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ABSTRACT1 
Predicting the fracture behavior of macroscale components 

containing microscopic porosity relies on multiscale damage 
models which typically ignore the manufacturing-induced 
spatial variabilities in porosity. This simplification is made due 
to the prohibitive computational costs associated with explicitly 
modeling spatially varying microstructures in a macroscopic 
component. To address this challenge, we propose a data-driven 
framework that integrates a mechanistic reduced-order model 
(ROM) with a calibration scheme based on latent map Gaussian 
processes (LMGPs). Our ROM drastically accelerates direct 
numerical simulations (DNS) by using a stabilized damage 
algorithm and systematically reducing the degrees of freedom 
via clustering. Since clustering affects local strain fields and 
hence the fracture response, we construct a multi-fidelity LMGP 
to inversely estimate the damage parameters of an ROM as a 
function of microstructure and clustering level such that the 
ROM faithfully surrogates DNS. We demonstrate the application 
of our framework in predicting the damage behavior of a 
multiscale metallic component with spatially varying porosity.  

Keywords: multiscale damage analysis, data-driven 
calibration, reduced-order model, Gaussian processes, spatially 
varying microstructures. 

1. INTRODUCTION
Predicting the effect of manufacturing-induced microscopic 

defects on the performance of macroscopic components relies on 
multiscale simulations where a microstructure or a representative 
volume element (RVE) is associated with each integration point 
(IP) of the discretized macrostructure. Traditional multiscale 
simulations use the finite element method (FEM) at both 
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macroscale and microscale where macroscopic deformation 
gradients 𝐅M and RVE effective stress 𝛔FEM

M  are exchanged
between scales at each iteration, see Figure 1(a). A major 
challenge associated with such nested simulations is the 
computational expenses which prohibitively increase in the 
presence of nonlinear microscale deformations that involve 
damage. Reducing these costs holds the key to understanding the 
relation between microscopic defects and components’ fracture 
behavior and, in turn, guiding the “design for fracture” process. 
To this end, we propose a data-driven framework that has two 
major components: (1) a mechanistic reduced-order model 
(ROM) with an adjustable degree of fidelity, and (2) a multi-
fidelity modeling and calibration scheme based on latent map 
Gaussian processes (LMGPs). Integration of these two 
components enables us to build calibrated multi-fidelity ROMs 
that can simulate the damage behavior of multiscale materials 
with spatially varying microstructures.  

The rest of the paper is organized as follows. In Section 2, 
we review existing works on reduced-order modeling and 
discuss the research gaps that we aim to address. The overview 
and technical details of our approach are provided in Sections 3 
and 4, respectively. We evaluate the performance of our approach 
in Section 5 and conclude the paper in Section 6.  

2. BACKGROUND ON REDUCED-ORDER MODELING
Mechanistic ROMs are increasingly employed to accelerate 

nonlinear material modeling by using a combination of methods 
from linear algebra and machine learning that result in reducing 
the number of unknown variables that characterize, e.g., 
microstructural strain and stress fields. Transformation field 
analysis (TFA) and its successor nonuniform transformation 
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field analysis (NTFA) are two of the earliest ROMs [1–3]. These 
two methods approximate plastic strain as either piecewise 
constants or spatially varying orthonormal eigenstrains which 
are pre-selected in an offline stage. These eigenstrains evolve in 
the online stage based on pre-defined analytical functions that 
involve thermodynamic forces and potentials.  

Clustering-based ROMs are recent techniques that 
decompose microstructure domains into a set of clusters whose 
interactions and deformations are modeled. For instance, the 
clusters in the self-consistent analysis (SCA) [4] method group 
material points with similar elastic responses and then quantifies 
cluster-to-cluster interactions by incremental Lippmann-
Schwinger equation. Finite element-based cluster analysis [5] 
approximates the microstructural effective responses by 
following the cluster minimum complementary energy principle. 
Deflated clustering analysis (DCA) [6] agglomerates close-by 
IPs in clusters and the cluster-wise quantities of interests are 
computed in a multi-grid fashion where unknown variables are 
projected back and forth between different meshes. In this work, 
we use cluster-based ROMs as they provide higher efficiency 
compared to other methods such as TFA.  

Successful application of any ROM depends on two primary 
factors: (i) the coarsening degree (e.g., the chosen number of 
clusters) which makes a tradeoff between fidelity level and 
computational costs, and (ii) the calibrated material properties. 
Both of these factors depend on the microstructure as well as the 
properties of interests. For example, accurate prediction of the 
damage behavior requires different damage parameters and the 
number of clusters for the two microstructures in Figure 1(a). In 
particular, given a desired level of accuracy with respect to high-
fidelity direct numerical simulations (DNS), the analysis of the 
more complex microstructure in Figure 1(a) requires more 
clusters (i.e., less coarsening or data reduction). 

Regarding calibration, we note that clustering material 
points diffuse stress/strain fields compared to DNS. This 
diffusion depends on the topology and unrealistically increases 

the tolerance of the material microstructure to localized 
phenomena such as damage. Hence, the material properties that 
characterize damage should be calibrated to counteract the 
superficial increase in material strength upon clustering. This 
reduction typically depends on the microstructure topology.  

In this paper, we develop a data-driven framework to 
automate the process of selecting the degree of clustering (i.e., 
fidelity level) and calibration of ROMs.  

3. OVERVIEW OF THE PROPOSED FRAMEWORK
Our framework relies on two primary components for 

damage modeling in multiscale metals with porosity: a novel 
cluster-based ROM and LMGP-based calibration which are 
detailed in Sections 4.4 and 4.3, respectively.  

The ROM surrogates DNS and estimates the stress field in 
a microstructure under arbitrary displacement boundary 
conditions that may result in plasticity and damage. The fidelity 
of the ROM is determined by the user-defined parameter 𝑘 which 
indicates the number of clusters and balances costs and accuracy. 

