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Abstract
Concurrent multiscale damage models are often used to quantify the impacts of manufacturing-induced micro-porosity on
the damage response of macroscopic metallic components. However, these models are challenged by major numerical issues
including mesh dependency, convergence difficulty, and low accuracy in concentration regions. In this paper, we make two
contributions to address these difficulties. Firstly, we develop a novel adaptive assembly-free implicit-explicit (AAF-IE)
temporal integration scheme for nonlinear constitutive models. This scheme prevents the convergence issues that implicit
algorithms face amid softening. Our AAF-IE scheme autonomously adjusts step sizes to capture intricate history-dependent
deformations. It also dispenses with re-assembling the stiffness matrices in elasto-plasticity and damage models which, in
turn, dramatically reduces memory footprints. Secondly, we propose an adaptive clustering-based domain decomposition
strategy to dramatically reduce the spatial degrees of freedom by agglomerating close-by finite element nodes into a limited
number of clusters. Our adaptive clustering scheme has static and dynamic stages that are carried out during offline and online
analyses, respectively. The adaptive strategy updates the cluster density based on the spatial discontinuity of the plastic strain.
As demonstrated by numerical experiments, the proposed adaptive method strikes a good balance between efficiency and
accuracy for fracture simulations. In particular, we use our efficient concurrent multiscale model to quantify the significance
of spatially varying microscopic porosity on a macrostructure’s softening behavior.

Keywords Reduced-order model · Adaptive spatiotemporal dimension reduction · Multiscale simulation · Continuum
damage model · k-means clustering

1 Introduction

Cast alloys have heterogeneous material properties which
are primarily due tomanufacturing-induced defects. Process-
induced pores are critical defects that generally appear due
to gas or shrinkage [1, 2]. These pores are non-uniformly
distributed in a metallic component and typically pos-
sess complex spatially varying morphologies, see Fig. 1a.
Porosity deteriorates a component’s structural integrity and
load-carrying capacity where alloys are ultimately fractured
by crack propagations through pores [3–5]. It is, there-
fore, crucial to quantify the effects of local porosity on
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a macrostructure’s damage response. This quantification
is typically achieved via multiscale models that leverage
the scale separation between macro-components and micro-
pores.While thesemodels are quite powerful, in the presence
of softening they become prohibitively expensive, memory
demanding, and error prone. In this paper, we aim to address
these challenges via an adaptive reduced-order multiscale
damage model that predicts the strain-softening behaviors of
manufactured alloys with complex local porosity defects.

1.1 Background and relevant works

The influence of micro-porosity on alloys’ macroscopic
responses can be quantified by various multiscale mod-
els [6] such as the homogenization-based methods which
leverage the scale-coupling theory. This theory involves the
solutions of two nested boundary value problems (BVPs)
between macroscopic integration points (IPs) and the asso-
ciated microstructures: at each increment of the solution
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Fig. 1 Multiscale modeling with damage. a Ametallic component con-
tains non-uniformly distributed microscale pores whose morphologies
are identified via 3D X-ray tomography. b The distribution of the

damage patterns (fracture bands) on the macro-component is strongly
affected by its spatially varying porous microstructures

process, macro deformation gradients are used to build and
solve an admissible microstructural BVP whose homoge-
nized solutions provide the macro variables for the next
increment. The coupled iterations continue till both scales
achieve equilibriums. The major advantage of multiscale
models is the explicit treatment of microstructure which dis-
penseswith the need to devise phenomenological constitutive
laws [7].

The concept of representative volume element (RVE) [8]
plays an essential role in multiscale modeling as microscale
BVPs are solved in such domains. The size of an RVE should
be sufficiently large such that a larger domain with different
local morphologies provides the same homogenized behav-
ior. In most practical applications, however, the large RVE
size and the embedded morphological details result in high
computational costs, especially for the finite element method
(FEM) [9]. An efficient alternative to FEM is the method of
fast Fourier transformation (FFT) [10] which typically uses
a homogeneous auxiliary elastic material as the reference
medium to predict the effective responses of heterogeneous
microstructures with geometrical or material nonlinearity.
FFT relies on voxelated microstructure representation which
limits thismethod’s ability to capturefinegeometrical details.
Additionally, FFT does not apply to microstructures with
infinite moduli contrast between material phases since elas-
tic tensors lose coerciveness in such cases and, in turn, result
in non-unique full-field solutions [11].

To reduce the simulation costs of FEM and FFT, reduced-
order models (ROMs) are developed where the key idea is to
systematically reduce the number of unknown variables via
offline calculations. Transformed field analysis (TFA) [12]
and its later version non-uniform transformed field analysis
(NTFA) [13] are two of the earliest ROMs. In these twometh-
ods, the number of state variables is reduced by expressing

arbitrary strain fields as a function of precomputed eigen-
strains.

Clustering-based ROMs are recent approaches for pre-
dicting the nonlinear responses of heterogeneous materials.
Self-consistent analysis (SCA) [14] presumes that elements
with similar elastic responses undergo similar plastic defor-
mations. These clusters are generated by grouping voxels
with similar elastic responses and the cluster-to-cluster inter-
action is quantified by incremental Lippmann–Schwinger
(LS) equations. The number of unknown variables in SCA is
significantly smaller than that in FEMsince it assumes identi-
cal states per cluster.Virtual clustering analysis (VCA) [15], a
variant of SCA, further improves efficiency by avoiding outer
loop iterations and considering boundary terms ignored in
LS equations. FEM-cluster-based analysis (FCA) [16] con-
structs the interaction matrix based on clusters’ eigenstrains
offline and approximates microstructural effective properties
online by following the principle of cluster minimum com-
plementary energy. In deflated clustering analysis (DCA)
[17], a clustering-based domain decomposition is univer-
sally applied to macro- and micro- domains to accelerate,
respectively, high-fidelity calculation of macroscale defor-
mations and effective microscopic responses. Its clusters are
created by agglomerating close-by nodes where high-fidelity
macroscale solutions are accelerated via deflated methods
and effective microstructural responses are expedited in a
coarse-graining manner such that nodal states in each cluster
take on the same value.

Although ROMs are quite efficient in simulating elasto-
plastic deformations, their successful application in mod-
eling fracture is rare due to the intricate deformation
mechanics. Fracture is generally modeled by two differ-
ent approaches: (1) a fracture mechanics-based discrete
approach that directly simulates displacement discontinu-
ity between fracture interfaces using elastic mediums [18],
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and (2) a continuum mechanics approach that emulates frac-
tures via strain softening using localized plastic strains.
While most ROMs are developed in the realm of continuum
mechanics, their applications in the second fracture simula-
tion approach are obstructed by softening-induced numerical
instabilities. Specifically, the stiffness matrices of damaged
materials lose positive-definiteness amid crack propagation
causing ill-conditioned equilibrium equations with imagi-
nary wave speeds [19]. If not properly resolved, solutions
of the ill-posed fracture model exhibit spurious mesh depen-
dency that restricts damage elements to single-element wide
fracture bands and causes unphysically diminishing energy
dissipations upon mesh refinements. Numerical remedies
include crack band theory [20], non-local models [21], and
phase-field methods [22]. These remedies either introduce
mesh-dependent regularizations ormodify damage evolution
to spread the fracture over finite regions.

Another difficulty in simulating softening via ROMs is
the convergence of pure implicit time integration schemes.
In these schemes, convergence issues arise due to the non-
positive-definite stiffness matrices which cause near-zero or
negative gradients in incremental algebraic systems.Oneway
to address this issue is to use explicit time integration schemes
which integrate the equations of motion explicitly through
time where current kinematic solutions are directly extrap-
olated from previous steps. However, explicit schemes are
very expensive since they require much smaller time steps
compared to implicit schemes.

To improve the emulation accuracy of strain-softening,
adaptive discretization is often integrated with damage mod-
els to enrich spatial interpolations at localized regions while
maintaining manageable computational costs. A typical
example is adaptive meshing in FEM which is classified as
either h-adaptivity or p-adaptivity [23] (in h-adaption ele-
ment types are unchanged while p-adaption adjusts mesh
types by assigning high-order interpolations in critical
regions and coarse interpolations elsewhere).Adaptivemesh-
ing is also utilized in multiscale damage models [24–26]
which often involves identifying the critical regions in the
macro-domainwhere concentrations are expected to develop.
The difficulties associated with such an approach include
precise anticipation of the critical regions, efficient swap
between coarse and fine meshes, and coupling non-matching
meshes on the boundaries of subdomains to enforce dis-
placement compatibility. These difficulties can be alleviated
by using periodic unit cells with congruent boundaries over
different subdomains and enforcing displacement compati-
bility by Lagrangian multipliers [27]. The adaption strategy
is only recently integrated with ROMs [28] where spatial
refinements are adaptively performed over material clusters
during plastic deformations. These refinements rely on an
iterative procedure that, based on a heuristic error metric,

rewinds the simulation state to a previous time step where
state variables are recalculated on a finer discretization.

1.2 Research gaps and our contributions

We summarize the research gaps in damage modeling for
multiscale metallic components as follows:

• Existing methods primarily rely on direct numerical simu-
lations (DNS) to emulate macroscopic damage behaviors
with associated microscale heterogeneities. Since these
methods are generally memory demanding and compu-
tationally expensive, efficient ROMs with high accuracy
are needed to quantify the effect of micro pores on the
macro component response.

• Most existing ROMs mainly focus on nonlinear elasto-
plastic deformations that involve strain-hardening and
their successful applications for modeling damage sim-
ulations are limited due to softening-induced numerical
instabilities. New numerical methods are needed to enable
ROMs to resolve softening efficiently and robustly.

• While clustering-based ROMs are highly efficient in
approximating microstructures’ effective responses, they
lose accuracy in concentration regions with highly local-
ized softening. Advancements in ROMs are needed to
achieve global and local accuracy.

To fill these gaps, we propose a novel ROM to simulate
the damage behavior of metallic alloys with process-induced
microscopic porosity. Our method is called adaptive deflated
clustering analysis (ADCA) and involves twomajor contribu-
tions. Firstly, it involves a new adaptive assembly-free impl-
exp (AAF-IE) temporal integration scheme which resolves
the softening-induced convergence issues by preserving the
positive-definiteness of the underlying algebraic systemamid
damage evolution. Our AAF-IE does not require online re-
assembly of the global stiffness matrix which dramatically
improves computational efficiency. Secondly, we develop a
novel adaptive spatial discretization strategy which consists
of a static offline clustering stage and an online dynamic
stage. While the offline stage assigns high cluster densities
in critical regions identified through inexpensive elastic load-
ings, the online procedure adaptively adjusts cluster densities
over crucial areas where softening is expected to initiate
and propagate. We integrate the online adaption stage with
a novel error metric to automatically detect spatial regions
and temporal instances (i.e., there is no need for rewinding
the simulation back to an earlier instance) that need finer
interpolations. To prevent softening-induced spurious mesh
dependencies on multiple scales, we regularize damage evo-
lutions with macroscopic non-local functions and fracture
energy stabilized micro-damage models, both of which are
systematically integrated with our AAF-IE. It is noted that
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while we integrate our adaptive techniques with DCA [17],
they can be readily integratedwith any other clustering-based
ROM for efficient multiscale modeling with accurate predic-
tions of localized phenomena.

1.3 Outline of the paper

The remainder of the paper is organized as follows. In Sect. 2,
we briefly review some background techniques. Our adaptive
multiscale damage method is introduced in Sect. 3 and we
demonstrate its efficiency and accuracy via numerical exper-
iments in Sect. 4. The paper is concluded with some final
remarks in Sect. 5.

2 Background techniques

The proposed reduced-order multiscale damage model relies
on a few background techniques including homogenization
theory, damage models, and time integration schemes which
are briefly reviewed below.

2.1 Multiscale modeling via first-order
homogenization

We use multiscale models to investigate the influence
of microscale heterogeneity on the fracture behavior of
macroscale components. Our multiscale model relies on the
first-order computational homogenization (FOCH) method
which assumes distinguishable macro and micro features.
Specifically, the sizes of local material heterogeneity (lμ) is
assumed to be much smaller than the RVE size (lm) which
itself is presumed to be smaller than the macro-characteristic
length (lM), that is:

lμ � lm � lM (1)

where the subscripts ‘M’ and ‘m’ represent macroscale and
microscale, respectively.

