W) Check for updates

Proceedings of the ASME 2022

International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

IDETC-CIE2022
August 14-17, 2022, St. Louis, Missouri

DETC2022-90163

MULTI-FIDELITY REDUCED-ORDER MODELS FOR MULTISCALE DAMAGE
ANALYSES WITH AUTOMATIC CALIBRATION

Shiguang Deng 2, Carlos Mora ®, Diran Apelian 2, Ramin Bostanabad ® *
2 ACRC, Materials Science and Engineering, University of California, Irvine, CA, USA
®Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

ABSTRACT

Predicting the fracture behavior of macroscale components
containing microscopic porosity relies on multiscale damage
models which typically ignore the manufacturing-induced
spatial variabilities in porosity. This simplification is made due
to the prohibitive computational costs associated with explicitly
modeling spatially varying microstructures in a macroscopic
component. To address this challenge, we propose a data-driven
framework that integrates a mechanistic reduced-order model
(ROM) with a calibration scheme based on latent map Gaussian
processes (LMGPs). Our ROM drastically accelerates direct
numerical simulations (DNS) by using a stabilized damage
algorithm and systematically reducing the degrees of freedom
via clustering. Since clustering affects local strain fields and
hence the fracture response, we construct a multi-fidelity LMGP
to inversely estimate the damage parameters of an ROM as a
function of microstructure and clustering level such that the
ROM faithfully surrogates DNS. We demonstrate the application
of our framework in predicting the damage behavior of a
multiscale metallic component with spatially varying porosity.

Keywords: multiscale damage analysis, data-driven
calibration, reduced-order model, Gaussian processes, spatially
varying microstructures.

1. INTRODUCTION

Predicting the effect of manufacturing-induced microscopic
defects on the performance of macroscopic components relies on
multiscale simulations where a microstructure or a representative
volume element (RVE) is associated with each integration point
(IP) of the discretized macrostructure. Traditional multiscale
simulations use the finite element method (FEM) at both
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macroscale and microscale where macroscopic deformation
gradients FM and RVE effective stress ohgy are exchanged
between scales at each iteration, see Figure 1(a). A major
challenge associated with such nested simulations is the
computational expenses which prohibitively increase in the
presence of nonlinear microscale deformations that involve
damage. Reducing these costs holds the key to understanding the
relation between microscopic defects and components’ fracture
behavior and, in turn, guiding the “design for fracture” process.
To this end, we propose a data-driven framework that has two
major components: (1) a mechanistic reduced-order model
(ROM) with an adjustable degree of fidelity, and (2) a multi-
fidelity modeling and calibration scheme based on latent map
Gaussian processes (LMGPs). Integration of these two
components enables us to build calibrated multi-fidelity ROMs
that can simulate the damage behavior of multiscale materials
with spatially varying microstructures.

The rest of the paper is organized as follows. In Section 2,
we review existing works on reduced-order modeling and
discuss the research gaps that we aim to address. The overview
and technical details of our approach are provided in Sections 3
and 4, respectively. We evaluate the performance of our approach
in Section 5 and conclude the paper in Section 6.

2. BACKGROUND ON REDUCED-ORDER MODELING
Mechanistic ROMs are increasingly employed to accelerate
nonlinear material modeling by using a combination of methods
from linear algebra and machine learning that result in reducing
the number of unknown variables that characterize, e.g.,
microstructural strain and stress fields. Transformation field
analysis (TFA) and its successor nonuniform transformation
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Figure 1 Proposed data-driven framework for multiscale damage modeling: LMGP creates a multi-fidelity emulator for the ROMs and
DNS. It is then used in an inverse optimization to determine the damage parameters that must be used in ROMs such that they can approximate

DNS as closely as possible. Upon this calibration, a multiscale simulation is run where ROMs are used at the microscale.

field analysis (NTFA) are two of the earliest ROMs [1-3]. These
two methods approximate plastic strain as either piecewise
constants or spatially varying orthonormal eigenstrains which
are pre-selected in an offline stage. These eigenstrains evolve in
the online stage based on pre-defined analytical functions that
involve thermodynamic forces and potentials.

Clustering-based ROMs are recent techniques that
decompose microstructure domains into a set of clusters whose
interactions and deformations are modeled. For instance, the
clusters in the self-consistent analysis (SCA) [4] method group
material points with similar elastic responses and then quantifies
cluster-to-cluster interactions by incremental Lippmann-
Schwinger equation. Finite element-based cluster analysis [5]
approximates the microstructural effective responses by
following the cluster minimum complementary energy principle.
Deflated clustering analysis (DCA) [6] agglomerates close-by
IPs in clusters and the cluster-wise quantities of interests are
computed in a multi-grid fashion where unknown variables are
projected back and forth between different meshes. In this work,
we use cluster-based ROMs as they provide higher efficiency
compared to other methods such as TFA.

Successful application of any ROM depends on two primary
factors: (i) the coarsening degree (e.g., the chosen number of
clusters) which makes a tradeoff between fidelity level and
computational costs, and (ii) the calibrated material properties.
Both of these factors depend on the microstructure as well as the
properties of interests. For example, accurate prediction of the
damage behavior requires different damage parameters and the
number of clusters for the two microstructures in Figure 1(a). In
particular, given a desired level of accuracy with respect to high-
fidelity direct numerical simulations (DNS), the analysis of the
more complex microstructure in Figure 1(a) requires more
clusters (i.e., less coarsening or data reduction).

