
Fast and Interpretable Dynamics for Fisher Markets
via Block-Coordinate Updates

Tianlong Nan, Yuan Gao, Christian Kroer
Columbia University, New York, USA

{tianlong.nan, gao.yuan, christian.kroer}@columbia.edu

Abstract

We consider the problem of large-scale Fisher market equi-
librium computation through scalable first-order optimiza-
tion methods. It is well-known that market equilibria can
be captured using structured convex programs such as the
Eisenberg-Gale and Shmyrev convex programs. Highly perfor-
mant deterministic full-gradient first-order methods have been
developed for these programs. In this paper, we develop new
block-coordinate first-order methods for computing Fisher
market equilibria, and show that these methods have inter-
pretations as tâtonnement-style or proportional response-style
dynamics where either buyers or items show up one at a time.
We reformulate these convex programs and solve them us-
ing proximal block coordinate descent methods, a class of
methods that update only a small number of coordinates of the
decision variable in each iteration. Leveraging recent advances
in the convergence analysis of these methods and structures of
the equilibrium-capturing convex programs, we establish fast
convergence rates of these methods.

Introduction
In a market equilibrium (ME) a set of items is allocated
to a set of buyers via a set of prices for the items and an
allocation of items to buyers such that each buyer spends
their budget optimally, and all items are fully allocated. Due
to its rich structural properties and strong fairness and effi-
ciency guarantees, ME has long been used to develop fair
division and online resource allocation mechanisms (Gao
and Kroer 2021; Aziz and Ye 2014; Barman, Krishnamurthy,
and Vaish 2018; Arnsperger 1994). Market model and cor-
responding equilibrium computation algorithms have been
central research topics in market design and related areas in
economics, computer science and operations research with
practical impacts (Scarf et al. 1967; Kantorovich 1975; Oth-
man, Sandholm, and Budish 2010; Daskalakis, Goldberg,
and Papadimitriou 2009; Cole et al. 2017; Kroer et al. 2019).
More specifically, many works in market design rely on the
assumption that ME can be computed efficiently for large-
scale market instances. For example, the well-known fair
division mechanism without money competitive equilibrium
from equal incomes (CEEI) requires computing a ME of a
Fisher market under uniform buyer budgets (Varian et al.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1974). Recent work has also established close connections
between market equilibria and important solution concepts
in the context of large-scale Internet markets, such as pacing
equilibria in repeated auctions (Conitzer et al. 2018, 2019;
Kroer and Stier-Moses 2022). Motivated by the classical and
emerging applications described above, we are interested in
developing efficient equilibrium computation algorithms for
large-scale market instances. In general, computing a ME
is a hard problem (Chen and Teng 2009; Vazirani and Yan-
nakakis 2011; Othman, Papadimitriou, and Rubinstein 2016).
However, for the case of Fisher markets and certain classes
of utility functions, efficient algorithms are known (Devanur
et al. 2008; Zhang 2011; Gao and Kroer 2020), often based
on solving a specific convex program—whose solutions are
ME and vice versa—using an optimization algorithm. In this
paper, we focus on two well-known such convex programs,
namely, the Eisenberg-Gale (EG) (Eisenberg and Gale 1959;
Eisenberg 1961) and Shmyrev convex programs (Shmyrev
2009; Cole et al. 2017).
Most existing equilibrium computation literature studies

the case of a static market where all buyers and items are
present in every time step of the equilibrium computation
process. In contrast, we study a setting where only a random
subset of buyer-item pairs show up at each time step. Such a
setting is well-motivated from a computational perspective,
since stochastic methods are typically more efficient for ex-
tremely large problems. Secondly, our model allows us to
model new types of market dynamics. We make use of recent
advances in stochastic first-order optimization, more specifi-
cally, block-coordinate-type methods, to design new equilib-
rium computation algorithms for this setting. The resulting
equilibrium computation algorithms have strong convergence
guarantees and consistently outperform deterministic full-
information algorithms in numerical experiments. In addition,
many of the optimization steps not only give efficient update
formulas for market iterates, but also translate to interpretable
market dynamics.

Summary of contribution. We propose two stochastic al-
gorithms for computing large-scale ME: (proximal) block-
coordinate descent on EG (BCDEG) and block-coordinate
proportional response (BCPR). These algorithms are derived
by applying stochastic block-coordinate-type algorithms on
reformulated equilibrium-capturing convex programs. More

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5832

specifically, BCDEG is based on (proximal) stochastic block
coordinate descent (BCD) and BCPR is based on a non-
Euclidean (Bregman) version of BCD. We show that these
algorithms enjoy attractive theoretical convergence guaran-
tees, and discuss important details for efficient implementa-
tion in practice. Furthermore, we show that the Euclidean
projection onto the simplex in BCDEG (and other preexisting
projected-gradient-type methods) has a tâtonnement-style
interpretation. We then demonstrate the practical efficiency
of our algorithms via extensive numerical experiments on
synthetic and real market instances, where we find that our al-
gorithms are substantially faster than existing state-of-the-art
methods such as proportional response dynamics.

Preliminaries and notation. Unless otherwise stated, we
consider a linear Fisher market with n buyers andm items.
We use i ∈ [n] to denote a buyer and j ∈ [m] to denote
an item. Each buyer i has a budget Bi > 0 and each item
has supply one. An allocation (or bundle) for buyer i is a
vector xi ∈ Rm

+ specifying how much buyer i gets of each
item j. Given xi, buyer i gets utility 〈vi, xi〉 =

∑
j vijxij ,

where vi ∈ Rm
+ is their valuation vector. Given prices p ∈

Rm
+ (i.e., price of item j is pj) on all items, buyer i pays
〈p, xi〉 =

∑
j pjxij for xi. Given prices p and budget Bi, a

bundle xi is budget feasible for buyer i if 〈p, xi〉 ≤ Bi. We
also use x·j ∈ Rn

+ to denote a vector of amounts of item j
allocated to all buyers. The demand set of buyer i is the set
of budget-feasible utility-maximizing allocations:

Di(p) = argmax
xi

{ui = 〈vi, xi〉 : 〈p, xi〉 ≤ Bi}. (D)

A market equilibrium (ME) is an allocation-price pair
(x∗, p∗) such that x∗

i ∈ Di(p∗) for all i and
∑

i x
∗
ij ≤ 1

for all j, with equality if p∗j > 0.