As argued in Section 2, the material properties that must be 
used in ROM should be different than the true values that are 
used in DNS, i.e., the ROM requires calibration. This difference 
depends on both the microstructure complexity and, more 
importantly, 𝑘. Hence, we use a data-driven approach that relies 
on emulation via an LMGP to calibrate the material properties 
for ROMs. In particular, the trained LMGP enables answering 
the following question: Given 𝑘 and one microstructure, what 
damage parameters should be used in the ROM such that it 
predicts the same fracture response as DNS which uses the true 
damage parameters? As explained below, answering this 
question relies on solving an inverse optimization problem 
whose objective function relies on LMGP, see Figure 1. 

In practice, the above question is answered under two mild 
assumptions. Firstly, a small set of integer values are considered 
for 𝑘. In this work, we assume 𝑘 = 800, 1600, or 3200 but more 
values can be used within our framework. As shown in Section 

Figure 1 Proposed data-driven framework for multiscale damage modeling: LMGP creates a multi-fidelity emulator for the ROMs and 
DNS. It is then used in an inverse optimization to determine the damage parameters that must be used in ROMs such that they can approximate 
DNS as closely as possible. Upon this calibration, a multiscale simulation is run where ROMs are used at the microscale.  
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4.3, all these values are much smaller than the number of 
elements in a typical mesh and hence result in massive data 
reduction or coarsening. Secondly, the very high dimensional 
morphology of microstructures is represented with a reduced set 
of quantitative descriptors that in our case characterize the 
geometry and spatial distribution of the pores.  

We generate the samples for training the LMGP by design 
of experiments (DoE) where the inputs are microstructural 
descriptors and calibration parameters that control the damage 
behavior. For sample 𝑖, we first use a reconstruction algorithm to 
build the microstructure corresponding to the 𝑖𝑡ℎ set of
descriptors. Then, we calculate the fracture response of the 𝑖𝑡ℎ

microstructure (via DNS or one of the ROMs) while using the 
𝑖𝑡ℎ set of damage parameters. We choose the frequency of using
a simulator based on its costs, i.e., we employ an ROM with 
small 𝑘 much more than DNS or an ROM with large 𝑘. 

It is noted that the optimization problem uses LMGP rather 
than a traditional Gaussian process (GP) since we view the data 
source indicator as a categorical input rather than a quantitative 
one, see Figure 1(c). This choice is justified since alternating the 
data source (e.g., DNS vs. ROM with 𝑘 = 800 vs. ROM with 
𝑘 = 3200) encodes the diffusive nature of strain-stress fields 
which cannot be readily characterized with quantitative inputs. 
Hence, our treatment of data source motivates the use of LMGP 
and greatly simplifies the metamodeling task as it eliminates the 
manual conversion of the source label to a quantitative variable.  

Once LMGP is built, we are ready to run a multiscale 
simulation where ROMs are used at the microscale instead of 
DNS, see Figure 1(d). We first assign spatially varying 
microstructures to the IPs of the macro-component. Then, based 
on the complexity of the microstructures and any prior 
knowledge (if available) on the macro-locations where excessive 
deformations can occur (e.g., near sharp corners), we choose the 
𝑘 values for ROM. Next, we use the trained LMGP to assign the 
damage parameters that must be used at 𝑖𝑡ℎ macro IP given the
𝑘 and microstructure assigned to it. Upon this assignment, we 
conduct the multiscale simulation to find the performance of the 
macro-component while considering microstructural porosities.  

4. TECHNICAL DETAILS
We first provide the details on our ROM and how it can be 

used for damage modeling in Sections 4.1 through 4.3. Then, we 
elaborate on the training process of LMGPs in Section 4.4.  

4.1. Stabilized micro-damage model for multiscale 
simulations 

Damage includes strain-softening which causes 
convergence issues in implicit time integration schemes. To 
address this issue, we use a stabilized damage model [7] to 
simulate microstructural effective responses during fracture 
progression.  This model decouples damage evolution from 
elasto-plasticity by introducing three reference RVEs that share 
state variables with the original damaged RVE. By tracing the 
elasto-plasticity in one of the referenced RVEs via a classic 
implicit scheme, the effective fracture stress and states can be 

mapped to the damaged RVE. Specifically, the homogenized 
damage stress in an arbitrary RVE can be written as: 

d d
M M ( )= = −

d el pl
M M M MS E E E   (1) 

where 𝐒𝐌
𝐝  represents the effective damage stress, ℂM

d  is the 
homogenized macroscale elastic modulus, 𝐄𝐌, 𝐄𝐌

𝐞𝐥 and 𝐄𝐌
𝐩𝐥 are

the RVE effective strain, elastic strain, and plastic strain, 
respectively. The subscript 𝐌 indicates that the variable is a 
macroscopic quantity. 

The first reference RVE is introduced to share the same 
elasto-plastic deformation as the original RVE but without the 
damage. Its effective stress is therefore computed as: 

el el ( )= = −
1 el pl
M M M MS E E E   (2) 

where 𝐒𝐌
1  and ℂel represent the homogenized stress and

(undamaged) elastic modulus, respectively, and the number 1 in 
the superscript refers to the first referenced RVE. By combining 
Equations (1) and (2), we can express the referenced stress as: 

1 d el 1
M ( )−

=
el

M MS E   (3) 
The second reference RVE is assumed to share the same effective 
stress (𝐒𝐌

2 = 𝐒𝐌
1 ) and material property as the first RVE but 

deform elastically. Thus, its effective elastic strain (𝐄𝐌
𝐞𝐥) is:

el 1 2 el 1 1− −
= =

el
M M ME S S  (4) 

The effective stress and strain of the second reference RVE 
are equivalently expressed as the volume average of its 
microscale stress and strain as: 

2 21
| |

d


= 
 M mS S    (5) 

1
| |

d


= 
 

el el
M m2E E    (6) 

where |Ω| is the RVE volume, the subscript 𝐦 indicates that the 
variable is a microscopic quantity, and the microscale stress 𝐒𝐦

