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Abstract. Given two Riemann surfaces with boundary and a homotopy class of topological
embeddings between them, there is a conformal embedding in the homotopy class if and only
if the extremal length of every simple closed multi-curve is decreased under the embedding.
Furthermore, the homotopy class has a conformal embedding that misses an open disk if
and only if extremal lengths are decreased by a definite ratio. This ratio remains bounded
away from one under finite covers.
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1. Introduction

Let R and S be two Riemann surfaces of finite topological type, possibly with boundary,
and let f : R ↪→ S be a topological embedding. The goal of this paper is to give conditions
for f to be homotopic to a conformal embedding, possibly with extra nice properties. We
give an answer in terms of ratios of extremal lengths of simple multi-curves.

For us, surfaces S are of finite topological type and not necessarily connected, and embed-
dings between surfaces are required to respect certain markings; see Definition 2.1. A simple
multi-curve on S is an embedded 1-manifold in S; see Definition 2.2. The extremal length
ELS[C] of a simple curve C is a measure of the fattest annulus that can be embedded in S
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with core curve isotopic to C. See Section 3.2 for more on extremal length, in particular for
multi-curves.

Definition 1.1. For f : R ↪→ S a topological embedding of Riemann surfaces, the stretch
factor of f is the maximal ratio of extremal lengths between the two surfaces:

SF[f ] := sup
C∈C+(R)

ELS[f(C)]

ELR[C]
,

where the supremum runs over all simple closed multi-curves C with ELR[C] ̸= 0.

We will show that SF[f ] is achieved by a ratio of extremal lengths of two measured
foliations, not multi-curves. But f does not induce a natural continuous map between
measured foliations (Example 4.4), so Definition 1.1 is stated in terms of multi-curves.

Theorem 1. Let R and S be Riemann surfaces and f : R ↪→ S be a topological embedding
so that no component of f(R) is contained in a disk or a once-punctured disk. Then f is
homotopic to a conformal embedding if and only if SF[f ] ≤ 1.

The key part of Theorem 1 is due to Ioffe [Iof75]. In fact, his results show that if SF[f ] ≥ 1,
it is related to the quasi-conformal constant.

Proposition 1.2. Let f : R ↪→ S be a topological embedding of Riemann surfaces. If
SF[f ] ≥ 1, then SF[f ] is equal to the smallest quasi-conformal constant of any quasi-
conformal embedding homotopic to f .

We can also characterize conformal embeddings with some extra “room”.

Definition 1.3. Let f : R ↪→ S be a conformal embedding between Riemann surfaces.
We say that f is a strict embedding if its image omits a non-empty open subset of each
component of S. An annular extension of a Riemann surface S is a surface ˆ︁S obtained by
attaching a non-empty conformal annulus to each boundary component, with the boundary
of S smoothly embedded in ˆ︁S. An annular conformal embedding is one that extends to a
conformal embedding ˆ︁R ↪→ S for some annular extension ˆ︁R of R.

Remark 1.4. A similar relation for subsets of ˆ︁C is sometimes written f(R) ⋐ S.

Theorem 2. Let R and S be Riemann surfaces, with S connected, and let f : R ↪→ S be a
topological embedding so that no component of f(R) is contained in a disk or a once-punctured
disk. Then the following conditions are equivalent:

(1) f is homotopic to a strict conformal embedding;
(2) f is homotopic to an annular conformal embedding;
(3) there is a neighborhood N of S in Teichmüller space so that, for all S ′ ∈ N , f is

homotopic to a conformal embedding of R in S ′; and
(4) SF[f ] < 1.

Remark 1.5. When SF[f ] = 1, the embedding guaranteed by Theorem 1 is instead a Te-
ichmüller embedding in the sense of Definition 4.1 (with K = 1), as studied by Fortier
Bourque [FB18].

In condition (3), SF[f ] is related to the size of the largest ball in Teichmüller space for
which we can find conformal images of R.
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Definition 1.6. Let f : R ⊂ S be a topological embedding of Riemann surfaces. Let TR(S)
be the subset of the Teichmüller space T (S) for which there is a conformal embedding of R
in the homotopy class [f ]. (This does not contain the Riemann surface structure S itself if
SF[f ] > 1.)

Proposition 1.7. Let f : R ↪→ S be a topological embedding of Riemann surfaces. Then

d(S, ∂TR(S)) =
1

2

⃓⃓
log(SF[f ])

⃓⃓
.

We can also control the behavior of the stretch factor under taking covers. Proposition 1.2
guarantees that when SF[f ] ≥ 1, the stretch factor is unchanged under taking finite covers
(see Proposition 6.3). We can control what happens when SF[f ] < 1, as well.

Definition 1.8. For f : R ↪→ S a topological embedding of Riemann surfaces and p : ˜︁S → S

a covering map, the corresponding cover of f is the pull-back map ˜︁f in the diagram

˜︁R ˜︁S
R S.

f

˜︁f
pq

Explicitly, we have ˜︁R :=
{︁
(r, ˜︁s) ∈ R× ˜︁S | f(r) = p(˜︁s)}︁˜︁f(r, ˜︁s) := ˜︁s

q(r, ˜︁s) := r.

Then ˜︁f is a topological embedding and q is a covering map. We may also say that ˜︁f is a
cover of f , without specifying p.

Definition 1.9. For f : R ↪→ S a topological embedding of Riemann surfaces, the lifted
stretch factor ˜︂SF[f ] is ˜︂SF[f ] := sup˜︁f finite

cover of f

SF[ ˜︁f ].
Theorem 3. Let f : R ↪→ S be a topological embedding of Riemann surfaces. If SF[f ] ≥ 1,
then ˜︂SF[f ] = SF[f ]. If SF[f ] < 1, then

SF[f ] ≤ ˜︂SF[f ] < 1.