Related Work
Since the seminal works by Eisenberg and Gale (Eisenberg
and Gale 1959; Eisenberg 1961), there has been an extensive
literature on equilibrium computation for Fisher markets, of-
ten based on convex optimization characterizations of ME
(Devanur et al. 2008; Zhang 2011; Birnbaum, Devanur, and
Xiao 2011; Cole et al. 2017; Gao and Kroer 2020; Garg and
Kapoor 2006). Equilibrium computation algorithms for more
general market models with additional constraints—such
as indivisible items and restrictions on the set of permis-
sible bundles for each buyer—have also been extensively
studied (Othman, Sandholm, and Budish 2010; Budish et al.
2016); these algorithms are often based on approximation
algorithms, mixed-integer programming formulations, and
local search heuristics.
In Gao and Kroer (2020), the authors considered three

(deterministic) first-order optimization methods, namely pro-
jected gradient (PG), Frank-Wolfe (FW) and mirror de-
scent (MD) for solving convex programs capturing ME. To
the best of our knowledge there are no existing results on
block-coordinate methods for ME. In the optimization lit-
erature there is an extensive and ongoing literature on new
block-coordinate-type algorithms and their analysis (see, e.g.,
Tseng (2001); Wright (2015); Beck and Tetruashvili (2013);

Hanzely and Richtárik (2019, 2021); Liu and Wright (2015);
Nesterov (2012); Richtárik and Takáč (2014); Gao et al.
(2020); Attouch, Bolte, and Svaiter (2013); Zhang (2020);
Reddi et al. (2016)). As mentioned previously, our BCDEG
algorithm is based on proximal block-coordinate descent
(PBCD) applied to EG. Linear convergence of the mean-
square error of the last iterate of PBCD for nonsmooth, finite-
sum, composite optimization (with an objective function of
the form F (x) =

∑
i fi(x) + ψ(x)) has been established

under different error bound conditions (Richtárik and Takáč
2014; Karimi, Nutini, and Schmidt 2016; Reddi et al. 2016).
For BCPR, we adopt the analysis of a recently proposed non-
Euclidean (Bregman) PBCD (Gao et al. 2020), which in turn
made use of the convergence theory developed in Bauschke,
Bolte, and Teboulle (2017).

Block Coordinate Descent Algorithm
for the EG Program

(Proximal) Block coordinate descent methods (BCD) are of-
ten used to solve problems whose objective function consists
of a smooth part and a (potentially) nonsmooth part. The sec-
ond part is typically block-coordinate-wise separable. BCD
algorithms update only a small block of coordinates at each
iteration, which makes each iteration much cheaper than for
deterministic methods, and this enables scaling to very large
instances. The EG convex program, which captures market
equilibria, can be written in a form amenable to proximal
block coordinate descent method. The EG convex program
for buyers with linear utility functions is

max
x

∑
i
Bi log ui

s.t. ui ≤ 〈vi, xi〉 ∀ i∑
i
xij ≤ 1 ∀ j

x ≥ 0.

(EG)

Any optimal solution x∗ to (EG) and the (unique) optimal La-
grange multipliers p∗ ∈ Rm

+ associated with the constraints∑
i xij ≤ 1, j ∈ [m] forms a market equilibrium. In fact,

this holds more generally if the utility functions are concave,
continuous, nonnegative, and homogeneous with degree 1.

To apply BCD, note that (EG) is of the following form:

min
x∈Rm×n

F (x) := f(x) + ψ(x) = f(x) +
∑

j
ψj(x·j) (1)

where f(x) = −
∑

i Bi log 〈vi, xi〉 and ψj(x·j) = 0 if∑
i xij ≤ 1, x·j ≥ 0 and +∞ otherwise.
Thus, the nonsmooth term ψ(x) decomposes along the

items j, and we can therefore treat x as a set of blocks:
each item j has a block of allocation variables correspond-
ing to how much of item j is given to each buyer. We use
x·j = (x1j , . . . , xnj) to denote the j’th block. Given the full
gradient of f at x as ∇f(x), we will also need the partial
gradient w.r.t. the jth block x·j , which we denote as∇·jf(x),
that is,∇·jf(x) = (∇1jf(x), . . . ,∇njf(x)).
In each iteration t of the BCD method, we first choose an

index j′ ∈ [m] at random, with a corresponding stepsize ηj′ .

5833

Then, the next iterate x+ is generated from x via x+
·j = Tj(x)

if j = j′ and x·j otherwise, where Tj(x) equals

argmin
y·j
〈∇·jf(x), y·j−x·j〉+

1

ηj
‖y·j−x·j‖2+ψj(y·j). (2)

The above proximal mapping is equivalent to

Tj(x) = Proj∆n

(
x·j − ηj′∇·jf(x)

)
, (3)

so we can generate Tj(x) ∈ Rn via a single projection onto
the n-dimensional simplex. Since the projection is the most
computationally expensive part, our method ends up being
cheaper than full projected gradient descent by a factor of m.
To make sure ∇·jf(x) exists, we need to bound buyer

utilities away from zero at every iteration. To that end, let
ui = 〈vi, (Bi/

∑n
l=1 Bl)#1〉 be the utility of the proportional

allocation. Then we perform “quadratic extrapolation” where
we replace the objective function f(x) with the function
f̃(x) =

∑
i f̃i(xi) =

∑
i g̃i(ui) where g̃i(ui) = −Bi log ui

if ui ≥ ui and log ui − Bi
ui

(ui − ui) +
Bi

2u2
i
(ui − ui)