2  
is proportional to the microscale elastic strain 𝐄𝐦𝟐

𝐞𝐥  via:
2 el
=

el
m m2S E  (7) 

The third reference RVE has the same elastic strain as the 
second one (𝐄𝐦𝟑

el = 𝐄𝐦𝟐
el ) but its modulus is assumed to be 

identical to the original fractured RVE as: 
d
M=

3 el
m m3S E  (8) 
d el
M m(1 D )= − (9) 

where ℂM
d  is the damaged tangent moduli, and Dm is the damage

parameter at a microscopic IP. The value of Dm is determined by
the plastic strain states in the first reference RVE:  

cr
pl cr pl cr

m m1pl
m1

ED (E ; ,E ) 1 exp( (E E ))
E

 = − − −  (10) 

where E̅m1
pl  is the equivalent plastic strain at a microscale material

point, 𝛼 is the damage evolutionary rate parameter, and E̅cr is the
critical plastic strain. We note that local damage is initiated 
(Dm = 0) when effective plastic strain equals the critical strain
(E̅m1

pl
= E̅cr ) and damage reaches total rupture (Dm = 1) when
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the effective plastic strain is much larger than the critical plastic 
strain. 

The effective damaged stress of the original RVE is assumed 
to be equal to the homogenized stress of the third reference RVE 
and is calculated as: 

1
| |

d


= = 
 

d 3 3
M M mS S S (11) 

For the multiscale damage analysis in Section 5.4, the 
macroscale damage parameter is computed as the ratio of the 
norms of effective stress tensors of the original and the first 
reference RVE as: 

M

:
D 1

:
= −

d 1
M M

1 1
M M

S S

S S
(12) 

where DM is the homogenized damage parameter representing
the fractured status of a macro-material point (and its associated 
RVE) on a macroscale component. 

4.2. Condensation method 
Every macroscopic IP in a multiscale simulation via the 

stabilized micro-damage model of Section 4.1 requires the 
tangent (elastic) modulus matrix (ℂel), see Equation (2). Since
we assign spatially varying RVEs with complex morphologies to 
macro IPs, ℂel needs to be computed via variational principles
for each RVE [8]. This numerical procedure is needed since the 
constitutive laws of the RVEs are not available in closed form. 

As variational calculations are expensive, we employ the 
condensation method [9] to compute the effective tangent moduli 
of an RVE. The condensation method starts by partitioning the 
microstructural system of equations as: 

 


=

     
     

   

pp pf p p

fp ff f

K K u f
K K u 0

 (13) 

where δ𝐮𝐩 and δ𝐮𝐟 represent the displacement variations at the
prescribed and free nodes in an RVE, and δ𝐟𝐩 is the external force
on the nodes with prescribed forces. 𝐊𝐩𝐩, 𝐊𝐩𝐟, 𝐊𝐟𝐩 and 𝐊𝐟𝐟 are
the corresponding partitions of the RVE’s stiffness matrix. 

Eliminating δ𝐮𝐟 from Equation (13) leads to a reduced
system, with a reduced stiffness 𝐊𝐫 which directly relates the
variations of the prescribed displacements with nodal forces: 

 =r p pK u f  (14) 
1( )−= −r pp pf ff fpK K K K K (15) 

To transform 𝐊𝐫 to the tangent moduli that relate variations
of stress and strain, we substitute Equation (14) into the 
variational form of the macroscopic stress: 

( )
0m0m

1 ( )d


=  − 
 M m 0S X t x x  (16) 

where 𝒙 and 𝒙𝟎 are the microscale IPs at the deformed and
original configurations, 𝐒𝐌 is the macroscale stress at the
macroscopic IP 𝐗, t̅m is the microscale surface traction, Γ0m is
the RVE boundary, and ⨂ denotes the tensor product between t̅m
and the position vector (𝒙 − 𝒙𝟎). Upon some algebraic

modifications, the homogenized tangent (elastic) modulus 
matrix of an RVE can be obtained as: 

 
LTel

0m

1 ( ) ( )= −   −


0 r 0x x K x x (17) 

where‘LT’ denotes the transposition between the two left indices. 
We note that even though the condensation method 

accelerates the calculation of ℂel for each RVE, parallel
computations based on it in a multiscale analysis are memory 
demanding and still quite expensive. Hence, to avoid the online 
condensation procedure, we utilize a GP to learn the relation 
between microstructural morphology and effective elastic 
tangents for different RVEs which are pre-computed by the 
condensation method in an offline stage.  

4.3. Deflated clustering analysis (DCA) 
Computing the elasto-plastic response in the stabilized 

micro-damage algorithm (see Section 4.1) is needed for every 
microstructure. This computation is very expensive and so we 
use the DCA method [6] to dramatically accelerate the 
computations. The high efficiency of DCA comes from the fact 
that (1) the degrees of freedom are significantly reduced from a 
large number of finite elements to a few clusters by employing 
material clustering techniques, and (2) the algebraic system on 
the reduced system has better convergence behavior than the 
classic finite element system with much fewer close-to-zero 
eigenvalues. 

DCA uses clustering to agglomerate neighboring finite 
elements to a set of interactive irregularly shaped clusters. 
Clustering is an unsupervised machine learning technique to 
interpret and group similar data. Among many mature clustering 
algorithms [10], we adopt k-means clustering [11] in this work 
due to its simplicity.  

We start the k-means clustering by feeding the coordinates 
of element centers into a feature space where cluster seeds are 
randomly scattered and serve as initial cluster means. Then, we 
assign each element to the cluster with the closest mean. 
Meanwhile, cluster shapes are iteratively updated to minimize 
the within-cluster variance. Mathematically, the clustering can 
be stated as the following minimization problem: 

2

1

argmin
I

k

n I
I n S

 
= 

= −
S

S    (18) 

where 𝐒 represents the k-clusters with 𝐒 = {𝑆1, 𝑆2, … , 𝑆𝑘}. 𝜑𝑛

and 𝜑̅𝐼  are the coordinates of the 𝑛𝑡ℎ element center and the mean
of the 𝐼𝑡ℎ cluster, respectively.

