrate through
real data acquired from Meta (formerly known as Facebook) how
our proposed methods can be useful in allocating partners’ capacity
to di�erent content categories.
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Figure 1: The graph displays buyers (reviewing work types)
and sellers (reviewer partners) in a major market, where
edges indicate whether a certain partner is able to work on
a certain work type. The numbers in parentheses represent
demands and supplies, and these numbers are generated
through a certain transformation of the raw data.

In this setting, sellers are partners that provide human review
services and their supplies represent the amount of reviewer hours
they can provide. The buyers are the di�erent categories of content
that need to be reviewed (hereafter referred to as work types), and
their hard demands are the expected amount of human reviewing
hours needed to review all the jobs (i.e., the forecasted workloads).

Since reviewers need to go through extensive training before
being able to work on jobs in each work type, not all partners can
work on all work types. As a result, we adopt the binary valuation
structure to model compatibility between sellers and buyers. That
is, if a partner can work on a certain work type, the pair has a
valuation of one, and otherwise, it will have a value of zero.

For demonstration purposes, we focus on one particular medium-
size market for in the main text of the paper. See Figure 1 for an
example of buyers (and their demands), sellers (and their supplies),
and the valuation structure for this market. We additionally include
analyses for a large-size market in Appendix B. All takeaways from
our analyses in the main text of the paper extend to the large-size
market as well.

In the following, we delve into some speci�c reasons why a fair
allocation is important for this business problem. First, since the
demands are forecasted workload, the actually realized workload
will unavoidably be di�erent from the demand. Thus, being able
to schedule the partners to handle more jobs than the forecasted
workload provides a guardrail against natural �uctuation in the
amount of workload as well as �uctuations due to headline events.

In addition, as the content review workforce is constantly evolv-
ing, occasionally, new work types are created and would have zero
demands in the system. However, such zero demand is actually due
to the fact that the machine learning models do not have adequate
historical data to predict the workload yet. In this scenario, review
hours should still be allocated to these new work types regardless
of their predicted workload.

We investigate the allocations obtained from both the EG solu-
tions and the leximin-optimal solutions. In addition, we consider
two cases for buyers’ budget: we �rst assume buyers have unit
budgets, and then assume that buyers’ budgets are equal to their
demands. Note that in the former case, due to Theorem 3.6, the EG
solutions and the leximin-optimal solutions coincide, and thus we
omit one in the presentation in Figure 2.

(a) plot of demand and alloca-
tion

(b) table of demand and alloca-
tion

Figure 2: Allocation under di�erent solution concepts and
budget setups. In the table columns, “B=1” stands for the case
where all buyers have budget of one; and “B=d” stands for
the case where budgets are equal to demands. The buyers are
sorted by their demands in an increasing order.

We start by examining the EG solutions and we in particular
observe that they satisfy properties similar to those stated in Propo-
sition 3.3. When budgets are equal to ones, the oversupply from
partners is equally divided among the work types. That is, the over-
supply is distributed fairly in an additive sense. More speci�cally,
except for “work type 10” (which is the only one that is compat-
ible with the “partner 1”), all other work types are allocated an
additional 60 hours on top of their demands.

However, when buyers’ budgets are set to be the same as their
demand, we notice that the oversupply is allocated fairly in a more
multiplicative fashion under the EG solution. That is, work types
with higher demand will receive higher amounts of allocation ex-
ceeding their demand. In our experiment, we observe that again
except for the “‘work type 10”, all other work types receive an
allocation that is about 128% of their demands.

Lastly, the leximin-optimal solution when budgets are equal to
demands does not perform well as it allocates a signi�cant amount
of oversupply to the buyer with the smallest amount of demand
(or equivalently budget). The reason for this is that under leximin
optimality objective, in order to maximize the minimum budget
adjusted utility, the buyer with the smallest budget (or demand) will
end up with the highest amount of utility (i.e., allocation). However,
this solution, although is fair from an egalitarian point of view, does
not align well with the business purposes here.

4 MULTIPLE TIME PERIODS
In the application of short term planning for content reviewers, we
would typically have constraints at several levels of the problem: a
given review site may have an overall maximum capacity that they
can allocate across the planning period, but then they also typically
have tighter per-time-period sta�ng constraints. To accommodate
such constraints, we extend the basic Fisher market model to allow
each item to have time-based constraints. More speci�cally, we will
consider a model with ) discrete time steps, and each item 9 will
have an overall supply B 9 , as well as a per-time period supply BC9 .