2 oth-

erwise. For (EG), replacing f with f̃ does not affect any
optimal solution (Gao and Kroer 2020, Lemma 1).
We will also need the following Lipschitz bound which

ensures that the iterates are descent steps, meaning that the
expected objective value is non-increasing as long as the
stepsizes are not too large. The upper bound on the allowed
stepsizes (that ensure descent iterates) for a specific block is
governed by the Lipschitz constant w.r.t. that block of coordi-
nates. More details and proofs can be found in Appendix A.
Lemma 1. For any j ∈ [m], let

Lj = max
i∈[n]

Biv2ij
u2
i

. (4)

Then, for all x, y ∈ X such that x, y differ only in the jth
block, we have

f̃(y) ≤ f̃(x) + 〈∇·j f̃(x), y − x〉+ Lj

2
‖y − x‖2. (5)

Let L be the “global” Lipschitz constant which determines
the stepsize of (full) gradient descent. Let Lmax = maxj Lj .
Generally, it is easy to see that 1 ≤ L/Lmax ≤ n, but we can
get a stronger bound than this using the gradient (∇f)ij =
Bivij/ui. When only the variables x·j in block j change,
we have that Lj is bounded by the maximal diagonal value
of the j’th-block (sub) Hessian matrix. In contrast, for L it
depends on the maximal trace of the i’th-block (sub) Hessian
matrix over all buyers i. From a market perspective this can
be interpreted as follows: when we only adjust one block,
each buyer’s utility fluctuates based on that one item. On the
contrary, for full gradient methods, every item contributes to
the change of ui. This yields that the ratio of Lj/L is roughly
maxi v2ij/maxi‖vi‖2.
Algorithm 1 states the (proximal) BCD algorithm for the

EG convex program. Each iteration only requires a single
projection onto an n-dimensional simplex, as opposed tom
projections for the full projected gradient method. Moreover,
we show in Appendix A that for linear utilities we can further
reduce the computational cost per iteration of Algorithm 1
when the valuation matrix vij is sparse.

Algorithm 1: BCDEG (Proximal) Block Coordinate
Descent for the EG Program
Input: Initial x0, stepsizes ηk1 , ηk2 , . . . , ηkm, ∀ k ∈ N
for k ← 1, 2, . . . do

pick jk ∈ [m] with probability 1/m;
gk−1 ← ∇·jk f̃(x

k−1);
xk
·jk ← Prox∆n

(
xk−1
·jk − η

k
jkg

k−1
)
;

xk
·j ← xk−1

·j , ∀ j ,= jk;

Line search strategy. As mentioned in previous work such
as Richtárik and Takáč (2014), line search is often very help-
ful for BCD. If it can be performed cheaply, then it can
greatly speed up numerical convergence. We show later that
this occurs for our setting.
We incorporate line search in Algorithm 1 with a

(coordinate-wise) l2 smoothness condition. The line search
modifies Algorithm 1 as follows: after computing xk

·jk , we
check whether

ηjk‖∇·jk f̃(x
k)−∇·jk f̃(x

k−1)‖ ≤ ‖xk
·jk − xk−1

·jk ‖.

If this check succeeds then we increase the stepsize by a small
multiplicative factor and go to the next iteration. If it fails
then we decrease by a small multiplicative factor and redo
the calculation of xk

·jk . This line search algorithm can be im-
plemented in O(n) cost per iteration, whereas a full gradient
method requires O(nm) time. A full specification of BCDEG
with line search (BCDEG-LS) is given in Appendix A.

Convergence analysis. Next we establish the linear con-
vergence of Algorithm 1 under reasonably-large (fixed) step-
sizes, as well as for the line search variant.

Following prior literature on the linear convergence of first-
order methods for structured convex optimization problems
under “relaxed strong convexity” conditions, we show that
BCDEG generates iterates that have linear convergence of the
expected objective value. For more details on these relaxed
sufficient conditions that ensure linear convergence of first-
order methods, see Karimi, Nutini, and Schmidt (2016) and
references therein.
Gao and Kroer (2020) showed that (EG) and other

equilibrium-capturing convex programs can be reformulated
to satisfy these conditions. Hence, running first-order meth-
ods on these convex programs yields linearly-convergent
equilibrium computation algorithms. Similar to the proof
of Gao and Kroer (2020, Theorem 2) and Karimi, Nutini,
and Schmidt (2016, (39)), we first establish a Proximal-PŁ
inequality.
Lemma 2. For any feasible x and any L > 0, define
Dψ(x, L) to be

−2Lmin
y
〈∇f̃(x), y − x〉+ L

2
‖y − x‖2 + ψ(y)− ψ(x)

then we have the inequality

1

2
Dψ(x, L) ≥ min

{
µ

θ2(A,C)
, L

}
(F (x)− F ∗) (6)

5834

where θ(A,C) is the Hoffman constant of the polyhedral
set of optimal solutions of (EG), which is characterized by
matrices A and C where C is a matrix capturing optimality
conditions, and F ∗ is the optimal value.
In previous inequalities, they essentially showed that for

any L ≥ λ = µ/θ2(A,C) > 0, 1
2Dψ(x, L) ≥ λ(F (x) −

F ∗). However, here we generate a Proximal-PŁ inequality
giving a lower bound on 1

2Dψ(x, L) for any L > 0.
Then, combining Lemma 2 with Richtárik and Takáč

(2014, Lemmas 2 & 3), we can establish the main conver-
gence theorem for BCDEG.
Theorem 1. Given an initial iterate x0 and stepsizes η0j =

1/Lj , ∀ j satisfying (4), let xk be the random iterates gener-
ated by Algorithm 1. Then,

E
[
F (xk+1)

]
− F ∗ ≤ (1− ρ)k

(
F (x0)− F ∗) , (7)

where ρ = min
{

µ
mLmaxθ2(A,C) ,

1
m

}
and Lmax = maxj Lj .