The hard part of Theorem 3 is showing that ˜︂SF[f ] is strictly less than 1 when SF[f ] < 1.
By Proposition 1.7, ˜︂SF[f ] < 1 is equivalent to saying that T ˜︁R(˜︁S) contains a ball of uniform

size around ˜︁S for every finite cover of f .
Theorem 3 is used in later work [Thu16, Thu20] to give a positive characterization of

post-critically finite rational maps among topological branched self-covers of the sphere.
This provides a counterpoint to W. Thurston’s characterization [DH93], which characterizes
rational maps in terms of an obstruction.
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1.1. History. The maximum of the ratio of extremal lengths has appeared before, usually
in the context of closed surfaces, where it gives Teichmüller distance, as first proved by
Kerckhoff (see Theorem 3.21 below). For surfaces with boundary the behavior is quite
different, as the stretch factor can be less than one.

In the special case when the target S is a closed torus, there is very precise information
about when R conformally embeds inside of S [Shi87,Shi93]. Shiba proves that in this case
TR(S) is a disk with respect to the Teichmüller metric. Masumoto gives similar information
about the case when the domain R is a once-holed torus [Mas16].

There has been earlier work on portions of Theorem 2. In particular, Earle and Marden
[EM78] showed that, with extra topological restrictions on the embedding R ↪→ S, if f is
homotopic to a strict conformal embedding then it is homotopic to an annular conformal
embedding.

It is tempting to look for an analogue of Theorem 1 using hyperbolic length instead of
extremal length, given that, by the Schwarz lemma, hyperbolic length is decreased under
conformal inclusion. However, the results are false for hyperbolic length in almost all cases
[Mas00,FB16].

These results were first announced in a research report by the last author [Thu16].

1.2. Organization. Section 2 reviews background material and specifies our definitions for
topological surfaces. Section 3 does the same for Riemann surfaces and extremal length,
as well as giving elementary properties of the stretch factor. Section 4 proves Theorem 1,
largely based on a theorem of Ioffe. Section 5 extends this to prove Theorem 2. Section 6
gives the further extension to prove Theorem 3. In Section 6, we also prove Theorem 4,
an estimate on areas of subsurfaces with respect to quadratic differentials; this may be of
independent interest. Section 7 gives some directions for future research, and in the process
gives another way to get an upper bound on ˜︂SF[f ].
1.3. Acknowledgments. We thank Matt Bainbridge, Maxime Fortier Bourque, and Fred-
erick Gardiner for many helpful conversations. Aaron Cohen, Russell Lodge, Insung Park,
and Maxime Scott gave useful comments on earlier drafts, as did the anonymous referee.
JK was supported by NSF grant DMS-1352721. KMP was supported by Simons Foun-
dation Collaboration Grants #245269 and #615022. DPT was supported by NSF grants
DMS-1358638, DMS-1507244, and DMS-2110143.

2. Topological Setting

Definition 2.1. By a (smooth) surface S we mean a smooth, oriented, compact 2-manifold
with boundary, together with a distinguished finite set P of points in the interior of S, the
punctures. The boundary ∂S of S is a finite union of circles. By a slight abuse of terminology,
by the interior S◦ of S we mean S \ (P ∪ ∂S). If we want to emphasize that we are talking
about the compact version of S, we will write S.

A surface is small if it is the sphere with 0, 1, or 2 punctures or the unit disk with 0 or 1
punctures. These are the surfaces that have no non-trivial curves by the definition below.

By a topological map f : R → S between surfaces we mean an orientation-preserving
continuous map from R◦ to S◦ that extends to a continuous map from R to S. In particular,
the image of a puncture is a puncture or a regular point, and embeddings need not be
one-to-one on ∂R. Homotopies are taken within the same space of maps.
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Definition 2.2. A multi-curve C on a surface S is a smooth 1-manifold with boundary
X(C) together with an immersion from the interior of X(C) into S◦ that maps ∂X(C) to
∂S. We do not assume that X(C) is connected; if it is, C is said to be connected or a curve.
We will mostly be concerned with simple multi-curves, those for which the immersion is an
embedding. An arc is a curve for which X(C) is an interval, and a loop is a curve for which
X(C) is a circle. A multi-curve is closed if it has no arc components.

A (multi-)curve is trivial if it is contained in a disk or once-punctured disk of S.
Equivalence of multi-curves is the equivalence relation generated by
(1) homotopy within the space of all maps taking ∂X(C) to ∂S (not necessarily immer-

sions),
(2) reparametrization of the 1-manifold X(C) (including orientation reversal), and
(3) dropping trivial components.

The equivalence class of C is denoted [C]. The space of simple multi-curves on S up to
homotopy is denoted C±(S). If ∂S ̸= ∅, then we distinguish two subsets of C±(S):

• C+(S) ⊂ C±(S) is the subset of closed multi-curves and
• C−(S) ⊂ C±(S) is the subset with no loops parallel to a boundary component.

A weighted multi-curve C =
∑︁

aiCi is a multi-curve in which each connected component
is given a positive real coefficient ai. When considering equivalence of weighted multi-curves,
we add the further relation that two parallel components may be merged and their weights
added. We write CR(S) or CQ(S) for the space of weighted multi-curves with real or rational
weights, respectively.

Definition 2.3. A (positive) measured foliation F on a surface S is a singular 1-dimensional
foliation on S, tangent to ∂S, with a non-zero transverse measure. F is allowed to have k-
prong singularities, as described, for instance, by Fathi-Laudenbach-Poénaru [FLP79], and
summarized below.

• At points of S◦, we allow k-prong singularities for k ≥ 3. (If there are only 2 prongs,
it is not a singularity.) This is also called a zero of order k − 2.