The allocation vector now has a time component and we denote
by GC8 9 the amount of item 9 allocated to buyer 8 at time C . Similarly,
the demand vector now also a time component, where 3C8 is the
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demand of buyer 8 at time C , and we denote 38 B
Õ
C 3
C
8 as the total

demand of buyer 8 .
Similar to the previous section, we may consider two solution

concepts and investigate their equivalence under the special case
of unit budget and binary valuation. In terms of buyers’ overall
utilities, we consider two possibility to combine their utilities at
each time period, where we denote the utility of buyer 8 at time C as

DC8 (GC8 ) =
’
9

E8 9G
C
8 9 � 3C8 .

In the �rst approach, the utility of each buyer is simply the sum
of the utilities at di�erent times, whereas in the second approach,
the utility of each buyer is the geometric mean of the utilities at
di�erent times. In terms of fairness, the �rst approach is a direct
extension of the previous section, aiming to be fair to all the buyers;
and the second approach targets fairness at a more granular level,
aiming to be fair to all the buyers across all the time periods.

4.1 Total utility as the sum across time periods
For one possibility, we assume the overall utility of buyer 8 is

D8 (G8 ) =
’
C

DC8 (GC8 ) .

Hence, we have the following program,whichmaximizes the budget-
weighted utilities over the set of feasible allocations under time-
based constraints. Note that this formulation also applies to the
special case where each buyer only has an overall demand through-
out all time periods (i.e., no time-speci�c demand).

max
G�0

’
8

⌫8 log(
’
9

E8 9 (
’
C

GC8 9 ) � 38 ) dual var.

B .C .
’
8

GC8 9  BC9 , 89 2 [<], C 2 [) ] _C9’
C ,8

GC8 9  B 9 , 89 2 [<] _9’
9

E8 9G
C
8 9 � 3C8 , 88, C

(EG-Time-sum)

It follows from stationarity of the KKT conditions that the fol-
lowing must hold:

⌫8
E8 9
D8
 _C9 + _ 9 , 88, 9, C (2)

Note that here, we omit the dual variables corresponding to the non-
negative constraints and thus, the above must hold with equality if
GC8 9 > 0 due to complementary slackness.

L���� 4.1. Let G, _ be a solution to (EG-Time-sum). Consider the
pair (G, ?), where the price ?C9 = _C9 + _ 9 on each item 9 at a given
time period C . Then, every buyer spends their entire demand-in�ated
budget. That is,

Õ
C , 9 G

C
8 9?

C
9 = ⌫8 (1 + 38

D8
) for every buyer 8 .

P����. Multiplying (2) by GC8 9 and summing over C and 9 , we get
that for all buyer 8 ,
Õ
C , 9 G

C
8 9?

C
9 =

Õ
C , 9 G

C
8 9 (_C9 + _ 9 ) = ⌫8

Õ
C , 9 G

C
8 9
E8 9
D8

= ⌫8 (D8+38D8
) = ⌫8 (1 + 38

D8
) .

⇤

Thus, when buyers have no hard demand, the market clears if
we set the price of item 9 at time C equal to ?C9 = _C9 + _ 9 .

To show that the allocation-price pair (G, ?) is a market equi-
librium, we need to show the condition that an item has price ?C9

strictly greater than 0 only if
Õ
8,C G

C
8 9 = B 9 . This is not guaranteed in

our setting. Instead, we have that ?C9 > 0 only if either
Õ
8 G
C
8 9 = B 9 orÕ

C ,8 G
C
8 9 = BC9 . Thus, we get a market equilibrium if we generalize the

price complementarity requirement to be that an item must have a
nonzero price only if it is supply-constrained at some layer of its
supply hierarchy. More formally, we have the following theorem.
The proof can be found in the appendix.

T������ 4.2. Let G, _ be a solution to (EG-Time-sum). Consider
the pair (G, ?), where the price ?C9 = _C9 + _ 9 on each item 9 at a given
time period C . This pair is a market equilibrium under the condition
that an item has ?C9 > 0 only if either

Õ
8 G
C
8 9 = BC9 or

Õ
C,8 G

C
8 9 = B 9 ,

and under the following de�nition of demand sets:

⇡8 (?) B argmaxG8 �0
⇢
D8 (G8 ) B

Õ
C D
C
8 (GC8 )

���� Õ9,C ?
C
9G
C
8 9  ⌫8 (1 + 38

D8 (G8 ) )
�
.