Karimi, Nutini, and Schmidt (2016) also develop a block-
coordinate method that applies to EG. Unlike their result,
our result admits larger stepsizes that can vary per block, as
well as a line search strategy, which is helpful for practical
performance as we show in numerical experiment section.

Economic Interpretation of Projected
Gradient Steps

As Goktas, Viqueira, and Greenwald (2021) argue, one draw-
back of computing market equilibrium via projected gradient
methods such as BCDEG is that these methods do not give
a natural interpretation as market dynamics. To address this
deficiency, in this section we show that Algorithm 1, and pro-
jected gradient descent more generally, can be interpreted as
distributed pricing dynamics that balance supply and demand.

The projection step in Algorithm 1, for an individual buyer
i and a chosen item j, is as follows (where we use j for jk
and drop the time index for brevity):

xk
·j ← Proj∆n

(
xk−1
·j − ηjgk−1

)
. (8)

As is well-known, the projection of a vector y ∈ Rn onto
the simplex ∆n =

{
x ∈ Rn

+ :
∑

i xi = 1
}
can be found

using an O(n log n) algorithm (the earliest discovery that we
know of is Held, Wolfe, and Crowder (1974); see Appendix B
for a discussion of more recent work on simplex projection).
The key step is to find the (unique) number t such that

∑
i
(yi − t)+ = 1 (9)

and compute the solution as x = (y − t · 1)+ (component-
wise). This can be done with a simple one-pass algorithm
if the yi are sorted. In fact, the number t corresponds to
the (unique) optimal Lagrange multiplier of the constraint∑

i xi = 1 in the KKT conditions.
In the projection step in Algorithm 1, (9) has the form

∑
i
(xk−1

ij − ηjgk−1
i − t)+ = 1. (10)

Recall that we have gk−1 < 0. Note that the left-hand side
of (10) is non-increasing in t and strictly decreasing around
the solution (since some terms on the left must be positive
for the sum to be 1). Furthermore, setting t = 0 gives a lower
bound of

∑
i(x

k−1
ij −ηjgk−1

i − t)+ >
∑

i x
k−1
ij = 1. Hence,

the unique solution t∗ must be positive. Now we rewrite t as
ηjpj for some “price” pj . Then, (10) can be written as
∑

i
Dk

i (pj) = 1, Dk
i (pj) = (xk−1

ij − ηjgk−1
i − ηjpj)+.

(11)
In other words, the projection step is equivalent to finding
pkj that solves (11). Here, Dk

i can be viewed as the linear
demand function of buyer i at time k given a prior allocation
xk−1
ij . The solution pkj can be seen as a market-clearing price,

since
∑

i D
k
i (p

k
j) exactly equals the unit supply of item j.

After setting the price, the updated allocations can be com-
puted easily just as in the simplex projection algorithm, that
is, xk

ij =
(
xk−1
ij − ηjgk−1 − ηjpkj

)+
for all i. Equivalently,

the new allocations are given by the current linear demand
function: xk

ij = Dk
i (p

k
j).

Summarizing the above, we can recast Algorithm 1 into
the following dynamic pricing steps. At each time k, the
following events occur.

• An item j is sampled uniformly at random.
• For each buyer i, her demand function becomes
Dk

i (pj)← (xk−1
ij − ηjgk−1 − ηjpj)+.

• Find the unique price pkj such that
∑

i D
k
i (p

k
j) = 1.

• Each buyer chooses their new allocation of item j via
xk
ij = Dk

i (p
k
j).

To get some intuition for the linear demand function, note
that when ui ≥ ui, we have gk−1

i = −Bivij/u
k−1
i , and

therefore it holds that Dk
i

(
Bivij/u

k−1
i

)
= xk−1

ij . In other
words, the current demand of buyer i is exactly the previous-
round allocation xk−1

ij if the price of item j is (Bi/u
k−1
i)vij .

This can be interpreted in terms familiar from the solution of
EG: let βk−1

i = Bi/u
k−1
i be the utility price at time k − 1

for buyer i, then we get that after seeing prices pkj , buyer
i increases their allocation of goods that beat their current
utility price, and decreases their allocation on goods that are
worse than their current utility price. The stepsize ηj denotes
buyer i’s responsiveness to price changes.
The fact that the prices are set in a way that equates the

supply and demand is reminiscent of tâtonnement-style price
setting. The difference here is that the buyers are the ones
who slowly adapt to the changing environment, while the
prices are set in order to achieve exact market clearing under
the current buyer demand functions.

Relative Block Coordinate Descent Algorithm
for PR Dynamics

Birnbaum, Devanur, and Xiao (2011) showed that the Pro-
portional Response dynamics (PR) for linear buyer utilities
can be derived by applying mirror descent (MD) with the
KL divergence on the Shmyrev convex program formulated

5835

in buyers’ bids (Shmyrev 2009; Cole et al. 2017). The au-
thors derived an O(1/k) last-iterate convergence guarantee
of PR (MD) by exploiting a “relative smoothness” condition
of the Shmyrev convex program. This has later been general-
ized and led to faster MD-type algorithms for more general
relatively smooth problems (Hanzely and Richtárik 2021;
Lu, Freund, and Nesterov 2018; Gao et al. 2020). In this
section, we propose a randomized extension of PR dynam-
ics, which we call block coordinate proportional response
(BCPR). BCPR is based on a recent stochastic mirror descent
algorithm (Gao et al. 2020). We provide stepsize rules and
show that each iteration involves only a single buyer and can
be performed in O(m) time.

Let b ∈ Rn×m denote the matrix of all buyers’ bids on all
items and pj(b) :=

∑
i bij denote the price of item j given

bids b. Denote aij = log vij if vij > 0 and 0 otherwise. The
Shmyrev convex program is

max
b

∑
i,j

aijbij −
∑

j
pj(b) log pj(b)

s.t.
∑

j
bij = Bi ∀ i

b ≥ 0.