• At punctures, we allow k-prong singularities for k ≥ 1. This is also called a zero of
order k − 1.

• At points of ∂S, we allow k-prong singularities for k ≥ 3. This is also called a zero
of order k − 2. If we double the surface, it becomes a (2k − 2)-prong singularity.

We also admit the empty (zero) measured foliation as a degenerate case. A singular leaf of
a measured foliation is a leaf that ends at a singularity. A saddle connection is a singular
leaf that ends at singularities in both directions. If a saddle connection connects two distinct
singularities, and at least one of the singularities is in the interior, it is possible to collapse
it to form a new measured foliation. Whitehead equivalence of measured foliations is the
equivalence relation generated by homotopy and collapsing saddle connections. We denote
the Whitehead equivalence class of a measured foliation by [F ], and the set of Whitehead
equivalence classes of measured foliations by MF+(S).

From a multi-curve C ∈ C−(S) and a measured foliation F on S, we can form the inter-
section number

i([C], [F ]) := inf
C1∈[C]

∫︂
t

|F (C ′
1(t))| dt.
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Proposition 2.4. The map

MF+(S) → RC−(S)

[F ] ↦→
(︁
i([C], [F ])

)︁
[C]∈C−(S)

is an injection, with image a finite-dimensional manifold determined by its projection onto
finitely many factors.

Proof sketch. This is standard, although we could not find a single reference that covered
the full generality of all surface types we consider.

In the harder case of a closed surface of genus g, from a pair of pants decomposition of S
with 3g−3 curves with some extra marking, there are 9g−9 curves Ci so that the intersection
numbers i([Ci], [F ]) determine [F ], and furthermore realize MF(S) as a topological ball
[FLP79, Exposé 6]. If S is a genus g with k punctures (and no boundary), there is a similar
maximal set of disjoint closed curves with 3g − 3 + k curves. With markings, for each
pants curve we can, as before, find 3 associated curves, giving 9g − 9 + 3k curves Ci so that
i([Ci], [F ]) determine [F ].

If S has non-empty boundary, intersections with closed curves do not determine [F ], since
we allow components parallel to the boundary. We instead look at intersections with arcs.
It suffices to take the Ci to be a complete system of non-intersecting arcs in C−(S). This
gives a decomposition of S into regions that are either hexagons (with alternate boundary
components coming from the arcs) or bigons with a puncture. For either type of elementary
piece, the intersections i([Ci], [F ]) for the arcs Ci appearing on the boundary determines [F ]
within the piece, as seen below.

C1

C2 C3

C1

Furthermore, there is no ambiguity about how to glue these foliations for adjacent pieces,
and all possibilities for i([Ci], [F ]) satisfying natural triangle inequalities are possible, so
the image is a manifold. (Note we have omitted routine details about doing Whitehead
equivalences to make the foliation sit nicely with respect to this decomposition and the
like; all of this is done carefully in the case of closed surfaces by Fathi, Laudenbach, and
Poénaru [FLP79].) □

Proposition 2.4 can be used to define a topology on MF+(S), which we will use.

Proposition 2.5. The projection map from all measured foliations (not up to equivalence,
with its natural function topology) to MF+(S) is continuous.

Proof sketch. For any non-zero measured foliation F0 and [C] ∈ C−(S), there is a quasi-
transverse representative C0 ∈ [C], which automatically satisfies i(C0, F0) = i([C], [F0]). If F1

is any measured foliation close to F0, then an analysis of the behavior near singularities shows
that there is a representative C1 ∈ [C] so that C1 is close to C0 and C1 is quasi-transverse
with respect to F1. Then i([C], [F1]) = i(C1, F1) and i(C1, F1) is close to i(C0, F0). □

We can also use Proposition 2.4 to define a map from C+(S) to MF+(S), sending [C] ∈
C+(S) to the unique measured foliation [FC ] ∈ MF+(S) so that i([C ′], [C]) = i([C ′], [FC ])
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for all C ′ ∈ C−(S). This map is an embedding on equivalence classes of weighted simple
multi-curves.

Definition 2.6. A train track T on a surface S is a graph G embedded in S, so that at each
vertex of G (called a switch) the incident edges are partitioned into two non-empty subsets
that are non-crossing in the cyclic order on the incident vertices. In drawings, the elements
of each subset are drawn tangent to each other.

The complementary regions of a train track are naturally surfaces with cusps on the
boundary. A taut train track is a train track with no complementary components that are
disks with no cusps or one cusp, or once-punctured disks with no cusps.

Remark 2.7. Many authors (e.g., Penner and Harer [PH92] and Mosher [Mos03]) include
our notion of tautness in the definition of a train track, often in a stronger form forbidding
bigons (disks with two cusps) and once-punctured monogons as well.

Definition 2.8. The space of positive transverse measures or weights on a train track T
on a surface S is the space M(T ) of assignments of positive numbers (“widths”) to edges of
the train track so that, at each vertex, the sum of weights on the two sides of the vertex are
equal. If M(T ) is non-empty, then T is said to be recurrent. We have subspaces MQ(T )
and MZ(T ) for transverse measures on T with rational or integral values, respectively. For
any train track, there is a natural map MZ(T ) → C+(S), where we replace an edge of T of
weight k by k parallel strands, joining the strands in the natural way at the switches.

Lemma 2.9. Let T be a recurrent taut train track on S. Then there is a natural continuous
map M(T ) → MF+(S) extending MZ(T ) → C+(S).

We will denote the map M(T ) → MF+(S) by w ↦→ T (w). If F = T (w) for some w, we
say that T carries F .

(For convenience in the proof we are assuming the weights on T are strictly positive, but
in fact the lemma extends to non-negative weights.)