Upon clustering, we construct a reduced mesh by 
connecting cluster centroids via Delaunay triangularization 
where topological relations are preserved by checking the 
connectivity between clusters. We assume the motions of cluster 
centroids are directly related to the grouped nodes. Specifically, 
the displacement of the cluster centroid 𝐮(𝐱) is computed by 
interpolating the nodal displacements via the polynomial 
augmented radial point interpolation method [12] as: 

( ) ( ) ( )
1 1

n m

i i j j
i j

R a Z b
= =

= + u x x x  (19) 

where 𝑎𝑖 is the coefficient of the radial basis function 𝑅𝑖 at the
𝑖𝑡ℎ FE node and 𝑏𝑗 is the coefficient of the polynomial basis 𝑍𝑗.
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𝑛 and 𝑚 are the number of cluster nodes and the number of 
polynomial basis functions, respectively. The coefficients 𝑎𝑖 and
𝑏𝑗 are determined by enforcing Equation (19) for all nodal
displacements in the cluster where polynomial basis and radial 
coefficients are assumed to satisfy Equation (20) to ensure 
solution uniqueness [12]: 

( )
1

0,      1, 2,...,
n

j i
i

Z a j m
=

= = x (20) 

We then augment the displacements of cluster centroids with 
rotational degrees of freedom to represent rigid body motions 
(three translations and three rotations in 3D) in a deflation space 
[19–21] where a reduced stiffness matrix is constructed with six 
degrees of freedom on each node. Performing nonlinear analyses 
on the reduced mesh and projecting the results back to the finite 
element nodes at the end of computations reads: 

=u W λj j
i i i  (21) 

where 𝐮𝑖
𝑗 is the displacement vector at the 𝑖𝑡ℎ node in the 𝑗𝑡ℎ

cluster, 𝛌𝑖 is the rigid-body motion of the centroid of the 𝑗𝑡ℎ

cluster, and 𝐖𝑖
𝑗 is the deflation matrix for the 𝑖𝑡ℎ node grouped

in the 𝑗𝑡ℎ cluster:
T

, , , , ,  =   λ j jx jy jz jx jy jzu u u    (22) 

1 0 0 0

0 1 0 0

0 0 1 0

−

= −

−

 
 
 
 
 

W

j j
i i

j j j
i i i

j j
i i

z y

z x

y x
  (23) 

where 𝑢𝑗𝑥 and 𝜃𝑗𝑥 are the displacement and rotation of the 𝑗𝑡ℎ

cluster along 𝑥 axis, and (𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
, 𝑧𝑖

𝑗) are the relative 3D
coordinates of the 𝑖𝑡ℎ node with respect to the centroid of the 𝑗𝑡ℎ

cluster.  
We note that material points are assumed to share the same 

stress and strain values in each cluster. Hence, the local plastic 
strain fields are reproduced in a diffusive manner with lower 
strain concentrations which, in turn, delay the onset of localized 
fracture. This diffusive behavior motivates the damage 
parameter calibration using LMGP in the next section.  

4.4. Latent map Gaussian Process (LMGP) 
GPs are widely used in many applications for emulation 

[16–19]. The underlying idea of GP modeling is to assume that 
the data originate from a multivariate normal distribution. With 
this assumption, GP modeling involves considering a parametric 
form for the mean and covariance functions of the distribution 
and, in turn, estimating the parameters of these functions.  

Traditional GPs cannot handle categorical inputs because 
covariance functions rely on the (weighted) distance between 
inputs while categorical inputs are not typically endowed with a 
distance measure. To address this limitation of GPs, we have 
recently developed LMGPs [20] that enable GPs to handle 
categorical inputs such as the data source indicator in our case. 
As we show in Section 5.2, the learned latent space of an LMGP 

provides a nice diagnostic tool that can guide the analysis and 
design process.  

Assume the observations are produced by the single-
response function 𝜂(𝒔) which is modeled as: 

( ) ( ) ( )f   = + +s s s  (24) 
where 𝒇(𝒔) = [𝑓1(𝒔), … , 𝑓ℎ(𝒔)] is a vector of predefined
parametric basis functions depending on the 𝑑𝑠 dimensional
input vector 𝒔 = [𝑠1, 𝑠1, … , 𝑠𝑑𝑠

]𝑇, 𝜷 = [𝛽1, … , 𝛽ℎ]𝑇 represent the
unknown coefficients of the basis functions, 𝜀 is white noise, and 
𝜉(𝒔) is a zero-mean GP with covariance function: 

( ) ( )( ) ( ) ( )2, ' , ' , 'cov c r  = =s s s s s s (25) 

where 𝑐(∙,∙) is the covariance function, 𝜎2 denotes the amplitude,
and 𝑟(∙,∙) is the correlation function. An example 𝑟(∙,∙) is the 
Gaussian kernel given by:  

( ) ( )

( ) ( ) 

2

1

, ' 10 '

' '

s
i

d
w

i

T

r exp

exp

=

 
= − − 

 

= − −

 i i

s

s s s s

s s Ω s s
  (26) 

where 𝒘 = [𝑤1, … , 𝑤𝑑𝑠
]𝑇 is the vector of roughness parameters

and Ω𝐬 = 𝑑𝑖𝑎𝑔(10𝒘). As it can be seen, 𝑟(∙,∙) in Equation (26)
does not accommodate categorical inputs as the distance 
between them is not defined.  
To handle categorical inputs, LMGP maps them into a 
quantitative latent space which then makes it possible to use any 
distance-based correlation function. Specifically, let us denote 
the categorical inputs via 𝒕 = [𝑡1, … , 𝑡𝑑𝑡

]𝑇 where variable 𝑡𝑖 has
𝑚𝑖 different levels. Upon mapping, LMGP uses the Gaussian
correlation function as: 