(S)

It is known that an optimal solution (b∗, p∗) of (S) gives equi-
librium prices p∗j . Corresponding equilibrium allocations can
be constructed via x∗

ij = b∗ij/p
∗
j for all i, j. (S) can be rewrit-

ten as minimization of a smooth finite-sum convex function
with a potentially nonsmooth convex separable regularizer:

min
b∈Rm×n

Φ(b) := ϕ(b) + r(b) = ϕ(b) +
∑

i
ri(bi) (12)

where ϕ(b) = −
∑

i,j bij log
(

vij

pj(b)

)
and ri(bi) = 0 if

∑
j bij = Bi, bi ≥ 0 and +∞ otherwise.
Now we introduce the relative randomized block coordi-

nate descent (RBCD) method for (12). We use the KL di-
vergence as the Bregman distance in the proximal update of
b. Let DKL(q1, q2) =

∑
i q

1
i log (q

1
i /q

2
i) denote the KL di-

vergence between q1 and q2 (assuming
∑

i q
1
i =

∑
i q

2
i and

q1i , q
2
i > 0, ∀ i). In each iteration, given a current b, we select

i ∈ [n] uniformly at random and only the update i-th block
of coordinates bi. The next iterate b+ is b+i = Ti(bi) for i
and b+ = b for the remaining blocks. Here, Ti(bi) equals

argmin
a
〈∇iϕ(b), a− bi〉+

1

αi
DKL(a, bi) + ri(a) (13)

where αi > 0 is the stepsize. It is well-known that (13) is
equivalent to the following simple, explicit update formula:

b+ij =
1

Zi
bij

(
vij
pj

)αi

∀j = 1, 2, . . . ,m (14)

where Zi is a normalization constant such that
∑

j b
+
ij = Bi.

Algorithm 2 states the full block coordinate proportional
response dynamics.

Convergence Analysis. The objective function of (S) is
relatively smooth with L = 1 (Birnbaum, Devanur, and
Xiao 2011, Lemma 7). This means that αi = 1 is a safe

Algorithm 2: Block Coordinate Proportional Re-
sponse (BCPR)
Input: Initial b0, p0, stepsizes αk

1 , . . . ,α
k
n, ∀ k ∈ N

for k ← 1, 2, . . . do
pick ik ∈ [n] with probability 1/n;
compute b+ik based on (14) with stepsize αk

ik ;
bkik ← b+ik and bki′ ← bk−1

i′ , ∀ i′ ,= ik;
pkj ←

∑
i b

k
ij , ∀ j;

lower bound for stepsizes. For Algorithm 2, a last-iterate
sublinear convergence rate is given by Gao et al. (2020) for
0 < αi <

1+θi
Li

, where θi is the Bregman symmetry measure
introduced by Bauschke, Bolte, and Teboulle (2017). For the
KL divergence θi = 0. Their proof still goes through for
αi = 1/Li, which yields the following
Theorem 2. Let bk be random iterates generated by Algo-
rithm 2 with αk

i = 1/Li for all k, then

E
[
Φ(bk)

]
−Φ∗ ≤ n

n+ k

(
Φ∗ −Φ(b0) +D(b∗, b0)

)
(15)

where Φ∗ is the optimal objective value.

Line search. To speed up BCPR, we introduce a line search
strategy and an adaptive stepsize strategy. BCPR with line
search can be implemented by comparing DKL(p+, p) and
DKL(b

+
i , bi), which takes O(m) time, and is much cheaper

than computing the whole objective function value of (S).
Beyond that, by storing p, we also avoid touching all vari-
ables in each iteration. Therefore, the amount of data ac-
cessed and computation needed is O(m) per iteration (vs.
O(nm) for full gradient methods). In the adaptive strategy
we compute larger stepsize based on Lipschitz estimates
using a closed-form formula. The BCPR with Line Search
(BCPR-LS) and Adaptive BCPR (A-BCPR) are formally
stated in Appendix C.
As with BCDEG, our experiments demonstrate that larger

stepsizes can accelerate Algorithm 2. When we consider a
series of stepsizes {αk

i }k∈N generated by line search or an
adaptive strategy, we can show the inequality

E
[
Φ(bk)− Φ(b∗)

]

≤ n

n+ k

(
Φ(b∗)− Φ(b0) +

∑

i

1

α0
i

D(b∗i , b
0)

)

+
1

k

k∑

l=1

E

[
∑

i

1

αl
i

D(b∗i , b
l)−

∑

i

1

αl−1
i

D(b∗i , b
l)

]
. (16)

However, we cannot guarantee convergence, as we are unable
to ensure the convergence of the last term above.

Proportional Response with Line Search
In this section we extend vanilla PR dynamics to PR dynam-
ics with line search (PRLS), by developing a Mirror Descent
with Line Search (MDLS) algorithm. Intuitively, the LS strat-
egy is based on repeatedly incrementing the stepsize and

5836

checking the relative-smoothness condition, with decrements
made when the condition fails. This is similar to the projected
gradient method with line search (PGLS) in Gao and Kroer
(2020, A.5), but replaces the *2 norm with the Bregman di-
vergence. This allows larger stepsizes while guaranteeing the
same sublinear last-iterate convergence. The general MDLS
algorithm is stated in Appendix D.

Convergence rate. Birnbaum, Devanur, and Xiao (2011,
Theorem 3) showed that a constant stepsize of αk = 1/L
ensures sublinear convergence at a 1/k rate. One of the key
steps in establishing the rate is the descent lemma, which also
holds in the line search case:
Lemma 3. Let bk be MDLS iterates. Then, D(b∗, bk+1) ≤
D(b∗, bk) for all k.

