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Abstract. Mature internet advertising platforms offer high-level campaign management
tools to help advertisers run their campaigns, often abstracting away the intricacies of how
each ad is placed and focusing on aggregate metrics of interest to advertisers. On such plat-
forms, advertisers often participate in auctions through a proxy bidder, so the standard
incentive analyses that are common in the literature do not apply directly. In this paper,
we take the perspective of a budget management system that surfaces aggregated incen-
tives—instead of individual auctions—and compare first and second price auctions. We
show that theory offers surprising endorsement for using a first price auction to sell indi-
vidual impressions. In particular, first price auctions guarantee uniqueness of the steady-
state equilibrium of the budget management system, monotonicity, and other desirable
properties, as well as efficient computation through the solution to the well-studied
Eisenberg–Gale convex program. Contrary to what one can expect from first price auctions,
we show that incentives issues are not a barrier that undermines the system. Using realistic
instances generated from data collected at real-world auction platforms, we show that bid-
ders have small regret with respect to their optimal ex post strategy, and they do not have
a big incentive to misreport when they can influence equilibria directly by giving inputs
strategically. Finally, budget-constrained bidders, who have significant prevalence in real-
world platforms, tend to have smaller regrets. Our computations indicate that bidder
budgets, pacing multipliers, and regrets all have a positive association in statistical terms.

History:Accepted by Gabriel Weintraub, revenue management andmarket analytics.
Funding: D. Panigrahi was supported in part by the National Science Foundation [Awards CCF

1535972, CCF 1750140, and CCF 1955703].
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1. Introduction
The early days of internet advertising were the Wild
West. Savvy search advertisers at that time would care-
fully tune their keywords and bids, building complex
tools that precipitated cyclic bidding patterns (Edelman
andOstrovsky 2007). For example, it would pay off to dif-
ferentiate between users who search for “flower” and
“flowers” in search advertising. Deft display advertisers
would exploit real-time bidding (RTB) capabilities—
bidding programmatically on a per-impression basis—to
identify high-value users where competitors lacked data,
reaching them at bargain basement prices. Crafty clickers
would sabotage competitors’ campaigns to gain advan-
tage. Such complex strategic behavior was enabled by
low-level bidding tools and driven by advertisers’ focus
on the value of each customer.

As platformsmatured and developed higher-level func-
tionality, programmatic advertising attracted advertisers

who cared more about the population of users they
reached than about the value of an individual user.
Early programmatic systems like search advertising
and RTB bidding, where advertisers more or less bid
on each opportunity, catered to advertisers targeting
events deep in the sales funnel where the value of
each event was substantial and measurable. Even as
these systems came to dominate search and remnant
display advertising1 in the first decade of the twenty-
first century, advertisers simply looking to reach an
audience would often go through salespeople to buy
so-called guaranteed placements. With only a rough
measure of the value in expectation of reaching each
individual, competitive bidding on a per-user basis
made little sense for these advertisers. The gap
between these worlds was bridged by platforms that
abstracted away the auctions to focus on reach.
Advertisers would input basic data to set up a
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campaign, and platforms helped them run the cam-
paign relying on a proxy bidder. For example, an
advertiser at a social media platform today might sim-
ply say, “I want to show my ad to as many junior tech
professionals in Colorado as possible for $1,000” but
not indicate the value per individual.

Facebook’s current advertiser workflow exemplifies
this mindset as illustrated in Figure 1. The campaign
creation flow asks an advertiser four questions. (1)
What do you want people to do (see, watch, click,
buy, etc.)? (2) Who do you want to reach (targeting
criteria)? (3) Where do you want to show your ad
(e.g., Facebook, Instagram, Messenger)? (4) How
much money do you want to spend (budget)? Notably
missing in the basic flow is the willingness to pay to
reach an individual person (bid).2

This shift from the primacy of the individual user to
the primacy of the population being reached substan-
tially changes the mechanism designer’s problem. In
the standard theory, the bid is assumed to be the pri-
mary strategic implement, and budgets, when pre-
sent, are often assumed to be public knowledge to
make analysis tractable. However, when focusing on
the population reached, advertisers’ primary strategic
levers are budgets and audience targeting, with con-
trol of the bid ceded to a proxy bidder. This turns
much of the standard auction literature on its head.
The advertiser’s bid, which was already the product of
a constant per-event bid and a platform-generated
impression-specific event probability, is now entirely
managed by a proxy bidder tasked with managing the
advertiser’s budget across impressions. This leads us to
the motivation of the present paper; in a system where

advertisers’ primary or only strategic lever is the bud-
get, what is the best way to allocate and price ads?

The goal of our study is to understand the strengths
and weaknesses of different auction rules in the con-
text of proxy bidders that help run campaigns. We
study a specific question on this topic. When the
proxy bidder is designed to shade bids so the adver-
tiser’s budget is exhausted at the end of the budget
horizon, would the system as a whole perform better
if individual impressions are sold through a first price
or a second price mechanism? Because the proxy bid-
ders shade bids on behalf of advertisers to maximize
their utilities over the course of the campaign, the
standard analyses of first and second price auctions
no longer apply. Instead, the focus is the study of
equilibria resulting from the independent and strate-
gic behavior of all proxy bidders. First, we show that
when a first price auction is used to sell each impres-
sion, the resulting first price pacing equilibrium (FPPE)
has many theoretical guarantees that would not hold in
an analogous second price pacing equilibrium (SPPE),
including uniqueness and monotonicity. Second, we
show that FPPEs are not an arbitrary construction; they
correspond to market equilibria, which can be efficiently
computed using the well-studied Eisenberg–Gale (EG)
convex program (unlike SPPEs, which are PPAD
complete to compute (Chen et al. 2021)). Finally, we run
simulations on real data collected from Facebook and
Instagram advertising auctions in order to study the
impact on incentives for advertisers. In these simula-
tions, we find that the ex post incentive for an individual
advertiser to shade their bids via reporting a lower value
per conversion or budget is very small in almost all

Figure 1. (Color online) Flow to Create a Facebook Ad as Described at https://www.facebook.com/business/ads
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cases. In an individual first price auction, the winner has
a significant incentive to bid strategically when the gap
between the first and second bid is large, and closing
the gap requires a “thick” market where many bidders
are present. However, in a pacing equilibrium, the
proxy bidder is picking a single bid to be used in all auc-
tions, so it is enough that the gap between the first and
second bids is small in a fraction of the auctions in
which the proxy bidder will participate. We also find
that the incentive for misreporting the value per conver-
sion or budget as inputs to the mechanism is vanish-
ingly small. We hypothesize that this conclusion has to
do with the coarseness at which manipulations can be
performed when buyers do not have the ability to shade
bids in individual auctions.

1.1. Pacing Equilibria in Internet Advertising
The primary function of proxy bidders in internet
advertising is to optimize the way advertisers’ budg-
ets are spent. Most modern implementations are
based on control systems that tune one or more control
parameters and apply them to the incoming opportu-
nities. A common budget management method known
as bidder selection or throttling tries to enforce budget
constraints by adaptively selecting which advertisers
participate in each auction. This is commonly done by
tuning a probability for each ad to randomize the
participation in the auctions it targets. The platform
adjusts the ad’s participation probability continuously;
when an ad keeps spending its budget too fast, its
participation probability is continuously reduced and
vice versa. Other platforms instead modify the bid of
each ad by applying a shading factor, referred to as a
pacing multiplier, to manage the budget. Tuning the
pacing multiplier changes the spending rate, thereby
attempting to exhaust the ad’s budget precisely at the
end of the budget horizon. (For further details, we
expand the description of pacing in the next section.)
Between these two options, shading-based systems
tend to increase advertisers’ utilities by allocating the
cheapest impressions to them, whereas throttling
offers advertisers a more representative sample of
the available opportunities. There is no one-size-fits-
all solution, and the design space of budget manage-
ment systems is large and rife with trade-offs.

Both methods have precedent. Throttling has been
studied in both first and second price settings. In the
context of first price auctions, the celebrated work of
Mehta et al. (2007) gives an algorithm for online allo-
cation of impressions to bidders to maximize overall
ad revenue. Their allocation algorithm and those in
the large body of follow-up work (see the survey in
Mehta 2013) can be interpreted as running a first price
auction for each impression after removing a subset of
bidders from the auction based on their remaining
budgets. Bidder selection has also been explored in

the context of generalized second price (GSP) auc-
tions, particularly for multiobjective optimization in
search engines (Abrams et al. 2008, Azar et al. 2009,
Goel et al. 2010, Karande et al. 2013). An important
feature of bidder selection is that a bidder who is cho-
sen to participate in the auction does so with her origi-
nal bid (i.e., the platform does not modify bid values
of participating bidders).

Our work focuses on bid modification, wherein the
platform shades an advertiser’s bids in order to pre-
serve her budget for the future. This is commonly
implemented by scaling an advertiser’s bid by a pac-
ing multiplier between zero and one. Many advertis-
ing platforms provide a free option to advertisers to
automatically have their bids scaled, and an impres-
sive body of work has focused on advertiser strategies
for bid modification in order to maximize their return
on investment (Rusmevichientong and Williamson
2006, Feldman et al. 2007, Hosanagar and Cherepanov
2008). In addition to advertiser strategies, Cary et al.
(2007) also studies the limit point if all advertisers par-
ticipate in a repeated position auction. In that setting,
prices converge to Vickrey–Clarke–Groves (VCG) pri-
ces, but there is no heterogeneity in impression oppor-
tunities. Closest to our work is that of Borgs et al.
(2007), who study first price auctions with budget con-
straints in a perturbed model. They show that in the
limit of their perturbations, prices converge to those
of an (equal rates) competitive equilibrium. The limit
point they describe is an FPPE; hence, this shows
guaranteed existence and the relation to competitive
equilibria. It leaves open the question of uniqueness,
revenue, and other properties of FPPE. They also
point out a convex set of constraints that can be used
to compute this limit point and thus, an FPPE .

Recent work has studied pacing equilibria in the
context of second price auctions; Balseiro et al. (2015)
investigate budget management in auctions through a
fluid mean-field approximation, which leads to ele-
gant existence results and closed form descriptions of
equilibria in certain settings. Balseiro et al. (2021) stud-
ies several budget smoothing methods, including multi-
plicative pacing in a stochastic context where ties do
not occur. Balseiro and Gur (2019) studies how an indi-
vidual bidder might adapt their pacing multiplier over
time in a stochastic continuous setting. Conitzer et al.
(2021) studies second price pacing when bidders,
goods, budgets, and valuations are known and proves
that equilibria exist under fractional allocations. In this
paper, we study pacing in the context of first price
auctions.