A very related theorem is shown by Jain and Vazirani [15]: the
EG program associated to any market which can be formulated as
a network �ow problem with a single source, and a sink for each
buyer, where the utility of a buyer is the sum of mass on paths to
the corresponding sink, and with the price on a path being equal
to the sum of prices on the edges in the path, can be solved by
maximizing the sum of the logs of these buyer utilities, and this
yields a market equilibrium. (EG-Time-sum) �ts in this framework,
except that we have heterogeneous edge weights that go into the
utility function.

Algorithm 1 can be easily adjusted to obtain the leximin-optimal
solution in this setting with time-based constraints. In the following,
we investigate whether results in Section 3.3 extend to the multiple-
time setting. Since the multiple-time setting is a generalization,
the negative results in Section 3.3 immediately extend. Thus, we
focus on the positive result and in particular we show that when
all buyers have budgets of ones and when valuations are binary,
the set of MNW solutions and the set of leximin-optimal solutions
coincides.

T������ 4.3. With binary valuations and unit budget, for prob-
lem (EG-Time-sum), the set of leximin-optimal solutions is the same
as the set of MNW solutions under Assumption 1.

P����. Let G be an allocation that is an EG solution (or equiv-
alently an MNW solution since all buyers have budgets of one),
we want to show that it is also leximin-optimal. Assume by con-
tradiction that it is not. Let G̃ be a leximin-optimal solution. Let
A B (D8 (G8 ))82 [=] and Ã B (D8 (G̃8 ))82 [=] denote the vectors of
budget-weighted utilities corresponding allocation G and G̃ , recep-
tively. First observe that by optimality we must have the following.

C���� 1.
Õ
8 A8 (G8 ) =

Õ
8 Ã8 (G̃8 ) =

Õ
9 min(B 9 ,

Õ
C B
C
9 ) �

Õ
8 38 .

Then, by Assumption 1, we can apply the same proof idea as
given in [14]. Let >1,>2, · · · ,>= be an enumeration of [=] such
that A>1  A>2  · · ·  A>= , and similarly let >̃1, >̃2, · · · , >̃= be an
enumeration such that Ã>̃1  Ã>̃2  · · ·  Ã>̃= . Since Ã �lex A
by assumption, we can let : 2 [=] be the smallest index so that
Ã>̃: > A>: . Then by Claim 1, we know there must be another index
8 > : so that Ã>̃8 < A>8 and we let : 0 be the smallest such index. Let
# B {>1,>2, · · · ,>:0�1}. Then, by de�nition of the enumeration >
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and our choice of : 0, we have
Õ
82# A8 <

Õ
82# Ã8 . Thus, there exists

buyers 8 2 # , 8 0 2 [=] \# , and item 9 2 [<] such that E8 9 = E80 9 = 1
and GC80 9 > 0 for some C 2 [) ]. Also, note that we must have
A8 < A80 by de�nition of # . Hence, by Assumption 1, one can re-
allocate some item 9 from buyer 8 0 to 8 at time period C without
a�ecting feasibility. However, this re-allocation will increase the
Nash Social Welfare, which contradicts the assumption that G is an
MNW solution. ⇤

4.2 Total utility as the geometric mean across
time periods

For the second possibility, we assume the overall utility of buyer 8
is

D8 (G8 ) =
�÷
C

DC8 (GC8 )
� 1
) .

Tomaximize the budget-weighted utilities over the set of feasible
allocations under time-based constraints, we have the following
program.

max
G�0

’
8

⌫8 · 1
)

’
C

log(
’
9

E8 9G
C
8 9 � 3

C
8 ) dual var.

B .C .
’
8

GC8 9  BC9 , 89 2 [<], 8C 2 [) ] _C9’
C ,8

GC8 9  B 9 , 89 2 [<] _9

(EG-Time-geo-mean)

In this setting, stationarity of the KKT conditions gives us the
following relationship:

⌫8 ·
1
)

·
E8 9

DC8
 _C9 + _ 9 , 88, 9, C (3)

where equality holds whenever GC8 9 > 0 due to complementary
slackness.

L���� 4.4. Let G, _ be a solution to (EG-Time-geo-mean). Con-
sider the pair (G, ?), where the price ?C9 = _C9 + _ 9 on each item 9 at a
given time period C . Then, every buyer spends their entire demand-
in�ated budget. That is,

’
C, 9

GC8 9?
C
9 = ⌫8

"
1
)

’
C

(1 +
3C8
DC8

)
#
, 88 = 1, . . . ,=

P����. Multiplying (3) by GC8 9 and summing over C and 9 , we get
that for all buyer 8 ,
Õ
C , 9 G

C
8 9?