Regarding calibration, we note that clustering material
points diffuse stress/strain fields compared to DNS. This
diffusion depends on the topology and unrealistically increases
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the tolerance of the material microstructure to localized
phenomena such as damage. Hence, the material properties that
characterize damage should be calibrated to counteract the
superficial increase in material strength upon clustering. This
reduction typically depends on the microstructure topology.

In this paper, we develop a data-driven framework to
automate the process of selecting the degree of clustering (i.e.,
fidelity level) and calibration of ROMs.

3. OVERVIEW OF THE PROPOSED FRAMEWORK

Our framework relies on two primary components for
damage modeling in multiscale metals with porosity: a novel
cluster-based ROM and LMGP-based calibration which are
detailed in Sections 4.4 and 4.3, respectively.

The ROM surrogates DNS and estimates the stress field in
a microstructure under arbitrary displacement boundary
conditions that may result in plasticity and damage. The fidelity
of the ROM is determined by the user-defined parameter k which
indicates the number of clusters and balances costs and accuracy.

As argued in Section 2, the material properties that must be
used in ROM should be different than the true values that are
used in DNS, i.e., the ROM requires calibration. This difference
depends on both the microstructure complexity and, more
importantly, k. Hence, we use a data-driven approach that relies
on emulation via an LMGP to calibrate the material properties
for ROMs. In particular, the trained LMGP enables answering
the following question: Given k and one microstructure, what
damage parameters should be used in the ROM such that it
predicts the same fracture response as DNS which uses the true
damage parameters? As explained below, answering this
question relies on solving an inverse optimization problem
whose objective function relies on LMGP, see Figure 1.

In practice, the above question is answered under two mild
assumptions. Firstly, a small set of integer values are considered
for k. In this work, we assume k = 800, 1600, or 3200 but more
values can be used within our framework. As shown in Section
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4.3, all these values are much smaller than the number of
elements in a typical mesh and hence result in massive data
reduction or coarsening. Secondly, the very high dimensional
morphology of microstructures is represented with a reduced set
of quantitative descriptors that in our case characterize the
geometry and spatial distribution of the pores.

We generate the samples for training the LMGP by design
of experiments (DoE) where the inputs are microstructural
descriptors and calibration parameters that control the damage
behavior. For sample i, we first use a reconstruction algorithm to
build the microstructure corresponding to the it" set of
descriptors. Then, we calculate the fracture response of the i**
microstructure (via DNS or one of the ROMs) while using the
it" set of damage parameters. We choose the frequency of using
a simulator based on its costs, i.e., we employ an ROM with
small k much more than DNS or an ROM with large k.

It is noted that the optimization problem uses LMGP rather
than a traditional Gaussian process (GP) since we view the data
source indicator as a categorical input rather than a quantitative
one, see Figure 1(c). This choice is justified since alternating the
data source (e.g., DNS vs. ROM with k = 800 vs. ROM with
k = 3200) encodes the diffusive nature of strain-stress fields
which cannot be readily characterized with quantitative inputs.
Hence, our treatment of data source motivates the use of LMGP
and greatly simplifies the metamodeling task as it eliminates the
manual conversion of the source label to a quantitative variable.

Once LMGP is built, we are ready to run a multiscale
simulation where ROMs are used at the microscale instead of
DNS, see Figure 1(d). We first assign spatially varying
microstructures to the IPs of the macro-component. Then, based
on the complexity of the microstructures and any prior
knowledge (if available) on the macro-locations where excessive
deformations can occur (e.g., near sharp corners), we choose the
k values for ROM. Next, we use the trained LMGP to assign the
damage parameters that must be used at i*"* macro IP given the
k and microstructure assigned to it. Upon this assignment, we
conduct the multiscale simulation to find the performance of the
macro-component while considering microstructural porosities.

4. TECHNICAL DETAILS

We first provide the details on our ROM and how it can be
used for damage modeling in Sections 4.1 through 4.3. Then, we
elaborate on the training process of LMGPs in Section 4.4.

4.1. Stabilized micro-damage model for multiscale
simulations

Damage includes strain-softening  which  causes
convergence issues in implicit time integration schemes. To
address this issue, we use a stabilized damage model [7] to
simulate microstructural effective responses during fracture
progression. This model decouples damage evolution from
elasto-plasticity by introducing three reference RVEs that share
state variables with the original damaged RVE. By tracing the
elasto-plasticity in one of the referenced RVEs via a classic
implicit scheme, the effective fracture stress and states can be
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mapped to the damaged RVE. Specifically, the homogenized
damage stress in an arbitrary RVE can be written as:

St = CLES, = Cly (B —E) m
where S§ represents the effective damage stress, C§; is the
homogenized macroscale elastic modulus, Ey, E§f and Ef\’; are
the RVE effective strain, elastic strain, and plastic strain,
respectively. The subscript M indicates that the variable is a
macroscopic quantity.