Solutions of the macro- and micro-structures are coupled
via the Hill-Mandel energy condition [29] which implies that
the virtual internal work density at a macro IP equals the
volume average of the virtual work of its associated RVE:

SM : δEM = 1

|�|
∫

�

Sm : δEmd� (2)

where SM, EM, Sm and Em are the macroscopic and micro-
scopic stress and strain tensors, respectively. � and |�|
represent the domain of microstructure and its volume. The
symbol ‘:’ represents the double dot product that contracts a
pair of repeated indices.

The stress and strain tensors at either scale are computed
through equilibrium equations. The equilibrium equations
for a macrostructure in the infinitesimal deformation frame-
work are [30]:

SM(X) · ∇0 + bM = 0 ∀X ∈ �0M (3)

uM(X) = uM ∀X ∈ �D
0M (4)

SM(X) · nM = tM ∀X ∈ �N
0M (5)

where uM is the unknown macro-displacement, uM is the
prescribed displacement on the Dirichlet boundary �D

0M, tM
represents the surface traction over the Neumann boundary
�N
0M, and nM denotes the outward unit vector to the boundary

of the undeformed macro-domain �0M. ∇0 is the gradient
operator with respect to the undeformed configuration.

Similarly, the equilibrium equation in the microscale can
be written as the following BVP:

Sm(x) · ∇0 = 0 ∀x ∈ �0m (6)

Sm(x) · nm = tm ∀x ∈ �N
0m (7)

where tm is the prescribed surface traction per unit area
on the boundary �N

0m of reference microscale domain with
the outward unit normal vector nm. According to the Hill-
Mandel condition, macroscale and microscale equations are
coupled by equating the macroscopic stress to the homog-
enized micro-stress of RVE and storing history-dependent
state variables for continued analyses in the concurrent mul-
tiscale model.

We assume the plastic behavior of the studied alloy system
follows a rate-independent isotropic elasto-plastic constitu-
tive law in the microscale as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm = C
el : Eel

m

Eel
m = Em − Epl

m

Em =
∫

dEm

Epl
m =

∫
dEpl

m

(8)

where C
el represents the fourth-order elasticity tensor. The

total microscopic strain (Em) is additively decomposed into
the microscopic elastic strain (Eel

m) and plastic strain (Epl
m)

where the values of the total and plastic strains are integrated
by their increments (dEm and dEpl

m) at each time step. The
plastic state is defined by the yield condition f as:

f = f (Sm, q) = 0 (9)
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where q is a history-dependent state variable. During plastic
flow, the plastic strain increment �Epl

m is determined by the
plastic flow rule as:

�Epl
m = �λ

∂Q

∂Sm
(10)

where λ is the plastic multiplier and Q refers to the plastic
potential. In this work, we use an associated flow rule where
Q = f .

2.2 Damage in ductile metals

Damage occurs when excessively large loads are applied to
materials whose loading-carrying capacity is reduced as a
result of progressive degradation of the materials’ moduli.
To model this degradation in a multiscale setting, we add
damage to Eqs. (3)–(7). In particular, we adopt an isotropic
continuum damagemodel which has twomajor components:
an initiation criterion that predicts the onset of softening and
an evolution law that traces the crack’s progression until rup-
ture.

We select the ductile criterion at either scale as the damage
initiation metric which assumes the effective plastic strain

(E
pl
d ) at the onset of fracture is a function of stress states

and strain rates. For simplicity, we assume E
pl
d is a user-

defined constant and damage is initiated when the following
condition is met:

ωd = E
pl

E
pl
d

≥ 1 (11)

where ωd is the damage initiation variable that increases

monotonically in elasto-plastic deformations and E
pl
is the

equivalent plastic strain. We note that ductile damage initia-
tion can be used in conjunction with other damage initiation
criteria. When multiple criteria are specified simultaneously,
they are treated independently, and damage evolution starts
if any criterion is met.

Upon initiation, damage results in softening of the yield
stress and degradation of the stiffness. Correspondingly, the
constitutive equation for a damaged elasto-plastic metal is
written as:
{
S = (1 − D)S0

S0 = C
el : Eel = C

el : (E − Epl)
(12)

where D ∈ [0, 1] is the monotonically increasing damage
evolution parameter and S0 is the stress tensor on a refer-
ence material that undergoes the same plastic deformation
but in the absence of damage. Since the continuum damage
is assumed as isotropic, D is a scalar in Eq. (12). If multiple
evolution laws are specified, D would capture the effects of

all active damage mechanisms. For an anisotropic damage
model, however, D becomes a tensor.

The evolution of D can be specified as a function of equiv-
alent plastic strain and state variables, e.g., as an exponential

function [31] of E
pl
and a user-defined non-negative evolu-

tion rate parameter (α) as:

D(E
pl
, α) = 1 − E

pl
d

E
pl exp(−α(E

pl − E
pl
d )) (13)

This definition ensures that when E
pl
is sufficiently large

compared to E
pl
d , the damage variable increases to one so

that the stiffness is fully degraded, and thematerial is entirely
ruptured.

Once the maximum degradation is reached at a material
point, a choice of removal of the ruptured elements from
the computational mesh is enabled. Element deletion pre-
vents further damage accumulation in localized regions and
enhances computational efficiency by improving the condi-
tion number of damaged stiffness of the underlying algebraic
systems.

2.3 Mesh dependency control

With fractures are formulated as strain softening by the
isotropic continuum damage model in Eq. (12), softening-
induced non-positive definite stiffness causes the BVPs in
Eqs. (3)–(7) to be ill-conditioned with unstable convergence
and negative wave speeds. In such a scenario, equilibrium
solutions lose their objectivity with respect to mesh sizes
and exhibit spurious mesh sensitivity, especially when using
standard finite elements (FEs) of the first-order continuity.
If not properly addressed, the progressive damage model in
Eq. (12) would result in unphysical material failures that are
localized in a certain region with shrinking fracture energies
upon mesh refinements [21]. As discussed below, we adopt
two different approaches to control the mesh dependency on
the macro and micro domains.

2.3.1 Macroscale mesh dependency control by nonlocal
functions

When the damage model of Eq. (12) is directly applied to
the damage evolutions in Eq. (13), macrostructures exhibit
unphysicalmaterial softening in concentration regionswhere
the equilibrium solutions strongly depend on the mesh. This
pathological mesh dependency restricts the fractured ele-
ments into an unphysical narrow damage band with a single
layer of elements. This spurious mesh dependency can be
alleviated by introducing the ‘fracture band width’ as a
macroscale material characteristic length in a nonlocal dam-
age model.
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We adopt an integral-type nonlocal damage model in
Eq. (14) where the nonlocal parameter of a macroscopic
point involves the weighted averages of the damage param-
eters over a finite spatial neighborhood of the point under
consideration:

D̂(X, X′) =
∫
B

ω(
∥∥X − X′∥∥)D(X′)d(X′) (14)

where D̂(X, X′) is the nonlocal damage parameter at a
macroscopic point X surrounded by neighbor points X′ in
a support neighborhood denoted by B, D(X′) is the local
damage parameter at X′, and ω

(‖X − X ′‖) is the nonlo-
cal weighting function. There is no unique way to define
ω
(‖X − X ′‖) and in this study, we adopt a polynomial bell-

shaped function [31] as:

ω(
∥∥X − X′∥∥) = ω∞(

∥∥X − X′∥∥)∫
B ω∞(‖X − X′‖)d(X′)

(15)

ω∞(
∥∥X − X′∥∥) =

〈
1 − 4(

∥∥X − X′∥∥)2
l20

〉2
(16)

where the Macauley brackets 〈. . . 〉 represent a non-negative
value defined as 〈x〉 = max(0, x), and l0 is the macroscale
material characteristic parameter denoting an interaction
radius, that is, the weighting effects diminish when ‖X −
X′‖ > l0/2. Thus, in 3D models, the support domain B is a
sphere with a radius of l0/2.

The macroscale material characteristic length l0 deter-
mines the width of fracture bands whose value can be
measured by high-fidelity numerical simulations using dis-
crete fracture mechanics or via a dedicated experiment with
high-resolution digit image correlation analyses. To check
mesh independence in fracture analyses, element sizes are
generally selected to be much smaller than l0 and the post-
peak damage responses are tracked to show convergence
upon mesh refinement, which we demonstrate in Sects. 4.1
and 4.2.

2.3.2 Microscale mesh dependency control by fracture
energy

In the presence of fracture, microstructure responses are no
longer properly represented by stress–strain relations since
they cause damage models to lack objectivity to mesh choice
and result in imaginary wave speeds amid damage progres-
sion. Using an arbitrary microscale characteristic length (l1)
in a microscale damage model, similar to the macroscopic
counterpart (l0) defined in Eq. (16), helps to stabilize ill-
posed strain-softening but the simultaneous applications of
l0 and l1 in a multiscale model is not physically realistic.

To mitigate mesh dependency on microscopic damage
models, the softening part of the constitutive law is con-
verted from the stress–strain relation to a stress-displacement
relation by an element characteristic length (le). Then, the
fracture energy (G f ) is specified as the dissipated energy
(after damage initiation) that opens a unit area of the crack
as:

G f =
∫ E

pl
f

E
pl
0

leSydE
pl =

∫ uplf

0
Sydu

pl (17)

where G f is defined on each microscale IP with an le, and

Sy is the yield stress corresponding to E
pl
. The equivalent

plastic displacement u pl is the fracture work conjugate of Sy
in the fracture evolution fromdamage initiation (markedwith

the effective plastic strain E
pl
0 and zero plastic displacement)

to the final rupture (represented by the effective plastic strain

E
pl
f and the fracture plastic displacement u pl

f ). For FEs with
the first-order continuity, le equals the length of a line across
elements. le can also be directly specified as a function of
element topology or material orientation [32].

With the effective plastic strains converted to plastic
displacements with associated elemental le, the damage evo-
lution is therefore defined based on the released energy
during the damage propagation in an exponential form [32]
of the plastic displacement as:

D = 1 − exp

(
− 1

G f

∫ u pl

0
Sydu

pl

)
(18)

where the damage variable approaches one only asymptoti-
cally at infinitely large plastic displacement. In practice, we
set D as one when dissipated energies exceed 0.99G f . We
note that fracture directions are generally not known a priori
and, as a result, the elements with high aspect ratios behave
differently depending on the direction along which the crack
occurs. Thus, continuumdamagemodels typically prefer ele-
ments with an aspect ratio close to one.

2.4 Convergence difficulty of implicit solvers

Strain softening and stiffness degradation amid damage evo-
lution cause serious convergence difficulties for implicit time
integration schemes because the implicitly integrated alge-
braic systems exhibit singular or ill-conditioned stiffness
matrices for materials with degraded moduli. To demon-
strate this, consider a simple isotropic damage model whose
constitutive equation can be integrated analytically [33] by
the classic implicit backward-Euler integration scheme. The
algorithmic tangent operator Calg.

n+1 in the damage model at
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time step (n + 1) is written as [34]:

C
alg.
n + 1 ≡ ∂Sn + 1

∂En + 1

= (1 − Dn+1)C
el − Sn + 1 − HnE

pl
n + 1

(E
pl
n + 1)

3
S0n + 1 ⊗ S0n + 1

(19)

where E
pl
n+1, Sn+1, S0n+1, Hn are the equivalent plastic strain,

equivalent stress, referenced (undamaged) stress tensor, and
softening modulus, respectively (the subscripts denote the
time step). Upon damage initiation, Hn becomes negative and
hence C

alg.
n+1 loses its positive definiteness in some loading

states. The non-positive definite Calg.
n+1 causes the elemental

stiffness matrix (ken+1) to be ill-conditioned with possible
negative eigenvalues. As damaged elements agglomerate in
certain strain-softening regions, negative eigenvalues enter
the global stiffness matrix (Kn+1) via element assembly pro-
cess:

Kn + 1 = ∂Fintn + 1
∂un + 1

= Ae(ken + 1) = Ae

(∫
�e

BT : Ca lg .
n+1 : Bd�

)
(20)

where Fint
n+1 and un+1 are the internal forces and nodal dis-

placements at time step (n + 1). Ae(. . . ) is the assembling
operator and B is the strain–displacement matrix evaluated
within each element domain �e. So, the locally damaged
elements cause the global stiffness matrix to become ill-
conditioned. Note that softening occurs not only in damage
but also in plastic models, and in both cases, the condition
number of the global stiffness matrix deteriorates.