Although second price auctions displaced first
price auctions in internet advertising because of their
many desirable robustness guarantees, particularly
related to stability (Edelman and Ostrovsky 2007) and
strategyproofness, first price auctions are regaining
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popularity. In 2017, exchanges such as AppNexus,
Index Exchange, and OpenX began moving their inven-
tory to from second to first price auctions (Chen 2017,
Sluis 2017). Google transitioned all display advertising
publisher inventory to first price auctions in 2019, citing
a desire for greater transparency and simplicity in the
ad market; they reported a neutral to positive impact
on revenue for publishers and a more competitive mar-
ket (Bigler 2019). Mopub (Twitter’s ad platform) transi-
tioned all publisher inventory to a first price auction
from June to October of 2020, also citing a desire for
increased transparency, reduced complexity, and increased
fairness (Jordan 2020). To explain this recent shift to first
price auctions, Paes Leme et al. (2020) analyzed the equi-
libria of a game played between auction markets, where
each market can choose its auction rules. We focus on a
game between proxy bidders as opposed to a game
between auction markets. We remark that this shift to
first price auctions has happened in display advertising,
which typically uses real-time bidding as opposed to a
centralized pacing system (although intermediaries likely
have their own budget pacing systems for their adver-
tisers). By contrast, in this work, we explore the properties
that arise when first price auctions are combined with
centralized pacing systems.

In the context of position auctions, Dütting et al.
(2019) further showed that first price does not suffer
from the same equilibrium selection problems as GSP
and VCG. Moreover, as we will see later, first price
auctions provide a clean characterization of equilib-
rium solutions in the context of pacing, unlike in the
case of second price auctions (Conitzer et al. 2021).
Indeed, as stated earlier, one of the most developed
lines of research in ad auctions relates to bidder selec-
tion in first price auctions (Mehta 2013). Our work
complements this line of work by focusing on bid
modification instead of bidder selection as the pre-
ferred method for budget management.3

1.2. Contributions
We introduce the FPPE problem, where each buyer
participates in many first price auctions with budget
constraints that span the auctions. The platform seeks
to find a vector of pacing multipliers, one for each
buyer, and buyers bid their value times their pacing
multiplier. At a high level, the platform seeks to find
multipliers such that buyers are only just paced
enough that they do not overspend their budget. We
allow goods to be allocated fractionally if there are
ties; this is well motivated in the ad auction setting,
where a good may be interpreted as representing
thousands of impressions. We show that FPPE can be
understood as a maximal point within the larger class
of budget-feasible pacing multipliers (BFPMs), which is
the set of vectors of pacing multipliers that satisfy all

budgets but potentially pace beyond what is neces-
sary in order to satisfy budgets.

1.2.1. Existence and Uniqueness. From Borgs et al.
(2007), it follows that FPPEs are guaranteed to exist.
Our first result shows that not only does an FPPE
always exist but also, that it is essentially unique.4 In fact,
we show that the FPPE exactly coincides with the
(unique) maximal set of pacing multipliers. This also
leads to the observation that the FPPE is revenue maxi-
mizing among all BFPM. Our structural characteriza-
tion of FPPE in terms of BFPM is a powerful tool for
reasoning about properties of FPPE and is the basis of
several of our results and additional ones by Peysakho-
vich and Kroer (2019) in follow-up work on competitive
equilibria from equal incomes. In contrast, SPPEs are
guaranteed to exist but are not unique in general (Con-
itzer et al. 2021). Furthermore, we also show that an
FPPE yields a competitive equilibrium (i.e., every bidder
is exactly allocated her demand set). SPPE also corre-
sponds to a competitive equilibrium but only for buyers
that are supply aware when computing their demands,
whereas FPPE is a competitive equilibrium both for
supply-aware and supply-unaware buyers.

1.2.2. Computability. We show an interesting connec-
tion between FPPE and a generalization of the classical
EG convex program for quasilinear utilities (Cole et al.
2017). Using Fenchel duality, we use the EG program to
infer that the unique maximal BFPM, which is also reve-
nue maximizing, yields the unique FPPE. Moreover,
this connection with the EG program immediately yields
a (weakly) polynomial algorithm to compute the FPPE.
This also contrasts with SPPE, for which maximizing
revenue (or other objectives like social welfare) is known
to be NP hard (Conitzer et al. 2021), and very recent
results show that the general problem is PPAD complete
(Chen et al. 2021). Although Borgs et al. (2007) already
showed a convex program, this connection to EG is
important because it lends itself to scalable first-order
methods (Nesterov and Shikhman 2018, Kroer et al. 2021).

1.2.3. Monotonicity and Sensitivity. We show that
FPPE satisfies many notions of monotonicity in terms
of both revenue and social welfare. Adding an addi-
tional good weakly increases both revenue and social
welfare, and adding a bidder or increasing a bidder’s
budget weakly increases revenue. Again, this stands
in sharp contrast with SPPEs, which generally do not
satisfy such monotonicity conditions.

In fact, in an FPPE, not only is the revenue mono-
tonically nondecreasing with budgets, but it also
changes smoothly in the sense that increasing the bud-
get by a constant ∆ can only increase the revenue by
∆. This does not hold for SPPE, where the revenue
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can increase by a substantial amount even for a small
change in the budgets.

1.2.4. Shill Proofness. Using monotonicity, we also
establish that there is no incentive for the platform to
enter fake bids to an FPPE mechanism.

1.2.5. Simulations. To test the properties mentioned
earlier and compare equilibria computationally, we
rely on the EG convex program formulation to per-
form simulations on realistic instances constructed
from elements of real-world data. We find that the ex
ante and ex post regret associated with FPPE is very
small when bidders can only change the scale of their
utilities, as is usually the case in ad markets when bid-
ding on clicks or conversions. Finally, we compare the
revenue and social welfare of FPPE and SPPE across
instances. We find that FPPE always provide higher
revenue, whereas welfare splits about evenly on
which solution concept performs better. The contribu-
tions and the comparison between FPPE and SPPE
are summarized in Table 1.

1.2.6. Conclusion. In Section 7, we discuss the assump-
tions we have made and put them in perspective versus
more general or alternative assumptions.

2. First Price Pacing Equilibria
We consider a single-slot auction market in which a
set of bidders N ! {1, : : : ,n} targets a set of (divisible)
goods M ! {1, : : : ,m}. Each bidder i has a valuation
vij ≥ 0 for each good j and a budget Bi > 0 to be spent
across all goods. We assume that the goods are sold
through independent (single-slot) first price auctions, and
the valuations and budgets are assumed to be known to
the auctioneer. When multiple bids are tied for an item,
we assume that the item can be fractionally allocated,

and we allow the auctioneer to choose the fractional allo-
cation (although our results on equivalence to competi-
tive equilibrium show that the fractional choices made by
the auctioneer are optimal for the bidders as well).

The goal is to compute a vector of pacing multipliers
α that smooths out the spending of each bidder so
that they stay within budget. A pacing multiplier for a
bidder i is a real number αi ∈ [0, 1] that is used to scale
down the bids across all auctions; for any i, j, bidder i
participates in the auction for good j with a bid equal
to αivij. We refer to these bids as multiplicatively paced.
We define feasibility as follows.

Definition 1. A set of BFPMs is a tuple (α,x) of pacing
multipliers αi ∈ [0, 1] for each bidder i ∈N and frac-
tional allocations xij ∈ [0, 1] for each bidder i ∈N and
good j ∈M that satisfies the following properties.

• (Prices) Unit price pj !maxi∈N αivij for each good
j ∈M.

• (Goods go to highest bidders) If xij > 0, then αivij !
maxi′∈N αi′vi′j for each bidder i ∈N and good j ∈M.

• (Budget feasible) ∑
j∈M xijpj ≤ Bi for each bidder

i ∈N.
• (Demanded goods sold completely) If pj > 0, then

∑
i∈N xij ! 1 for each good j ∈M.
• (No overselling) ∑i∈N xij ≤ 1 for each good j ∈M.
Within the feasible space, we are particularly in-

terested in outcomes that are stable in some sense.
Specifically, we are interested in solutions where no
bidder is unnecessarily paced, which we call FPPE.
This captures that the platform does not want to pace
an advertiser that is not spending the full budget.

Definition 2. An FPPE is a BFPM tuple (α,x) of pacing
multipliers αi for each bidder i and fractional allocation
xij for bidder i and good jwith this additional property.

• (No unnecessary pacing) If ∑
j∈M xijpj < Bi, then

αi ! 1 for each bidder i ∈N.

Table 1. A Comparison of FPPE and SPPE

SPPE FPPE

Exists? Yes Yes
Buyers best responding? Yes No
Is market equilibrium? Yes Yes (even for supply-unaware buyers)
Is unique? No Yes, in utilities, multipliers, and prices
Is efficiently computable? PPAD complete Convex program
Is welfare monotone? No Yes, in goods
Is revenue monotone? No Yes, in goods/bidders/budgets
Is shill proof? No Yes
Simulated regret/IC No regret, very small IC Small regret, small IC
Simulated revenue SPPE ≤ FPPE
Simulated welfare Ambiguous

Notes. In the second row, we note that under SPPE, each bidder’s multiplier is a mutual best response given that other agent bids are fixed—and
would be even if the set of deviating strategies was expanded to allow the bidder to submit arbitrary per-auction bids (for a proof, see
proposition 1 in Conitzer et al. 2021). Under FPPE, a buyer may increase its utility by shading its multiplier (or shading individual bids if it
could submit arbitrary bids for each auction). IC stands for incentive compatibility violation.
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2.1. Existence, Uniqueness, and Structure
of FPPE

Borgs et al. (2007) show that FPPEs are guaranteed to
exist. We show that not only are FPPEs guaranteed to
exist but that they are also unique and maximize the
seller’s revenue over all BFPM. In the following,
inequalities should be interpreted component wise
when applied to vectors or sets.
Lemma 1. There exists a Pareto-dominant BFPM (α,x)
(i.e., α ≥ α′ for any BFPM (α′,x′)).
Proof. First, we will show that given any two BFPMs
(α(1),x(1)) and (α(2),x(2)), there exists a BFPM with
pacing multipliers α∗ !max(α(1),α(2)) that are the
component-wise maximum of α(1) and α(2). Note that,
on each item, the resulting paced bid for a bidder is
the higher of her two paced bids on this item in the
original two BFPMs. Let the corresponding allocation
x∗ be that for each good j, identify which of the two
BFPMs had the highest paced bid for j, breaking ties
toward the first BFPM; then, allocate the good to the
same bidder as in that BFPM (if the good was split
between multiple bidders, allocate it in the same pro-
portions) at the same price. Note that these prices
coincide with the winning bidders’ paced bids in the
new solution. Thus, we charge the correct prices,
goods go to the highest bidders, demanded goods are
sold completely, and there is no overselling.