We have the following theorem.
Theorem 3. Let bk be iterates generated by PRLS starting
from any initial solution feasible b0, then we have

ϕ(bk)− ϕ∗ ≤ 1

ρ−
· D(b∗, b0)

k
(17)

where ρ− is the shrinking factor of stepsize.
Unlike the result in BCPR-LS, the deterministic algorithm

maintains its convergence guarantee with line search. The
main issue in the block coordinate case is the lack of mono-
tonicity of E[Di(b∗, bk)], which is avoided by the determin-
istic algorithm. In the proof, we also give a tighter, path-
dependent bound.

Block Coordinate Descent Algorithm
for CES Utility Function

In this section, we show that block coordinate descent algo-
rithms also work for the case where buyers have constant elas-
ticity of substitution (CES) utility functions (for ρ ∈ (0, 1)).
Formally, a CES utility function for buyer i with param-

eters vi ∈ Rm
+ and ρ ∈ (0, 1) is ui(xi) = (

∑
j vijx

ρ
ij)

1
ρ

where vij denotes the valuation per unit of item j for buyer
i. CES utility functions are convex, continuous, nonnegative
and homogeneous and hence the resulting ME can still be
captured by the EG convex program.

BCDEG for CES utility function. The resulting EG
program is of similar form as (1) with f(x) =
−
∑

i
Bi
ρ log 〈vi, xρi 〉, where xρi = (xρi1, . . . , x

ρ
im) and the

same separable ψ(x) as (1). Hence, as for linear Fisher mar-
kets, we can apply block-coordinate descent.
Since u and x may reach 0 at some iterates, we need

smooth extrapolation techniques to ensure the existence of
gradients. First, similar to Zhang (2011, Lemma 8), we lower
bound x∗ for all i, j : vij > 0, which ensures that extrapola-
tion will not affect the equilibrium when mini,j vij > 0. Our
bounds are tighter than Zhang (2011).
Lemma 4. For a market with CES utility functions with
ρ ∈ (0, 1) and market equilibrium allocation x∗, for any i, j
such that vij > 0, we have x∗

ij ≥ x∗
ij := ω1(i)

1
1−ρω2(i)

1+ρ
1−ρ ,

where ω1(i) =
Bi

m
∑

l Bl
, ω2(i) = minj:vij>0 vij/maxj vij .

In Appendix E, we show how to use this bound to perform
safe extrapolation. This yields the following theorem for
applying BCDEG to CES utilities. Due to its similarity to the
linear case, we give the full algorithm in the appendix. The
theorem is a direct consequence of Lemma 4 and Richtárik
and Takáč (2014, Theorem 7).
Theorem 4. Let xk be the random iterates generated by
BCDEG for CES utility function (ρ ∈ (0, 1)) with stepsizes
ηkj = 1/Lj ∀ k, where

Lj = max
i∈[n]

Bivijx
ρ−2
ij

ui(ρ)
for all j ∈ [m] (18)

and ui(ρ) =
∑

j vijx
∗
ij
ρ (defined in Lemma 4). Then,

E
[
F (xk)

]
− F ∗ ≤

(
1− µ(L)

m

)k (
F (x0)− F ∗) (19)

where µ(L) is the strong-convexity modulus w.r.t. the
weighted norm

∑
j Lj‖·‖2·j .

BCPR for CES utility function. Unlike for linear utilities,
the EG program for CES utility cannot be converted to a sim-
ple dual problem. Hence, we cannot view PR for ρ ∈ (0, 1) as
a mirror-descent algorithm and analyze it with typical relative
smoothness techniques. However, Zhang (2011) nonetheless
showed convergence of PR for ρ ∈ (0, 1). We show that we
can still extend their proof to show convergence of block
coordinate PR for CES utility.
Theorem 5. Let bk be the random iterates generated by
BCPR for CES utility function (ρ ∈ (0, 1)). For any ε > 0,
when

k ≥
2 log

√
8D(b∗,b0)W

1
1−ρ

ε

log n
n−1+ρ

,W =
n

minvij>0 vij ·mini Bi
,

(20)
we have E

[
|bij−b∗ij |

b∗ij

]
≤ ε for all i, j such that vij > 0.

Numerical Experiments
We performed numerical experiments based on both simu-
lated (for linear and CES (ρ ∈ (0, 1)) utilities) and real data
to test the scalability of our algorithms.

To measure the amount of work performed, we measure the
number of accesses to cells in the valuation matrix. For the
deterministic algorithms, each iteration costs n×m, whereas
for our BCDEG algorithms each iteration costs n, and for our
BCPR algorithms each iteration costs m. For algorithms that
employ line search, we count the valuation accesses required
in order to perform the line search as well.
To measure the accuracy of a solution, we use the dual-

ity gap and average relative difference between u and u∗.
The instances are small enough that we can compute the
equilibrium utilities u∗ using Mosek (2010).

Simulated low-rank instances. To simulate market in-
stances, we generate a set of valuations that mimic approxi-
mately low rank valuations, which are prevalent in real mar-
kets, and were previously studied in the market equilibrium
context by Kroer et al. (2019). The valuation for item j and

5837

Figure 1: Performance on simulated low-rank instances. Ran-
dom algorithms were implemented with seeds 0− 9. We also
plotted vertical bars representing standard deviations across
different seeds. The left y-axis shows performance in terms of
the duality gap (solid lines for each algorithm) while the right
y-axis shows performance in terms of utilities (dotted line for
each algorithm). The x-axis shows units of work performed.

buyer i is generated as: vij = vivj+εij , where vi ∼ N (1, 1),
vj ∼ N (1, 1), and εij ∼ uniform(0, 1). Here, buyer i’s valu-
ation for item j consists of three parts: a value of item j itself
(vj), buyers i’s average valuation (vi), and a random term εij .
We consider markets with n = m = 400. All budgets and
supplies are equal to one.