The ill-conditioning of the global stiffness matrix reduces
the efficiency of the Newton–Raphson procedure. Specifi-
cally,when the algebraic systembecomes singular in a certain
step due to degraded moduli, the Newton–Raphson iteration
halts before convergence. Solutions for improving implicit
solvers’ convergence rates are based on, e.g., viscous regu-
larization schemes [32] and continuation methods [35] that
render the tangent stiffness to be positive-definite in suffi-
ciently small steps. However, such remedies fail in many
scenarios and the implicit schemes face severe convergence
difficulty. To fundamentally resolve the softening-induced
numerical instability, we develop an adaptive hybrid time
integration scheme in the next section.

3 Proposed adaptive reduced-order
multiscale damagemodel

Our approach has two novel ingredients: (1) an adaptive
assembly-free impl-exp time integration scheme that auto-
matically adjusts temporal step sizes amid nonlinear analyses

without re-assembling global stiffness matrices of the under-
lying algebraic system, and (2) an adaptive clustering strategy
which alters local spatial discretization to preserve solu-
tion accuracy in concentration regions. These temporal and
spatial adaption procedures aim to efficiently improve simu-
lation accuracy and they are discussed in Sects. 3.1 and 3.2,
respectively. The overall steps of our approach are summa-
rized in Sect. 3.3.

3.1 Adaptive temporal reduction

Time-dependent nonlinear analyses are often integrated via
pure implicit schemes, e.g., the Newton–Raphson method,
due to their high efficiency and unconditional stability.
However, in strain-softening simulations, ill-conditioned
algebraic systems with near-zero or negative tangent mod-
uli often prevent iterative solutions from convergence even
after many steps. To reduce the overall number of temporal
steps, we adopt a proper time integration scheme with robust
convergence property and improve it as explained below.

3.1.1 Standard impl-exp scheme

The impl-exp scheme [34, 36] is a hybrid method that is
robust and efficient in integrating softened constitutive equa-
tions. This method avoids the softening-induced numerical
convergence issues discussed in Sect. 2.4 and its algorithm
is demonstrated for the elasto-plasticity in Table 1 and the
ductile damage model in Table 2.

The basic idea of the impl-exp scheme is to maintain the
positive-definiteness of the algorithmic tangent operator by
dividing constitutive integration into two stages. In the first
stage, the plastic multiplier increment �λ̃n+1 is explicitly
extrapolated at time step (n + 1) from �λn to compute an
‘explicit’ stress S̃n+1 which balances the equilibrium equa-
tion between internal and external forces. In the second stage,
the ‘implicit’ stress Sn+1 is obtained in terms of the current
strainEn+1 via the standard implicit backward Eulermethod.
Then, the ‘implicit’ stress Sn+1 is used in the next step to
compute the trial stress for updating yield function, see Table
1. With impl-exp schemes, both tangent operators C̃alg.

n+1 are
guaranteed to be positive-definite for the elasto-plasticity and
damage models in Tables 1 and 2, respectively.

In an impl-exp scheme, the tangent operator is kept
constant in a Newton step (as opposed to a pure implicit
scheme,) which dramatically reduces the required iteration
numbers within a step. However, since the tangent opera-
tor varies between steps, the global stiffness matrix must be
re-assembled at the first iteration of each Newton step. This
repetitive reassembly results in large memory footprints and
slows down the overall process. We address this issue in the
next subsection with our new method.
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Table 1 Standard impl-exp
scheme. Positive-definiteness of
the algorithmic tangent operator
is preserved by dividing
constitutive integration into two
stages

Inputs: Cel , �En+1, Sn, q, Q, �λn

Trial stress: Strialn+1 = Sn + C
el�En+1

Yield criterion: f = f trial
(
Strialn+1, q

)
Implicit plastic strain increment: �Epl

n+1 = �λn+1(∂Q/∂Sn+1)

Implicit stress: Sn+1 = Strialn+1 − C
el : �Epl

n+1

Explicit plastic strain: �λ̃n+1 = (�tn+1/�tn)�λn ;

Ẽpl
n+1 = Epl

n+1 + �λ̃n+1

(
∂Q/∂S̃n+1

)

Explicit stress: S̃n+1 = Strialn+1 − C
el�λ̃n+1

(
∂Q/∂S̃n+1

)

Algorithmic tangent operator:
C̃
alg.
n+1 = ∂S̃n+1

∂En+1
=

∂

(
C
el
(
En+1−Epl

n

)
−C

el�λ̃n+1
∂Q(S̃n+1(En+1))

∂S̃n+1

)

∂En+1

Outputs: C̃alg.
n+1, S̃n+1

Table 2 Standard impl-exp scheme with damage. It is assumed that the
material behaves elasto-plastically as described in Table 1

Inputs: Cel, Eel
n+1

Effective stress: S0n+1 = C
el : En+1

Internal variable: �λ̃n+1 = (�tn+1/�tn)�λn

Damage initiation criterion: ωd = E
pl
n+1/E

pl
d =(

E
pl
n + �E

pl
n+1

)
/E

pl
d ≥ 1

Damage parameter: D̃n+1 =
D̃n+1

(
Dn , �λ̃n+1

)

Damage stress: S̃n+1 =
(
1 − D̃n+1

)
S0n+1

Algorithmic tangent operator: C̃
alg.
n+1 = ∂S̃n+1/∂En+1 =(
1 − D̃n+1

)
C
el

Outputs: C̃alg.
n+1, S̃n+1

3.1.2 Adaptive assembly-free impl-exp scheme

To improve the computational efficiency of the impl-exp
scheme introduced in Sect. 3.1.1, we propose a novel adap-
tive assembly-free impl-exp (AAF-IE) scheme. Compared to
the standard impl-exp, our approach ismore efficient because
it avoids the re-assembly of the underlying stiffness matrix
in runtime and adaptively adjusts temporal steps to improve
integration accuracy. The key idea is to estimate plastic strain
tensors with explicit extrapolations (instead of expensive
implicit estimators) while maintaining equilibrium condi-
tions and satisfying constitutive equations. Specifically, in
contrast to the standard impl-exp which updates ‘explicit’
state variables with respect to a linearly extrapolated plas-
tic multiplier increment �λ̃n+1, we set the extrapolated state
variables in AAF-IE to the plastic strain increment tensor,

�Ẽpl
n+1, as:

S̃n + 1(�Ẽpl
n + 1) = S̃trialn + 1 − C

el : �Ẽpl
n + 1

= C
el : (En − Epl

n + �En + 1 − �Ẽpl
n + 1)

= C
el : En + 1 − C

el : Epl
n − C

el : �Ẽpl
n + 1
(21)

�Ẽpl
n + 1 = �tn + 1

�tn
�Epl

n (22)

where �Epl
n is the converged implicit plastic strain tensor

increment from the previous time step (n). The algorithmic
tangent operator for the elasto-plasticity model is simplified
as:

C̃
a lg .

n+1 = ∂S̃n + 1(�Ẽpl
n + 1)

∂En + 1

= ∂(Cel : En + 1 − C
el : Epl

n − C
el : �Ẽpl

n + 1)

∂En + 1
= C

el

(23)

The advantage of the Eq. (23) comes from the fact that
the tangent operator C̃alg.

n+1 is now independent of the plas-
tic potential Q(̃Sn+1(En+1)), see the standard impl-exp in
Table 1, and it always equals to the elastic tangent modulus
C
el during the entire analysis. As a result, the global stiff-

ness matrix (Kn+1) of the elasto-plastic system in Eq. (20) is
only assembled once in the offline stage where its Cholesky
decomposition matrices are calculated and then stored for
repeated usage in runtime. The constant stiffness matrix
avoids re-assembly and therefore significantly reduces mem-
ory usage while improving efficiency.

As the material becomes damaged, D̃n+1 and C̃
alg.
n+1 still

depend on the linearly extrapolated �λ̃n+1 which itself is a
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function of the time step increments (�tn and�tn+1) and the
implicitly converged�λn . However, since softening is highly
localized in a strain-softening zone with a limited number
of fractured elements (compared to the whole mesh), the
element stiffness matrices of the damaged elements can be
incrementally updated in the global stiffness matrix as:

Kn + 1 = Kn + �Kd
n + 1 (24)

where�Kd
n+1 corresponds to the entrieswith damagedmate-

rial properties. This incremental assembly technique avoids
overall re-assembly and significantly reduces memory foot-
prints.

A major limitation of the standard impl-exp is the accu-
racy loss incurred by large time steps [34]. The accuracy loss
comes from the mismatch between the linearly extrapolated
state variables and their real values, especially upon tran-
sitioning between elasticity and plasticity where the state
variables (e.g., effective plastic strain increments) change
abruptly. Thus, it is recommended to use sufficiently small
steps to reduce the extrapolation error (like explicit integra-
tion schemes) which increases the computational expenses.

Noting that large time steps can be used at non-critical
moments when material properties change smoothly, we
introduce an adaptive integrator in the framework of an
assembly-free impl-exp scheme to automatically adjust the
time steps. At the arbitrary time instance tn+1, the explic-
itly extrapolated increment of the plastic strain tensor can be
expressed as its implicit counterpart from the last step:

�Ẽpl
n + 1 = Ẽpl

n + 1 − Epl
n = �tn+1

�tn
�Epl

n (25)

The Taylor series expansion of the implicit plastic strain
at tn−1 is:

Epl
n−1 = Epl

n (tn − �tn)

= Epl
n − Ėpl

n �tn + 1

2
Ëpl
n (�tn)2 − 1

6

...
E
pl
n (�tn)3 + o((�tn)4) (26)

where Ėpl
n , Ë

pl
n and

...
Epl
n are the first, second, and third-order

time derivatives at the time-step n. The implicit plastic strain
increment is then expressed as:

�Epl
n = Epl

n − Epl
n−1

= Ėpl
n �tn − 1

2
Ëpl
n (�tn)

2 + 1

6

...
Epl
n (�tn)

3 + o((�tn)
4)

(27)

By substituting Eq. (27) to (25) and assuming �tn+1 =
�tn , we arrive at the expansion of the extrapolated increment
�Ẽpl

n+1 at time-step n as:

�Ẽpl
n + 1 = Ėpl

n �tn+1 − 1

2
Ëpl
n (�tn+1)

2 + 1

6

...
Epl
n (�tn+1)

3 + o((�tn+1)
4)

(28)

To compare the explicit solution with the implicit one, we
expand the implicitly integrated increment �Epl

n+1 at time-
step n via Taylor series:

�Epl
n + 1 = Epl

n + 1 − Epl
n

= Ėpl
n �tn+1 + 1

2
Ëpl
n (�tn+1)

2 + 1

6

...
Epl
n (�tn+1)

3 + o((�tn+1)
4)

(29)

By subtracting Eq. (29) from (28), we identify the error
between the implicit solution and the assembly-free impl-exp
as:

Ẽpl
n + 1 − Epl

n + 1 = (Epl
n + �Ẽpl

n + 1) − (Epl
n + �Epl

n + 1)

= −Ëpl
n (�tn+1)

2 + o((�tn+1)
4) (30)

We create an error bound so that the extrapolated error (e)
is bounded for all IPs X ∈ �:

e(X) =
∣∣∣Ẽpl

n + 1 − Epl
n + 1

∣∣∣
max

(X) ≤ ξE ref (31)

where ξ is the user-defined tolerance with respect to a
model-dependent reference valueEref and |x1, x2, . . . |max =
max(|x1|, |x2|, . . . ).We now substitute Eq. (30) into (31) and
drop the high-order term to arrive at the error upper bound:

e =
∣∣∣−Ëpl

n (�tn+1)
2 + o((�tn+1)