Proof. Pick a small regular neighborhood N(T ) of T , arranged so that S \N(T ) has a cusp
near each corner where T has a cusp, as illustrated in Figure 1. A weight w ∈ M(T ) gives a
canonical measured foliation FN(w) on N(T ), where an arc cutting across N(T ) transverse
to a edge e has measure w(e).

Next pick a graph Γ ⊂ S \N(T ) so that

• Γ contains ∂S,
• Γ has a 1-valent vertex at each cusp of S \N(T ) and at each puncture,
• all other vertices of Γ have valence 2 or more, and
• Γ is a spine for S \N(T ), i.e., S \N(T ) deformation retracts onto Γ.

(The condition that T be taut guarantees that we can find such a Γ). Since Γ is a spine, there
is a deformation retraction S \N(T ) → Γ. We can use this to construct a homeomorphism
ϕ : N(T ) → S \ Γ that is the identity on T ⊂ N(T ) and extends to a continuous map
∂N(T ) → Γ without backtracking. Then [ϕ(FN(w))] is the desired measured foliation T (w).

As a measured foliation (not up to Whitehead equivalence), ϕ(FN(w)) depends contin-
uously on w by construction. The quotient map to the Whitehead equivalence class is
continuous. □
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p p

Figure 1. Left: A portion of a taut train track T . The point p is a puncture.
Right: A neighborhood N(T ) of T , together with a spine Γ for S \ T , shown
dashed in red.

In Lemma 2.9, if a complementary region of T is a bigon or once-punctured monogon, the
corresponding spine is necessarily an interval. Lemma 2.9 is false without the assumption
that T is taut; see Example 4.4.

Lemma 2.10. Every measured foliation F is carried by a taut train track T . Furthermore,
T can be chosen so that if F has k zeros on a boundary component, the corresponding
complementary component of T has at least k cusps.

Notice that the number of zeros on a boundary component is not invariant under White-
head equivalence.

Proof. The techniques here are standard; see, e.g., [Mos03, Proposition 3.6.1], or [PH92,
Corollary 1.7.6] for a different approach. Since the definitions we use are slightly different,
we sketch the argument.

Pick a set of intervals Ij on S that are transverse to F and cut every leaf of F . These
intervals will become the switches of the train track. Let I =

⋃︁
j Ij.

Divide the leaves of F into segments between singularities of F and intersections with I.
A regular segment is one that intersects I in interior points on both ends. There are only a
finite number of non-regular segments (since the number of singularities of F and ends of I
is finite), while for any regular segment, nearby segments are isotopic relative to I. There
are thus a finite number of classes of parallel regular segments.

Now construct a train track T by taking the union of I and one element of each class of
parallel regular segments, and replacing each interval Ij with a single vertex vj, joined to the
same regular segments by connecting arcs. At each switch, the incident edges are divided
according to the sides of the corresponding Ij.

Let Γ be the union of the non-regular segments. The components of the complement of T
correspond to the connected components of Γ, which is a graph with vertices of valence 1 at
cusps of T and possibly at punctures of S, and all other vertices of valence ≥ 2. (That is, Γ
is a spine as in the proof of Lemma 2.9.) It follows that T is taut. T carries F with weights
equal to the width of the families of parallel segments. If F has k zeros on a boundary
component, then T has at least k cusps by construction. □

Proposition 2.11. C+
Q (S) is dense in MF+(S).
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Proof. For a given measured foliation F , we will produce a sequence of weighted multi-curves
approximating [F ] ∈ MF+(S). By Lemma 2.10, F = T (w) for a taut train track T and
weight w ∈ M(T ). Pick a sequence of rational weights wn ∈ MQ(T ) approximating w, and
clear denominators to write wn = λnw

′
n where w′

n ∈ MZ(T ). Then w′
n(T )/λn is a weighted

multi-curve approximating F . □

Remark 2.12. On a connected surface S with no boundary, Proposition 2.11 can be strength-
ened to say that simple curves are projectively dense in measured foliations, as well [Ker80,
FLP79]. This strengthening is false for surfaces with boundary. For instance, a pair of pants
has only three distinct non-trivial simple curves, but a 3-dimensional space of measured
foliations.

3. Conformal Setting

3.1. Riemann surfaces.

Definition 3.1. A Riemann surface (with boundary) is a smooth surface S, as in Defini-
tion 2.1, together with a complex structure on S, i.e., a fiberwise linear map J : TS → TS
with J2 = −id.

Convention 3.2. For us, a Riemann surface need not be connected. We only consider
surfaces of finite topological type.

Since the complex structure is on S, not just on S, the complex structure on S◦ necessarily
has a removable singularity near every puncture. On the other hand, a component of ∂S
gives an end of the complex structure with a non-removable singularity.

Our definitions of “topological embedding” was chosen in a slightly odd way so that there
is a quasi-conformal embedding in every homotopy class. We prove that for reference.

Lemma 3.3. In the homotopy class of any topological embedding f : R ↪→ S, there is a
quasi-conformal embedding.

Proof. By standard techniques, the topological embedding f̄ : R̄ → S̄ is homotopic to a
smooth orientation-preserving embedding. Specifically, given any topological embedding f̄
in the sense of Definition 2.1, shrink the image of f̄ slightly so that it is a homeomorphism
onto its image. Then use the fact that any homeomorphism between surfaces is isotopic to a
diffeomorphism; this was proved for closed surfaces by Epstein [Eps66], and can be extended
to open surfaces by looking at the boundary curves [Put16].

Then, since R̄ is compact, that smooth map is K-quasi-conformal for some K < ∞. □

Definition 3.4. A (holomorphic) quadratic differential q on a Riemann surface S is a holo-
morphic section of the square of the holomorphic cotangent bundle of S◦. If z is a local
coordinate on S◦, we can write q = ϕ(z) (dz)2 where ϕ(z) is holomorphic.