C
9 = ⌫8 · 1

)
Õ
C , 9 G

C
8 9
E8 9
DC8

= ⌫8 · 1
)
Õ
C (
DC8 +3C8
DC8

) = ⌫8
h
1
)
Õ
C (1 +

3C8
DC8
)
i
.

⇤

Thus, when buyers have no hard demand at all time periods (i.e.,
3C8 = 0 for all 8, C ), the market clears if we set the price of item 9 at
time C equal to ?C9 = _C9 + _ 9 .

To show that the allocation-price pair (G, ?) is a market equilib-
rium, not only do we need to modify the price complementarity
requirement as in the previous subsection, we also need to modify
the de�nition of demand sets due to Lemma 4.4. The proof of the
following theorem can be found in the appendix.

T������ 4.5. Let G, _ be a solution to (EG-Time-geo-mean). Con-
sider the pair (G, ?), where the price ?C9 = _C9 + _ 9 on each item 9 at
a given time period C . This pair is a market equilibrium under the

condition that an item has ?C9 > 0 only if either
Õ
8 G
C
8 9 = BC9 orÕ

C ,8 G
C
8 9 = B 9 , and under the following de�nition of demand sets:

⇡C8 (?) = argmaxG8 �0
⇢
D8 (G8 ) B

✓Œ
C (DC8 (GC8 ))

◆ 1
)
���� Õ9,C ?

C
9G
C
8 9  ⌫8


1
)
Õ
C (1 +

3C8
DC8 (GC8 )

)
��
.

In the following, we de�ne what makes a solution leximin-
optimal in this setting. Instead of having a vector of buyers’ budget-
weighted utilities, we now have a vector of buyers’ budget-weighted
utilities at all time periods. More speci�cally, for any allocation G ,
the vector A (G) now has a time component: AC8 (G) = DC8 (GC8 )⌫8 ; and
an allocation G is leximin-optimal if there is no other allocation G̃
such that A (G̃) �lex A (G). With this de�nition, when all buyers have
unit budgets, (EG-Time-geo-mean) is the same as (EG-demand) if
we treat each buyer at each time period as an individual buyer.
Thus, Theorem 3.6 extends naturally.

C�������� 4.6. With binary valuations and unit budget, for
(EG-Time-geo-mean), the set of leximin-optimal solution is the same
as the set of MNW solutions under Assumption 1.

4.3 Application
For application, we continue our investigation on the same market.
Instead of a single time period, we now focus on four consecutive
time periods. We observe from our data that the supply from our
partners is constant across the four time periods. This is expected
given that partners usually have a �xed amount of facilities to
accommodate their employees. On the other hand, we observe that
for some work types, their forecasted demands vary from one time
period to the next.

Due to the fact that variations are on the demand side, we use
the second utility de�nition (as in Section 4.2) for our experiments.
Moreover, for the following, we only focus on the case where buyers
have a budget of one. The reason for this simpli�cation is that the
qualitative results are similar to those under the case where budgets
are equal to demands.

The allocation results are shown in Figure 3. We omit “partner 1”
since it can only work on “work type 10”, and thus intuitively all of
its reviewing capacity should be allocated toward “work type 10”.
As one can see from Figure 3, for the most part, the allocation for
each buyer-seller pair is rather smooth from time to time. However,
for “work type 05”, its allocation from “partner 3” partner goes
down, but it naturally follows from the fact that its demand has a
downward trend; and for “work type 04”, although its demand is
relatively constant, its allocation from both partners vary, with one
having an upward trend and the other having a downward trend.

Because of the variability in allocation from one to the next, the
solution here has the drawback that partners have to shift their
sta�ng requirements from time to time, which could be costly from
an operational point of view. As a result, it would be bene�cial to
the partners if we can obtain a solution that minimizes sta�ng
change as much as possible. We discuss more in detail on markets’
desire for smooth allocation in the next section.

5 SMOOTH ALLOCATION ACROSS MULTIPLE
DISCRETE TIME PERIODS

In the previous section, we saw how to allow each item to have per-
time-period and overall supply. However, the resulting allocations
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Figure 3: For each partner in the market, the plot shows the
allocation to its compatible work types from all time periods.
We omit “partner 1” since its allocation is immediate as it is
only compatible to one work type.

may still exhibit an e�ect which is often considered undesirable in
practice: the allocation may have large swings across time, even
when the utility from this is low. Consider the following content
review example:

Example 5.1. There are two review categories (buyers) and two
review sites (items), with three time steps. Each review site has
per-period supply of one, and no cross-time supply constraint. All
valuations are one. There are many optimal allocations, but we will
consider three in particular:
• high variation one: G11 = G22 = (1, 0, 1), G12 = G21 = (0, 1, 0);
• low variation one: G 011 = G 022 = (1, 1, 1) and G 012 = G 021 = (0, 0, 0);
• another low-variation one: Ĝ8 9 = (0.5, 0.5, 0.5) for all 8, 9 .