4)
∣∣∣
max

� (�tn+1)
2
∣∣∣Ëpl

n

∣∣∣
max

≤ ξE ref

(32)

To obtain the second-order time derivative of the plastic
strain, we expand its first-order derivative at time steps n and
n − 1 as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ėpl
n = Epl

n − Epl
n−1

�tn
= �Epl

n

�tn

Ėpl
n −1 = Epl

n −1 − Epl
n−2

�tn −1
= �Epl

n −1

�tn −1

Ëpl
n = Ėpl

n − Ėpl
n−1

�tn
= 1

�tn

(
�Epl

n

�tn
− �Epl

n −1

�tn −1

)
(33)

We now acquire the extrapolation error by substituting
Eq. (33) into (32):

e � (�tn+1)
2

�tn

∣∣∣∣∣
(

�Epl
n

�tn
− �Epl

n−1

�tn−1

)∣∣∣∣∣
max

≤ ξE ref (34)

We compute the maximum time step at any integration
point X while keeping the extrapolation error in bound by
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equating the error to the bound as:

�tn+1(X) ≤
√√√√√

ξE ref�tn∣∣∣∣
(

�Epl
n

�tn
− �Epl

n−1
�tn−1

)∣∣∣∣
max

(X)

(35)

To bound the error in the entire domain, we set the critical
step size as the minimum value of critical step sizes across
all the points at the current time step (n + 1), that is:

�tcri .n+1 = MIN
X∈�

√√√√√
ξE ref�tn∣∣∣∣

(
�Epl

n
�tn

− �Epl
n−1

�tn−1

)∣∣∣∣
max

(X)

(36)

Equation (36) provides the critical time step in our frame-
work. We point out that �tcri .n+1 depends not only on the
previous time increments (�tn and �tn−1) but also on the
(implicit) plastic strain increments (�Epl

n and �Epl
n−1) from

the last two steps. Specifically, if the material property
advances smoothly in its previous two steps, the values of
plastic strain increments are close and, therefore,�tcri .n+1 takes
on a large value. In contrast, if the properties change abruptly
(e.g., from elasticity to plasticity or vice versa), the differ-
ence between the previous two plastic strain increments is
large and �tcri .n+1 is reduced accordingly. Equation (36) can
be further simplified as:

γn+1 = �tcri .n+1

�t0
≈ �tn MIN

X∈�

√√√√ ξE ref∣∣∣(�Epl
n − �Epl

n−1)

∣∣∣
max

(X)

(37)

whereγn+1 is the ratio of time increments between the critical
current time step and the (user-defined) initial step�t0. This
simplification assumes the time increments for the last two
steps are approximately the same (�tn ≈ �tn−1), and their
slight difference does not affect the step size at the current
time point (tn+1).

3.2 Adaptive spatial reduction

In addition to the adaptive temporal reduction discussed in
Sect. 3.1, we develop an adaptive clustering-based spatial
discretizationmethod for our ROM. For any clustering-based
ROM, domain decomposition generally converts the problem
domain from sufficiently fine discretization (e.g., regularly
shaped voxel grids from a computed tomography reconstruc-
tion or free meshes from a discretization module) into a set
of interactive clusters with different shapes and sizes. Since
the number of clusters is typically much smaller than the ele-
ments in the original discretization, the number of unknown
variables is significantly reduced.

Table 3 Position-based clustering data. Elements are grouped in the
k-means clustering by the 3D coordinates of their geometric centers

Data points

ζ = [ζ1, ζ2, . . . , ζne]T
Features

ϕ = [ϕ1, ϕ2, . . . , ϕn f
]T

ϕ1 = X ϕ2 = Y ϕ3 = Z

ζ1 = FE1 X1 Y1 Z1

ζ2 = FE2 X2 Y2 Z2

… … … …

ζne = FEne Xne Yne Zne

Clustering is an unsupervised learning technique that
groups similar data points. Example clustering methods
include k-means learning [37], affinity propagation [38],
agglomerative clustering [39], and spectral clustering [40].
In this work, we use the k-means clustering technique which,
similar to other methods, classifies mesh elements into dif-
ferent groups based on their feature values. The set of these
features greatly affects the distinct clustering results. For
example, a position-based clustering for grouping a total
number of ne elements in a 3D mesh uses the X, Y, and Z
coordinates of each element’s geometric center as features,
see Table 3.

In k-means clustering, cluster seeds1 are first randomly
scattered in the feature space. Then, each element is itera-
tively assigned to the cluster whose center (i.e., mean of its
members) is closest to that element. During the assignment,
the cluster means are automatically updated to minimize
within-cluster variances by solving the following optimiza-
tion problem:

C = argmin
C

k∑
I=1

∑
n∈C I

∥∥ϕn − ϕ I

∥∥2 (38)

where C refers to the created cluster centers C ={
C1, C2, . . . , Ck

}
. The variables ϕn and ϕ I represent the

nth element’s feature and the feature mean of the I th clus-
ter, respectively.

Naïve position-based clustering is a static spatial decom-
position that is created once in an offline stage. It does not
alter during runtime and results in a set of uniformly dis-
tributed material clusters with similar sizes (see [17] and
Appendix A for more details). Position-based clusteringmay
lose its data compression efficiency in the presence of nonlin-
ear strain-softening with significant localizations. Effective
clustering in such cases requires dense discretization over
regions with steep gradients which can arise anywhere in the
domain during the deformation (recall that the strains are

1 The user chooses the number of seeds.
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constant in a cluster so capturing high gradients relies on
having small clusters).

To accurately capture the softening-induced localizations
in clustering, we propose a novel adaptive clustering strat-
egy that consists of a static stage and a dynamic stage which
are described in Sects. 3.2.1 and 3.2.2, respectively. The
implementation details of these two stages are provided in
Algorithm 1.

3.2.1 Offline static stress-informed clustering

To assign more clusters to concentration regions in an RVE
where large solution gradients exist, we propose a hier-
archical clustering scheme that utilizes elemental elastic
responses to guide the position-based clustering. This hier-
archical scheme is used only once in the offline stage of our
ROM and has two levels which firstly groups elements with
the similar elastic response and then decomposes each group
into some clusters.2 The rationale behind using materials’
elastic behaviors in clustering is that they are highly corre-
lated with plastic responses. For instance, a highly stressed
material point during elastic reaction is likely to obtain large
plastic strains and accumulate strain concentrations during
plastic deformation. Hence, our contribution in this section
is the development of a hierarchical clustering scheme that
creates more clusters in critical regions identified by elastic
stress responses.

At the first level, to obtain the scalar elastic stress response
at each element we begin by applying a set of six orthogonal
loads to the RVE. In each of the six cases, we deform the
RVE by a homogeneous elastic macroscopic strain tensor
and then calculate the microscale Von-Mises stress at each
element’s center. Next, we condense the vector containing
the six elemental Von-Mises stresses (one from each load
case) into a scalar via:

Sn = ∥∥[Sn1 , Sn2 , Sn3 , Sn4 , Sn5 , Sn6 ]∥∥2 (39)

where Snk , (k = 1, . . . , 6) is the Von-Mises stress at the nth
element when the RVE is subject to the kth orthogonal load
and Sn is the L2-norm of these stresses representing the local
stress intensity at an FE in the deformed RVE. The format of
the resulting dataset for the stress intensity is demonstrated
in Table 4 for a 3D RVE whose mesh has ne elements.

Once the dataset of stress intensities is built, we start to
divide the elements of a meshed RVE into multiple groups
(the number of groups is chosen a priori) where we assume
that the elements in a group have similar stress intensity and

2 While in both levels of our approach we are agglomerating elements,
for clarity we reserve the terms group and cluster for the first and second
levels, respectively.

Table 4 Stress-based clustering data. FEs are agglomerated via k-means
clustering by their stress intensity values

Data points ζ = [ζ1, ζ2, . . . , ζne]T Feature ϕ = Sn

ζ1 = FE1 S1

ζ2 = FE2 S2

… …

ζne = FEne Sne

that each group has approximately the same number of ele-
ments. We note that the elements in the same group can be
anywhere in the RVE, i.e., a group can be topologically dis-
connected, see Fig. 2.

After the groups are constructed, we then decompose each
of them into multiple clusters where we assign more clusters
to groups with higher stress intensities. That is, the second
level of our hierarchical clustering approach aims to selec-
tively decompose the groups such that concentration regions
(marked with higher stress intensities) are discretized with
more clusters. For illustration, consider Fig. 2 where the ele-
ments in a generic RVE are segmented into five groups where
the groupswith higher stress intensities are decomposedwith
more clusters, and as a result, high stress-induced local phe-
nomena in these groups can be captured more accurately.

We introduce the clustering split factor (s f ), to better con-
trol the number of clusters in each group. Specifically,wefirst
sort the groups in an ascending order based on their stress
intensity values. Then, we compute the number of clusters in
a group via a power function whose exponent is s f :

Ncl
gi = θgi∑Ng

i=1 θgi

Ncl (40)

θgi =
(
Igi
Ng

)s f
(41)

where Ncl
gi is the number of clusters in the group gi , θgi is

the fraction of total clusters assigned to gi , Igi is the group’s
sorted index in the ascending order of stress intensities, Ncl

is the prescribed total number of clusters, and Ng is the total
number of groups. If the computed Ncl

gi is decimal, we round
it up to the nearest integer and adjust the number of clusters

in other groups accordingly such that Ncl =∑Ng
i=1 N

cl
gi .

We note that s f is defined by the user and represents the
contrast of cluster densities across the groups. This contrast
is illustrated in Fig. 3where the cluster numbers per group are
controlled by adjusting s f . We observe that a large s f pro-
motes increasing cluster numbers in groups with high-stress
intensities. In contrast, a small s f lowers the sensitivity of
cluster density to stress intensity. Specifically, when s f = 0
the numbers of clusters in each group are the same, and
when s f > 0 more clusters are generated in groups with
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Fig. 2 Schematic 2D illustration of the offline stress-informed hierar-
chical clustering. a A generic 2D RVE is discretized with 5000 triangle
elements. This RVE contains three circular pores with radii of 20 μm,
15 μm, and 5 μm. b Element stress intensities are computed via offline
orthogonal loads where intensity values are scaled to [0, 1] to aim in
visualization. c RVE elements are firstly agglomerated into five groups

based on elemental intensity values where each group has 1000 ele-
ments. The intensity monotonically increases from group 1 to group
5. d Elements are then classified into a total of 100 clusters where the
groups 1, 2, 3, 4, and 5 contain 10, 15, 20, 25, and 30 clusters, respec-
tively

higher average intensity values.Also observing that an exces-
sively large split factor can dramatically reduce clusters in
the groups with low-stress intensities. For example, when
s f = 10 most clusters are created in the group with the
highest intensity, and many groups with low intensities only
contain one cluster. One cluster cannot capture solution gra-
dients, and if local phenomena occur in those regions during
the online stage (overlooked in offline elastic tests), the lack
of sufficient clusters will result in dramatic local inaccuracy.
Therefore, we do not recommend large s f and we set the
default value to 1.0 which makes the number of clusters in
each group to be linearly proportional to the sorting index
of stress intensities. We illustrate the effects of s f on the
accuracy of our ROM in Sect. 4.2.