All that remains to be verified is that the new solu-
tion is budget feasible. Consider bidder i in the
bidder-wise max α∗. In either α(1) or α(2), bidder i had
the exact same multiplier—say it was in α(b) for b ∈
{1, 2} (breaking ties toward 1). To show budget feasi-
bility, we now prove the following; if a bidder i wins
fraction x of an item j in (α∗,x∗), then she must also
win at least fraction x of item j in (α(b),x(b)). The key
observation is that for any bidder and item, her paced
bid in (α∗,x∗) is at least as much as her paced bid in
either (α(1),x(1)) or (α(2),x(2))—we call this the monotone
property. Now, consider two situations. First, if i did
not have the highest bid on an item j in (α(b),x(b)), then
the bidder who had a higher bid in (α(b),x(b)) continues
to have a higher bid in (α∗,x∗) by the monotone prop-
erty. Hence, i does not win this item under (α∗,x∗).
Second, suppose that i did have the highest bid on an
item j in (α(b),x(b)) and won a fraction x of the item. In
this case, every other bidder who matched i’s bid in
(α(b),x(b)) continues to have at least as high a bid
in (α∗,x∗) by the monotone property. Therefore, i
shares item j in (α∗,x∗) with at least the set of bidders
she shared it with in (α(b),x(b)). There are three further
subcases. First, if the highest-paced bid for j is unique,
then the highest must be achieved by (α(b),x(b)); in this
case, i gets exactly fraction x of item j. Second, if the
highest-paced bid for j is tied and b ! 1, then item j is
divided exactly as in (α(1),x(1)). Again, i gets exactly

fraction x of item j. Third, if the highest-paced bid for j is
tied but b ! 2, then we claim that i does not get item j in
(α∗,x∗). This is because the allocation of j under (α∗,x∗) is
identical to that under (α(1),x(1)), but because b ! 2,
we have α(1)

i < α(2)
i , which implies that i does not have

the highest bid for j in (α(1),x(1)). In summary, in any of
these three cases, the fraction of item j that bidder i wins
under (α∗,x∗) is at most the fraction she wins under
(α(b),x(b)). As a consequence, i spends no more under the
new BFPM than under BFPM b, which is budget feasi-
ble. Hence, the new BFPM is budget feasible.

We now complete the proof. Let α∗
i ! sup {αi | α

is part of a BFPM}. We will show that α∗ is part of a
BFPM, proving the result. For any ε > 0 and any i, there
exists a BFPM where αi > α∗

i − ε. By repeatedly taking
the component-wise maximum for different pairs of i,
we conclude there is a single BFPM (αε,xε) such that
for every i, αε

i > α∗
i − ε. Because the space of combina-

tions of multipliers and allocations is compact, the
sequence (αε,xε) (as ε→ 0) has a limit point (α∗,x∗).
This limit point satisfies all the properties of a BFPM by
continuity. w

In addition to there being a maximal set of pacing
multipliers over all BFPM, this maximal BFPM is
actually an FPPE.

Lemma 2 (Guaranteed Existence of FPPE). The
Pareto-dominant BFPM (α,x) with maximal pacing multi-
pliers α has no unnecessarily paced bidders, so it forms an
FPPE.

Proof. Suppose bidder i is unnecessarily paced under
the maximal BFPM (α,x). If i is not tied for any good,
then we can increase her pacing multiplier by a suffi-
ciently small ε > 0 such that i is still not tied for any
item and is within budget, contradicting the fact that
α was maximal. So, bidder i must be tied for at least
one good. Define N(i) as all the bidders that are tied
for any good with bidder I (i.e., N(i) ! {bidder k :
∃ good j with αivij ! αkvkj}). Now, take the transitive
closure T of this set N(i) (i.e., include all bidders who
are tied for an item with a bidder in N(i), etc.). Next,
redistribute the items that are tied such that none of
the bidders in T are budget constrained while still
allocating items completely. This is always possible
because we can slightly increase the share of i for all
items she is tied on while simultaneously reducing the
share of all other bidders tied with her. In the next
step, we can slightly increase the share of all these bid-
ders for other items they are tied on while reducing
the share of the new bidders they are tied with for
those items and so on. Next, increase the pacing multi-
pliers of all bidders in T by a small-enough δ > 0 so
that all bidders in T are still not budget constrained,
and no new ties are created; call this set of pacing
multipliers α′ and the redistribution of goods x′. This
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contradicts that α was the maximal BFPM to begin
with as (α′,x′) is a BFPM, yet it has pacing multipliers
that are higher than in (α,x). w

The converse of Lemma 2 is also true; any BFPM for
which at least one bidder has a pacing multiplier αi
lower than the maximal BFPM must have an unneces-
sarily paced bidder.
Lemma 3. Consider two BFPMs (α(1),x(1)) and (α(2),x(2)),
where α(1) ≥ α(2) and α(1)

i > α(2)
i for some bidder i. Then,

(α(2),x(2)) must have an unnecessarily paced bidder.

Proof. Consider the set I of all bidders whose pacing
multipliers are strictly lower in α(2) than in α(1) (by
definition, there must be at least one bidder in this
set). Collectively, I wins fewer (or the same) items
under α(2) than under α(1) (the bids from outside I
have stayed the same; those from I have gone down)
and at lower prices. Because (α(1),x(1)) was budget fea-
sible, I was not breaking its collective budget before.
Because I is spending strictly less, at least some bid-
ders must not spend their entire budget and thus, are
unnecessarily paced. w

This implies that the pacing multipliers of FPPE are
uniquely determined.
Corollary 1 (Essential Uniqueness). The pacing multi-
pliers of any FPPE are uniquely determined and corre-
spond to the pacing multipliers of the maximal BFPM.

Although the pacing multipliers are uniquely deter-
mined, the allocation is not. Tiebreaking may give
different goods to different bidders. However, tiebreak-
ing is inconsequential in the sense that the bidder utili-
ties (and thus, social welfare), item prices (and thus,
revenue), and the set of budget constrained bidders are
all uniquely determined.

Given two BFPMs, if the pacing multipliers of one
dominate the other, then the revenue of that BFPM
must also be at least as high. In the following, let
Rev(α,x) refer to the revenue of a BFPM (α,x).
Lemma 4. Given two BFPM (α(1),x(1)) and (α(2),x(2)),
where α(1) ≥ α(2), we must have that Rev(α(1),x(1)) ≥
Rev(α(2),x(2)).
Proof. Because α(1) ≥ α(2), prices under (α(1),x(1)) must
be at least as large as under (α(2),x(2)). By the defini-
tion of BFPM, all demanded items must be sold
completely. Therefore, under (α(1),x(1)), we sell at least
all the items that we sold under (α(2),x(2)) at prices
that are at least as high as those under (α(2),x(2)).
Hence, Rev(α(1),x(1)) ≥ Rev(α(2),x(2)). w

Corollary 2 (Revenue Maximizing). The FPPE is reve-
nue maximizing among all BFPM.

The following theorem summarizes the main prop-
erties of FPPE that follow from Lemma 2 and Corol-
laries 1 and 2.

Theorem 1. Given input (N,M,V,B), an FPPE is guar-
anteed to exist. In addition, the uniquely determined maxi-
mal pacing multipliers α maximize the revenue over all
BFPM.

3. Properties of First Price
Pacing Equilibria

We first show that an FPPE is also a competitive equilib-
rium. In fact, we show that the concept of FPPE is
equivalent to a natural refinement of competitive
equilibrium.

Definition 3. A competitive equilibrium consists of
prices pj of goods and feasible allocations xij of goods
to bidders such that the following properties hold.

1. Each bidder maximizes her utility under prevail-
ing prices; that is, for all i ∈N, it holds that

xi ∈ arg max
xi∈[0,1]m

∑

j∈M
(vij − pj)xij :

∑

j∈M
pjxij ≤ Bi

{ }
:

2. Every itemwith a positive price is sold completely;
that is, pj > 0⇒ ∑

ixij ! 1 for all j ∈M.
We now introduce a refinement of competitive equi-

librium that requires that each individual dollar of a bid-
der is spent (or not spent) in a way that maximizes the
utility obtained by the bidder for that dollar. Thus,
there exists a rate βi for each bidder that indicates her
return on a dollar.

Definition 4. An equal rates competitive equilibrium
(ERCE) is a competitive equilibrium such that for every
bidder i ∈N, there is a number βi such that

1. if xij > 0, then vij=pj ! βi;
2. if i does not spend her entire budget, then βi ! 1.
Through the previous definition, we obtain the fol-

lowing characterization of FPPE.

Theorem 2. A combination of prices pj and allocations xij
is an ERCE if and only if it is an FPPE.

Proof. We first note that budget feasibility, the no-
overselling condition, and the condition that items
with a positive price must be sold completely appear
in the definitions of both concepts, so we only need to
check the other conditions.

We first prove that an FPPE is also an ERCE. Let
βi ! 1=αi. First, consider a bidder with αi ! 1. If xij > 0
for some j, then vij=pj ! vij=vij ! 1 ! βi, proving both
conditions in the definition of an ERCE. Moreover,
for any item j, we have vij=pj ≤ vij=vij ! 1. Therefore,
the bidder is spending optimally given the prices.

Next, consider a bidder with αi < 1. If xij > 0 for
some j, then vij=pj ! vij=(αivij) ! βi, proving the first
condition in the definition of an ERCE. Moreover, by
the definition of FPPE, such a bidder must spend her
entire budget, proving the second condition. More-
over, for any item j, we have vij=pj ≤ vij=(αivij) ! βi.
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Hence, the bidder is spending all her budget on the
optimal items for her, and leaving money unspent
would be suboptimal because βi > 1. Therefore, the
bidder is spending optimally given the prices. We
conclude that an FPPE is also an ERCE.

We next prove that an ERCE is also an FPPE. For a
bidder i with ∑

jxij > 0, consider the set of items
Si ! { j : xij > 0}. By the ERCE property, we have that
for j ∈ Si, vij=pj ! βi. Let αi ! 1=βi. We must have αi ≤ 1
because otherwise, i’s dollars would be better left
unspent, contradicting the first property of competitive
equilibrium. Also, if αi < 1, then all of i’s budget must
be spent, establishing that no bidder is unnecessarily
paced. For a bidder with ∑

jxij ! 0, define αi ! βi ! 1.
Now, we show that no part of an item j can be won

by a bidder i for whom αivij is not maximal; if it was,
by the first ERCE condition we would have vij=pj !
βi⇐⇒ αivij ! pj and another bidder i′ for whom
αi′vi′j > αivij ! pj. Hence, vi′j=pj > 1=αi′ ! βi′ , but this
would contradict that i′ is receiving an optimal alloca-
tion under the prices.