In the high-variation allocation, each partner gets a non-smooth
allocation: in time step 2 and 3, they �ip their entire review cat-
egory from one to the other. In practice, this is ine�cient due to
sta� context switching. This can lead to less e�cient reviewing
for a given content category. In contrast, the two low-variation
allocations give each review site a nice constant amount of work
from each review category. We do not necessarily prefer Ĝ or G 0 to
each other; both are equally “smooth”.

From the example above, we can clearly see the problem with
the market equilibrium solutions, which is that they do not take
into account market’s preferences for low-variation solutions.

To model the preference for low variation, one approach is to
add constraints forcing the variation to be within a certain range.
For instance, if we want the allocation from one time period to the
next to be within 5%, we can add constraints

GC+18 9 � 0.95 · GC8 9 , 88 2 [=], 9 2 [<], C 2 [) � 1]
GC+18 9  1.05 · GC8 9 , 88 2 [=], 9 2 [<], C 2 [) � 1] .

However, it is not hard to see that one issue with the constraints
approach is that when demands are high (i.e., small amount of
oversupply to distribute) and when variation in demand from time
to time is also high, the problem could become infeasible.

Alternatively, we can include (or subtract, to be more precise) a
penalty term in the objective. We assume the penalty term takes the
following form W

Õ
8, 9,C '(GC+18 9 , GC8 9 ), where ' 9C is any convex func-

tion thatmeasures the discrepancy between two quantities andW is a
hyperparameter that captures the strength in terms of the market’s
desire for smooth allocation. Since ' 9C is the penalty function for

Figure 4: This is a similar plot to Figure 3, but this �gure plots
the allocation with absolute di�erence penalty function in
the objective when the smoothness parameter W = 0.005.

non-smooth allocation, we further require that ' 9C (GC+18 9 , GC8 9 ) = 0
whenever GC+18 9 = GC8 9 . Hence, we have the following program.

max
G�0

’
8

⌫8
’
C

log(
’
9

GC8 9 E8 9 � 3
C
8 ) � W

’
8,9 ,C

' (GC+18 9 ,GC8 9 )

s.t.
’
8

GC8 9  BC9 , 89 = 1, . . . ,<, 8C = 1, . . . ,) ,
’
C ,8

GC8 9  B 9 , 89 = 1, . . . ,<,

(EG-Smooth)

Below, we list a couple of interesting choices for the penalty
function ' 9C (GC+18, 9 , G

C
8, 9 )

• Absolute deviation: |GC+18, 9 � GC8, 9 |.

• Kullback-Leibler: max(GC+18, 9 log
GC+18,9

GC8,9
, GC8, 9 log

GC8,9
GC+18,9

).

5.1 Application
To continue our experiment in Section 4.3, we now include an addi-
tional penalty term in the objective. We show the results in Figure 4
using the absolute di�erence penalty function with appropriate
smoothness parameters. We would like to point out the qualitative
results using the KL divergence penalty function is similar and we
omit them here.

Note that now for both “work type 04” and “work type 05”, the
allocations to “partner 3” are much smoother as compared those
previously obtained as shown in Figure 3.

As the smoothness parameter increases, the dominating compo-
nent in the objective of (EG-Smooth) shifts from the utility term to
the smoothness penalty term. Hence, if we were to set W = 0.01, the
resulting allocation becomes constant for each (work type, partner)
pair. However, such a smooth allocation is at the expense of wast-
ing partners’ reviewing capacity. Thus, the smoothness parameter
should be carefully chosen to balance di�erent business objectives.