We point out that the total number of clusters, Ncl , is
determined by the user and then they are distributed across
the groups byEq. (40). If Ncl is too small, too fewclusters in a

group may not sufficiently represent sharp solution gradients
in a group. Hence, we require the computed cluster number
from Eq. (40) to be at least as large as NCl∗

gi which is the
smallest number that well-behaved clustering requires, that
is:

Ncl
gi = max(Ncl

gi , NCl∗
gi ) (42)

There are multiple techniques to compute NCl∗
gi including

gap statistics [41], elbow method [42], Silhouette coefficient
[43], and Calinski–Harabasz index [44]. We adopt the Calin-
ski–Harabasz index in this work which is computed as:

CHk = Vb
Vw

× Ngi
elem − k

k − 1
(43)

where CHk is the Calinski–Harabasz index of k clusters,
Vb is the overall between-cluster variance, Vw is the overall
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Fig. 3 Effects of split factor. The numbers of clusters in groups with
high-stress intensities (marked by high sorted indices) rapidly increase
as a positive s f grows. In contrast, when n is negative, more clusters
are assigned to non-critical groups with smaller intensity values. This
figure is generated by distributing 100 clusters between five groups

within-cluster variance, and Ngi
elem is the number of elements

in the i th group. The overall between-cluster variance and
the overall within-cluster variance are defined as:

Vb =
k∑
j=1

N
cl j
elem

∥∥m j − m
∥∥2 (44)

Vw =
k∑
j=1

∑
me∈cl j

∥∥me − m j
∥∥2 (45)

where N
cl j
elem is the number of elements in the jth cluster of the

ith group andm j denotes the centroid of the jth cluster.m and
me are the overall mean of feature values for all elements in
the ith group and feature of one element, respectively. Since
a good clustering has a large between-cluster variance and a
small within-cluster variance, i.e., a large Calinski–Harabasz
index value, the optimal cluster number for the ith group can
be determined by the following optimization problem:

NCl∗
gi = argmax

k
(CHk) (46)

where the applied cluster number for the ith group in k-
means clustering is obtained by comparing NCl∗

gi with Ncl
gi ,

see Eqs. (40) and (42).
The hierarchical clustering is performed once in the offline

stage of our ROM. In the next section, we augment this static
offline clustering with a dynamic counterpart that evolves
with iterative solutions of the nonlinear equilibrium equa-
tions of plasticity and damage.

3.2.2 Online dynamic clustering

Wepropose an online dynamic spatial decompositionmethod
to accommodate the evolution of equilibrium equations dur-
ing the initiation and propagation of strain hardening and
softening. The dynamic method augments the static offline
clustering of Sect. 3.2.1 with online refinements over critical
regions in an RVE as it is deformed. In a multiscale simu-
lation, the dynamic clustering is performed for all the RVEs
associated with the macro-IPs.

While anRVE is deformed,we check a dynamic clustering
initiation condition at each load increment. If the condition is
not met, we solve the micro-equilibrium equations based on
the existing clustering. Otherwise, we activate the dynamic
refinement and calculate an error indicator that selects the
“parent” clusters that must be decomposed into multiple
“children” clusters. This decomposition relies on a remesh-
ing procedure for dividing the clusters and transferring the
state variables between the parent and children clusters. We
stop the online decomposition once the total number of child
clusters exceeds the user-defined total number of clusters
(Ncl

user ), that is:

n+1∑
t=1

Ncl
t ≤ Ncl

user (47)

where Ncl
t is the number of new clusters created at time step

t . Details of each step are discussed below.
In this work, we assume adaption starts and continues as

long as the total number of existing clusters is less than the
prescribed upper limit that is chosen by the user. If this con-
dition is satisfied, we select the parent clusters that must be
refined based on their equivalent plastic strain values. Specif-
ically, we decompose the clusters whose plastic strains are
either the highest in the RVE (spatial anomaly) or quite dif-
ferent from the plastic strains of the neighboring clusters
(spatial discontinuity). We note that our adaption scheme is
integrated with DCA [17] whose clusters are topologically
connected (unlike the approach developed in [28]). Con-
sequently, finding a cluster’s neighbors and computing its
spatial discontinuity is simply done by checking the connec-
tivity of agglomerated elements followed by comparing their
equivalent plastic strains.

The clusters with spatial anomalies are likely located in a
strain softening region while those with spatial discontinu-
ities tend to be at the boundary of damage bands surrounded
by fractured and intact elements. We consider both cases
as indicators of concentration regions which require higher
degrees of interpolations (i.e., more cluster decomposition)
for capturing solution gradients accurately.

Compared to existing adaptive methods such as the one in
[45], the novelty of our approach is that we augment the two
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spatial softening indicators discussed above with a temporal
metric to choose the proper time steps for spatial refinements.
Specifically, we systematically integrate our dynamic clus-
tering with the new AAF-IE scheme proposed in Sect. 3.1.2
to identify the transition time of material properties between
elasticity and plasticity. The identification of the critical time
instances helps to improve fracturemodeling since increasing
spatial interpolations at material transition stages are crucial
to predict accurate strain states that precede plasticity and
damage.

Once the parent clusters are selected at critical transition
time instances, we refine them by re-meshing which controls
the number of children clusters created at each step. This re-
meshing, similar to the h-adaptivity of FEM, decomposes a
parent cluster into multiple small clusters while maintain-
ing the original boundaries. Since the parent clusters are
in concentration regions with high solution gradients, this
decomposition improves the solution accuracy by enriching
spatial interpolations.

We divide each parent cluster by the position-based clus-
tering which agglomerates material points based on their
coordinates to multiple child clusters with topologically con-
nected boundaries. For simplicity, we assume each parent
cluster is decomposed into two child clusters, and neither of
the new clusters can be further divided. Furthermore, we use
the AAF-IE metric in Eq. (37) to approximate the number of
clusters that must be added at the current time instance tn+1

as a function of the time increment �tn and the plastic strain
increments (�Epl

n and �Epl
n−1) from previous steps, that is:

Ncl
n+1 = Ncl

0

/
γn+1 ≈ Ncl

0 /MIN
X∈�

�tn

√√√√ ξE ref∣∣∣(�Epl
n − �Epl

n−1)
∣∣∣
max

(X)

(48)

where Ncl
0 is the prescribed number of new clusters when the

adaption step starts.
The underlying idea of Eq. (48) is to have the number of

new clusters be inversely proportional to the AAF-IE’s error
that estimates the variation of material responses amid tran-
sitions. As a result, we provide the transition phase (when
extrapolation errors are expected, see Sect. 3.1) with smaller
time steps and finer spatial discretization. In Sect. 4.2 we
demonstrate the advantage of dynamic clustering over a sim-
ple approach where a fixed number of clusters are added per
load increment.

A major advantage of our dynamic clustering strategy
is that parent and their child clusters are hierarchically
related. That is, upon refinement, child clusters inherit the
same history-dependent state variables from their parents
and we only need to locally adjust the reduced stiffness
matrix in DCA via the incremental assembly by Eq. (24).
The implementation details of our dynamic and static clus-
tering methods are outlined in Algorithm 1.
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3.3 Workflow of our multiscale damagemodel

As demonstrated in Fig. 4 our model starts with the offline
stress-informed clustering (see Sect. 3.2.1) which solves
the multiscale nonlinear analysis by incrementing load
steps to estimate the macroscale deformation gradients and
microscale effective responses. This estimation is done via a
hybrid integration scheme which avoids softening-induced
solution divergence (see Sects. 2.1 and 2.4). In this pro-
cess, we perform online adaptive temporal adjustment (see
Sect. 3.1.2) and spatial decomposition (see Sect. 3.2.2)
to improve the analysis accuracy in regions where strain-
localized softening behaviors appear.

4 Numerical experiments

In this section, we study the effect of porosity on the soft-
ening behavior of metallic components made of aluminum
alloy A356. We consider the alloy as the primary mate-
rial phase and the pores as the secondary phase. Except for
porosity, other polycrystalline microscopic features such as
grain boundaries are out of the scope of this study. We per-
form the spatial and temporal adaptive reductions introduced
in Sects. 3.1 and 3.2 on the primary material phase in all
micro-, macro-, and multi-scale simulations. The values of
elasticmodulus (M) andPoisson’s ratio (v) ofA356 are given
as:

M = 5.70e4MPa, v = 0.33 (49)
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A356’s elastoplastic hardening behavior is assumed to be
isotropic and follow an associated plastic flow rule with the
Von-Mises yield surface defined as:

S ≤ SY
(
E

pl
)

(50)

where S is theVon-Mises equivalent stress and the yield stress
SY is governed by a predefined hardening law that depends

on the equivalent plastic strain E
pl
. Thematerial’s hardening

behavior is assumed as piecewise linear as demonstrated in
Fig. 5. To model strain softening, the alloy is modeled as a
ductilemetalwith the fracture strain (E f ) and fracture energy
(G f ) given as:

E f = 6.67e − 2, G f = 1.92E4N/m (51)

As discussed in Sect. 3, our ROM framework employs
temporal and spatial reductions to accelerate damage simula-
tions. Correspondingly, in Sect. 4.1, we study a macroscopic
3D plate to demonstrate the benefits of the proposed AAF-
IE approach discussed in Sect. 3.1 which achieves temporal
reduction by reducing required time steps in intricate nonlin-
ear analyses. Next, in Sect. 4.2, we test the adaptive spatial
clustering techniques discussed in Sect. 3.2 to deform 3D
microstructures under complex loading conditions. Finally,
in Sect. 4.3 the two reduction techniques are integrated
within the first-order computational homogenization scheme
to quantify the effects of spatially varying micro-porosity
on macro-component damage behaviors. In all experiments,
the accuracy of the proposed ROM is verified against direct
numerical simulations (DNS) based on FEM.

The proposed method is implemented in Matlab. All
macro- and micro-scale simulations in Sects. 4.1 and 4.2 are
conducted on a 64-bit Windows desktop with the following
hardware: four Intel i5-8250UCPU cores running at 1.8 GHz
with 16 GB installed RAM. The concurrent multiscale sim-
ulation in Sect. 4.3 is performed on a high-performance
cluster with 30 CPU cores (AMD EPYC processor running
at 4.1 GHz) and 192 GB RAM.

4.1 Macroscale experiments

We test the AAF-IE method on the macroscale 3D plate
shown in Fig. 6a. Due to symmetry, we deform only one-
quarter of the model by applying a Dirichlet boundary
condition (u = 0.8mm) on the top surface and symmet-
ric boundary conditions on the left and bottom surfaces,
see Fig. 6b. To demonstrate the efficiency of AAF-IE, we
first consider an elastoplastic deformation with hardening
but without fracture. To obtain a benchmark solution, we
mesh the model with 6000 linear tetrahedron elements and
compute the solution via an implicit scheme. The obtained

Fig. 4 Flowchart of our model. Our approach has offline and online
stages where the latter stage allocates clusters to regions where high
strain concentrations appear during the simulation

Fig. 5 Hardening behavior of A356. We use a piecewise linear harden-
ing behavior
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Fig. 6 Macroscale model. a Geometry and the dimensions of the 3D
plate which has a hole in its center. Due to symmetry, only the red

dashed part is modeled. b Boundary conditions are applied to the stud-
ied model. c Distribution of the equivalent plastic strain after work
hardening (no damage, obtained via DNS)

Fig. 7 Accuracy and efficiency assessment of IE schemes. a Compar-
ison of load–displacement responses for a strain-hardening simulation
between the implicit solver, CAF-IE with different constant steps, and

AAF-IE. b The computational time of each Newton step for different
schemes. A close-up comparison of CAF-IE schemes is shown without
other solutions

equivalent plastic strain distribution is shown inFig. 6cwhere
the elements with the highest strain values are observed near
the surface of the middle hole.

The AAF-IE’s load–displacement response is demon-
strated in Fig. 7a where the implicit solution is included
as a benchmark. Since the current state variable (increment
of plastic strain tensor) in an impl-exp scheme is linearly
extrapolated from its previous values, see Sect. 3.1, predic-
tion accuracy is affectedby its step sizes atmaterial transition.
In particular, the impl-exp scheme’s extrapolation errors are
significant when using large steps in the transition. For exam-
ple, in the constant-step assembly-free impl-exp (CAF-IE)
schemes, decreasing the number of steps from 200 to 50
results in larger time steps andhigher extrapolation errors, see

Fig. 7a. On the contrary, the extrapolation error of our AAF-
IE scheme is reasonably small even though we use much
fewer time steps. This is because our adaptive schemes auto-
matically adjust timestep sizes such that smaller steps are
utilized in the transition of property phases while large steps
are used at other non-critical times.