Next, we prove that the prices are set correctly for
an FPPE. For any item j that is sold completely, con-
sider a bidder with xij > 0. Again, by the first ERCE
condition, we have vij=pj ! βi⇐⇒ αivij ! pj, and we have
already established that this bidder must maximize
αivij. If the item j is not entirely sold, then by the sec-
ond condition of competitive equilibrium, it must
have price zero. This, in turn, implies that all bidders
have value zero for it for otherwise, there would be a
bidder i with βi ! vij=pj !∞, who hence should be
able to obtain a utility of ∞ because every one of the
bidder’s dollars must result in that amount of utility
for her—but this is clearly impossible with finitely
many resources. Thus, we have established all the
conditions of an FPPE. w

Next, we show that the platform does not benefit
from adding fake bids under an FPPE mechanism,
unlike in the case of second price payments.

Definition 5. A solution concept is shill proof if the
seller does not benefit from adding fake bids.

Proposition 1. FPPEs are shill proof.

Proof. Note that if we start from an FPPE and remove
both a bidder and the items she wins, we still have an
FPPE because the remaining bidders are spending
the same as before, and the remaining items are allo-
cated as before and thus, fully allocated. Consider an
instance of a market with three FPPEs: (a) an FPPE
with shill bids, (b) an FPPE without shill bids, and (c)
the FPPE generated by removing both the shill bids
and the items they won from (a). Notice that the seller
makes the same revenue in (a) and (c). Moreover, by
Proposition 3, we know that the revenue of (b) is at

least as much as the revenue of (c), and therefore, also
at least as much as the revenue of (a). Thus, the seller
cannot benefit from shill bids. w

Akbarpour and Li (2020) observe that a first price
single-item auction satisfies a property referred to as
credible. This means that the platform cannot benefit
from misrepresenting what other agents have done in
the mechanism. The example illustrates that the FPPE
mechanism does not necessarily satisfy this property.
Example 1. Suppose B1 ! 2,v11 ! 2,v12 ! 2, and v22 ! 1.
The FPPE sets p1 ! p2 ! 1 and allocates both items to
bidder 1. However, the auctioneer could lie to bidder
1, claiming that someone else had bid three for item 2,
and charge bidder 1 a price of two for item 1. Mean-
while, she could charge bidder 2 a price of one for
item 2 for a higher revenue overall.

However, an FPPE does have a price predictability
guarantee; given any allocation, a bidder either pays its
full value or pays her budget. Even though individual
item prices may not be known, this guarantees a degree
of transparency to bidders about the price they will pay.

An FPPE is also robust to deviations by groups of bid-
derswhomight forma coalition to benefit themselves.

Definition 6. An allocation with a set of payments is in
the core if no group of bidders has an incentive to
form a coalition with the seller to attain an outcome
that is strictly better for all agents in the coalition.
Proposition 2. An FPPE is in the core.

Proof. Because an FPPE is a competitive equilibrium, if
we treat money as a good, then we have a traditional
locally nonsatiatedWalrasian equilibrium in an exchange
economy. Because a locally nonsatiated Walrasian equi-
librium is in the core, an FPPE is also in the core (see,
e.g., Mas-Colell et al. 1995 for a general exposition of
Walrasian equilibria and cooperative game theory and
Powell 2018 for an exposition under assumptions that
match those of this paper). w

4. Monotonicity and Sensitivity Analysis
In the previous section, we showed that FPPEs are
guaranteed to exist, that they are essentially unique
(up to ties that are largely inconsequential), and that
they satisfy a number of attractive properties. We now
look at how well-behaved FPPEs are under changing
conditions. We would ideally like the solution concept
to be stable, so that changes in the input do not pro-
duce disproportionate changes in the output. We will
show that this is largely the case. This is in stark con-
trast to SPPE, where Conitzer et al. (2021) showed
that the equilibrium can be very sensitive. First, SPPE
is not unique, and the revenue and welfare can vary
drastically across equilibria. Second, even when there
is a unique SPPE, small changes in the budget can
cause disproportionately large changes in revenue.
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4.1. Monotonicity
We investigate whether FPPEs are monotonic when
adding bidders or goods or when increasing budgets
or valuations. Table 2 summarizes our results.

4.1.1. Revenue. Revenue monotonicity is maintained
when adding bidders, goods, and budget but not for
incremental additions to valuations. Our proofs of
revenue monotonicity all rely on Corollary 2: the fact
that multipliers in an FPPE are maximal among all
BFPMs. Bidder monotonicity and budget monotonic-
ity both follow from a particularly simple argument;
the original solution remains a BFPM, and thus, the
maximality of FPPE over BFPM implies that monoto-
nicity is maintained.

Proposition 3. In an FPPE, adding a good weakly
increases revenue.

Proof. Let (α,x) be the FPPE for N, M, and let (α′,x′)
be the FPPE for N, M ⋃ { j}, which includes the new
good j ∉M. We first prove that α′

i ≤ αi for all bidders
i ∈N. Suppose that there are bidders whose multi-
pliers go up (strictly); consider the set of all such bid-
ders S. Collectively, these bidders are now winning
weakly more goods because there are more goods and
nobody else’s paced bids went up. That means they
are, collectively, paying strictly more (they are bid-
ding higher, and it is first price). However, this is
impossible because all of them were running out of
budget before because they were paced.

Using the fact that α ≥ α′, any bidder who was
paced in α is still paced in α′ and spending her whole
budget. Let T be the set of buyers whose pacing multi-
plier has not changed (i.e., T ! {i ∈N | αi ! α′

i}). They
must win weakly more items. Any item they were
tied to originally with bidders outside T must now go
completely to bidders in T. Additionally, bidders in T
may win (part of) the new item. Because the pacing
multipliers of bidders in T did not change, their prices
did not change; hence, winning weakly more items
means they are spending weakly more.

So, bidders whose pacing multiplier changed are
spending the same, and the remaining bidder spends
weakly more. Hence, revenue is weakly higher. w

Proposition 4. In an FPPE, adding a bidder weakly
increases revenue.

Proof. Let N be the original set of bidders, i ∉N be a
new bidder, and M be the set of goods. Let (α,x) be

the FPPE on N and M. After adding bidder i, for each
bidder k ∈N\{i} and good j ∈M, let α′

k ! αk and
x′kj ! xkj. Set α′

i ! xij ! 0 for bidder i and good j ∈M to
obtain (α′,x′). By construction, (α′,x′) is a BFPM, so
by Lemma 2, the revenue of the FPPE for N⋃ {i} and
Mmust be at least as high. w

Proposition 5. In an FPPE, increasing a bidder’s budget
from Bi to B′

i > Bi weakly increases revenue.

Proof. Let (α,x) be the FPPE where the budget of bid-
der i is Bi. After increasing the budget to B′

i , the solu-
tion (α,x) is still a BFPM. Therefore, by Lemma 2, the
revenue of the new FPPEweakly increases. w

Proposition 6. In an FPPE, increasing a bidder i’s value
for some good j from vij to v′ij > vij can decrease revenue.

Proof. Consider the following instance: two bidders,
two goods, v11 ! 10,v12 ! 5, v21 ! 0,v22 ! 5, with B1 !
10,B2 ! 5. The FPPE consists of α1 ! α2 ! 1, x11 ! x22 !
1,x12 ! x21 ! 0. Both bidders are spending their whole
budget, so the total revenue is 15.

However, consider v′12 ! 10 > v12. The FPPE is now
α1 ! 1

2 ,α2 ! 1,x11 ! x22 ! 1,x12 ! x21 ! 0. The bidders still
receive the same goods, but the price for the first good
dropped to 5 for a total revenue of 10 instead of 15. w

4.1.2. Social Welfare. For social welfare, monotonicity
is only maintained for goods. Adding bidders or
increasing budgets or valuations can lead to drops in
social welfare. The cause of nonmonotonicity is that
there can be a mismatch between valuation and bud-
get; a high-value but low-budget bidder can be lose
out to a low-value, high-budget bidder.

Proposition 7. In an FPPE, adding a bidder can decrease
social welfare by a factor of 12.

Proof. Consider the following instance: one bidder,
one good. We have v11 ! K for some parameter K > 2
and B1 ! 1. The FPPE is α1 ! 1

K ,x11 ! 1, and the social
welfare is K.

Now, add bidder 2 with v21 ! 2,B2 ! 1. The new
FPPE is a1 ! 2

K ,a2 ! 1, and x11 ! x21 ! 1
2. Social welfare

now is K
2 + 1

2. As K→∞, the new social welfare is half
of what it was before. w

Proposition 8. In an FPPE, adding a good weakly
increases social welfare.

Proof. Fix N, M, and an additional good j ∉M. Let
(α,x) be the FPPE for N and M and (α′,x′) the FPPE

Table 2. Overview of Monotonicity Results

Add bidder Add good Increase budget Increase value vij

Revenue difference ≥ 0 ≥ 0 ≥ 0 Can be negative
Social welfare difference Can be negative ≥ 0 Can be negative Can be negative
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for N,M⋃ { j}, and let S be the set of bidders who are
paced in (α,x) (i.e., S ! {i | αi < 1}). We will compare
the contribution to social welfare of S and N\S
separately.

First, we look at the set S. From the proof of Propo-
sition 3, adding a good weakly decreases pacing mul-
tipliers. Because bidders in S spent their entire budget
in (α,x), they must also spend their entire budget in
(α′,x′). The bang per buck of bidder i is 1

αi
because by

Definition 1, they pay αi · vij per unit of good j, and
they receive vij of value per unit of good j. Because
pacing multipliers weakly decreased, the bang per
buck of bidders in S weakly increased, and as they
spend their entire budget, their contribution to social
welfare weakly increased.

Now, we do it for the set N\S. By Proposition 3, the
total revenue weakly increased. Because the bidders
in S spend exactly the same amount as before, the
increase in revenue must have come from bidders in
N\S. Moreover, they were unpaced in (α,x) and so,
had a bang per buck of one. In (α′,x′), they have bang
per buck of at least one; hence, their contribution to
social welfare weakly increased.

Because the contribution to social welfare weakly
increased for both sets S and N\S, the total social wel-
fare weakly increased. w

Proposition 9. In an FPPE, increasing a bidder’s budget
from Bi to B′

i > Bi can decrease social welfare.

Proof. Consider the following instance (which is simi-
lar to the one in Proposition 7): two bidders, one
good. We have values v11 ! K,v21 ! 2 and budgets
B1 ! B2 ! 1. The FPPE is a1 ! 2

K , s2 ! 1,x11 ! x21 ! 1
2

with a total social welfare of K
2 + 1

2.
Now, increase bidder 2’s budget to B′

2 ! 2. The new
FPPE is a1 ! 3

K , s2 ! 1,x11 ! 1
3 ,x21 ! 2

3 with a total social
welfare of K

3 + 2
3. As K→∞, we lose 1

6 of the social
welfare. w

Proposition 10. In an FPPE, increasing a bidder i’s value
for some good j from vij to v′ij > vij can decrease social
welfare.