( ) ( ) ( ) 2, ' ' ( ) ( )Tr exp= − − − − −su u' s s Ω s s z t z t'  (27) 

where 𝒖 = [𝒔; 𝒕] and 𝒛(𝒕) = [𝑧1(𝒕), … , 𝑧𝑑𝑧
(𝒕)]𝑇 is the learned

𝑑𝑧 dimensional latent variable representing a particular
combination of the categorical variables. 𝒛(𝒕) is computed by 
mapping the representation of each combination of the 
categorical variables 𝝉(𝒕) via: 

( ) ( )=z t τ t A  (28) 
where 𝐀 is the projection matrix that is estimated during training. 
Given a training dataset with 𝑛 samples, the LMGP parameters 
(i.e., 𝐀, 𝜷, 𝒘, and 𝜎2) are estimated by maximizing the log-
likelihood function: 

( )

( ) ( )
2

2

2

, , , 1

2

1
log log( )

2 2ˆ ˆ ˆ ˆ, , , arg max
1

2
T

n









−

−

=

− − −

 
−  

    
 
  

A β w

R
A β w

y Fβ R y Fβ
 (29) 

where log (∙) is the natural logarithm, |∙| denotes the determinant 
operator, 𝒚 = [𝑦(1), … , 𝑦(𝑛)]𝑇 are the 𝑛 outputs in the training
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data, 𝑹 is the correlation matrix with entries 𝑅𝑖𝑗 = 𝑟(𝒖(𝑖), 𝒖(𝑗)),
and 𝑭 is the prior mean basis matrix with entries 𝐹𝑖𝑗 = 𝑓𝑗(𝒖(𝑖)).

Once the parameters are estimated, the predicted response at 
the query point 𝒖∗ is obtained via:

1ˆ ˆˆ( ) ( ) ( ) ( )   −
+= −β g βu u u V y FTy f   (30) 

where 𝒈(𝒖∗) is an 𝑛 × 1 vector with the 𝑖𝑡ℎ element 𝑔𝑖(𝒖∗) =
𝜎̂2𝑟(𝒖(𝑖), 𝒖∗), and 𝑽 is the covariance matrix with entries 𝑉𝑖𝑗 =

𝜎̂2𝑟(𝒖(𝑖), 𝒖(𝑗)).

5. NUMERICAL RESULTS
In this section, we apply the proposed data-driven 

framework to calibrate the ROMs in a multi-fidelity and 
multiscale model that simulates the damage behavior of a 
metallic component with spatially varying microstructures. In 
section 5.1 we train a GP that emulates the condensation method 
to accelerate the online calculation of ℂel for each macroscopic
IP during the multiscale simulation. In Section 5.2, we 
demonstrate the application of LMGPs in building a multi-
fidelity emulator that is used in Section 5.3 to calibrate the 
damage parameters of the ROMs. Finally, we employ the 
calibrated ROMs in the multiscale simulation in Section 5.4.  

The material studied in this work is cast aluminum alloy 
A356 whose elastic properties are: 

5.70E4 MPa,       0.33E v= =    (31) 
where 𝐸 and 𝑣 are Young’s modulus and Poisson’s ratio, 
respectively. The alloy’s behavior is modeled following the J2 
plasticity theory with the piecewise linear hardening curve 
shown in Figure 2. We use an associative plastic flow rule with 
the following yield condition: 

( )Y        (32) 
where 𝜎, ɛ̅ and 𝜎𝑌 are Mises equivalent stress, equivalent plastic
strain, and yield stress, respectively.  

Figure 2 Hardening behavior: Piecewise linear hardening of A356 
without damage. 

The softening behavior of A356 is modeled by the 
progressive damage model in Equation (10) with two damage 
parameters: critical plastic strain (E̅cr) and damage evolutionary
rate parameter (𝛼). The following values are used in DNS while 
for ROMs they are calibrated based on the microstructural 
morphology and number of clusters: 

crE 0.03;    100= =  (33) 
The proposed method is implemented in Matlab [21] and all 

simulations are performed on a high-performance cluster 

paralleled by 40 cores (AMD EPYC processor running at 4.1 
GHz) with 120 GB RAM. 

5.1. GP modeling for microstructure effective tangents 
In damage analysis, the effective elastic tangent matrix plays 

a fundamental role in relating the effective reference stresses 
with elastic strains, see Equation (2). However, computing the 
effective tangents often involves intensive computational efforts 
even when condensation methods are applied.  

To improve efficiency, we develop a GP surrogate to link 
microstructural morphologies (i.e., pore distribution) with the 
effective tangent matrix. Specifically, we approximate the 
complex pores via overlapping ellipsoids whose geometry and 
spatial distribution in an RVE are characterized by four 
descriptors including porosity volume fraction 𝑉𝑓, number of
pores 𝑁𝑝, aspect ratio between ellipsoidal axes 𝐴𝑟, and average
nearest neighbor distance between pore centroids 𝑟̅𝑑. In addition, 
as we work with isotropic microstructural responses, the 
components of the tangent matrix are reduced to two effective 
Lame constants (μ and λ). Hence, the GP aims to build a 
predictive model between [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑] and [𝜇, 𝜆].

To construct the GP, we first generate a training dataset with 
160 RVEs. The inputs in this dataset are generated via DoE 
where each sample specifies the value of [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑] for an
RVE. Then, we use a microstructure reconstruction algorithm 
[22] to build the RVE corresponding to each sample. Several 
reconstructed microstructures are shown in Figure 3 where the 
corresponding [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑] values are enumerated in Table 1 .
Next, we use the condensation method to calculate the Lame 
constants for each RVE. The GP is finally trained as described in 
Section 4.4. The parameter ranges used in DoE are as follows: 

1% 20%

10 100

1 5
 0.1L 0.5L

f

p

r

d

V

N

A
r

 


 

 

  

(34) 

Figure 3 Example reconstructed microstructures: Pore descriptors 
and effective Lame constants are listed in Table 1. 
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Table 1 Pore descriptors and effective Lame constants: The numbers 
correspond to the reconstructed microstructures in Figure 3. 