The first reference RVE is introduced to share the same
elasto-plastic deformation as the original RVE but without the
damage. Its effective stress is therefore computed as:

S = CYEjy =C*(E, ~E) @)
where Sy and C® represent the homogenized stress and
(undamaged) elastic modulus, respectively, and the number 1 in
the superscript refers to the first referenced RVE. By combining
Equations (1) and (2), we can express the referenced stress as:

Sly = C4(C'E) ®
The second reference RVE is assumed to share the same effective
stress (S§ = Sy) and material property as the first RVE but
deform elastically. Thus, its effective elastic strain (Eg) is:

Ej =C*'S;, =C*'S, 4

The effective stress and strain of the second reference RVE
are equivalently expressed as the volume average of its
microscale stress and strain as:

2 1 2

2 = o SdQ (5)
el 1 el

E = @jg Ed,dQ (6)

where |Q] is the RVE volume, the subscript m indicates that the
variable is a microscopic quantity, and the microscale stress S2,
is proportional to the microscale elastic strain EE., via:
5% = C'E, a)
The third reference RVE has the same elastic strain as the
second one (ES&; = EE,) but its modulus is assumed to be
identical to the original fractured RVE as:
S} =C4E, )
Cy, =(1-D,)C )

where Cg, is the damaged tangent moduli, and D,j, is the damage
parameter at a microscopic IP. The value of D, is determined by
the plastic strain states in the first reference RVE:

_ _ ]_Ecr
1. cry _

D, (E";a,E") =1-—

ml

exp(-a(EP, ~E*)  (10)

ml

where Ef;]l is the equivalent plastic strain at a microscale material
point, a is the damage evolutionary rate parameter, and E" is the
critical plastic strain. We note that local damage is initiated
(D, = 0) when effective plastic strain equals the critical strain

(Ef;ll = E ) and damage reaches total rupture (D,,, = 1) when
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the effective plastic strain is much larger than the critical plastic
strain.

The effective damaged stress of the original RVE is assumed
to be equal to the homogenized stress of the third reference RVE
and is calculated as:

d _ Q3 _ 1 3
Si =83 _@jgsmdg (11)

For the multiscale damage analysis in Section 5.4, the
macroscale damage parameter is computed as the ratio of the
norms of effective stress tensors of the original and the first
reference RVE as:

S¢ :Sh
v = 1_M (12)
st =S|
where Dy is the homogenized damage parameter representing
the fractured status of a macro-material point (and its associated
RVE) on a macroscale component.

4.2. Condensation method

Every macroscopic IP in a multiscale simulation via the
stabilized micro-damage model of Section 4.1 requires the
tangent (elastic) modulus matrix (C®!), see Equation (2). Since
we assign spatially varying RVEs with complex morphologies to
macro IPs, C®! needs to be computed via variational principles
for each RVE [8]. This numerical procedure is needed since the
constitutive laws of the RVEs are not available in closed form.

As variational calculations are expensive, we employ the
condensation method [9] to compute the effective tangent moduli
of an RVE. The condensation method starts by partitioning the
microstructural system of equations as:

K K, s St
PP pi up _ p (13)
Kfp Kﬂ' 5“[ 0
where 6u,, and Suy represent the displacement variations at the
prescribed and free nodes in an RVE, and &f}, is the external force
on the nodes with prescribed forces. Ky, Kpf, K¢, and Ky are
the corresponding partitions of the RVE’s stiffness matrix.
Eliminating 6u; from Equation (13) leads to a reduced
system, with a reduced stiffness K, which directly relates the
variations of the prescribed displacements with nodal forces:
K, ou, =of, (14)
K, =K, -K (K"K (15)
To transform K, to the tangent moduli that relate variations

of stress and strain, we substitute Equation (14) into the
variational form of the macroscopic stress:

M(x):ﬁjr T, ®(x—x,)dl (16)

where x and x( are the microscale IPs at the deformed and
original configurations, Sy is the macroscale stress at the
macroscopic IP X, t,, is the microscale surface traction, Iy, is
the RVE boundary, and ® denotes the tensor product between t,,
and the position vector (x —xp). Upon some algebraic
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modifications, the homogenized tangent (elastic) modulus
matrix of an RVE can be obtained as:
1
= o
where LT’ denotes the transposition between the two left indices.
We note that even though the condensation method
accelerates the calculation of C® for each RVE, parallel
computations based on it in a multiscale analysis are memory
demanding and still quite expensive. Hence, to avoid the online
condensation procedure, we utilize a GP to learn the relation
between microstructural morphology and effective elastic
tangents for different RVEs which are pre-computed by the
condensation method in an offline stage.

el

[(x—x%,)®K, ®(x—x,)] " (17)

Oml

4.3. Deflated clustering analysis (DCA)

Computing the elasto-plastic response in the stabilized
micro-damage algorithm (see Section 4.1) is needed for every
microstructure. This computation is very expensive and so we
use the DCA method [6] to dramatically accelerate the
computations. The high efficiency of DCA comes from the fact
that (1) the degrees of freedom are significantly reduced from a
large number of finite elements to a few clusters by employing
material clustering techniques, and (2) the algebraic system on
the reduced system has better convergence behavior than the
classic finite element system with much fewer close-to-zero
eigenvalues.

DCA uses clustering to agglomerate neighboring finite
elements to a set of interactive irregularly shaped clusters.
Clustering is an unsupervised machine learning technique to
interpret and group similar data. Among many mature clustering
algorithms [10], we adopt k-means clustering [11] in this work
due to its simplicity.

We start the k-means clustering by feeding the coordinates
of element centers into a feature space where cluster seeds are
randomly scattered and serve as initial cluster means. Then, we
assign each element to the cluster with the closest mean.
Meanwhile, cluster shapes are iteratively updated to minimize
the within-cluster variance. Mathematically, the clustering can
be stated as the following minimization problem:

P

S =argmin - 3" o, - [ (18)
I=1 nes

where S represents the k-clusters with S = {51,572, ...,5%}. ¢,

and ¢, are the coordinates of the n*" element center and the mean

of the I*" cluster, respectively.