Naturally associated with a quadratic differential we have several objects:
• Local coordinates given by integrating a branch of √q away from the zeros of q. The

transition maps are translations or half-turns followed by translations, giving S the
structure of a half-translation surface.

• A horizontal measured foliation Fh(q) = |Im√
q|. The tangent vectors to the foliation

are those vectors v ∈ TS with q(v) ≥ 0, and the transverse length of a multi-curve C
is

Fh(q)(C) =

∫︂
t

⃓⃓
Im

√︁
q(C ′(t))

⃓⃓
dt,
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i.e., the total variation of the y coordinate in the half-translation coordinates.
• Similarly, a vertical measured foliation Fv(q) = |Re√q|.
• A locally Euclidean metric |q| on S◦, possibly with cone singularities of cone angle
kπ with k ≥ 3. The length of a multi-curve C with respect to |q| is

ℓ(C) =

∫︂
t

√︁
|q(C ′(t))| dt.

• An area measure Aq on S, the volume measure of |q|.
The vector space of finite-area quadratic differentials on S that extend analytically to ∂S

(but not necessarily to the punctures) is denoted Q(S). The finite area constraint implies
that at a puncture of S, every q ∈ Q(S) has at most a simple pole. That is, if z is a local
coordinate on S with a puncture at z = 0, we can locally write q = ϕ(z)/z (dz)2 where ϕ(z)
is holomorphic.

If S has non-empty boundary, then Q(S) is infinite-dimensional. There is a finite-dimen-
sional subspace QR(S), consisting of those quadratic differentials that are real on vectors
tangent to ∂S. There is a convex cone Q+(S) ⊂ QR(S) consisting of those quadratic differ-
entials that are non-negative on ∂S. For non-zero q in Q+(S), we have [Fh(q)] ∈ MF+(S).

3.2. Extremal length.

Definition 3.5. For C a multi-curve on a Riemann surface S, pick a Riemannian metric g
in the distinguished conformal class. Then the length ℓg[C] is the minimum Riemannian
length with respect to g of any rectifiable representative of [C]. The extremal length of C is

(3.6) ELS[C] := sup
ρ

ℓρg[C]2

Aρg(S)
,

where the supremum runs over all Borel-measurable conformal scale factors ρ : S → R≥0 of
finite, positive area. (The scaled quantity ρg may give a pseudo-metric rather than a metric,
as, e.g., ρ can be 0 on an open subset of S. But we can still define length and area in a
natural way.) The definition makes it clear that extremal length does not depend on the
metric g within its conformal equivalence class, so we may talk about extremal length on S
without reference to g.

When the Riemann surface is clear from context, we suppress it from the notation.
More generally, if C =

∑︁
i aiCi is a weighted multi-curve, then its length is ℓg[C] =∑︁

i aiℓg[Ci], i.e., the corresponding weighted linear combination of lengths of curves, and its
extremal length is still defined by Equation (3.6).

We need multi-curves in Definition 3.5, as the main theorems of this paper are false if
restricted to curves rather than multi-curves; see Remark 2.12.

We will be interested in simple closed multi-curves C. We must check that extremal length
is well-defined on equivalence classes of simple multi-curves. Invariance under homotopy and
reparametrization is obvious. Trivial components of a multi-curve C have no effect on ℓρg[C]
since ρg has finite area, so they also have no effect on extremal length. Finally, let C0

be a simple multi-curve with parallel components, and let C1 be the weighted multi-curve
with integer weights obtained by merging parallel components and taking the weight to
be the number of merged components. Then it is easy to see from the definitions that
EL[C0] = EL[C1].

Furthermore, EL scales quadratically: EL[kC] = k2 EL[C].
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Lemma 3.7. For any non-trivial multi-curve C on a Riemann surface S, EL[C] > 0. In
particular, if S is not small, there is a simple closed curve with non-zero extremal length.

Proof. Take any finite-area Riemannian metric g on S in the given conformal class. Then,
since C has at least one non-trivial component, ℓg[C] > 0, so EL[C] > 0. □

We next give some other interpretations of extremal length for simple multi-curves. First,
recall that for a conformal annulus

A =
(︁
[0, ℓ]× [0, w]

)︁
/
(︁
(0, x) ∼ (ℓ, x)

)︁
,

its modulus Mod(A) is w/ℓ. Define the extremal length of A to be EL(A) := 1/Mod(A) =
ℓ/w. Then we can see EL[C] for a simple multi-curve C as finding the fattest set of conformal
annuli around C, in the sense that we minimize total extremal length, as follows.

Proposition 3.8. Let C =
⋃︁k

i=1Ci be a simple closed multi-curve on a Riemann surface S

with components Ci. For i = 1, . . . , k, let Ai be a (topological) annulus, and let A =
⋃︁k

i=1 Ai.
Then

(3.9) EL[C] = inf
ω,f

k∑︂
i=1

ELω(Ai),

where the infimum runs over all conformal structures ω on A (which amounts to a choice of
modulus for each Ai) and over all conformal embeddings f : A ↪→ S so that the image of the
core curve of Ai is isotopic to Ci.

More generally, if C =
∑︁k

i=1 aiCi is a weighted simple closed multi-curve on S, then, with
notation as above,

(3.10) EL[C] = inf
ω,f

k∑︂
i=1

a2i ELω(Ai),

where the supremum runs over the same set.

We delay the proof of Proposition 3.8 a little.
We can also give a characterization of EL in terms of Jenkins-Strebel differentials.

Definition 3.11. A Jenkins-Strebel quadratic differential q on S is one where almost every
leaf of Fh(q) is closed. In this case, the quadratic differential gives a canonical decomposition
of S into annuli foliated by the closed leaves.