6 CONCLUSION
We study the planning problem of allocating human content review-
ers (supply) to di�erent harmful content categories (demand) across
multiple time periods with over-allocation and smoothness consid-
erations. We model the problem as an resource allocation problem,
provide an optimization formulation, and show its connection to
market equilibria. Moreover, we demonstrate the performance of
the proposed solution through data obtained from Meta.
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A MISSING PROOF
P���� �� T������ 3.2. The second condition in the de�nition

of market equilibrium is satis�ed due to complementary slackness.
To show the �rst condition, which is every buyer 8 receives a bundle
from their demand set, we show that every item in the bundle G8
maximizes the utility per dollar for buyer 8 . By dual feasibility of
problem EG-demand, we have _8 9 � 0. Hence, rearranging the
terms of (1), we have

E8 9
? 9
 D8

⌫8
88 = 1, . . . ,=; 9 = 1, . . . ,<,

where equality holds when G8 9 > 0 due to the complementary
slackness condition G8 9_8 9 = 0. This implies that the utility per
dollar is maximized by the buyer’s bundle, concluding the proof. ⇤

P���� �� T������ 4.2. Rearranging the terms of (2), we have
E8 9
?C9
 D8

⌫8
for all 8, 9, C, where equality holds when GC8 9 > 0 due to

the complementary slackness condition on GC8 9 . Thus, we get that
buyers only buy items that give maximal bang-per-buck. It follows
that each buyer gets a bundle in their demand set. In addition, by
complementary slackness, we have that _C9 = 0 unless

Õ
8 G
C
8 9 = BC9 ,

and similarly _ 9 = 0 unless
Õ
C,8 G

C
8 9 = B 9 . It follows that ?C9 =

_ 9 + _C9 > 0 only if either
Õ
8 G
C
8 9 = BC9 or

Õ
C ,8 G

C
8 9 = B 9 . ⇤

P���� �� T������ 4.5. Note that the utility function is no longer
linear but is concave since the geometric mean function is concave.
To show that every buyer is allocated a bundle that is in their de-
mand set, we instead want to show that GC8 9 > 0 only if it has the
maximal marginal bang-per-buck, where the marginal utility of
item 9 for buyer 8 at time C is

mD8 (G8 )
mGC8 9

=
✓ ÷
C 0:C 0<C

DC
0
8 (GC

0
8 )

◆
EC8 9 =

D8 (G8 )
DC8 (GC8 )

EC8 9 .

Rearranging the terms of (3), we have

E8 9

?C9


DC8
⌫8
) D8

DC8
E8 9/?C9 

D8
⌫8

, 88, 9, C,

where equality holds when GC8 9 > 0 due to the complementary
slackness condition on GC8 9 . Thus, we get that buyers only buy items
that give max marginal bang-per-buck, as desired. The proof for the
second condition is the same as that in the proof of Theorem 4.2. ⇤
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Figure 7: For “partner 1” and “partner 2” in the market, the
plot shows the allocation to its compatible work types from
all time periods.

B ADDITIONAL EXPERIMENTS
In this section, we include our experimental results on a large-size
market, with more partners than the market shown in Figure 1. The
structure of work types and partners is shown in Figure 5.

Figure 5: The graph displays buyers (reviewing work types)
and sellers (reviewer partners) in a major market, where
edges indicate whether a certain partner is able to work on
a certain work type. The numbers in parentheses represent
demands and supplies, and these numbers are generated
through a certain transformation of the raw data.

Similar to Figure 2, we show, in Figure 6, the allocations obtained
from both the EG solutions and the leximin-optimal solutions. In
addition, we consider two cases for buyers’ budget, with buyers
either have unit budgets or have budgets that are equal to their
demands.

(a) plot of demand and alloca-
tion

(b) table of demand and alloca-
tion

Figure 6: Allocation under di�erent solution concepts and
budget setups. In the table columns, “B=1” stands for the case
where all buyers have budget of one; and “B=d” stands for
the case where budgets are equal to demands. The buyers are
sorted by their demands in an increasing order.

We observe similar patterns in the allocation under the EG solu-
tions as for the market investigated in the main text. In particular,
when buyers’ budgets are set to be the same as their demand, the
oversupply is allocated fairlymultiplicatively (about 47% more); and
when budgets are equal to ones, the oversupply is allocated fairly
additively (about 350 units more). Further, when budgets equal to
demands, the leximin solution does not perform well.

Lastly, for allocations involving multiple time periods, we simi-
larly observe that without the smoothness penalty term, the allo-
cation for each buyer-seller pair could vary from time to time (see
Figure 7). Although minimal, this variation means that the partners
have to shift their sta�ng schedules from time to time.

Again, with penalty terms, we can smooth out the allocation to
minimize sta�ng switches for the partners. The allocation obtained
with an absolute deviation penalty term is shown in Figure 8.

Figure 8: This �gure plots the allocation with absolute di�er-
ence penalty function in the objective when the smoothness
parameter W is set to be 0.005.
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