Upon clustering, we construct a reduced mesh by
connecting cluster centroids via Delaunay triangularization
where topological relations are preserved by checking the
connectivity between clusters. We assume the motions of cluster
centroids are directly related to the grouped nodes. Specifically,
the displacement of the cluster centroid u(x) is computed by
interpolating the nodal displacements via the polynomial
augmented radial point interpolation method [12] as:

0(x)= 2R (x)a, + 27, (x)p, (19)

where q; is the coefficient of the radial basis function R; at the
i*" FE node and b; is the coefficient of the polynomial basis Z;.
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n and m are the number of cluster nodes and the number of
polynomial basis functions, respectively. The coefficients a; and
b; are determined by enforcing Equation (19) for all nodal
displacements in the cluster where polynomial basis and radial
coefficients are assumed to satisfy Equation (20) to ensure
solution uniqueness [12]:

37 (x)a, =0, j=12,..m (20)
i=1

We then augment the displacements of cluster centroids with
rotational degrees of freedom to represent rigid body motions
(three translations and three rotations in 3D) in a deflation space
[19-21] where a reduced stiffness matrix is constructed with six
degrees of freedom on each node. Performing nonlinear analyses
on the reduced mesh and projecting the results back to the finite
element nodes at the end of computations reads:

u/ =Wk, 1)
where u] is the displacement vector at the i*" node in the j*
cluster, A; is the rigid-body motion of the centroid of the jt*
cluster, and Wl] is the deflation matrix for the i" node grouped
in the j** cluster:

h=[u,u,.u,.0,.0,.0, (22)

Jy? g T gy T
1 00 0 =z -y

w=010 -z 0o % (23)
0

0 1 yl.j —x,j 0
where u;, and 6}, are the displacement and rotation of the j th

cluster along x axis, and (xi] , yi] , Zi] ) are the relative 3D
coordinates of the i*" node with respect to the centroid of the jt*
cluster.

We note that material points are assumed to share the same
stress and strain values in each cluster. Hence, the local plastic
strain fields are reproduced in a diffusive manner with lower
strain concentrations which, in turn, delay the onset of localized
fracture. This diffusive behavior motivates the damage
parameter calibration using LMGP in the next section.

4.4. Latent map Gaussian Process (LMGP)

GPs are widely used in many applications for emulation
[16-19]. The underlying idea of GP modeling is to assume that
the data originate from a multivariate normal distribution. With
this assumption, GP modeling involves considering a parametric
form for the mean and covariance functions of the distribution
and, in turn, estimating the parameters of these functions.

Traditional GPs cannot handle categorical inputs because
covariance functions rely on the (weighted) distance between
inputs while categorical inputs are not typically endowed with a
distance measure. To address this limitation of GPs, we have
recently developed LMGPs [20] that enable GPs to handle
categorical inputs such as the data source indicator in our case.
As we show in Section 5.2, the learned latent space of an LMGP

VO03BT03A031-5

provides a nice diagnostic tool that can guide the analysis and
design process.

Assume the observations are produced by the single-
response function n(s) which is modeled as:

n(s)=r(s)B+&(s)+¢ (24)

where f(s) = [f1(S), ..., fn(s)] is a vector of predefined
parametric basis functions depending on the dy dimensional
input vector s = [sy, 81, ..., Sq,]", B = [B1, ..., Bn]" represent the
unknown coefficients of the basis functions, € is white noise, and
&(s) is a zero-mean GP with covariance function:

cov(é(s),é(s’))zc(s,s’)zo-zr(s,s') (25)
where c¢(+,") is the covariance function, 62 denotes the amplitude,

and r(-,7) is the correlation function. An example r(-,) is the
Gaussian kernel given by:

d\
r(s,s') =exp {—ZIO“" (s;—s, ')2 }
i-1

= exp{(s—s’)T Q, (s—s')}

where w = [wy, ..., WdS]T is the vector of roughness parameters
and Qg = diag(10"). As it can be seen, r(-,’) in Equation (26)
does not accommodate categorical inputs as the distance
between them is not defined.

To handle categorical inputs, LMGP maps them into a
quantitative latent space which then makes it possible to use any
distance-based correlation function. Specifically, let us denote
the categorical inputs via £t = [ty, ..., tdt]T where variable t; has
m,; different levels. Upon mapping, LMGP uses the Gaussian
correlation function as:

r(uu')= exp{—(s —s')r Q, (s—s")—||z(t)- z(t')||2} 27)
where u = [s;t] and z(t) = [z, (), ...,Zdz(t)]T is the learned
d, dimensional latent variable representing a particular
combination of the categorical variables. z(t) is computed by
mapping the representation of each combination of the
categorical variables (t) via:

z(t)=T(HA (28)

where A is the projection matrix that is estimated during training.
Given a training dataset with n samples, the LMGP parameters
(i.e., A,B,w, and ¢?) are estimated by maximizing the log-
likelihood function:

(26)

—ﬁlog (0'2 ) - l log(|R|)
[A,ﬁ,fv,é‘z} = arg max 2 2 29)

1 T -1
-(y-FB) R"(y-FB)
20

where log (*) is the natural logarithm, || denotes the determinant
operator, ¥ = [y(1), -, y(n)]T are the n outputs in the training
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data, R is the correlation matrix with entries R;; = 7(u), Uj),
and F is the prior mean basis matrix with entries Fj; = f;(u;).
Once the parameters are estimated, the predicted response at

the query point u* is obtained via:
)= fu)+g @)V (y—Fp) (30)
where g(u*) is an n X 1 vector with the i*" element g;(u*) =
&°r(ugy, u*), and V is the covariance matrix with entries V;; =

62r(u(i),u(]-)).