Proof. Consider the following instance: two bidders,
onw good. We have values v11 ! K,v21 ! 1 and budgets
B1 ! 1

2 ,B2 ! 2. The FPPE is a1 ! 1
K ,a2 ! 1 and x11 !

x21 ! 1
2, with a total social welfare of k+1

2 . Now, increase
v′21 ! 2. The new FPPE consists of a1 ! 2

K ,a2 ! 1 and
x11 ! 1

4 ,x21 ! 3
4 with a social welfare of k+3

4 . As K→∞,
we lose 1

2 of the social welfare. w

4.2. Sensitivity Analysis
We now investigate the sensitivity of FPPE to budget
changes. An overview of our results is shown in Table 3.
When adding ∆ to the budget of a bidder, revenue can
only increase and at most, by ∆. This shows that, in a
sense, an FPPE is revenue (and thus, paced welfare)

stable with respect to budget changes; the change in rev-
enue is at most the same as the change in budget. In con-
trast to this, Conitzer et al. (2021) show that in an SPPE,
the revenue can change drastically, at least by a factor of
100.

Because of the nature of multiplicative pacing, addi-
tive bounds for social welfare (such as the ones given for
revenue) do not immediately make sense.5 Therefore, we
focus on sensitivity results for a relative change in budget,
leading to a relative change in social welfare.

Our social welfare proofs rely on the fact that when
a budget changes by factor 1+∆, pacing multipliers
can only change by at most a factor 1+∆.

Lemma 5. In an FPPE, changing one bidder’s budget from
Bi to B′

i ! (1+∆)Bi for ∆ ≥ 0 yields a modified FPPE
(α′,x′) with α ≤ α′ ≤ (1+∆)α.
Proof. Fix the instance (N,M,V,B), and let (α,x) be its
FPPE. Let B′

i ! (1+∆)Bi and (α′,x′) be the FPPE for
(N,M,V,B′). Note that (α,x) is a BFPM for (N,M,
V,B′), so α ≤ α′ by Corollary 1. For the other inequal-
ity, note that ( α′

1+∆ ,x
′) forms a BFPM for the original

instance (N,M,V,B). Indeed, all prices drop by exactly
a factor 1

1+∆, which means that with the same alloca-
tion x′, the spend for all bidders goes down by a factor
1

1+∆ so that no bidder exceeds their budget. By Corol-
lary 1, the pacing multipliers α of the FPPE on
(N,M,V,B) can only be higher, yielding α ≥ α′

1+∆. Rear-
ranging yields the claim. w

To complete the proofs for social welfare, note that
in an FPPE, pacing multipliers correspond to the
bang per buck of buyers (i.e., the ratio between value
and spend), so the bound in revenue change implies a
bound in social welfare change.

Proposition 11. In an FPPE, increasing a bidder i’s budget by
∆ (i.e., B′

i ! Bi +∆) yields a revenue increase of at most ∆.

Proof. Fix the instance (N,M,V,B), and let B′ be the
budget profile where B′

i ! Bi +∆ for some bidder i. Let
(α,x) be the FPPE on (N,M,V,B), and let (α′,x′) be the
FPPE on (N,M,V,B′). Because (α,x) is a BFPM for the
new instance, we have α′ ≥ α; that is, the new pacing
multipliers are weakly higher than the old pacing
multipliers. Let S+ be the bidders for whom α′

k > αk,
and let Revold+ be the revenue from them in (α,x).

Table 3. Overview of Sensitivity Results

Maximal decrease Maximal increase

Revenue (additive) 0 ∆
Social welfare (relative) 1−∆−∆2

1+∆ 1+∆

Notes. For revenue, the number is the upper bound on change in
revenue as a result of increasing a bidder’s budget by ∆ (i.e.,
B′
i ! Bi +∆). For social welfare, the number is the upper bound on

relative change in social welfare as a result of a relative increase in
budget of 1+∆ (i.e., B′

i ! (1+∆) ·Bi).
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Because the pacing multipliers for all bidders in S+
strictly increased, they must have had αk < 1, so by
the definition of an FPPE, they must have spent their
entire budget and Revold+ ! ∑

k∈S+Bk. In the new FPPE,
they cannot spend more than their budget, so
Revnew+ ≤ ∑

k∈S+B
′
k ≤ (∑k∈S+Bk) +∆ ! Revold+ +∆.

What remains to be shown is that the revenue from
the bidders S− with α′

k ! αk cannot have gone up. If
there were any goods that S+ and S− were tied for, then
after increasing the pacing multipliers of S+, the prices
of those goods increased, and S+ won all of them. More-
over, the prices of goods that S− as a set still wins have
not changed. Thus, S− is winning a subset of the goods
they won previously at the same per-unit cost; hence,
their spend cannot have gone up. w

Along with Proposition 5, this shows that when a
bidder’s budget increases by ∆, Revnew −Revold ∈ [0,∆].
It is not difficult to see that these extremes can both be
attained. For the lower bound, increasing the budget of
a nonbudget-constrained bidder will not change the
FPPE; hence, revenue is unchanged. On the upper
bound, take one bidder, one good, v11 ! 2∆,B1 ! ∆. Set-
ting B′

1 ! Bi +∆ will increase revenue by ∆.
From Proposition 9, we know that social welfare

can decrease when we increase a bidder’s budget. The
following lemma bounds that loss. In the following,
let SWold be the social welfare prior to changing the
budget and SWnew be the social welfare after changing
the budget.

Proposition 12. In an FPPE, changing one bidder’s budget
from Bi to B′

i ! (1+∆)Bi for ∆ ≥ 0 yields SWnew ≥
1−∆−∆2

1+∆

( )
SWold.

Proof. Let i be the bidder with B′
i ! (1+∆)Bi. Let (α,x)

be the FPPE before the change, and let (α′,x′) be the
FPPE after the budget change. Let Sp be the set of bid-
ders who are paced in α′, and let S1 !N\Sp be the
unpaced bidders. We will lower bound the new reve-
nue from Sp and S1 separately.

For the bidders in Sp, they spend their entire budget in
both (α,x) and (α′,x′); we have that α ≤ α′ by Lemma 5,
and thus, bidders that are paced in α′ are also paced in
α. By the definition of FPPE, that means they spend their
entire budget. Moreover, by Lemma 5, their pacing mul-
tipliers cannot have gone up by more than 1+∆; hence,
their bang per buck is at least 1

1+∆ that in (α,x). Combin-
ing these statements, in (α′,x′), bidders in Sp spend at
least as much as in (α,x), and their bang per buck is at
least 1

1+∆ times that in (α,x); hence, their contribution to

social welfare is SWnew
k ≥ SWold

k
1+∆ for each k ∈ Sp, and there-

fore, SWnew
p ≥ SWold

p
1+∆ .

For the set S1 of bidders who are unpaced in α′,
their combined decrease in spend can be at most

∆ ·Bi; the total spend cannot have decreased by Prop-
osition 5, bidder i’s spend increased by at most ∆ ·Bi,
and the paced bidders (excluding bidder i) in α′ were
also all paced in α so their spend stayed constant.
Hence, the largest possible reduction in spend by
unpaced bidders in α′ is ∆ ·Bi ≤ ∆ · SWold. For un-
paced bidders, spend equals contribution to social
welfare, so we have SWnew

1 ≥ SWold
1 −∆ · SWold.

Combining everything, we have SWnew ! SWnew
p +

SWnew
1 ≥ SWold

p
1+∆ + SWold

1 −∆ · SWold ≥ SWold

1+∆ −∆ · SWold !
1−∆−∆2

1+∆

( )
SWold. w

Proposition 13. In an FPPE, changing one bidder’s budget
from Bi to B′

i ! (1+∆)Bi for ∆ ≥ 0 yields SWnew ≤
(1+∆)SWold.

Proof. Let i be the bidder whose budget increases from
Bi to (1+∆)Bi. Let (α,x) be the FPPE before the change
and (α′,x′) be the FPPE after the budget change. By
Lemma 5, increasing a budget can only increase pacing
multipliers. Let S+ be the set of bidders whose pacing
multiplier increased (for convenience excluding bidder
i), let S− be the set who had pacing multipliers strictly
lower than one and that did not change, and let S1 be
the set of bidders who were unpaced in (α,x). Let SWold

be the old social welfare and SWnew be the new one.
Define SWi, SW+, SW−, and SW1 as the contribution to
social welfare of bidders i, S+, S−, and S1, respectively.

We use extensively that at pacing multiplier αk, the
spend sk ! αk · SWk.

For bidder i, we have SWnew
i ≤ (1+∆)SWold

i . The
pacing multiplier of i can only have increased, so the
bang per buck can only have decreased. Spend
increased at most by (1+∆); bang per buck was at
most the same, and hence, SW cannot exceed 1+∆
more.

For bidders S+, we have SWnew
+ < SWold

+ . Their spend
cannot have increased as they spent their bud-
get completely in (α,x). Meanwhile, their bang per
buck strictly decreased because of increasing pacing
multipliers.

For bidders S−, we have SWnew
− ! SWold

− . Because they
were and are paced, they must spend their entire budget.
Because their pacing multiplier has not changed, their
bang per buck stayed the same. Thus, their contribution
to SW stayed the same.

Finally, for bidders S1, we have SWnew
1 ≤ SWold

1 . First,
note that the total spend of bidders in S−

⋃ S1 cannot
have increased; their pacing multipliers stayed the
same, so this would require them to win strictly more of
some good they were previously sharing with a bidder
not in S−

⋃ S1, but they are no longer winning any such
goods. Because we have seen that the spend of bidders
in S− stayed the same, the spend of bidders in S1 cannot
have increased. Because their bang per buck is one, their
SW cannot have increased.
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Summing over all groups, SWnew ! SWnew
i + SWnew

+ +
SWnew

− + SWnew
1 ≤ (1+∆)SWold

i + SWold
+ + SWold

− + SWold
1

≤ (1+∆) SWold. w

5. Algorithms via Convex Programming
We now turn to computing the FPPE corresponding to an
instance and adapt a well-known method for competitive
equilibria. Solutions to the Eisenberg–Gale convex program
for Fisher markets with quasilinear utilities correspond
exactly to FPPE in our setting. Cole et al. (2017) give the
following primal and dual convex programs for comput-
ing a solution to a Fishermarketwith quasilinear utilities:

max
x≥0, δ≥0,u

∑

i
Bi log (ui) − δi

(CP) ui ≤
∑

j
xijvij + δi, ∀i (1)

∑

i
xij ≤ 1, ∀j (2)

min
p≥0, β≥0

∑

j
pj −

∑

i
Bi log (βi)

∀i, pj ≥ vijβi
βi ≤ 1:

We show the primal convex program on top, which
we denote by CP, and the corresponding dual convex
program on the bottom. The variables xij denote the
amount of item j that bidder i wins. The leftover bud-
get is denoted by δi, and it arises from the dual pro-
gram; it is the dual variable for the dual constraint
βi ≤ 1, which constrains bidder i to paying at most a
cost per utility rate of 1.