RVE 𝑉𝑓 𝑁𝑝 𝐴𝑟 𝑟̅𝑑 μ (E10) λ (E10) 
(a) 6.56% 26 1.31 23.3 1.94 3.51 
(b) 9.21% 20 3.33 19.7 1.82 3.05 
(c) 2.06% 13 1.14 28.1 2.08 3.96 
(d) 3.29% 29 2.37 20.5 2.03 3.78 
(e) 9.97% 48 1.16 20.4 1.85 3.23 
(f) 7.80% 20 2.15 25.9 1.89 3.31 
(g) 1.92% 22 4.95 22.4 2.08 3.92 
(h) 3.12% 60 2.11 16.9 2.04 3.81 
(i) 2.61% 31 1.09 21.6 2.07 3.91 
(j) 9.70% 51 2.47 18.2 1.82 3.09 
(k) 1.15% 36 1.84 21.1 2.11 4.03 
(l) 4.48% 77 1.43 14.5 2.01 4.03 

To test our GP’s accuracy, we split the dataset and use 80% 
for training and 20% for validation. Comparisons of the 
predictions against the validation samples are shown in Figure 4.  

Figure 4 Emulation accuracy: Comparison of actual microstructural 
effective Lame constants against GP predictions on unseen test samples. 

To assess the convergence and whether sufficient training 
data are used, we then split the dataset to 100 samples for training 
and 60 samples for testing. We sequentially increase the size of 
the training data from 10 to 100 and evaluate the accuracy of the 
corresponding GPs on 60 test samples (all GPs are evaluated on 
the same set of test samples). The prediction errors are computed 
by Equation (35) and shown in Figure 5: 

1

ˆ1 v

v

N
i i

i i
E

N =

−
= y

y y
y

(35) 

where 𝑁𝑣 is the number of validation samples, 𝐸𝒚 is the relative
prediction error of responses 𝒚 = [𝝁, 𝛌], 𝒚̂𝑖 and 𝒚̅𝑖 are the
predicted effective constants for the 𝑖𝑡ℎ microstructure.

Through investigating Figure 5, we note that the errors 
monotonically decrease and that with almost 100 samples 
prediction error has converged. Following these observations, 
we fit a GP to the entire data and subsequently use it in our 
microscale damage analyses. 

Figure 5 Error convergence: GP estimation errors on predicted Lame 
constants with respect to the number of training points. 

5.2. LMGP modeling of damage model parameters 
To showcase the importance of using LMGP for multi-

fidelity modeling and calibration, consider the microstructure in 
Figure 6(a) whose damage parameters are defined in Equation 
(33). We deform this RVE to the deformation gradient in 
Equation (36) and obtain its response via DNS with 68675 
elements. As shown in Figure 6(b), significant plastic strain 
concentrations appear in the vicinity of the pores. We then model 
the same microstructure via an ROM with 3200 clusters and with 
the same damage parameters as DNS. The results are shown in 
Figure 6(c) and clearly demonstrate the diffusive nature of 
clustering. Hence, when using the ROM the magnitude of local 
plastic strain is lower than DNS which results in delayed fracture 
initiation, larger material toughness, and higher ultimate tensile 
strength (UTS), see Figure 7(a).  

ROM’s accuracy can be improved by calibrating its damage 
parameters. We illustrate the effects of calibration on local strain 
concentrations and effective responses in Figure 6(d) and Figure 
7(b), respectively. Compared to the ROM with the original 
damage parameters, the calibrated ROM provides more accurate 
estimations on both material toughness and ultimate tensile 
strength (UTS), see the enumerated errors and their norms in 
Table 2. However, manually calibrating microstructures with 
various morphologies and different fidelity levels (k) is time-
consuming and suboptimal. Hence, we develop an LMGP-based 
calibration procedure to automatically find the optimal values of 
damage parameters. 
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Figure 6 Equivalent plastic strain fields: (a) the porosity morphology 
of a microstructure with 25 pores, (b) plastic strain simulated via DNS, 
(c) plastic strain approximated by ROM (k=3200) without calibration, 
and (d) plastic strain approximated by ROM (k=3200) with calibration. 

M

1.1 0 0
0 0.95 0
0 0 0.95

 
 

=
 
  

F    (36) 

Figure 7 Importance of calibration: (a) effective stress-strain curves 
without damage parameters calibration, and (b) the effective response 
with calibration. 

Table 2 ROM prediction errors: the errors in UTS and toughness are 
obtained by comparing the predictions to DNS. 

ROM 
clusters 

(k) 

Error w/o LMGP 
calibration (%) 

Error with LMGP  
calibration (%) 

UTS Toughness Error 
norm 

UTS Toughness Error 
norm 

800 11.5 10.6 15.61 3.74 3.64 5.22 
1600 5.5 5.8 7.99 1.28 1.96 2.34 
3200 3.2 3.7 4.86 1.55 1.73 2.33 

To use LMGP for calibrating damage parameters, we 
generate a dataset that consists of six inputs 𝒙 = [𝑥1, … , 𝑥6]𝑇 and
two outputs 𝒚 = [𝑦1, 𝑦2]𝑇, as shown in Table 3. The first four
inputs represent the pore descriptors (i.e., [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑]) and the
last two inputs represent damage parameters (i.e., evolutionary 
rate parameter 𝛼 and critical effective plastic strain E̅cr). The
outputs are the UTS and material toughness.  

We append each sample with a categorical variable 
encoding data source, denoted by 𝑡1 = {1,2,3,4}  where label 4
corresponds to DNS while labels 3, 2, and 1 correspond to ROM 
with 𝑘 = 3200, 𝑘 = 1600, and 𝑘 = 800 respectively. To enable 
LMGP to simultaneously surrogate multiple responses, we also 
appended the samples with a second categorical variable 
encoding the type of outputs by 𝑡2 = {1, 2} where label 1
corresponds to UTS and label 2 indicates material toughness. 
The resulting training dataset is shown in Table 3. 