We note from Fig. 7a that during the material transition
phase fewer constant steps of CAF-IE result in larger step
sizes and, as a result, exhibit higher extrapolation errors (e.g.,
comparison of CAF-IE with 50 steps and 200 steps). With
a larger extrapolation error, more iterations are required in
CAF-IE towards convergence at each step which, in turn,
results in higher computational time at each Newton step
as shown in Fig. 7b. Comparatively, our AAF-IE adaptively
reduces its step size to lower the required number of iterations
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Fig. 8 Fracture simulations via different solvers. a Comparison of load–displacement responses between explicit solver, co-simulation scheme, IE
solver with constant steps, and our AAF-IE solver. b Comparison of total computational time between different solvers

and computational time per step. After the transition phase,
extrapolation errors are greatly reduced such that fewer iter-
ations and smaller computational time are required at each
step. Comparatively, for the implicit scheme, its computa-
tional cost per iteration ismuch higher than the other schemes
because it requires the underlying stiffness matrices to be re-
assembled at every iteration.

Note that the number of steps in CAF-IEs (i.e., 50, 100,
200 in Fig. 7b) are prescribed by the user where smaller
numbers result in longer per-step computational costs since
the steps are larger and involve more iterations. Meanwhile,
the number of steps in AAF-IE (i.e., 96) is automatically
determined by the algorithm to achieve the same level of
solution accuracy as the CAF-IE with 200 steps, see Fig. 7a.
The reason AAF-IE needs fewer steps than CAF-IE is that
AAF-IE can adjust its temporal discretizationwhere steps are
enlarged during non-critical time instances and, as a result,
the number of steps decreases.

We now demonstrate the performance of AAF-IE in the
presence of softening by comparing it against two fracture
simulations that use explicit and co-simulation schemes, see
Fig. 8a. The explicit solver is conditionally stable but is quite
slow since sufficiently small steps are required to ensure
stability. The co-simulation approach applies the implicit
and explicit solvers sequentially to simulate strain harden-
ing and softening, respectively. It is more efficient than the
pure explicit solver, but its efficiency depends on the fraction
of deformation that includes softening.

The load–displacement curves obtained from different
methods are illustrated in Fig. 8a where we observe that our
AAF-IE and CAF-IE with 200 constant steps achieve very
similar results. However, the solutions obtained via explicit
and co-simulation methods indicate significant fluctuations
in both hardening and softening. Reducing such erroneous
fluctuations often requires applying fictitious damping forces

which can result in unphysical solutions if they are excessive
and implemented improperly. In addition, it is noteworthy
that our AAF-IE (i.e., 100 steps) only requires half of the
time steps as that of CAF-IE (i.e., 200 steps), indicating a
dramatic temporal reduction.

We compare the total computational time of the four dif-
ferent solvers in Fig. 8b where we observe that CAF-IE
and AAF-IE are significantly faster than the explicit and
co-simulation procedures. This computational efficiency is
primarily because both CAF-IE and AAF-IE are uncondi-
tionally stable and hence their enlarged steps reduce the
overall simulation time.We also note that AAF-IE converges
to the same solution as CAF-IE but with almost half of the
steps and a 59% reduction in costs. Compared to the explicit
solver widely applied in fracture mechanics, our AAF-IE
scheme achieves a more accurate (smooth) solution with an
acceleration factor of 11.4. We, therefore, apply AAF-IE to
the following studies.

We prevent the softening solutions from mesh depen-
dency by applying a non-local function (see Sect. 2.3) to
the macroscale model in Fig. 6. Specifically, we assume the
strain localization band has a width3 of 1.5 mm and then test
for mesh independency by discretizing the model with four
mesh levels and comparing the resulting load–displacement
responses. As shown in Fig. 9, the softening curves converge
as the number of elements increases. With 13,000 elements,
mesh independency is observed for both post-failure load-
–displacement responses and fracture energies (i.e., the area
under the load–displacement curve after damage initiation).

We can further verify mesh independency by comparing
the equivalent plastic strain distributions and damage pat-
terns across the four mesh levels, see Fig. 10. As the number

3 A more realistic softening bandwidth value is typically determined
via experiments or high-fidelity simulations.
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Fig. 9 Mesh independency study on history variables. Load–displace-
ment responses converge as the number of elements (h) increases

of elements increases in Fig. 10a–d, we observe similar strain
localizations. In particular, the direction of the softening band
in each plot is orthogonal to the direction of the applied
Dirichlet boundary condition. This band marks the damaged
elements and extends from the inner hole to the outer surface.
During damage evolution, the elements inside the band accu-
mulate significant plastic strain and so their damage variables
possess much higher values than their surrounding elements,
see Fig. 10e–h. This observation explains the striking sim-
ilarity between the strain localization bands (top row) with
the fracture bands (bottom row) in Fig. 10.

It is noteworthy that in Fig. 10e, the mesh is so coarse
that the element sizes are almost the same as the prescribed
fracture band width. In this scenario, the non-local function
in Eq. (14) has little effect and the fracture band contains one
single layer of damaged elements. However, as discretization
become increasingly finer in Fig. 10f–h, the non-local func-
tion achieves convergent softening solutions by averaging the
damage variables of elements within the prescribed width of
fracture bands. Across these cases, we also observe that mul-
tiple layers of damaged elements are contained within the
fracture bands which indicates that the macroscale damage
patterns are independent of mesh sizes and produce consis-
tent fracture energies.

4.2 Microscale experiments

In this section, we integrate the temporal and spatial adap-
tion techniques into our ROM whose performance is then
tested on various porous microstructures. In all experiments,
microscale pores are modeled as prolate ellipsoids with two
identical minor axes. We use the following four descriptors
to characterize the morphologies and spatial distribution of
pores in a microstructure: pore volume fraction (V f ), num-
ber of pores (Np), aspect ratio between major and minor
axes (Ar ), and the average spatial distance between the two
nearest pores (rd , units in ¯m). In addition, we simulate
the microscale damage evolutions via the stabilized micro-
damage model proposed in [31] (see also Appendix B).

Fig. 10 Macroscale mesh independency study of field variables. a–d Distributions of equivalent plastic strains which converge as the number of
elements increases. e–f Damaged elements and the distributions of fracture bands are independent of the mesh
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Fig. 11 A simple 3Dmicrostructure with two pores. a The microstructure contains two identical spherical pores on the neutral z-plane. bDimension
of the microstructure (on the neutral z-plane). c Distribution of the equivalent plastic strain via DNS

4.2.1 Effect of different clustering methods

In this experiment, we apply our ROM to the microstructure
in Fig. 11awhich has two identical spherical pores located on
the neutral z-plane. The dimensions of the microstructure’s
cross-section at the neutral z-plane are shown in Fig. 11b.
Figure 11c shows the distribution of the equivalent plastic
strain obtained via DNS (FEM with 33,000 elements) when
thismicrostructure is subject to themacroscopic deformation
gradient in Eq. (52).

F =
⎡
⎢⎣
1.1 0 0
0 0.95 0
0 0 0.95

⎤
⎥⎦ (52)

We start by checking the sensitivity of the microscale
damage solutions to mesh size in DNS. To this end, we dis-
cretize the microstructure by four different meshes which
have 2000, 8000, 15,000, and 33,000 elements. By compar-
ing their homogenized stress–strain responses in Fig. 12a, we
find that the microscale mesh dependency is well controlled
by using the fracture energy-constrained microscale damage
model (see Sect. 2.3.2 and Appendix B). Specifically, as the
number of elements increases, the effective responses con-
verge to the solution with 33,000 elements. To emphasize
the importance of the prescribed fracture energy on damage
responses, we add two curves in Fig. 12 that correspond to a
simulation with larger fracture energy (G∗

f = 1.92e6N/m),
see Eq. (51) for G f . As these curves indicate, the post-
damage behavior and fracture energy are quite sensitive to the
prescribed G f . Particularly, a larger fracture energy enables
material points towithstand higher external loads before frac-
ture.

We now compare DNS with our ROM with the position-
based clustering. The results are provided in Fig. 12b and

indicate that as the number of clusters increases, the pre-
dicted ultimate tensile strength (UTS) and fracture toughness
approach to those of DNS. Specifically, with 1600 clus-
ters, ROM’s homogenized response is identical to that of the
DNS. It is noteworthy that the number of clusters represents
the levels of spatial discretizations. A small cluster num-
ber generally results in coarse discretization with diffusive
(low) plastic strain fields at each cluster. As the magnitude
of the local plastic strain is smaller than DNS, ROMs exhibit
delayed fracture initiations, higher UTS, and larger mate-
rial toughness. This delayed damage response is gradually
resolved as we increase cluster numbers. We also note that
the ROM solutions are obtained by the microscale damage
model (see Appendix B) which uses the sameG f as in DNS.
Similar to above, the ROM with a larger fracture energy G∗

f
is able to endure higher macro-strain before softening, and
thus exhibit delayed damage behavior.

We next demonstrate the efficacy of the stress-informed
clustering by preprocessing the same RVE with six offline
orthogonal loads as discussed in Sect. 3.2.1. The resulting
Von-Mises stresses are used to compute the elemental stress
intensity scalar whose spatial distribution is demonstrated
in Fig. 13a. Following our hierarchical approach, we divide
the elements into three groupswhere each group has approxi-
mately the same number of elements, see Fig. 13b.We choose
three different values for the total number of clusters (i.e.,
k = 400, 800, and 1600) and then follow the procedures
outlined in Sect. 3.2.1 to assign these clusters to the three
groups. After hierarchical clustering (which is in the offline
stage and done only once), we predict the fracture behavior in
the online stage via our ROM. The results are summarized in
Fig. 13c and indicate that, with the same number of clusters,
stress-informed clustering provides higher accuracy than the
naïve position-based clustering in Fig. 12b. Specifically, in
Fig. 13c, we note that when the number of clusters increases
to 800, the ROM’s solution converges to that of DNS.
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Fig. 12 Homogenized results by DNS and ROM. aMesh independency
study in DNS (h: number of elements) where the evolution of the dam-
age variable is controlled by fracture energy G f . Fracture behaves very
distinctively when using G∗

f . b Results of ROM homogenizations via a

position-based clustering (k: number of clusters) where the impacts of
G f is demonstrated by providing the curve corresponding to G∗

f for k= 400

Fig. 13 Stress-informed
clustering. a Distribution of
stress intensities which is
computed from the six
orthogonal offline loadings.
b Elements are agglomerated
into three groups according to
their stress intensities where each
group has approximately the
same number of elements. Both
figures are plotted on the neutral
z-plane of the 3D RVE in
Fig. 11a

Fig. 14 Effective responses of
stress-informed clustering.
Compared to position-based
clustering results,
stress-informed solutions are
improved using the same number
of clusters (k = 400). A higher
value of clustering split factor in
the stress-informed method
results in more accurate solutions
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The clustering split factor in Eq. (40) is an important
parameter that affects the results of our hierarchical clus-
tering. To demonstrate its impacts, we compare the solutions
of ROMs with the same 400 clusters but different values
of s f in Fig. 14. As discussed in Sect. 3.2.1, a positive s f
promotes more clusters in the groups with high stress inten-
sities, while a negative s f works oppositely. For instance,
s f = 1.0 results in 67, 133, and 200 clusters in groups 1, 2,
and 3, respectively, while s f = −1.0 genrates 219, 109, and
72 clusters in those groups. Comparing the effective results
from the two s f , we observe a significant improvement when
assigning more clusters in critical regions (s f = 1.0). There-
fore, we choose the default value of the heuristic split factor
as 1.0 in our following tests.

To further distinguish the position-based and static stress-
informed clusterings, we compare their cluster distributions
and equivalent plastic strains in Fig. 15 where the RVE is
decomposed by 400 and 1600 clusters. Compared to the
position-based method, the stress-informed approach allo-
cates more clusters to the highly-stressed regions (around the
bridge region connecting the two pores) and fewer clusters
to the non-critical regions, compare the top row in Fig. 15a,
c with Fig. 15b, d. As a result of such distributions, the
stress-informed method produces large (small) clusters in
non-critical (stressed) regions which increase solution accu-
racy as small clusters enable capturing high gradients. This
improvement is illustrated in the bottom row of Fig. 15where
stress-informed clustering captures strain concentrations bet-
ter than the position-based counterpart. We note that, while
the results based on these two clustering methods differ, they
are both quite close to DNS results (e.g., compare the equiv-
alent plastic strains in Fig. 15 with DNS results in Fig. 11c).