The dual variables βi, pj correspond to Constraints
(1) and (2), respectively. They can be interpreted as
follows; βi is the inverse bang per buck, minj:xij>0

pj
vij for

buyer i, and pj is the price of good j.
We now show via Fenchel duality that CP computes

an FPPE. Informally, the result follows because βi
specifies a single utility rate per bidder and duality
guarantees that any item allocated to i has exactly rate
βi; thus, because CP is known to compute a competi-
tive equilibrium, we have shown that it computes an
ERCE. Theorem 2 then gives the result.

Theorem 3. An optimal solution to CP corresponds to an
FPPE with pacing multiplier αi ! βi and allocation xij and
vice versa.

Proof. We start by listing the primal Karush-Kuhn-
Tucker (KKT) conditions.

1. Bi
ui
! βi⇐⇒ ui ! Bi

βi
2. βi ≤ 1
3. βi ≤

pj
vij

4. xij,δi,βi,pj≥0
5. pj > 0⇒ ∑

ixij ! 1
6. δi > 0⇒ βi ! 1
7. xij > 0⇒ βi !

pj
vij

It is easy to see that xij is a valid allocation; CP has
the exact packing constraints. Budgets are also satis-
fied (here, we may assume ui > 0; otherwise, budgets
are satisfied because the buyer wins no goods). By
KKT conditions (1) and (7), we have that for any good
j that bidder i is allocated part of,

Bi

ui
! pj
vij

⇒ Bivijxij
ui

! pjxij :

If δi ! 0, then summing over all j gives
∑

j
pjxij ! Bi

∑
j vijxij
ui

! Bi :

This part of the budget argument is exactly the same
as for the standard Eisenberg–Gale proof (Nisan et al.
2007). Note that Constraint (1) of CP always holds
exactly because the objective is strictly increasing in
ui. Thus, δi ! 0 denotes full budget expenditure. If
δi > 0, then KKT condition (6) implies that ui ! Bi. This
gives

∑

j
pjxij + δi ! Bi

∑
j vijxij
ui

+Bi

ui
δi ! Bi :

This shows that δi > 0 denotes the leftover budget.
If bidder i is winning some of good j (xij > 0), then

KKT condition (7) implies that the price on good j is
αivij, so bidder i is paying their bid as is necessary
in a first price auction. Bidder i is also guaranteed
to be among the highest bids for good j; KKT condi-
tions (3) and (7) guarantee that αivij ! pj ≥ αi′vi′j for
all i′.

Finally, each bidder either spends their entire bud-
get or is unpaced; KKT condition (6) says that if δi > 0
(that is, some budget is leftover), then βi ! αi ! 1, so
the bidder is unpaced.

Now, we show that any FPPE satisfies the KKT con-
ditions for CP. We set βi ! αi and use the allocation x
from the FPPE. We set δi ! 0 if α < 1; otherwise, we
set it to Bi −∑

jxijvij. We set ui equal to the utility of
each bidder. KKT condition (1) is satisfied because
each bidder either gets a utility rate of one if they are
unpaced and so, ui ! Bi or their utility rate is αi so
they spend their entire budget for utility Bi=αi. KKT
condition (2) is satisfied because αi ∈ [0, 1]. KKT condi-
tion (3) is satisfied because each good bidder i wins
has price per utility αi ! pj

vij ! βi, and every other good
has a higher price per utility. KKT conditions (4) and
(5) are trivially satisfied by the definition of FPPE.
KKT condition (6) is satisfied by our solution construc-
tion. KKT condition (7) is satisfied because a bidder i
being allocated any amount of good j means that they
have a winning bid, and their bid is equal to vijαi. w

This shows that we can use CP to compute an FPPE.
Cole et al. (2017) show that CP admits rational
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equilibria, and thus, an FPPE can be computed in
polynomial time with the ellipsoid method as long as
all inputs are rational. Furthermore, the relatively sim-
ple structure of CP means that it can easily be solved
via standard convex-programming packages, such as
CVX (Grant and Boyd 2008, 2014), or scalable first-
order methods.

Borgs et al. (2007) also gave a convex program.
However, that convex program is a set of feasibility
constraints (in fact, those constraints correspond to
the KKT conditions of CP). Because of this, their con-
vex program cannot easily be solved via first-order
methods, which are suitable for very large-scale prob-
lems. Similarly, online convex optimization can poten-
tially be applied to CP (or its dual) for solving online
variants of FPPE, whereas one cannot do this for the
convex program of Borgs et al. (2007). See, for exam-
ple, Gao and Kroer (2020, 2021) for recent work that
builds on our results in this direction.

The equivalence between solutions to CP and FPPE
provides an alternative view on many of our results.
Because Theorem 3 can be shown directly via Fenchel
duality, it allows us to prove via duality theory that
FPPE corresponds to ERCE and that FPPE always
exists.6

6. Experiments
In previous sections, we have shown that FPPEs have
many satisfying theoretical properties, such as guaran-
teed existence, uniqueness, and polynomial time com-
putability. However, the empirical question remains. If
participating in a single first price auction has such bad
properties that the industry shifted away from them in
the past, does that assessment change when the auc-
tions are within a budget management system? Addi-
tionally, although FPPE have nice properties compared
with SPPE, how do the equilibria for first price auc-
tions compare with those for second price auctions for
typical objectives like social welfare and for typical
instances? We investigated the properties of FPPE via
numerical simulations7 on realistic instances generated
from data collected at Facebook and Instagram. We
aimed to answer two concrete questions. (1) Under
FPPE, how high is bidder regret for reporting truth-
fully? (2) How does FPPE compare with SPPE in terms
of revenue and social welfare?

6.1. Data
Similarly to instances generated by Conitzer et al.
(2021), we construct realistic instances from real-
world auction markets in two steps. We first take bid-
ding data for a region during a period and use it to
create n bidders and m goods. To get the n bidders,
we identify the top n advertisers that participate in

the most auctions in that period in that region. Each of
those advertisers will map to a buyer in the final
instance. As an intermediate step, we define the goods
in the instance as the real-life auctions that include at
least one of the n bidders. In this intermediate step,
we set the bid in each bidders-auction pair to be the
value of the bidder for the corresponding good.8 In a
second step and to complete the construction, we
reduce the size of the market so we can compute results
more efficiently and thoroughly answer the questions
of interest. To achieve that, we cluster the real-world
auctions (the goods of the intermediate step) into a
smaller number of goods. We apply the k-means algo-
rithm using the n-dimensional vector of values for that
good as features. The goods in the final instances are
the resulting auction clusters. Each bidder valuation for
a (cluster-level) good is set to the average of their valua-
tions for goods in the cluster. To generate the budgets,
we set it equal to the expected value that the bidder
would receive in a uniform random allocation of goods
to bidders (i.e., Bi ! 1

n
∑

jvij). The motivation for this is
that it leads to a good mixture of budget-constrained
and unconstrained bidders because in aggregate, this
constrains the sum of prices to be the sum of average
valuations, whereas it would be the sum of maxi-
mum valuations if every buyer was unconstrained.
The distribution of budget-constrained and uncon-
strained bidders is also similar to that of Conitzer
et al. (2021), despite a slightly different process for
setting budgets.9

We collected bidding data from Facebook and Insta-
gram for 7 days for auctions in a chosen country. For each
day and each of those two platforms, we collect the bids
of the top n advertisers (where n ∈ {6, 8, 10, 12, 14}) with
the most impressions that day. We consider m ∈
{10, 20, 30} goods where each good is a representative
cluster of auctions. In the end, each combination of plat-
form, day, number of bidders, and number of goods
becomes an instance of our study, resulting in a total of
2 × 7 × 5 × 3 ! 210 instances. To compare with SPPE, we
take the same data and consider a set of instances with
{3, : : : , 8} bidders and {4, : : : , 8} goods for a total of 2 ×
7 × 6 × 5 ! 420 instances. The SPPE instances are smaller
because equilibria are harder to compute.

Although we present our results on moderate-sized
instances, we also performed some tests on larger
synthetic data to verify that CP can indeed be solved
efficiently. For these tests, we used the Mosek interior-
point method (Dahl and Andersen 2021). We found
that for uniform random valuations, instances with
4,000 buyers and 4,000 items can be solved in about 12
minutes, and run time scaled approximately linearly
with the size of the valuation matrix. In addition to
these encouraging experiments via conic solvers, it
was recently shown that CP can be solved using first-
order methods (Gao and Kroer 2020), which should
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enable further scalability, at the cost of slightly more
inaccurate solutions.

6.2. Incentive Properties
We start by numerically analyzing the incentive prop-
erties of FPPE. Our analysis will focus on two types of
incentives: first, ex post incentives to shade bids
because of the first price auction rule, when other
buyer’s bids are held constant, and second, ex ante
incentives to misreport in order to shift the FPPE out-
come itself when viewed as a mechanism. For both
types of incentives, we will focus on the proxy-bidder
setting, where advertisers typically report a value per
conversion and budget, whereas the valuation for
individual auctions is determined by the platform as
the value per conversion times the conversion rate.
Thus, the space of possible misreports is substantially
reduced; buyers can misreport their overall value per
conversion and/or their budget (as opposed to indi-
vidually shading or misreporting in each auction).

6.2.1. Analysis of Regret. First, we look at the ex post
regret that each bidder has in FPPE as compared with
being able to unilaterally deviate to a different pacing
multiplier while keeping the FPPE multipliers fixed
for all other bidders. The regrets resulting from our
computational study are shown in Figure 2. The figure
shows summary statistics over relative ex post regret,
which is the fraction of utility for the best-response
pacing multiplier that is lost if the bidder reports
truthfully. Each data point represents the relative
regret that one of the bidders experienced in the FPPE
of each instance; we generate a data point for each
bidder in the instance. The middle line in each box
(which is at 0.00 for all breakdowns) is the median;
the lower and upper edges of the boxes represent the
first and third quartiles, respectively. The lines extend-
ing from the box show the rest of the distribution

except for outliers that are determined by a function of
the interquartile range, and the dots represent individ-
ual outliers outside that range.

The results show that across all breakdowns of
number of bidders and number of goods, the relative
regret is small. In all cases, the median is at 0% rela-
tive regret, and the highest upper quartile represents
less than 2% relative regret; therefore, bidders across
the board do almost as well in FPPE as they would if
they could optimally pick their pacing multiplier
(given fixed competition). We do see that the benefit
to deviating increases somewhat with the number of
goods (instances with 10 goods show consistently
lower regret than instances with 20 or 30 goods),
whereas there does not seem to be a strong depen-
dence on the number of bidders.

To put the previous analysis in perspective, Appen-
dix A presents results for an unrealistic model where
bidders can optimally set their paced bids for each
individual auction independently.10 Even under these
conditions, across all breakdowns, 75% of bidders expe-
rience less than 30% relative regret, and as the number
of bidders grows (compared with the number of
goods), the majority of bidders in instances have 0%
relative regret.