5. NUMERICAL RESULTS

In this section, we apply the proposed data-driven
framework to calibrate the ROMs in a multi-fidelity and
multiscale model that simulates the damage behavior of a
metallic component with spatially varying microstructures. In
section 5.1 we train a GP that emulates the condensation method
to accelerate the online calculation of C®! for each macroscopic
IP during the multiscale simulation. In Section 5.2, we
demonstrate the application of LMGPs in building a multi-
fidelity emulator that is used in Section 5.3 to calibrate the
damage parameters of the ROMs. Finally, we employ the
calibrated ROMs in the multiscale simulation in Section 5.4.

The material studied in this work is cast aluminum alloy
A356 whose elastic properties are:

E =570E4 MPa, v=0.33 31
where E and v are Young’s modulus and Poisson’s ratio,
respectively. The alloy’s behavior is modeled following the J2
plasticity theory with the piecewise linear hardening curve
shown in Figure 2. We use an associative plastic flow rule with
the following yield condition:

5<o,(7) (32)
where 7, € and gy are Mises equivalent stress, equivalent plastic
strain, and yield stress, respectively.

300

(3]

wn

=]
T

Yield stress (MPa)
>
=)

0 L 1 L
0 0.02 0.04 0.06 0.08
Equivalent plastic strain

Figure 2 Hardening behavior: Piecewise linear hardening of A356
without damage.

The softening behavior of A356 is modeled by the
progressive damage model in Equation (10) with two damage
parameters: critical plastic strain (E") and damage evolutionary
rate parameter («). The following values are used in DNS while
for ROMs they are calibrated based on the microstructural
morphology and number of clusters:

E" =0.03; «=100 (33)

The proposed method is implemented in Matlab [21] and all
simulations are performed on a high-performance cluster
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paralleled by 40 cores (AMD EPYC processor running at 4.1
GHz) with 120 GB RAM.

5.1. GP modeling for microstructure effective tangents

In damage analysis, the effective elastic tangent matrix plays
a fundamental role in relating the effective reference stresses
with elastic strains, see Equation (2). However, computing the
effective tangents often involves intensive computational efforts
even when condensation methods are applied.

To improve efficiency, we develop a GP surrogate to link
microstructural morphologies (i.e., pore distribution) with the
effective tangent matrix. Specifically, we approximate the
complex pores via overlapping ellipsoids whose geometry and
spatial distribution in an RVE are characterized by four
descriptors including porosity volume fraction V, number of
pores N, aspect ratio between ellipsoidal axes A,., and average
nearest neighbor distance between pore centroids 7. In addition,
as we work with isotropic microstructural responses, the
components of the tangent matrix are reduced to two effective
Lame constants (u and A). Hence, the GP aims to build a
predictive model between [Vf, Ny, A, fd] and [y, 1].

To construct the GP, we first generate a training dataset with
160 RVEs. The inputs in this dataset are generated via DoE
where each sample specifies the value of [Vf, Ny, A, fd] for an
RVE. Then, we use a microstructure reconstruction algorithm
[22] to build the RVE corresponding to each sample. Several
reconstructed microstructures are shown in Figure 3 where the
corresponding [Vf, Np, A, fd] values are enumerated in Table 1 .
Next, we use the condensation method to calculate the Lame
constants for each RVE. The GP is finally trained as described in
Section 4.4. The parameter ranges used in DoE are as follows:

1% <V, <20%

10< N, <100 (34)
1<4,<5
0.IL<7, <0.5L

: _ A
95995 P ety 39 :
A SRR N

© 3 O A © 1 ®
o2 - T)i b \ - < N\ PO ",’
9?2’}%” =7k ¢ Y
2y IR G X%

O by Oy, Ogihy, O

T RN
> 2 ,g?\ 3 L3 5, N
) D 5 s i?‘ 7" . '))a\ ; o; ).,?IM,V,

Figure 3 Example reconstructed microstructures: Pore descriptors
and effective Lame constants are listed in Table 1.
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Table 1 Pore descriptors and effective Lame constants: The numbers
correspond to the reconstructed microstructures in Figure 3.

RVE v, N, A, 7 W (E10) A (E10)
(@) 6.56% 26 131 233 1.94 351
(b) 9.21% 20 333 19.7 1.82 3.05
© 2.06% 13 1.14 28.1 2.08 3.96
(d) 3.29% 29 237 20.5 2.03 3.78
(e 9.97% 48 1.16 20.4 1.85 323
® 7.80% 20 2.15 25.9 1.89 331
) 1.92% 22 4.95 224 2.08 3.92
(h) 3.12% 60 2.11 16.9 2.04 3.81
@ 2.61% 31 1.09 21.6 2.07 3.91
0 9.70% 51 247 182 1.82 3.09
® 1.15% 36 1.84 21.1 211 4.03
O 4.48% 77 1.43 14.5 2.01 4.03

To test our GP’s accuracy, we split the dataset and use 80%
for training and 20% for validation. Comparisons of the
predictions against the validation samples are shown in Figure 4.

2.1E+10

(@)

n
Lol
=
lws]
+
s
=
‘

1.9E+10

Reference
&)

1.8E+10 :
1.8E+10 1.9E+10 2.0E+10

Estimated Lt

2.1E+10

4.0E+10

(b)

3.8E+10
3.6E+10

3.4E+10 | ©

Reference A

3.2E+10

3.0E+10 L L L
3.0E+10  3.3E+10 3.5E+10 3.8E+10

Estimated A

Figure 4 Emulation accuracy: Comparison of actual microstructural
effective Lame constants against GP predictions on unseen test samples.