Theorem 3.12. Let C =
⋃︁

i aiCi be a weighted simple closed multi-curve on a Riemann
surface S so that no Ci is trivial. Then there is a unique Jenkins-Strebel differential qC ∈
Q+(S) so that Fh(qC) can be decomposed as a disjoint union of annuli Ai with each Ai being
a union of leaves of transverse measure ai and core curve isotopic to Ci. With respect to
|qC |, each Ai is isometric to a right Euclidean cylinder.

For a proof, see, e.g., Strebel [Str84, Theorem 21.1], who attributes the theorem to
Hubbard-Masur [HM79] and Renelt [Ren76]. This theorem is one of three different stan-
dard theorems on the existence of Jenkins-Strebel differentials.

Proposition 3.13. For C a weighted simple closed multi-curve on S with no trivial compo-
nents, let q = qC be the associated quadratic differential from Theorem 3.12. Then

EL[C] = A|q|(S).
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Proposition 3.13 should be standard, but we have been unable to locate it in the literature.
We provide a short proof, an easy application of Beurling’s criterion.

Proof. We use |q| as the base metric in Equation (3.6) (abusing notation slightly since |q| is
not smooth). Let ℓi = ℓ|q|[Ci]. Since |q| is a locally CAT(0) metric and local geodesics in
locally CAT(0) spaces are globally length-minimizing, ℓi is the length in |q| of the core curve
of the annulus Ai. (This also follows from Teichmüller’s Lemma [Str84, Theorem 14.1].)
Then, since Aq(S) =

∑︁
i aiℓi by the construction of q and ℓ|q|[C] =

∑︁
i aiℓi by definition of

ℓ|q|[C], we have
ℓ|q|[C]2

Aq(S)
= Aq(S),

so EL[C] ≥ Aq(S).
For the other direction, let ρ be the scaling factor relative to |q| for another metric in the

conformal class. For each i and t ∈ [0, ai], let Ci(t) be the curve on Ai at distance t from
the lower boundary, let si(t) =

∫︁
Ci(t)

ρ(x) dx, and let Si = mint∈[0,ai] si(t). Then, using the
Cauchy-Schwarz inequality, we have

ℓρ|q|[C] ≤
∑︂

i
aiSi

Aρ|q|(S) =

∫︂∫︂
S

ρ2 dAq ≥
1

Aq(S)

(︃∫︂∫︂
S

ρ dAq

)︃2

≥ 1

Aq(S)

(︂∑︂
i
aiSi

)︂2

ℓρ|q|[C]2

Aρ|q|(S)
≤ Aq(S). □

Proof of Proposition 3.8. The functional
∑︁k

i=1 a
2
i EL(Ai) on the space of disjoint embeddings

of annuli Ai homotopic to Ci is minimized when the Ai are the annuli from the decomposition
of Fh(qC) from Theorem 3.12 [Str84, Theorem 20.5]. In this case the value of the functional
is AqC (S), which is equal to EL[C] by Proposition 3.13. □

More generally, we can work with arbitrary measured foliations, rather than simple closed
multi-curves.

Theorem 3.14 (Heights theorem). Let [F ] ∈ MF+(S) be a measured foliation on a Rie-
mann surface S. Then there is a unique quadratic differential qF ∈ Q+(S) so that [Fh(qF )] =
[F ]. Furthermore, qF depends continuously on F .

Proofs of Theorem 3.14 have been given by many authors [HM79, Ker80, MS84, Wol96].
Of these, Marden and Strebel [MS84] treat surfaces with boundary. By analogy with Propo-
sition 3.13, we define

(3.15) EL[F ] := AqF (S).

McMullen has given a definition of EL[F ] closer to Definition 3.5 [McM12, Section 4.4].

3.3. Stretch factors. We now turn to a few elementary facts about stretch factors, as
already defined in Definition 1.1.

Proposition 3.16. If f : R ↪→ S is a topological embedding of Riemann surfaces where R is
not a small surface, then SF[f ] is defined and finite.
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Proof. By Lemma 3.7, there is a simple closed curve C on S with EL[C] > 0, so the set over
which we take a supremum is non-empty. The quasi-conformal constant K from Lemma 3.3
then gives an upper bound on the ratio of extremal lengths; this upper bound is usually
taken as a definition of K-quasi-conformal. □

Definition 3.17. By analogy with Definition 2.2, we say that a subsurface S ′ of a surface S
is trivial if S ′ is contained in a disk or once-punctured disk inside S.

Proposition 3.18. For f : R ↪→ S a topological embedding of Riemann surfaces where S is
not small, SF[f ] = 0 if and only if f(R) is trivial as a subsurface of S.

Proof. If f(R) is trivial in S, it is immediate that SF [f ] = 0. Otherwise, there is some
simple closed curve C on R so that f(C) is nontrivial in S. It follows that C is nontrivial
in R, and SF[f ] ≥ EL[f(C)]/EL[C] > 0. □

Proposition 3.19. If f : S1 ↪→ S2 and g : S2 ↪→ S3 are two topological embeddings of Rie-
mann surfaces, then

SF[f ◦ g] ≤ SF[f ] · SF[g].

Proof. Immediate from the definition. □

3.4. Teichmüller space. We can assemble the Riemann surface structures on an underlying
smooth surface S into the (reduced) Teichmüller space T (S), meaning the space of Riemann
surfaces T together with a homeomorphisms ϕT : S → T , considered up to isotopies, taking
the boundary to itself but not required to fix it pointwise. The Teichmüller distance between
two points in T (S) is defined by

d(T, T ′) :=
1

2
logK,

where K is the minimal stretching of any quasi-conformal homeomorphism f from T to T ′

so that (ϕT ′)−1 ◦ f ◦ϕT is isotopic to the identity. (Note that this definition uses homeomor-
phisms, rather than the embeddings used in most of the paper.)