6.2.2. Misreporting to Influence Equilibria. After pro-
viding evidence that bidders have low ex post regret
if they had chosen the best pacing multiplier while
keeping the competition fixed, we look at whether
bidders can influence the FPPE outcome itself by
submitting conveniently chosen (but potentially wrong)
parameters to the FPPE mechanism. We assume that a
focal bidder can misreport by scaling the valuations and
budget by scalars chosen from the set {0:1,0:2,: : : ,1:1}2.
In other words, the bidder would select a tuple (λv,λb)
and submit the true valuations multiplied by λv and the
true budget multiplied by λb. Note that the bidder does

Figure 2. (Color online) Summary Statistics of Relative Ex Post Regret in FPPE (Ratio of Best-Response Utility Keeping Com-
petitors’ Bids Fixed to Utility Under the FPPE)

Note. The plot on the right is a zoomed-in version of the plot on the left.
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not have the ability to scale values differently for differ-
ent auctions (but see Appendix A for an analysis of that
case). All other bidders’ bids and budgets remain
unchanged. Figure 3 shows the relative regret with
respect to the highest utility at an FPPE amongst the
possible ways to misreport. In almost all cases, there is
no or negligible gain. We note also that the incentive
to misreport is even lower than the incentive for ex
post shading discussed in the previous section (of the
order of 0.001 versus of the order of 0.01 relative
regret). This is likely because, in most cases, the ideal
ex post shading for a single buyer leads to budget
infeasibility for other buyers, which in turn, makes
that outcome infeasible.

6.2.3. Regret as a Function of the Tightness of Budget
Constraints. Although the majority of bidders in these
experiments have surprisingly low regret under FPPE,
there are some outliers that have high relative regret.
To investigate where this variability comes from, we
look at the regret that a bidder experiences as a func-
tion of their pacing multiplier at equilibrium. Intui-
tively, a bidder who has a low pacing multiplier gets a
high bang per buck for each impression they buy. This
implies that underbidding loses value faster than it
saves cost, whereas a bidder with a pacing multiplier
equal to one does not get any utility in each auction
won. Our computations indicate that bidder budgets,
pacing multipliers, and regrets all have a positive
association.

Figure 4 plots regrets for these instances as a func-
tion of the pacing multiplier, where each point repre-
sents a bidder of a pacing instance. The left panel is a
scatterplot of the relative regret defined as the fraction
of utility that a bidder loses in the FPPE compared
with the best-response pacing multiplier. Because the
regret for the majority of data points is approximately
zero, we also plot a curve corresponding to a locally
weighted scatterplot smoothing (LOWESS) regression

to capture the “typical” behavior.11 The typical rela-
tive regret increases when the pacing multiplier
increases because of the smaller relative frequency of
points with no regret and a noticeable mass of points
located at (1, 1). At first glance, this implies that when
the pacing multiplier exceeds 0.4, the typical regret
grows linearly from 0 to about 0.1. The points at (1, 1)
represent unpaced bidders that receive no utility in
the FPPE; although there is no numerical error in the
calculation, relative regrets do not fully depict the sit-
uation. For example, if a bidder gets impressions they
value at $100 and pays $100 in the FPPE, although a
best-response pacing multiplier may make them pay
$98 to get $99 worth of impressions, their relative
regret is one, but in absolute terms, the outcomes are
very similar. Consequently, we complement the anal-
ysis with an absolute notion of regret that captures the
utility gained under a best response. To more easily
compare bidders against each other, we normalize the
utility gained by the total value of goods received for
the best-response pacing multiplier. The results are
displayed in the right panel of Figure 4. The point at
(1, 1) has disappeared, and the best-fit line for bidders
with a pacing multiplier equal to one shows a regret
down to roughly 1.5%. From the distribution of
instances (the black dots), it can also be seen that small
pacing multipliers are more common. So, although
positive deviations do exist, on average the benefit is
small.

6.3. Revenue and Social Welfare
We now compare revenue and social welfare under
FPPE and SPPE, as shown in Figure 5. The left panel
shows the cumulative distribution function (cdf) of
the ratio of FPPE revenue to that of SPPE. The right
panel is similar but with social welfare. We see that
FPPE revenue is always higher than SPPE revenue,
although both coincide for about 30% of instances,
and almost never more than 4.5 times as high. For

Figure 3. (Color online) Summary Statistics When Bidders CanMisreport Their Value per Conversion or Budget to Manipulate
the FPPE

Note. The plot on the right is a zoomed-in version of the plot on the left.
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social welfare, we find that, perhaps surprisingly, nei-
ther solution concept is dominating, with most instan-
ces having relatively similar social welfare under
either solution concept, although FPPE does slightly
better. There are two caveats to keep in mind for these
results. (a) We did not compute the social welfare-
maximizing SPPE, so it is possible that there is a bet-
ter one (although this is highly unlikely given that
Conitzer et al. (2021) find that most instances admit a
single equilibrium). (b) Many bidders are budget con-
strained in the FPPE of our setting, and so, these
insights might not translate to cases where many bid-
ders are not budget constrained (see Appendix B.2 for
statistics on multipliers in the two solution concepts).
These experiments show that an FPPE is not necessar-
ily worse than an SPPE with respect to social welfare
(at least with nonstrategic bidders) while potentially
having a significantly higher revenue.

6.4. Robustness
In order to test the robustness of our results, we ran
the same set of experiments on synthetic data (see

Appendix B for details). Qualitatively, the results
on instances with values drawn from a unif(0, 1) dis-
tribution are similar, although regret tends to be
higher in the synthetic data sets. One hypothesis is
that values in the realistic data are correlated (for
example, because certain users are overall more likely
to interact with ads), and this results in stronger com-
petition for high-value auctions.

7. Discussion of Modeling Assumptions
Our model captures several salient features present in
contemporary real-world internet advertising sys-
tems; budget management is done via a multiplicative
scalar after buyers report a value per conversion and a
budget. Because of the deterministic valuations, we
can allow general valuation structures as opposed to
independent and/or identical stochastic valuations.
That said, there are also a number of practical issues
that we do not capture. We discuss these limitations
as well as potential ideas on how to relate them to our
model.

Figure 4. (Color online) Regret as a Function of the FPPE PacingMultiplier

Notes. Each point represents the regret of an individual bidder; the curve summarizes the points using an LOWESS regression. The left and right
panels display relative and absolute regret, respectively.

Figure 5. (Color online) Summary Statistics over the FPPE/SPPE Ratio of Revenue (Left Panel) and SocialWelfare (Right Panel)
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7.1. Stochastic Valuations
In line with the information available by the setting
explored here, our model assumes that all valuations
are known ahead of time, and consequently, we have
a completely determined market. The literature gener-
ally considers models in which user types are realized
according to some sort of stochastic process, and each
buyer’s valuation is sampled according to a distribu-
tion that depends on the user type. Other authors
have modeled the buyer’s valuations as being drawn
independently each time a user arrives (Balseiro et al.
2015, 2021; Balseiro and Gur 2019). Although such
models address the stochastic aspects of the process,
they fail to capture correlations. Conversely, our
model does capture the correlation but fails to capture
the stochastic aspect. In practice, we would ideally
want a model that captures both, but such models are
more cumbersome to analyze. Nonetheless, our model
can be viewed as a discrete approximation to this kind
of process.

7.2. Dynamics
In practice, platforms would typically have a model of
what will occur; they know which advertisers are
active in the system, their stated budgets, and values
per conversion as well as the distribution of users.
However, the platform does not know a priori which
subset of users will actually arrive on a given day and
thus, will not know which exact auctions will materi-
alize. Instead, these auctions materialize sequentially
as the day unfolds and users visit the platform. In
practice, this uncertainty is handled by a control algo-
rithm that tunes the pacing multiplier to the right
spending rate with the goal of exhausting the budget
at the end of the planning horizon. Although we do
not model these dynamics, our model can be related
to dynamic markets in several ways. First, our model
captures the ideal outcome; when each proxy bidder
operates an independent control process on a pacing
multiplier, the hope is that these pacing multipliers
stabilize in a steady state. Our model describes what
that steady state should be. Second, in practice, the
platform would be able to create a good model of the
overall composition of the market. Our computational
results can be used to compute static pacing multi-
pliers on such a market model. These static pacing
multipliers can be used directly in the dynamic mar-
ket. They can also be used to seed the control algo-
rithm, which further refines the pacing multiplier as
the market progresses. Third, showing that pacing
equilibria are directly connected to the EG convex pro-
gram opens the door to applying online convex optimi-
zation techniques for converging to FPPE in an online
fashion. Although the exact details of how to achieve
this are beyond the scope of this paper, we believe that it
could be achieved using the online variant of regularized

stochastic dual averaging (Xiao 2010). In recent follow-
up work to our paper, Gao and Kroer (2021, theorem 7)
showed how to do this in a related Fisher market model.

7.3. Multiple Slots
In practice, each auction may allocate more than a
single item. Typically, a visit of a user triggers a multi-
item auction (for example, several ad slots are auc-
tioned off simultaneously both for Facebook and
Instagram feed ads and for Google search auctions).
Similarly to other authors, we abstract away this
aspect of the problem and assume that each item can
be sold in isolation (Balseiro et al. 2015, 2021; Balseiro
and Gur 2019; Conitzer et al. 2021). Modeling multiple
slots would require substantial changes in the analysis
of the auction mechanism, and it would be harder to
leverage the relationship to market equilibria.

8. Conclusion
In an advertiser platform, we must continually
remember that the auction is only a small piece of a
larger, complex system; when setting auction rules, it
is not just the properties of the auction that matter but
the platform’s ensuing aggregate behavior. In the case
of feed-based advertising platforms, advertisers com-
monly control their campaigns through targeting cri-
teria and budgets, with no ability to directly control
individual auctions. This substantially changes the
advertising platform’s system design problem com-
pared with other settings. In this paper, we have seen
that the steady-state properties of a pacing-based bud-
get management system for such scenarios are in fact
quite good when a first price auction is used to sell
each impression. We have showed that first price
auctions enjoy several properties that second price
auctions do not: uniqueness, monotonicity, and com-
putability among others. At the same time, SPPE
enjoys other advantages, such as no static shading
incentives (although our experiments on real ad auc-
tion data suggest that this may not be a major concern
in FPPE either).

In retrospect, the benefits of using a first price auc-
tion are not surprising. In simple settings, second
price auctions win most theoretical head-to-head con-
tests over first price auctions; however, it is well
known that the luster of the second price auction
fades as it is generalized to a VCG auction, so much
that VCG earned the title “lovely but lonely” for its
lack of use in practice (Ausubel and Milgrom 2006).
Indeed, some of the strengths of an advertising plat-
form based on first price auctions are analogous to
those seen in other complex auction settings (Milgrom
2004)—uniqueness of equilibria, relation to competi-
tive equilibria, core membership, shill proofness, false
name proofness, etc.—suggesting that first price auctions
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may, in fact, have a serious role to play in today’s adver-
tising platforms.