4.0E+10

To assess the convergence and whether sufficient training
data are used, we then split the dataset to 100 samples for training
and 60 samples for testing. We sequentially increase the size of
the training data from 10 to 100 and evaluate the accuracy of the
corresponding GPs on 60 test samples (all GPs are evaluated on
the same set of test samples). The prediction errors are computed
by Equation (35) and shown in Figure 5:

1 Y, ||§,1 _yi "
YN G "yi "
where N,, is the number of validation samples, E,, is the relative

prediction error of responses y = [u,A], ¥; and y; are the
predicted effective constants for the it microstructure.
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Through investigating Figure 5, we note that the errors
monotonically decrease and that with almost 100 samples
prediction error has converged. Following these observations,
we fit a GP to the entire data and subsequently use it in our
microscale damage analyses.

0.9%

0.7%

03% r

Estimation error (Lame consts.)

0.39% I I I I I
0 20 40 60 80 100 120
Number of training points
Figure 5 Error convergence: GP estimation errors on predicted Lame
constants with respect to the number of training points.

5.2. LMGP modeling of damage model parameters

To showcase the importance of using LMGP for multi-
fidelity modeling and calibration, consider the microstructure in
Figure 6(a) whose damage parameters are defined in Equation
(33). We deform this RVE to the deformation gradient in
Equation (36) and obtain its response via DNS with 68675
elements. As shown in Figure 6(b), significant plastic strain
concentrations appear in the vicinity of the pores. We then model
the same microstructure via an ROM with 3200 clusters and with
the same damage parameters as DNS. The results are shown in
Figure 6(c) and clearly demonstrate the diffusive nature of
clustering. Hence, when using the ROM the magnitude of local
plastic strain is lower than DNS which results in delayed fracture
initiation, larger material toughness, and higher ultimate tensile
strength (UTS), see Figure 7(a).

ROM’s accuracy can be improved by calibrating its damage
parameters. We illustrate the effects of calibration on local strain
concentrations and effective responses in Figure 6(d) and Figure
7(b), respectively. Compared to the ROM with the original
damage parameters, the calibrated ROM provides more accurate
estimations on both material toughness and ultimate tensile
strength (UTS), see the enumerated errors and their norms in
Table 2. However, manually calibrating microstructures with
various morphologies and different fidelity levels (k) is time-
consuming and suboptimal. Hence, we develop an LMGP-based
calibration procedure to automatically find the optimal values of
damage parameters.
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Figure 6 Equivalent plastic strain fields: (a) the porosity morphology
of a microstructure with 25 pores, (b) plastic strain simulated via DNS,
(¢) plastic strain approximated by ROM (k=3200) without calibration,
and (d) plastic strain approximated by ROM (k=3200) with calibration.

1.1 0 0
F¥=| 0 095 0 (36)
0 0 095

——DNS +e¢2k=800 ---k=1600 — —k=3200
R 120 | (a)
S8 90
Z%

25 e

8%

o =

= :

H 0 0.02 0.04 0.06 0.08 0.1
Effective average strain in X-direction

——DNS eeeek=800 ---k=1600 — —k=3200
g 120 b
gz ®
LE
=<
E =1

[=]

R
é " \4'.-44!,_._'_&‘_.“._.
58]

0 0.02 0.04 0.06 0.08 0.1
Effective average strain in x-direction

Figure 7 Importance of calibration: (a) effective stress-strain curves
without damage parameters calibration, and (b) the effective response
with calibration.
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Table 2 ROM prediction errors: the errors in UTS and toughness are
obtained by comparing the predictions to DNS.

ROM Error w/o LMGP
clusters calibration (%)

Error with LMGP
calibration (%)

k) UTS Toughness Error | UTS Toughness | Error

norm norm

800 11.5 10.6 15.61 3.74 3.64 5.22
1600 5.5 58 7.99 1.28 1.96 2.34
3200 3.2 3.7 4.86 1.55 1.73 2.33

To use LMGP for calibrating damage parameters, we
generate a dataset that consists of six inputs x = [x;, ..., x¢]” and
two outputs y = [y,y,]7, as shown in Table 3. The first four
inputs represent the pore descriptors (i.e., [Vf, Ny, A, fd]) and the
last two inputs represent damage parameters (i.e., evolutionary
rate parameter a and critical effective plastic strain E"). The
outputs are the UTS and material toughness.

We append ecach sample with a categorical variable
encoding data source, denoted by t; = {1,2,3,4} where label 4
corresponds to DNS while labels 3, 2, and 1 correspond to ROM
with k = 3200, k = 1600, and k = 800 respectively. To enable
LMGTP to simultaneously surrogate multiple responses, we also
appended the samples with a second categorical variable
encoding the type of outputs by t, = {1,2} where label 1
corresponds to UTS and label 2 indicates material toughness.
The resulting training dataset is shown in Table 3.

We note that our dataset is highly unbalanced since we have
fewer samples from high-fidelity sources which require intensive
computational efforts. In particular, we have a total of 300 data
points where only n;, = 15 samples are obtained via DNS while
n; =45, n;; =90, and n;3 = 150 samples are built via the
ROM with 3200, 1600, and 800 clusters, respectively.