We note that our dataset is highly unbalanced since we have 
fewer samples from high-fidelity sources which require intensive 
computational efforts. In particular, we have a total of 300 data 
points where only 𝑛ℎ = 15 samples are obtained via DNS while
𝑛𝑙1 = 45, 𝑛𝑙2 = 90, and 𝑛𝑙3 = 150 samples are built via the
ROM with 3200, 1600, and 800 clusters, respectively.  

Once LMGP is trained, we can visualize the learned latent 
space where each combination of the two categorical variables is 
mapped to a point. The learned positions are demonstrated in 
Figure 8 and are consistent with our expectations. Specifically, 
the eight latent positions correspond to all possible combinations 
of the two categorical variables. The first digit of the label 
encodes the data source while the second label encodes the 
damage response. The latent points with the same responses are 
grouped by two vertical lines: while the points on the left 
correspond to the UTS, the points on the right are for the 
toughness. Therefore, we note that the four fidelity levels are 
described by vertical coordinates while the two responses are 
represented by horizontal coordinates.  

From Figure 8, we also observe that the relative distances 
are directly related to the data sources’ fidelity levels. For 
instance, the positions of 𝑘 = 3200 (labels 31 and 32) are further 
from 𝑘 = 800 (labels 11 and 12) than 𝑘 = 1600 (labels 21 and 
22), but the closet to DNS (labels 41 and 42). In addition, we 
observe that the scale of the horizontal axis is one order of 
magnitude larger than the vertical axis, indicating a higher 
correlation between fidelity levels than the types of responses.  

The observation that the distance between DNS and 𝑘 =
800 for both responses is around 0.02, suggests a large 
correlation (exp{−0.022} = 0.9996) between the two data
sources, see Equation (27). LMGP can therefore use any useful 
knowledge from low-fidelity data to improve its accuracy in 

Copyright © 2022 by ASMEV03BT03A031-8

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2022/86236/V03BT03A031/6943176/v03bt03a031-detc2022-90163.pdf by U

niversity of C
alifornia Irvine user on 18 August 2023



emulating the high-fidelity source (i.e., DNS). Additionally, we 
notice that the distance between two responses is about 0.6, 
which results in the correlation value of exp{−0.62} = 0.6977.
In other words, the two responses are positively correlated which 
coincides with our expectation, since the delayed fracture 
prediction of ROM not only increases UTS but also enlarges 
material toughness.  

Table 3 LMGP’s training dataset: There are four microstructure 
descriptors and two damage parameters (𝑥5 and 𝑥6). The two categorical
inputs distinguish data source and response type. The data are color-
coded based on 𝑡2 (green is UTS and blue toughness).

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒕𝟏 𝒕𝟐 𝒚 

0.021 13 1.14 28.1 54.7 0.015 4 1 1.12·108 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.066 26 1.31 23.3 71.2 0.017 4 1 1.15·108 
0.098 87 1.89 12.4 75.6 0.020 3 1 1.13·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.045 77 1.43 14.5 80.7 0.023 3 1 1.26·108 
0.030 70 3.93 12.6 73.4 0.066 2 1 1.21·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.026 31 1.10 21.6 98.3 0.029 2 1 1.33·108 
0.078 34 2.77 17.4 21.3 0.012 1 1 1.08·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.016 88 3.13 14.4 61.7 0.027 1 1 1.36·108 
0.021 13 1.14 28.1 54.7 0.015 4 2 3.14·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.067 26 1.31 23.3 71.2 0.017 4 2 3.00·106 
0.098 87 1.89 12.4 75.6 0.020 3 2 3.26·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.045 77 1.43 14.5 80.7 0.023 3 2 3.93·106 
0.030 70 3.93 12.6 73.4 0.066 2 2 3.07·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.026 31 1.10 21.6 98.3 0.029 2 2 4.72·106 
0.078 34 2.77 17.4 21.3 0.012 1 2 3.17·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.016 88 3.13 14.4 61.7 0.027 1 2 5.05·106 

To assess LMGP’s accuracy, we use 300 samples for 
training and 100 samples (𝑛ℎ = 5, 𝑛𝑙1 = 15, 𝑛𝑙2 = 30, 𝑛𝑙3 =
50) for validation. LMGP’s prediction accuracy is quantified by
mean squared error (MSE) in Table 4 where we observe that the 
surrogate's prediction error decreases as we use higher fidelity 
level sources. We compare LMGP’s predictions with validation 
values in Figure 9 where we note the predictions for both UTS 
and toughness are quite accurate. Based on this figure, the 
predictions of UTS present larger errors than toughness. One 
plausible reason is that UTS, a point measurement of the 
maximum stress that an RVE can tolerate, is sensitive to some 
factors that are not captured in this model, e.g., crack propagation 
direction. However, RVE toughness which is a measurement of 

the amount of released energy during damage evolution can be 
characterized by our model’s variables sufficiently well.  

Figure 8 Learnt latent space of LMGP: Each latent position encodes 
simulation fidelity level and damage response. 

Table 4 Error analysis: LMGP’s prediction MSE for the two damage 
responses and four data sources. 