Movierating instances. We generate a market instance
using a movie rating dataset collected from twitter called
Movietweetings (Dooms, De Pessemier, and Martens 2013).
Here, users are viewed as the buyers, movies as items, and
ratings as valuations. Each buyer is assigned a unit budget
and each item unit supply. We use the “snapshots 200K” data
set and remove users and movies with too few entries. Using
the matrix completion software fancyimpute (Rubinsteyn
and Feldman 2016), we estimate missing valuations. The
resulting instance has n = 691 buyers andm = 632 items.
First we compare each of our new algorithms in terms

of the different stepsize strategies: BCDEG vs. BCDEG-LS,
BCPR vs. A-BCPR vs. BCPR-LS, and PR vs PRLS. The
results are shown in Fig. 1 and Fig. 2 in the upper left, upper
right, and lower left corners. In all cases we see that our new
line search variants perform the best.

Second, we then compare our block-coordinate algorithms
to the best deterministic state-of-the-art market equilibrium
algorithms: PGLS (Gao and Kroer 2020) and PRLS. The re-
sults are shown in Fig. 1 and Fig. 2 in the lower right corner.
For all markets either BCDEG or BCPR-LS is best on all
metrics, followed by PRLS, and PGLS in order. In general,
we see that the stochastic block-coordinate algorithms con-
verge faster than their deterministic counterparts across the
board, even after thousands of iterations of the deterministic
methods. Thus, block-coordinate methods seem to be better
even at high precision, while simultaneously achieving better
early performance due to the many more updates performed
per unit of work.

Figure 2: Performance on movierating instances. The plot
setup is the same as in Fig. 1.

Figure 3: Performance on simulated instances with CES util-
ity with ρ ∈ (0, 1). The setup is the same as in Fig. 1.

CES utilities. Similar to linear utilities, we generate a n =
m = 200 scale market instance with the CES-utility param-
eters generated as vij = vivj + εij , where vi ∼ N (1, 0.22),
vj ∼ N (1, 0.22), and εij ∼ uniform(0, 0.2). For the CES
instances we were not able to obtain high-accuracy solu-
tions from existing conic solvers, and thus we only measure
performance in terms of the dual gap. Somewhat surpris-
ingly, we find that for CES utilities vanilla PR converges very
fast; faster than BCPR and all versions of BCDEG. Moreover,
BCDEG suffers from extremely small stepsizes, so we have to
use BCDEG-LS. Here, we used specific small parameters for
the distributions in the simulated utilities. More discussion
and experiments on CES utilities are given in Appendix E.

Conclusion and Future Work

We proposed two stochastic block-coordinate algorithms for
computing large-scale ME: (proximal) block-coordinate de-
scent on EG (BCDEG) and block-coordinate proportional
response (BCPR). For each algorithm we provided theoreti-
cal convergence guarantees and showed numerically that they
outperform existing state-of-the-art algorithms. We also pro-
vided a new economic interpretation of the projected gradient
update used in BCDEG. For future work, we are interested in
deriving a sublinear convergence rate for BCPR with adap-
tive stepsizes, extending it to leverage distributed and parallel
computing capabilities, and allowing more general dynamic
settings and other buyer utility models.

5838

References
Arnsperger, C. 1994. Envy-freeness and distributive justice.
Journal of Economic Surveys, 8(2): 155–186.
Attouch, H.; Bolte, J.; and Svaiter, B. F. 2013. Convergence
of descent methods for semi-algebraic and tame problems:
proximal algorithms, forward–backward splitting, and regu-
larized Gauss–Seidel methods. Mathematical Programming,
137(1): 91–129.
Aziz, H.; and Ye, C. 2014. Cake cutting algorithms for
piecewise constant and piecewise uniform valuations. In
International Conference on Web and Internet Economics,
1–14. Springer.
Barman, S.; Krishnamurthy, S. K.; and Vaish, R. 2018. Find-
ing fair and efficient allocations. In Proceedings of the 2018
ACM Conference on Economics and Computation, 557–574.
Bauschke, H. H.; Bolte, J.; and Teboulle, M. 2017. A descent
lemma beyond Lipschitz gradient continuity: first-order meth-
ods revisited and applications. Mathematics of Operations
Research, 42(2): 330–348.
Beck, A.; and Tetruashvili, L. 2013. On the convergence of
block coordinate descent type methods. SIAM journal on
Optimization, 23(4): 2037–2060.
Birnbaum, B.; Devanur, N. R.; and Xiao, L. 2011. Dis-
tributed algorithms via gradient descent for fisher markets.
In Proceedings of the 12th ACM conference on Electronic
commerce, 127–136. ACM.
Budish, E.; Cachon, G. P.; Kessler, J. B.; and Othman, A.
2016. Course match: A large-scale implementation of ap-
proximate competitive equilibrium from equal incomes for
combinatorial allocation. Operations Research, 65(2): 314–
336.
Chen, X.; and Teng, S.-H. 2009. Spending is not easier
than trading: on the computational equivalence of Fisher and
Arrow-Debreu equilibria. In International Symposium on
Algorithms and Computation, 647–656. Springer.
Cole, R.; Devanur, N. R.; Gkatzelis, V.; Jain, K.; Mai, T.;
Vazirani, V. V.; and Yazdanbod, S. 2017. Convex program
duality, fisher markets, and Nash social welfare. In 18th
ACM Conference on Economics and Computation, EC 2017.
Association for Computing Machinery, Inc.
Conitzer, V.; Kroer, C.; Panigrahi, D.; Schrijvers, O.;
Sodomka, E.; Stier-Moses, N. E.; and Wilkens, C. 2019.
Pacing Equilibrium in First-Price Auction Markets. In Pro-
ceedings of the 2019 ACM Conference on Economics and
Computation. ACM.
Conitzer, V.; Kroer, C.; Sodomka, E.; and Stier-Moses, N. E.
2018. Multiplicative Pacing Equilibria in Auction Markets.
In International Conference on Web and Internet Economics.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The complexity of computing a Nash equilibrium.
SIAM Journal on Computing, 39(1): 195–259.
Devanur, N. R.; Papadimitriou, C. H.; Saberi, A.; and Vazi-
rani, V. V. 2008. Market equilibrium via a primal-dual algo-
rithm for a convex program. Journal of the ACM (JACM),
55(5): 1–18.