It is a standard result that there is a map f realizing the minimal stretching K, and that
its Beltrami differential has the form

(3.20) µf =
K − 1

K + 1

q

|q|
for some quadratic differential q ∈ QR(T ). Concretely, we stretch the Euclidean metric |q|
along Fh(q) by a factor of K. (Since q is only real and not positive on ∂T , the foliation Fh(q)
will not in general be in MF+(T ).) This is usually stated and proved for closed surfaces; the
case with boundary follows by considering T ∪T , the double of T along its boundary, solving
the problem in that context, and observing that the quadratic differential of the optimal
map is unique, and is thus equivariant with respect to the anti-holomorphic involution that
interchanges T and T ; it is therefore real on ∂T .

It follows from Equation (3.20) that

ELT ′(f∗Fh(q))

ELT (Fh(q))
= K,

and that this is the maximal ratio of extremal lengths. We can approximate Fh(q) by
a weighted multi-curve, possibly with some arc components. We can therefore write the
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distance in terms of ratios of extremal lengths. If f : T → T ′ is a homeomorphism, define a
version of the stretch factor by

SF±[f ] := sup
C∈C±

R

ELT ′ [f(C)]

ELT [C]
.

That is, we allow arc components of the weighted multi-curve; extremal length extends in
the natural way to these multi-curves. (Note that if C has arc components, f(C) is only
well-defined for homeomorphisms f .) We have SF[f ] ≤ SF±[f ], since the supremum is over
a larger set.

Theorem 3.21. The Teichmüller distance between T, T ′ ∈ T (S) is

d(T, T ′) =
1

2
log SF±[idT,T ′ ].

Theorem 3.21 was stated and proved by Kerckhoff [Ker80, Theorem 4] for closed surfaces.
He furthermore restricted to simple curves (not multi-curves); the technique for the reduction
to simple curves cannot be made equivariant with respect to the map interchanging the two
components of the mirror of T .

4. Slit maps and Ioffe’s theorem

The following terminology is adapted from Ioffe [Iof75] and Fortier Bourque [FB18].

Definition 4.1. On a connected surface S with a non-zero measured foliation F , a slit is
a finite union of closed segments of leafs of F . (The leaf segments can meet at singularities
of F , and so the slit may be a graph.) A slit complement in F is the complement of a slit, and
a topological slit map with respect to F is the inclusion of a slit complement into S. (This
is the inclusion of the interiors R◦ ↪→ S◦, which extends on a non-injective map R → S.)

If f : R ↪→ S is a slit map with respect to F ∈ MF+(S), then there is a natural pull-back
measured foliation f ∗F ∈ MF+(R).

If R and S are Riemann surfaces, a Teichmüller embedding of dilatation K ≥ 1 is an
embedding f : R ↪→ S with quadratic differentials qR ∈ Q+(R) and qS ∈ Q+(S) so that f is
a topological slit map with respect to Fh(qS) and, in the natural coordinates determined by
qR and qS, the map f has the form f(x+ iy) = Kx+ iy. Note that a Teichmüller embedding
is K-quasi-conformal, and that f ∗Fh(qS) = Fh(qR).

Theorem 4.2 (Ioffe [Iof75]). Let R and S be Riemann surfaces, with S connected, and let f :
R ↪→ S be a topological embedding so that no component of R has trivial image in S. Suppose
that f is not homotopic to a conformal embedding. Then there is a quasi-conformal embedding
with minimal dilatation in [f ]. Furthermore, there are unique quadratic differentials qR ∈
Q+(R) and qS ∈ Q+(S) so that all quasi-conformal embeddings with minimal dilatation are
Teichmüller embeddings with respect to the same quadratic differentials on R and S.

Remark 4.3. The Teichmüller embedding is not in general unique, but Fortier Bourque
proves that two different Teichmüller embeddings differ by translations with respect to the
two measured foliations [FB18, Theorem 3.7].

Ioffe’s theorem gives a pair of measured foliations on R and S. To relate to Theorem 1,
we need to approximate both of these measured foliations by simple closed multi-curves.
This is more subtle than it appears at first, since the natural map f∗ : C+(R) → C+(S) does
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Figure 2. Some of the curves Cs in Example 4.4.

not generally extend to a continuous map MF+(R) → MF+(S), as the following example
shows.

Example 4.4. Let S = S2 \ {Da, Db, Dc} be the sphere minus three disks and let R =
S2 \ {Da, Db, Dc, Dd} be the subsurface obtained by removing another disk. Pick a set of
disjoint arcs γa,b, γa,c, γb,d, and γc,d on R between the respective boundary components. For
s = p/q a positive rational number, there is a natural simple curve Cs at slope s with

i(γa,c, Cs) = i(γb,d, Fs) = q

i(γa,b, Cs) = i(γc,d, Fs) = p,

as illustrated in Figure 2. Set Fs := (1/q) · [Cs] for s ∈ Q+, so that

i(γa,c, Fs) = i(γb,d, Fs) = 1

i(γa,b, Fs) = i(γc,d, Fs) = s.

Then Fs extends to a continuous family of foliations for s ∈ R+.
For s ∈ Q+, if we push forward Fs by the inclusion map f , we get a multiple of a simple

curve on S. There are only three simple closed curves on S, the curves Ca, Cb, and Cc

around the respective boundary component. Which one we get depends only on the parity
of p and q, where s = p/q in lowest terms:

(4.5) f∗[Fs] =
1

q
·

⎧⎪⎪⎨⎪⎪⎩
[Ca] p odd, q odd

[Cb] p odd, q even

[Cc] p even, q odd.