Once LMGP is trained, we can visualize the learned latent
space where each combination of the two categorical variables is
mapped to a point. The learned positions are demonstrated in
Figure 8 and are consistent with our expectations. Specifically,
the eight latent positions correspond to all possible combinations
of the two categorical variables. The first digit of the label
encodes the data source while the second label encodes the
damage response. The latent points with the same responses are
grouped by two vertical lines: while the points on the left
correspond to the UTS, the points on the right are for the
toughness. Therefore, we note that the four fidelity levels are
described by vertical coordinates while the two responses are
represented by horizontal coordinates.

From Figure 8, we also observe that the relative distances
are directly related to the data sources’ fidelity levels. For
instance, the positions of k = 3200 (labels 31 and 32) are further
from k = 800 (labels 11 and 12) than k = 1600 (labels 21 and
22), but the closet to DNS (labels 41 and 42). In addition, we
observe that the scale of the horizontal axis is one order of
magnitude larger than the vertical axis, indicating a higher
correlation between fidelity levels than the types of responses.

The observation that the distance between DNS and k =
800 for both responses is around 0.02, suggests a large
correlation (exp{—0.02%2} = 0.9996) between the two data
sources, see Equation (27). LMGP can therefore use any useful
knowledge from low-fidelity data to improve its accuracy in
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emulating the high-fidelity source (i.e., DNS). Additionally, we
notice that the distance between two responses is about 0.6,
which results in the correlation value of exp{—0.6%} = 0.6977.
In other words, the two responses are positively correlated which
coincides with our expectation, since the delayed fracture
prediction of ROM not only increases UTS but also enlarges
material toughness.

Table 3 LMGP’s training dataset: There are four microstructure
descriptors and two damage parameters (x5 and x;). The two categorical
inputs distinguish data source and response type. The data are color-
coded based on t, (green is UTS and blue toughness).

X1 | X2 | X3 X4 Xs X L |t y
0.021 | 13 | 1.14 | 28.1 | 54.7 | 0.015 | 4 1 1.12-108
0.066 26 131 233 712  0.017 4 1 1.15-108
0.098 | 87 | 1.89 | 124 | 756  0.020 3 1 1.13-108
0.045 | 77 | 143 | 145 | 80.7 A 0.023 @ 3 1 1.26-108
0.030 | 70 | 393 | 12.6 A 73.4 | 0.066 @ 2 1 1.21-108
0.026 | 31  1.10 | 21.6 A 983 | 0.029 | 2 1 1.33-108
0.078 | 34 | 277 | 174 | 213  0.012 | 1 1 1.08-108
0.016 | 88 | 3.13 | 144 | 61.7 @ 0.027 1.36-108
0.021 | 13 | 1.14 | 28.1 A 54.7 | 0.015 | 4 2 | 3.14-10°
0.067 | 26 # 131 | 233 712  0.017 @ 4 2 | 3.00-10°
0.098 | 87 | 1.89 | 124 | 756 @ 0.020 @3 2 | 3.26:10°
0.045 | 77 | 143 | 145  80.7 H 0.023 @ 3 2 | 3.93-10°
0.030 | 70 1 393 | 12.6 A 734 | 0.066 @ 2 2 | 3.07-10°
0.026 | 31  1.10 | 21.6 A 983 | 0.029 | 2 2 | 4.72-10°
0.078 | 34 277 | 174 | 213  0.012 | 1 2 | 3.17-10°
0.016 | 88 | 3.13 | 144 | 61.7  0.027 | 1 2 | 5.05-10°

To assess LMGP’s accuracy, we use 300 samples for
training and 100 samples (n,, = 5, n;; = 15, n;; = 30, n;3 =
50) for validation. LMGP’s prediction accuracy is quantified by
mean squared error (MSE) in Table 4 where we observe that the
surrogate's prediction error decreases as we use higher fidelity
level sources. We compare LMGP’s predictions with validation
values in Figure 9 where we note the predictions for both UTS
and toughness are quite accurate. Based on this figure, the
predictions of UTS present larger errors than toughness. One
plausible reason is that UTS, a point measurement of the
maximum stress that an RVE can tolerate, is sensitive to some
factors that are not captured in this model, e.g., crack propagation
direction. However, RVE toughness which is a measurement of
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the amount of released energy during damage evolution can be
characterized by our model’s variables sufficiently well.

0.06 o o OUTS (k=800)
AUTS (k=1600)
0.04 - ©UTS (k=3200)
OUTS (DNS)
(=] 'e) O
O Toughness (k=800)
0.02 A Toughness (k=1600)
A A © Toughness (k=3200)
O Toughness (DNS)
0 S : —0
-0.2 0 0.2 0.4 0.6
Z)

Figure 8 Learnt latent space of LMGP: Each latent position encodes
simulation fidelity level and damage response.

Table 4 Error analysis: LMGP’s prediction MSE for the two damage
responses and four data sources.