Dooms, S.; De Pessemier, T.; and Martens, L. 2013. Movi-
etweetings: a movie rating dataset collected from twitter. In
Workshop on Crowdsourcing and human computation for
recommender systems, CrowdRec at RecSys, volume 2013,
43.
Eisenberg, E. 1961. Aggregation of utility functions. Man-
agement Science, 7(4): 337–350.
Eisenberg, E.; and Gale, D. 1959. Consensus of subjective
probabilities: The pari-mutuel method. The Annals of Mathe-
matical Statistics, 30(1): 165–168.
Gao, T.; Lu, S.; Liu, J.; and Chu, C. 2020. Randomized
bregman coordinate descent methods for non-lipschitz opti-
mization. arXiv preprint arXiv:2001.05202.
Gao, Y.; and Kroer, C. 2020. First-Order Methods for Large-
Scale Market Equilibrium Computation. In Neural Informa-
tion Processing Systems 2020, NeurIPS 2020.
Gao, Y.; and Kroer, C. 2021. Infinite-Dimensional Fisher
Markets: Equilibrium, Duality and Optimization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence.
Garg, R.; and Kapoor, S. 2006. Auction algorithms for market
equilibrium. Mathematics of Operations Research, 31(4):
714–729.
Goktas, D.; Viqueira, E. A.; and Greenwald, A. 2021. A
Consumer-Theoretic Characterization of Fisher Market Equi-
libria. In International Conference on Web and Internet
Economics, 334–351. Springer.
Hanzely, F.; and Richtárik, P. 2019. Accelerated coordi-
nate descent with arbitrary sampling and best rates for mini-
batches. In The 22nd International Conference on Artificial
Intelligence and Statistics, 304–312. PMLR.
Hanzely, F.; and Richtárik, P. 2021. Fastest rates for stochas-
tic mirror descent methods. Computational Optimization and
Applications, 1–50.
Held, M.; Wolfe, P.; and Crowder, H. P. 1974. Validation of
subgradient optimization. Mathematical programming, 6(1):
62–88.
Kantorovich, L. 1975. Mathematics in economics: achieve-
ments, difficulties, perspectives. Technical report, Nobel
Prize Committee.
Karimi, H.; Nutini, J.; and Schmidt, M. 2016. Linear con-
vergence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, 795–811. Springer.
Kroer, C.; Peysakhovich, A.; Sodomka, E.; and Stier-Moses,
N. E. 2019. Computing large market equilibria using ab-
stractions. In Proceedings of the 2019 ACM Conference on
Economics and Computation, 745–746.
Kroer, C.; and Stier-Moses, N. E. 2022. Market equilibrium
models in large-scale internet markets. Innovative technology
at the interface of Finance and Operations. Springer Series
in Supply Chain Management. Springer Natures.
Liu, J.; and Wright, S. J. 2015. Asynchronous stochastic
coordinate descent: Parallelism and convergence properties.
SIAM Journal on Optimization, 25(1): 351–376.

5839

Lu, H.; Freund, R. M.; and Nesterov, Y. 2018. Relatively
smooth convex optimization by first-order methods, and ap-
plications. SIAM Journal on Optimization, 28(1): 333–354.
Mosek, A. 2010. The MOSEK optimization software. Online
at http://www. mosek. com, 54(2-1): 5.
Nesterov, Y. 2012. Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM Journal on
Optimization, 22(2): 341–362.
Othman, A.; Papadimitriou, C.; and Rubinstein, A. 2016. The
complexity of fairness through equilibrium. ACM Transac-
tions on Economics and Computation (TEAC), 4(4): 1–19.
Othman, A.; Sandholm, T.; and Budish, E. 2010. Finding
approximate competitive equilibria: efficient and fair course
allocation. In AAMAS, volume 10, 873–880.
Reddi, S. J.; Sra, S.; Póczos, B.; and Smola, A. 2016. Fast
stochastic methods for nonsmooth nonconvex optimization.
arXiv preprint arXiv:1605.06900.
Richtárik, P.; and Takáč, M. 2014. Iteration complexity of ran-
domized block-coordinate descent methods for minimizing
a composite function. Mathematical Programming, 144(1):
1–38.
Rubinsteyn, A.; and Feldman, S. 2016. fancyimpute: An
Imputation Library for Python. https://github.com/iskandr/
fancyimpute. Accessed: 2022-07-01.
Scarf, H.; et al. 1967. On the computation of equilibrium
prices. Cowles Foundation for Research in Economics at
Yale University New Haven, CT.
Shmyrev, V. I. 2009. An algorithm for finding equilibrium
in the linear exchange model with fixed budgets. Journal of
Applied and Industrial Mathematics, 3(4): 505.
Tseng, P. 2001. Convergence of a block coordinate descent
method for nondifferentiable minimization. Journal of opti-
mization theory and applications, 109(3): 475–494.
Varian, H. R.; et al. 1974. Equity, envy, and efficiency. Jour-
nal of Economic Theory, 9(1): 63–91.
Vazirani, V. V.; and Yannakakis, M. 2011. Market equilibrium
under separable, piecewise-linear, concave utilities. Journal
of the ACM (JACM), 58(3): 1–25.
Wright, S. J. 2015. Coordinate descent algorithms. Mathe-
matical Programming, 151(1): 3–34.
Zhang, H. 2020. New analysis of linear convergence of
gradient-type methods via unifying error bound conditions.
Mathematical Programming, 180(1): 371–416.
Zhang, L. 2011. Proportional response dynamics in the Fisher
market. Theoretical Computer Science, 412(24): 2691–2698.

5840