We now compare the performance of the above two
clustering methods with the online dynamic approach (see
Sect. 3.2.2) which aims to refine clustering as an RVE is
deformed and softening appears. Thefirst step of the dynamic
approach is to determine the number of new clusters per time
step. To this end, we use our error-control adaptive scheme
for new cluster generations relying on the AAF-IE’s error
metric in Eq. (34), and we compare its performance against
a naïve approach where the same number of new clusters are
created per step. We set the initial and maximum numbers of
clusters as 400 and 800, respectively. Both approaches use
position-based clustering to create the initial 400 clusters but
the additional 400 clusters are generated either by the error-
controlled scheme or uniformly at each step.

In Fig. 16a, we illustrate the adaptive Newton step sizes on
the left axis and find that they are reduced to theirminimumat
the fifth step when material properties transit from elasticity
to plasticity. The steps gradually grow and plateauwhenmost
material points enter the plastic regimes. The number of new
clusters added in each step is recorded on the right axis in
Fig. 16a and indicates that, while the simple approach adds

8 clusters in each step (a total of 400 additional clusters),
the adaptive scheme adds all the new clusters during the first
eight steps when phase transitions occur.

We compare the effective strain–stress responses between
the two approaches in Fig. 16b where it is clear that the adap-
tive scheme provides higher accuracy. The primary reason
behind this result is that in history-dependent deformations
the adaptive scheme reduces the errors that appear early in
the simulations (due to insufficient discretizations) and are
accumulated as the deformation progresses.

To further improve accuracy, we now use the fully adap-
tive strategy which leverages both the offline stress-informed
clustering and the online dynamic clustering.As illustrated in
Fig. 16b the solution of the fully adaptive clustering is more
accurate than the previous two cases (all approaches have
the same total number of clusters) and matches the solution
obtained via DNS.

Hereafter, for brevity, we refer to the clusterings without
error control, with error control, and with full adaption as
clustering type-1, 2, and 3, respectively. In the top row of
Fig. 17, we plot the spatial distributions of the cluster cen-
troids across the three methods. We observe that the new
clusters from type-2 and especially type-3 methods are quite
compact and largely located near pore surfaces. This behavior
is because when material properties change abruptly during
phase transition, AAF-IE adaptively reduces time steps and
generates more clusters at each step. The new clusters are
created around pore surfaces where high solution gradients
appear. As shown in the bottom row of Fig. 17, this com-
pact clustering behavior improves the accuracy in capturing
concentrations.

We analyze the computational costs of type-3 (full adap-
tion) clustering in Fig. 18awhere the offline and online stages
consume 54.9 and 291.2 s, respectively. The online step time
increases in early steps due to phase transition and then it
drops asmaterials are yielded. The step time rises again in late
steps due to damage evolutionswhere expensivemicroscopic
damage models are activated to map effective responses
between the reference microstructures used in damage mod-
eling, see Appendix B.

Finally, we compare the online computational costs of dif-
ferent clustering approaches against the clock time of DNS
in Fig. 18b.We note that as the clustering types advance from
the position-based method to offline stress-informed and
fully-adaptive approaches, the required number of clusters
for matching DNS decreases. In addition, compared to DNS
which relies on the pure implicit scheme with re-assembling
stiffness matrix at each iteration, our adaptive ROM with
temporal reductions (by AAF-IE) and spatial reductions (via
adaptive clustering) needs less than 3% computational time.
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Fig. 15 Comparisons of clustering and effective plastic strains. The top and bottom rows indicate, respectively, the cluster distribution and the
equivalent plastic strain field on the neutral z-plane

Fig. 16 Adaptive clustering with the error-control scheme. a Adaptive
Newton step sizes and the number of new clusters per step. b Accuracy
improvements of the error-control adaptive schemes on homogeniza-
tion results where the fully adaptive approach is the combination of

offline stress-informed clustering with an online error-controlled adap-
tive counterpart
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Fig. 17 Different clustering approaches and effective plastic strain dis-
tributions. The top row indicates the spatial positions of the initial
(offline) and dynamic (online) clusters across the three different cluster-
ing approaches. The plots in the bottom row illustrate the distribution

of the effective plastic strains on the neutral z-plane for each of the
approaches

Fig. 18 Time analyses on the fully adaptive method. a Online solution time per step of the fully adaptive ROM. b Time comparisons between DNS
and ROMs (h: number of elements, k: number of clusters) where different clustering approaches converge to the same DNS solutions
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Fig. 19 Microstructures with different porosity volume fractions. aMorphologies of the microstructures with distinct pore radii (R) and descriptors
[V f , Np , Ar , rd ]. b Homogenized stress and strain curves

Table 5 Accuracy analyses. Errors of ROMs’ toughness and UTS as
compared to DNS

Pore radii (μm) Error of toughness (%) Error of UTS (%)

8 0.34 1.24

15 0.71 0.65

22 2.27 2.02

30 2.19 0.76

4.2.2 Effects of porosity volume fraction

Porosity volume fraction significantly affects alloys’ failure
behaviors [46]. To investigate its influence, we keep the posi-
tions and shapes of the two pores in the previous subsection
identical but change their radii to 8 μm, 15 μm, 22 μm, and
30 μm. As shown in Fig. 19a, these four cases correspond
to microstructures with porosity volume fractions of 0.43%,
2.8%, 8.9%, and 22.6%, respectively.

We deform these four RVEs using the same macro-
deformation gradient in Eq. (52) and illustrate their effective
stress–strain responses in Fig. 19b. We observe that with the
increase of porosity volume fractions, the values of both
toughness and UTS are significantly reduced. Specifically,
the toughness and UTS of the microstructure with 22.6%
porosity are only 79.2% and 80.9% of the one with 0.43%
porosity. In addition, by comparing our fully adaptive ROM
against DNS, we find our ROM achieves high fidelity with
solution errors smaller than 3%, as listed in Table 5.

4.2.3 Microstructure with complex morphology

In this section, we test the performance of our ROMusing the
complex RVE in Fig. 20a which is subject to the deforma-
tion gradient in Eq. (52). The distributions of the equivalent
plastic strain obtained by DNS and ROMwith fully adaptive
clustering are compared in Fig. 20b–e. In this simulation, the
ROM is accelerated by both temporal and spatial adaption
techniques. We see that ROM’s solutions (strain distribu-
tions and localizations) converge to DNS asmore clusters are
used. However, compared to the RVE in Fig. 11a which has
relatively simple pore geometries, more clusters are needed
in this test to capture local porosity morphology to ensure
ROM’s solution converges to that of DNS.

The homogenized responses are compared between DNS
and our ROM in Fig. 21a.When the initial number of clusters
increases to 3200, the ROM’s stress–strain curve matches
DNS in terms of both UTS and fracture toughness. To further
investigate the discrepancy between DNS and ROM, we plot
an error histogram in Fig. 21b which measures the difference
in the effective plastic strains between DNS and ROM at
each element. It is observed that compared to fewer clusters
(e.g., k = 200 → 300), the ROMs with more clusters have
lower prediction errors. Predicted toughness values of DNS
and ROM are compared in Table 6 where we see that the
error drops from 1.61 to 0.56% as the total cluster numbers
increase from 300 to 3300.

Finally, we compare the computational costs of DNS and
ROMs in Fig. 22. We note that the offline costs are excluded
from the time analyses since they are only performed once
and their results can be reused for any other deformation.
We add that with the highest adaptive cluster numbers (k
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Fig. 20 Microstructure with complex pore morphology. a The studied
microstructure and its pore descriptors [V f , Np , Ar , rd ]. b Distribu-
tion of equivalent plastic strains emulated via DNS. c–e Distributions

of equivalent plastic strains are simulated by adaptive ROMs with dif-
ferent numbers of clusters where the first and second numbers indicate
the initial and total number of clusters, respectively

Fig. 21 Accuracy analyses on effective stresses. a Comparisons of homogenization results between DNS and adaptive ROMs. b Element-to-element
strain comparisons between DNS and ROMs

Table 6 Accuracy analyses on toughness. Comparison of material
toughness simulated by DNS and ROMs for the studied microstruc-
ture in Figure 20a

Method Toughness (MJ/mm3) Error (%)

DNS 8.89 –

ROM (k = 200→300) 9.04 1.61

ROM (k = 400→500) 9.01 1.29

ROM (k = 800→900) 9.02 1.42

ROM (k = 1600→1700) 8.95 0.61

ROM (k = 3200→3300) 8.84 0.56

= 3200→3300), the ROM’s online time only accounts for
about 1.3% of that of DNS; indicating an acceleration factor
of 79.9 in this example.

Fig. 22 Time comparisons between DNS and our fully adaptive ROMs.
Computational time is compared between DNS and ROMs with differ-
ent numbers of adaptive clusters for the microstructure in Fig. 20
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Fig. 23 Multiscale model. a The macroscale component comprises a
monoscale region without any porosity and a multiscale region con-
taining micro-pores. b All integration points are assigned with porous
microstructures in the multiscale region with four highlighted points.

c The four points are assigned with different microstructures, respec-
tively, where their pore descriptors are listed in the vectors [V f , Np ,
Ar , rd ]

4.3 Multiscale experiment

In this section, we integrate the temporal and spatial adap-
tion schemes with a FOCH-based concurrent multiscale
framework to investigate the influence of micro-pores on
the damage behavior of a macro component. Our multi-
scale study is performed on the same 3D plate model in
Fig. 6 which is now considered the macro-structure, see
Fig. 23a. We assume the same Dirichlet boundary conditions
are applied on the plate as in Fig. 6b. We also presume the
plate consists of amonoscale regionwithout any porosity and
a multiscale region with microscopic pores, see Fig. 23b. To
avoid softening-inducedmesh sensitivity,we follow themesh
dependency study in Sect. 4.1 by discretizing the plate with
13,000 linear tetrahedral elements and applying the non-local
function with the fracture bandwidth of 1.5 mm. Under this
discretization, the mono- and multiscale regions are meshed
by 10,560 and 2440 elements, respectively.

To model local morphologies, we associate all macro-
IPs in the multiscale region with spatially varying porous
microstructures. We highlight four IPs in the multiscale
region whose corresponding microstructures are visualized
in Fig. 23c. Although the four RVEs share the same poros-
ity volume fraction of 6.5%, their local morphologies are
significantly different and vary from having one spherical
pore to having multiple randomly dispersed overlapping
pores. These four types of RVEs are randomly assigned to

the macro-IPs. To ensure consistent fracture energies across
scales [19], we enforce the sizes of RVEs to be the same as
the sizes of macroscale elements.

We mesh the microstructures of our multiscale model
based on the complexity of their morphologies. Specifically,
we mesh the four microstructures associated with macro-
points A, B, C, and D with 15,000, 78,000, 103,300, and
60,400 elements, respectively. Correspondingly, our multi-
scale model is discretized with a total of roughly 156 million
elements. Since the computational cost of simulating such
a model via DNS (FE2) is prohibitively high, we only uti-
lize our ROM where we assign 300 adaptive clusters to the
microstructure with a single spherical pore and 900 clusters
to all other microstructures.

The computational time of our concurrent multiscale sim-
ulation is about 59.4 h. Based on the time comparison
between DNS and ROMs in Sects. 4.1 and 4.2, the estimated
time for DNS (FE2) is more than 52,519.9 h (2188.3 days)
given the same computational resources. That is, our method
achieves an acceleration factor of 884.2 in this multiscale
study.