Taking a broader perspective, we recognize that
there is generally no one-size-fits-all answer to the
design of a budget management system because no
class of systems strictly dominates the others, and
trade-offs remain. This is readily evidenced by the fact
that different large platforms have adopted different
solutions in terms of both which budget smoothing
method to adopt and which auction format to run.
Many factors will be weighed by any real-world sys-
tem. For example, comparing multiplicative pacing
systems with throttling systems, the former might be
appealing because they encapsulate bidders’ natural
incentive to shade their bids, whereas the latter makes
it easier for bidders to get a somewhat more represen-
tative sample of available impressions. Similarly, we
see different solutions in use in the real world
between first price and second price mechanisms.
What we have done in this paper is to put forward a
framework where the two auction formats can be
compared from an end-to-end perspective that cap-
tures several design choices of real-world advertising
platforms.
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Appendix A. Supplemental Experiments on
Realistic Instances

In addition to the regret analysis in the body of the paper
(which is with respect to the ex post best pacing multiplier
given a fixed competition), in this section we also consider a
much stronger model of deviations where bidders can opti-
mally place individual bids in auctions corresponding to each
good. This allows us to put the regret analysis discussed in

the body of the paper in perspective compared with what
can be considered as an upper bound on regret. Recall that
the platform computes the effective bid as conversion rate ×
value per conversion × pacing multiplier for the bidder-
good pair. Although in practice, the advertiser only sets the
value per conversion, in this section we assume that bidders
can choose the optimal bid by influencing the platform’s
conversion rate estimates for the bidder-good pair. Conse-
quently, the bidder can effectively control the individual bid
placed in each of the auctions.
The resulting relative regret is shown in Figure A.1. As in

the body, the middle line in each box represents the median;
the lower and upper ends of the box show the first and third
quartiles, respectively; the lines extending from the box show
outliers within 1.5 times the interquartile range; and the dots
represent individual outliers outside that range. For all parame-
ter settings (number of bidders and number of goods), 75% of
bidders in all instances have less than 30% relative regret. Con-
sidering how much control bidders have on the deviations in
this analysis, it is rather surprising that in virtually all instances,
the FPPE outcome yields more than 70% of the optimal utility
achievable. Moreover, we can see that the distribution of regret
(in particular, the three quartiles) gets smaller as the competi-
tion in the market increases (e.g., when the number of goods
decreases or the number of bidders increases). For 12 or more
advertisers and 10 users, the median regret is zero, indicating
that more than half of all the buyers get their optimal utility in
the equilibrium.

Appendix B. Supplemental Experiments on
Synthetic Instances

In the body of the paper, we have shown that based on realistic
data, advertisers have low regret in FPPE compared with alter-
native inputs or pacing multipliers and that FPPE generates
more revenue than SPPE, with roughly similar welfare. To
understand whether these results are specific to the data that
we used or if these results continue to hold for very different
data, we repeat the analysis on synthetic data where bidders
have valuations drawn from a uniform distribution. Because
realistic data may have correlated valuations and valuation dis-
tributions with a long tail, these synthetic data represent a sig-
nificant departure from realistic data. Although the data are
quite different, this is a robustness check where we find qualita-
tively similar insights, as described.

Figure A.1. (Color online) The Relative Regret of Advertisers
in Compared with a Hypothetical Ability to Directly Control
Bids in Each Individual Auction

Conitzer et al.: Pacing Equilibrium in First Price Auction Markets
8532 Management Science, 2022, vol. 68, no. 12, pp. 8515–8535, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

09
.2

.2
29

.9
2]

 o
n 

18
 A

ug
us

t 2
02

3,
 a

t 1
1:

47
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



We generated instances according to the complete-graph
model of Conitzer et al. (2021). In this model, every bidder is
interested in every good, and each valuation is drawn indepen-
dently from unif(0, 1). We generated five instances for each
point in the Cartesian product of {2,4, 6, 8} bidders and
{4, 6, : : : , 14} goods. For each instance, we computed (a) an
FPPE as the solution to CP using the solver CVX (Grant and
Boyd 2014) and (b) an SPPE for every objective function using
the mixed-integer program (MIP) given by Conitzer et al.
(2021). We considered at most eight bidders and 14 goods
because of the limited scalability of theSPPEMIP;wewere able
to solve allCP instances in less than 2ms.

B.1. Incentive Properties
B.1.1. Analysis of Regret. Similarly to what we have
done for the realistic instances, first we look at the ex post
regret of each bidder under an FPPE compared with being
able to unilaterally deviate while keeping the FPPE multi-
pliers fixed for all other bidders. We consider two sets of
deviations: jointly setting bids through a best-response pac-
ing multiplier and the more powerful model of individually
setting bids in each auction.

The resulting relative regrets are shown in Figure B.1. The
figure shows summary statistics over the maximum relative ex
post regret, which is the fraction of the truthful-response value

that the bidder improves by if they deviate. For each instance,
for each bidder, we compute the optimal best response, subject
to budget constraints. The max is over bidders in the auction,
and the statistic is across instances. The middle line on each
box is the median; the lower and upper hinges show the first
and third quartiles, respectively. The line extending from the
box shows outliers within 1.5 times the interquartile range.
Compared with the results on realistic data, the regret experi-

enced by bidders is higher, but qualitatively, we see similar
effects; the regret decreases when market density increases. In
particular for 6, 8, and 10 bidders, the median regret for alterna-
tive multipliers is zero. Strikingly, the max relative regret under
the model where bidders can set individuals bids does very
poorly for two and four bidder instances. This is likely because
the expected difference between the first- and second-order sta-
tistics of n draws from a uniform distribution (which shrinks as
O
(1
n
)
), which is the difference between the highest and second

highest bids.

B.1.2. Misreporting to Influence Equilibria. Figure B.2
shows the resulting regrets when a single bidder can misre-
port by scaling the valuations and budgets with factors
(λv,λb) ∈ [0:1, 0:2, : : : , 1:1]2, so the inputs provided to the
proxy bidder are the true figures times those scalars. Similar

Figure B.1. Summary Statistics over the Maximum Relative Ex Post Regret (Maximum Taken over Bidders in a Given Auction;
the Statistic Taken over the Maximum Regret Across Instances)
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Notes. (Left panel) The bidder can choose a single alternative pacing multiplier. (Right panel) The bidder can choose an individual bid for every
auction.

Figure B.2. Summary Statistics When a Bidder CanMisre-
port Their Values and Budget to Influence the FPPE
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Figure B.3. (Color online) Relative Regret as a Function of
the FPPE Pacing Multiplier Run on Instances with Budgets
Scaled by a Factor of Two
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to the realistic instances, the regret is generally lower than
for alternative pacing multipliers.

B.1.3. Regret as a Function of the Tightness of Budget
Constraints.We consider the effect of the pacing multiplier
on regret. To generate instances with larger pacing multi-
pliers, we compute FPPE on a modified set of problem
instances, which are identical to instances in the preceding
experiments, except that all budgets were scaled up by a
factor of two. We show the relative regret for these instances
in Figure B.3. Each point represents a bidder in one of the
instances. The uptick in regret is slightly higher than for
realistic data, although qualitatively similar.

B.2. Revenue and Welfare
In this section, we compare revenue and social welfare under
FPPE and SPPE on an instance by instance basis. The compar-
ison is shown in Figure B.4. The left panel shows the cdf of the
distribution of ratios of FPPE and SPPE revenues, whereas the
right panel does the same for the ratios of welfare. Putting in
perspective the curves corresponding to realistic instances
shown in Figure 5, we see that FPPE revenue is now the same
for about 75% of instances (compared with 30% before) and
almost never more than 1.5 times as high (compared with 4.5
times before). For welfare, we observe that the cdf of the ratio
between FPPE and SPPE looks exactly the same compared
with the realistic instances, albeit the x axes representing the
ratios are at a different scale.

Endnotes
1 Remnant inventory in display comprised ad opportunities that were
not otherwise sold by a salesperson through a guaranteed contract.
2 Specifying the bid is available as an advanced feature offered for
certain types of campaigns. We refer the reader to Facebook ad
product documentation, which includes a list of campaign types in
a table where it can be seen in the second column that most of the
campaign types are autobid. See https://www.facebook.com/
business/m/one-sheeters/facebook-bid-strategy-guide.
3 In Mehta et al. (2007) and most other related papers, bidder selec-
tion is performed by using a “scaling parameter” for bids based on
remaining budgets, but after the winner of an auction is selected,
she pays her entire (unscaled) bid for the impression. In contrast, in
our work, the individual bids are scaled using the respective pacing
multipliers, and the winner pays the scaled bid instead of her

original bid for the impression. Another difference is that in the
budgeted allocation literature, the scaling multiplier changes from
one impression to the next because it is only a tool for winner selec-
tion, whereas we choose a single pacing multiplier for a bidder that
is used to scale her bids for all the impressions in the problem
instance.
4 More precisely, pacing multipliers are unique, but there may be
different equivalent allocations because of tie breaking. Tie breaking
does not impact revenue, social welfare, or individual utilities.
5 To see why, take any instance (N,M,V,B) with budget-constrained
bidders and compare it with an instance (N,M, 2V,B) where the
valuations are multiplied by two. Changing a budget will yield the
same allocation for both instances (and pacing multipliers are pre-
cisely a factor of two off), but the change in social welfare will be
twice as large in the second instance.
6 CP is easily seen to always be feasible, and the feasible set is com-
pact. Thus, CP always attains an optimal solution. By Theorem 3,
that solution will be an FPPE.
7 There is a public notebook on synthetic data for these experiments
available on GitHub at https://github.com/facebookresearch/FPPE.
8 The campaigns used in this study were themselves frequently bud-
get paced. In the logs, we have both the original bid and the pacing
multiplier that were used. We use the original bid in this step.
9 Scaling budgets might yield different results. When, for example,
we scale budgets up by a factor of two, the fraction of budget-
constrained buyers changes, and the quantitative results change as
a result. We refer the reader to the publicly available notebook men-
tioned earlier to try out different budget levels in the synthetic
experiments and explore the effects.
10 This deviation model is unrealistic in ad markets because a bid-
der would have to change the platform’s estimated conversion rate
for each user in such a way that it leads precisely to the right paced
bid for each auction. The reason we consider deviations of this kind
is to show that even under unreasonably powerful assumptions of
what a bidder can do, the relative regret is still low.
11 The LOWESS regression is a nonparametric method that is fre-
quently used for data analysis (Cleveland 1979). For instance, it is the
default way to run a regression with smoothed data in R using the
function GEOM_SMOOTH. At each point, it fits a local low-degree polyno-
mial, where the input data are weighted by distance to that point.
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