MSE
Source y: (UTS) y, (fracture energy)
DNS 6.3966-10!! 7.4737-108
ROM with k = 3200 7.1468-10" 4.3607-108
ROM with k =1600  3.2451-10'2 3.5422-10°
ROM with k = 800 7.2695-10'2 9.9943-10°

w k=800 +k=1600 »k=3200 « DNS

. * »
(.,l) ] - -
" 0.8 - [
[ Em *
n
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1
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=
5
50;6 F -
Boat e
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0 . . . .
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Figure 9 Performance on unseen test data: Comparison of the true
responses against the LMGP’s predictions for UTS and toughness.
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5.3. Calibration of damage parameters
To calibrate the damage parameters for each ROM, we need
to solve an inverse optimization problem whose objective
function is evaluated via LMGP. We estimate the calibration
parameters for the i*" microstructure and the j** source-level
such that the estimated damage responses from ROM match the
ones from DNS that uses apys = 100 and EShg = 0.03. The

optimization problem is hence formulated as:

— 2
[d,E”}zarg[nin“yp(xz,NS)—yp(xj)” (37)
a,E

where y,,(+) are the predicted damage responses by LMGP and
xbns = Vi N), AL 7L, apys, Efys, t1 = 4, t,] is the input vector

of the i*" microstructure for predicting the responses of DNS.
Analogously, x]l: = [Vfi, N;;,Ai, 7, a,ET,t; = j,t,] is the input
vector of the i" microstructure for predicting the damage
responses for ROM at the j* level (note that we pass t, as a
vector to get both responses).

We use a gradient-based optimization method to solve
Equation (37). In Figure 10, we show the calibrated damage
parameters for 20 randomly selected microstructures.

(a) ——k=800 ——k=1600 —=—k=3200
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0028 :W
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Calibrated critical plastic strain

Figure 10 Calibrated ROM damage parameters: (a) evolutionary
rate parameter, and (b) the critical effective plastic strain.

We observe the same trend across all samples: (i) the ROM’s
calibrated damage parameters are smaller than those of DNS, and
(i1) the values of calibrated damage parameters get closer to DNS
as we increase the number of clusters (k). To understand the
underlying reason, we refer to Figure 7(a): as k decreases, the
localized plastic strain is more diffusive than its DNS
counterpart, resulting in a delay of damage initiation in the
stress-strain curve. Therefore, to counteract this diffusive
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behavior, the calibrated damage parameters reduce the strength
of the materials such that the ROM can faithfully approximate
DNS.

5.4. Concurrent multiscale damage analyses

We apply the proposed multiscale damage model to a 3D L-
shape bracket in this section to simulate the impact of micro-
porosity on macroscopic fracture behavior. The dimensions of
the L-bracket are shown in Figure 11 which is fixed on the top
surface and is subject to a Dirichlet boundary condition on the
right surface (d = 20mm). The bracket model is discretized with
2113 linear tetrahedron elements with reduced integrations.

wiw 001

Figure 11 multiscale model: The dimensions and boundary conditions
of the 3D L-shape bracket with a thickness of 5 mm.

For multiscale analysis, we divide the bracket into two
subdomains: a monoscale region and a multiscale region with
spatially varying porosity distribution. This choice is motivated
by the observation that under large deformations the fracture
happens in the multiscale domain (where high accuracy and
microstructural effects are needed) and hence the other regions
of the bracket can be modeled as a single scale.

For each of the 147 IPs in the multiscale region, we assume
it is randomly associated with a microstructure from the database
generated in 5.2. The effective damage behavior in each
microstructure are simulated by ROM with three options for the
number of clusters: 800, 1600, or 3200. For each ROM with a
selected cluster number, its optimal damage parameters are
readily available from the LMGP-based calibration process
described in Section 5.3.

In our multiscale simulations, we ensure the released
fracture energy is consistent between the scales by equating
microstructure  volumes to macroscopic mesh = sizes.
Additionally, we apply a nonlocal damage function with a
feature size of 15mm on the bracket model to prevent
pathological mesh dependency and convergence difficulty.

We demonstrate the simulated fracture pattern and load-
displacement response (with and without multiscale treatment)
in Figure 12. In Figure 12(a), fractures are represented by the
effective damage values Dy from Equation (12) Dy =1
represents complete rupture. From Figure 12(b), we observe that
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porous microstructures significantly deteriorate the bracket’s
load-carrying capacity which drops by 10.22% from 70.86N to
63.62N, and the whole structure breaks at a much lower
displacement boundary condition. Therefore, compared to the
single-scale model that only considers dense materials and
neglects pores, the multiscale model provides us with a more
realistic prediction considering fractures across scales.

(@ 1
0.8
0.6
0.4
(b) ——SingleScale == Multiscale
80
63.62 70.86
% 60 - \
o]
-.
= 40 \
% \\
0 L = L
0 4 8 12 16

Displacement (mm)

Figure 12 Results of the multiscale damage analysis: (a) top view of
the fracture patterns on the L-bracket model, and (b) the force-
displacement responses.

6. CONCLUSION

We propose a multi-fidelity reduced-order model for
multiscale damage analysis that considers manufacturing-
induced spatially-varying porosity. Our model is not only
significantly faster than classic multiscale simulations but also
has lower memory requirements. Our approach relies on a
mechanics-based ROM that accelerates the microscale elasto-
plastic deformations by clustering the degrees of freedom. Since
this clustering increases the microstructure tolerance to damage
initiation and evolution, we develop a calibration scheme to
estimate the damage parameters that must be used in ROM such
that it can faithfully approximate high-fidelity simulations.

We use LMGPs to build a multi-fidelity emulator and then
use it in our calibration scheme. In addition to providing high
accuracy and versatility, we show that the learned latent space of
LMGP provides insights into the problem. In particular, we
demonstrate the relative accuracy between the four simulators
that model microstructural damage behavior.

Upon calibration of our ROMs, we use them in a multiscale
simulation to study the effect of porosity on the macroscopic
response of an L-bracket. Our results indicate that porosity
noticeably decreases the strength of the material and hence must
be considered in “design for fracture”.
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