We demonstrate the multiscale model’s load–displace-
ment response in Fig. 24a where the plate’s ultimate load
carrying capacity is 3659.1Nat the displacement of 0.24mm,
which is an 8.5% decline from its dense counterpart in Fig. 9
where the plate ruptured at the displacement of 0.34 mm.We
observe a localized fracture band that lies in the multiscale
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Fig. 24 Results of the adaptive ROM. a Macroscale load–displace-
ment responses. b Macroscale damage patterns with a fully developed

fracture band connecting mid-hole to outer surfaces. c Microscale dis-
tributions of the equivalent plastic strains are associated with the four
integration points on the macroscale model

region and is oriented orthogonal to the Dirichlet bound-
aries in Fig. 24b. Two of the highlighted material points (B
and C) are close to the fracture band while the other two
points (A and D) are distant from the softening regions. The
microscale equivalent plastic strain fields in the correspond-
ing fourRVEs are demonstrated in Fig. 24cwherewe observe
that microstructures B and C have accumulated much larger
strains (note the axis scales). In each of theseRVEs,we notice
that high plastic strains concentrate in regions where pores
are closely packed.

5 Conclusion

We introduce adaptive deflated clustering analysis in this
paper which is a novel ROM that can simulate the damage
behavior of metallic alloys with process-induced spatially
varying microscopic pores. Our method is comprised of two
new adaption strategies that are readily extensible for any
clustering-based ROMs: a novel AAF-IE temporal adap-
tion scheme and a new spatial clustering approach. Our
AAF-IE not only alleviates softening materials’ instabili-
ties by preserving the positive definiteness of the underlying
algebraic system’s stiffness matrices, but also improves

the overall efficiency by avoiding stiffness matrices’ re-
assembly during the online process. In addition, our adaptive
spatial discretization approach significantly improves the
ROM’s prediction accuracy over critical regions by selec-
tively modifying local interpolations. Specifically, the new
clustering approach automatically adjusts cluster densities
according to online solutions and resizes temporal steps
to allocate more computational resources at crucial time
instances. In our ROM we use a macroscale non-local func-
tion and a microscopic energy-based damage formulation to
resolve softening-induced pathological mesh dependencies
and ensure fracture energy consistency across scales.

We test the performance of our adaptive ROM via several
numerical experiments. Our ROM results show significant
improvements in robustness, efficiency, and local accuracy
compared to DNS. We also apply the proposed method to a
concurrent multiscale model to simulate the multiscale soft-
ening responses and indicate that components with spatially
varying porosity defects have lower ultimate load-carrying
capacity than their dense counterparts.

We note that There are some fundamental differences
between our ROM with existing techniques. As an exam-
ple, contrary to SCA which groups elements based on
theirmechanical responses, ourROMagglomerates elements
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based on their geometrical proximity. Another major dif-
ference is our novel hybrid integration scheme that avoids
softening-induced solution divergences. Additionally, SCA
is typically applied to composite or polymer materials [14,
15] with strong or weak inclusions where the property ratio
between material phases (e.g., moduli) is reasonably small.
Our ROM is used to simulate alloys with pores where the
moduli difference betweenmaterial and void is infinite. Com-
pared with strong or weak inclusions, it is much harder
to simulate microstructures with pores (especially for an
FFT-based approaches whose computational efficiency sig-
nificantly deteriorates due to the infinite property contrast
between material phases).

Given the promising results from this work, our ROM can
be extended to finite strains and extreme load conditions in
the future. Another research direction of interest is to use our
ROM as an efficient database generator for complex material
responses, followed by deep learning approaches [47–50] to
directly correlate materials’ local morphologies with their
responses. It is also noted that in this work the plasticity
behavior of the metallic matrix is based on the J2 plasticity
model as opposed to, e.g., crystal plasticity [51–53]. Adding
crystal plasticity to our multiscale model is an interesting
idea which we plan to explore in our future works.
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Appendix A. Deflated clustering analysis

A computationally efficient reduced-order multiscale model,
named deflated clustering analysis (DCA), is proposed in
[17] to simulate the elastoplastic behaviors of metallic alloys
with process-induced, spatially varying porosity defects.
DCA relies on the clustering-based domain decomposition
that universally applies to multiscale domains to accelerate
the accurate computations of macroscale deformations and
effective microscopic responses.

Compared to the classic FE2 approach, which solves
equilibrium equations on both macro- and micro-scales
via computationally expensive FEM, the numerical advan-
tage of DCA is to accelerate emulations by systematically
agglomerating neighboring materials points to clusters and
projecting solution variables into clustering-based deflation
spaces for efficient nonlinear simulations, see Fig. 25. While
both macro- and micro- computations follow general FEM
formulation with displacements as unknown variables, the
acceleration mechanisms on macro- and micro-domains are
different.

Macroscale clustering is integrated with the deflation
method to accelerate the conjugate gradient (CG) process of
the underlying algebraic systems at each Newton iteration.
The deflation method aims to remove the near-zero eigen-
values from the algebraic system’s stiffness matrices, and
it simultaneously lowers their conditional number which, in
turn, increases the computational efficiency substantially. An
incremental deflation method is also utilized to avoid any
unnecessary re-assembly of the deflation matrix during run-
time. FEM solutions are recovered from the deflation space
per CG iteration, and their convergence errors are checked
based on prescribed tolerance. By enforcing the same CG
convergence criteria between FEM and deflationmethod, the
macroscale ROMconverges to the same displacement results
as those of FEMwithout losing solution accuracy. Therefore,
the local deformation gradients at each macroscale integra-
tion point are highly accurate for the sequent microscale
analyses.

Formicroscale, clustering aims to generate coarse compu-
tational grids, similar to the coarse-graining process, where
node-to-node interactions of FEM are condensed to the
cluster interactions in the reduced cluster-based mesh. For
the microscale equilibrium equations, utilization of more
clusters results in a larger algebraic system with more eigen-
modes and sophisticated deformations but with the expense
of higher degrees of freedom and longer simulation time.
In essence, the microscale clustering analysis targets to
provide homogenized responses at macro-integration points
by coarse-graining responses from micro-clusters. The effi-
ciency of the microscopic ROM ismuch improved than FEM
since degrees of freedom are dramatically reduced from large
numbers of elements to a few clusters. Although it loses
local accuracy as the solution variables are assumed uniform
within each cluster, it is sufficient for the sake of homoge-
nizations.

Detailed steps of applyingDCA inmicroscale simulations
are summarized inAlgorithmA.1.We note that following the
construction of a clustering-based reducedmesh and stiffness
matrix, microstructural local stress and strain fields are aver-
aged at the centroid of each cluster. In other words, instead
of computing distinct solution fields at different elements,
close-by material points (in one cluster) are assumed to share
the same solutions. We also stress that DCA in [17] is depen-
dent on naïve position-based clustering, and its accuracy on
localized solutions can be improved by the proposed adaptive
clustering technique in this work.
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Fig. 25 Comparison of the classicmultiscalemethodwithDCA. aClas-
sic FE2-basedmultiscalemodel assumes eachmacroscalematerial point
is associated with a microstructure where the deformation gradients (F)
are passed from the macro- to micro-domains, and the effective stress

(S) and moduli (C) are passed backward. b DCA speeds up nonlinear
simulations on multiple scales via clustering-based data compression
to systematically reduce unknown variables where different clusters are
marked by distinct colors
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Appendix B. Stabilizedmicro-damagemodel

Strain softening causes severe convergence difficulty to
implicit integration procedures, e.g., the Newton–Raphson
method, see Sect. 2.4. Although our impl-exp integration
scheme can successfully resolve softening-induced instabil-
ity, the global stiffness matrix of the underlying algebraic
system still needs to update the entries corresponding to
damaged elements amid crack propagations. And as large
numbers of elements enter damage realms, the updates are
expensive. To further improve the microscale computational
efficiency, we adopt the stabilized micro-damage model [31]
which is reviewed in this section.

We first demonstrate the classic progressive damage
model in Fig. 26a where the damage manifests itself in
both material moduli degradation and yield stress reduction.
Specifically, as an arbitrary material point is subject to strain
softening, its damaged yield stress (Sdm) and degraded modu-
lus (Cd

m) are computed by projecting its undamaged reference
stress (Srefm ) and the intact elastic modulus (Cel) by damage
variables, see Sect. 2.2. We point out that this model focuses
on the damage evolutions on a single integration point, and
the subscript ‘m’ presents an arbitrary material point in a
microstructure.

In contrast, the stabilized micro-damage model [31] aims
to emulate an RVE’s softening by considering its overall
response. Its advantage is that it projects the damage evolu-
tions from plastic hardening by introducing three additional
reference RVEs with partially shared state variables, and the
whole procedure is simply based on pure implicit schemes
without convergence issues. To further improve thismethod’s
efficiency, we replace its implicit scheme with our AAF-IE
for computing RVE’s effective damage responses.

For an arbitrary RVE subject to strain softening, its
homogenized stress–strain response can be demonstrated by
the blue curve in Fig. 26b where its damaged homogenized
stress SdM is computed as:

SdM = C
d
M : Eel

M = C
d
M : (EM − Epl

M) (B.1)

where Cd
M is the homogenized elastic modulus of the dam-

aged RVE, EM, Eel
M and Epl

M are the RVE’s effective total
strain, elastic strain, and plastic strain, respectively, where
the subscript ‘M’ indicates the associated variable is homoge-
nized for overallmacroscale property. The un-damaged stress
of the first reference RVE can be computed by Eq. (B.2), see
the red curve in Fig. 26b, where we assume the referenced
RVE shares the same elastoplastic property as its original
counterpart but in absence of damage.

S1M = C
el
M : Eel

M = C
el
M : (EM − Epl

M) (B.2)

whereCel
M is the shared effective elasticmoduli of the original

and the first reference RVEs. Combining Eq. (B.1) and (B.2),
the stress states on the two RVEs are related by:

S1M = C
el
M : (Cd

M)−1 : SdM (B.3)

Let homogenized stress of the first RVE (S1M) identical
to that of the second RVE (S2M) which we assume to have
the same material properties as the original RVE but it only
deforms elastically, see the yellow curve in Fig. 26b. The
elasticmacroscale strain of the secondRVE is then computed
by inverting the elastic modulus of Eq. (B.2) as:

Eel
M =

(
C
el
M

)−1 : S1M =
(
C
el
M

)−1 : S2M (B.4)

where we assume microscale stress of the second RVE to
satisfy elastic constitutive equation as:

S2m = C
el : Eel

m2 (B.5)

where Eel
m2 represents the local elastic strain at an arbitrary

integration point in the second referenced RVE, and the
homogenized elastic strain can be computed via the volume
averaging process as:

Eel
M = 1

|�|
∫

�

Eel
m2d� (B.6)

where � and |�| are the domain and volume of the original
RVEwhich are shared among all referenceRVEs.We assume
the local value of the elastic strain (Eel

m2) is shared between
the second RVE and the third RVE, which only deforms elas-
tically but its effective elastic modulus is identical to that
of the damaged original RVE (Cd

M), see the green curve in
Fig. 26b. Under this assumption, the local stress of the third
RVE (S3m) is computed by:

S3m = (1 − Dm)Cel : Eel
m2 = (1 − Dm)Cel : Eel

m3 (B.7)

where Dm is the local damage parameter at a microscale
integration point. Its value is determined by the state variable
from the first reference RVE. Towards the end, the elastic
microscale stress in the third RVE is homogenized, which
equals the effective stress of the original damaged RVE as:

SdM = 1

|�|
∫

�

S3md� (B.8)

In addition, an effective damage parameter can be defined
by the homogenized stresses from the original and the first
RVEs as:

DM = 1 −
∥∥SdM : S1M

∥∥∥∥S1M : S1M
∥∥ (B.9)
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Fig. 26 Comparison of damage
models. a Classic progressive
damage model at each integration
point of RVE. b Stabilized
micro-damage model computes
the homogenized damage
responses of the original RVE by
introducing three additional
reference RVEs that partially
share their state variables

where DM is the homogenized damage parameter that indi-
cates the damage status of the macroscopic integration point
associated with the studied RVE. Similar to the single-scale
damage parameter defined in Sect. 2.2, DM ranges between
[0, 1]. The macro-point is considered fully ruptured when
DM = 1, even if only parts of the elements in the associated
RVE are damaged.
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