Source 
MSE 

𝑦1 (UTS) 𝑦2 (fracture energy)

DNS 6.3966·1011 7.4737·108 
ROM with k = 3200 7.1468·1011 4.3607·108 

ROM with k = 1600 3.2451·1012 3.5422·109 
ROM with k = 800 7.2695·1012 9.9943·109 

Figure 9 Performance on unseen test data: Comparison of the true 
responses against the LMGP’s predictions for UTS and toughness. 
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5.3. Calibration of damage parameters 
To calibrate the damage parameters for each ROM, we need 

to solve an inverse optimization problem whose objective 
function is evaluated via LMGP. We estimate the calibration 
parameters for the 𝑖𝑡ℎ microstructure and the 𝑗𝑡ℎ source-level
such that the estimated damage responses from ROM match the 
ones from DNS that uses 𝛼𝐷𝑁𝑆 = 100 and 𝐸̅𝐷𝑁𝑆

𝑐𝑟 = 0.03. The
optimization problem is hence formulated as: 

( ) ( )
2

,
ˆ, arg min p py x y x



 
  

= −
cr

cr i i
jDNS

E
E  (37) 

where 𝒚𝒑(·) are the predicted damage responses by LMGP and
𝒙𝐷𝑁𝑆

𝑖 = [𝑉𝑓
𝑖 , 𝑁𝑝

𝑖 , 𝐴𝑟
𝑖 , 𝑟̅𝑑

𝑖 , 𝛼𝐷𝑁𝑆 , 𝐸̅𝐷𝑁𝑆
𝑐𝑟 , 𝑡1 = 4, 𝒕2] is the input vector

of the 𝑖𝑡ℎ microstructure for predicting the responses of DNS.
Analogously, 𝒙𝑗

𝑖 = [𝑉𝑓
𝑖, 𝑁𝑝

𝑖 , 𝐴𝑟
𝑖 , 𝑟̅𝑑

𝑖 , 𝛼, 𝐸̅𝑐𝑟 , 𝑡1 = 𝑗, 𝒕2] is the input
vector of the 𝑖𝑡ℎ microstructure for predicting the damage
responses for ROM at the 𝑗𝑡ℎ level (note that we pass 𝒕2 as a
vector to get both responses). 

We use a gradient-based optimization method to solve 
Equation (37). In Figure 10, we show the calibrated damage 
parameters for 20 randomly selected microstructures. 

Figure 10 Calibrated ROM damage parameters: (a) evolutionary 
rate parameter, and (b) the critical effective plastic strain. 

We observe the same trend across all samples: (i) the ROM’s 
calibrated damage parameters are smaller than those of DNS, and 
(ii) the values of calibrated damage parameters get closer to DNS 
as we increase the number of clusters (k). To understand the 
underlying reason, we refer to Figure 7(a): as 𝑘 decreases, the 
localized plastic strain is more diffusive than its DNS 
counterpart, resulting in a delay of damage initiation in the 
stress-strain curve. Therefore, to counteract this diffusive 

behavior, the calibrated damage parameters reduce the strength 
of the materials such that the ROM can faithfully approximate 
DNS. 

5.4. Concurrent multiscale damage analyses 
We apply the proposed multiscale damage model to a 3D L-

shape bracket in this section to simulate the impact of micro-
porosity on macroscopic fracture behavior. The dimensions of 
the L-bracket are shown in Figure 11 which is fixed on the top 
surface and is subject to a Dirichlet boundary condition on the 
right surface (𝑑 = 20mm). The bracket model is discretized with 
2113 linear tetrahedron elements with reduced integrations.  

Figure 11 multiscale model: The dimensions and boundary conditions 
of the 3D L-shape bracket with a thickness of 5 mm. 

For multiscale analysis, we divide the bracket into two 
subdomains: a monoscale region and a multiscale region with 
spatially varying porosity distribution. This choice is motivated 
by the observation that under large deformations the fracture 
happens in the multiscale domain (where high accuracy and 
microstructural effects are needed) and hence the other regions 
of the bracket can be modeled as a single scale. 

For each of the 147 IPs in the multiscale region, we assume 
it is randomly associated with a microstructure from the database 
generated in 5.2. The effective damage behavior in each 
microstructure are simulated by ROM with three options for the 
number of clusters: 800, 1600, or 3200. For each ROM with a 
selected cluster number, its optimal damage parameters are 
readily available from the LMGP-based calibration process 
described in Section 5.3. 

In our multiscale simulations, we ensure the released 
fracture energy is consistent between the scales by equating 
microstructure volumes to macroscopic mesh sizes. 
Additionally, we apply a nonlocal damage function with a 
feature size of 15mm on the bracket model to prevent 
pathological mesh dependency and convergence difficulty.  

We demonstrate the simulated fracture pattern and load-
displacement response (with and without multiscale treatment) 
in Figure 12. In Figure 12(a), fractures are represented by the 
effective damage values DM from Equation (12) DM = 1
represents complete rupture. From Figure 12(b), we observe that 
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porous microstructures significantly deteriorate the bracket’s 
load-carrying capacity which drops by 10.22% from 70.86N to 
63.62N, and the whole structure breaks at a much lower 
displacement boundary condition. Therefore, compared to the 
single-scale model that only considers dense materials and 
neglects pores, the multiscale model provides us with a more 
realistic prediction considering fractures across scales. 

Figure 12 Results of the multiscale damage analysis: (a) top view of 
the fracture patterns on the L-bracket model, and (b) the force-
displacement responses. 

6. CONCLUSION
We propose a multi-fidelity reduced-order model for 

multiscale damage analysis that considers manufacturing-
induced spatially-varying porosity. Our model is not only 
significantly faster than classic multiscale simulations but also 
has lower memory requirements. Our approach relies on a 
mechanics-based ROM that accelerates the microscale elasto-
plastic deformations by clustering the degrees of freedom. Since 
this clustering increases the microstructure tolerance to damage 
initiation and evolution, we develop a calibration scheme to 
estimate the damage parameters that must be used in ROM such 
that it can faithfully approximate high-fidelity simulations.  

We use LMGPs to build a multi-fidelity emulator and then 
use it in our calibration scheme. In addition to providing high 
accuracy and versatility, we show that the learned latent space of 
LMGP provides insights into the problem. In particular, we 
demonstrate the relative accuracy between the four simulators 
that model microstructural damage behavior.  

Upon calibration of our ROMs, we use them in a multiscale 
simulation to study the effect of porosity on the macroscopic 
response of an L-bracket. Our results indicate that porosity 
noticeably decreases the strength of the material and hence must 
be considered in “design for fracture”. 
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