This map f∗ has no continuous extension to R+.

Example 4.6. We can improve Example 4.4 to avoid dealing with curves around boundary
components. Let S ′ be the surface obtained from the previous surface S by gluing a pair of
pants to ∂Da, ∂Db, and ∂Dc, and similarly glue a pair of pants to R to get R′. Then S ′ is a
surface of genus two and R′ is a surface of genus two minus a disk. Then Fs can be viewed
as a continuous family of foliations on R′, and Equation (4.5) still holds.

Despite Example 4.4, we can still do simultaneous approximations, using the techniques
of Proposition 2.11.

Proposition 4.7. Let f : R → S be a topological slit map with respect to FS ∈ MF+(S).
Let FR = f ∗FS. Then there is a sequence of simple closed multi-curves Cn on R and weights
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λn so that

lim
n→∞

λnF [Cn] = FR

lim
n→∞

λnF [f(Cn)] = FS.

Proof. By Lemma 2.10, [FR] = TR(w) for some weight w on a taut train track TR on R. Fix
a boundary component B of R, and let β be a curve parallel to B slightly pushed in to R.
If f(β) bounds a disk in S, the corresponding slit of FS is a tree which must have at least
two endpoints. Each endpoint of the tree contributes a zero to FR on B, so FR has at least
two zeros on B.

Likewise, if f(β) bounds a once-punctured disk in S, the corresponding slit of FS is a tree
with at least two endpoints. At most one of these endpoints may be at the puncture, so FR

has at least one zero on B.
Let TS = f(TR). The second part of the statement of Lemma 2.10 guarantees that TS is

taut, and so FS = TS(w). (The new disks in TS that were not disks in TR have at least two
cusps, and the new once-punctured disks have at least one cusp.)

As in the proof of Proposition 2.11, choose a sequence of rational weights wn ∈ MQ(TR)
approaching w, and choose scalars λn so that w′

n := wn/λn is integral. Then TR(w
′
n) is

a multi-curve [Cn] with λn[Cn] approaching [FR]. We also have [f(Cn)] = TS(w
′
n), so by

Lemma 2.9, λn[f(Cn)] approaches FS. □

Proof of Theorem 1. If S =
⋃︁

i Si is not connected, with Ri = f−1(Si), then the stretch
factor is a supremum over all embeddings Ri ↪→ Si, as a+b

c+d
< max

(︁
a
c
, b
d

)︁
. On the other hand,

R conformally embeds in S if and only if Ri conformally embeds in Si in the given homotopy
class for all i. So from now on we assume that S is connected.

If f : R ↪→ S is homotopic to a conformal embedding, then Proposition 3.8 guarantees
that for all multi-curves [C] ∈ C+(R), we have ELS[f(C)] ≤ ELR[C], as we have more maps
in computing ELS[f(C)], so smaller infimum in Equation (3.10). Thus SF[f ] ≤ 1.

Conversely, suppose f is not homotopic to a conformal embedding. Then by Theorem 4.2,
f is homotopic to a Teichmüller map g of dilatation K with respect to quadratic differentials
qR ∈ Q+(R) and qS ∈ Q+(S). Apply Proposition 4.7 to find a sequence of simple closed
multi-curves Cn on R and weights λn so that λn[Cn] approximates Fh(qR) and λn[f∗Cn]
approximates Fh(qS). By Theorem 3.14, the quadratic differentials corresponding to λn[Cn]
approach qR and the quadratic differentials corresponding to λn[f(Cn)] approach qS, and
therefore

(4.8) SF[f ] ≥ lim
n→∞

ELS[f(Cn)]

ELR[Cn]
=

ELS[Fh(qS)]

ELR[Fh(qR)]
=

∥qS∥
∥qR∥

= K > 1.

This completes the proof of Theorem 1. □

When the stretch factor is larger than 1, we find it exactly (Proposition 1.2) with the
following standard fact.

Lemma 4.9. Let f : R ↪→ S be a quasi-conformal embedding of Riemann surfaces with
quasi-conformal constant ≤ K, and let C be any closed multi-curve on R. Then

ELS[f(C)] ≤ K ELR[C].

Proof of Proposition 1.2. We can again assume that S is connected. If SF[f ] = 1, the result
is trivial: By Theorem 1, there is a conformal embedding, which has quasi-conformal constant
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equal to 1. If SF[f ] > 1, then by Theorem 1, the map f is not homotopic to a conformal
embedding. Ioffe’s Theorem 4.2 constructs a K-quasi-conformal map. We have SF[f ] ≤ K
by Lemma 4.9, and SF[f ] ≥ K by Equation (4.8). □

5. Strict embeddings

We now turn to Theorem 2, on embeddings with stretch factor strictly less than 1. We
start with some preliminary lemmas.
Lemma 5.1. Let f : R ↪→ S be a strict conformal embedding. Then there is a constant
K < 1 so that for any q ∈ Q+(S),

Aq(f(R)) ≤ KAq(S).

Proof. For any non-zero quadratic differential q on S, the ratio Aq(f(R))/Aq(S) is less than 1,
as the open set missed by the image of f has some non-zero area with respect to q. Then
Aq(f(R))/Aq(S) is a continuous function on the projective space PQ+(S). Since PQ+(S) is
compact, the result follows. □

Later, in Theorem 4, we will strengthen Lemma 5.1 considerably.
Lemma 5.2. Let R be a compact Riemann surface with a quadratic differential q ∈ Q+(R)

that is strictly positive on ∂R. Let ˆ︁Rt be the annular extension of R obtained by gluing a
Euclidean cylinder of width t onto each boundary component of R with respect to the locally
Euclidean metric given by q. Then

lim
t→0

SF[ ˆ︁Rt → R] = 1,

where SF[ ˆ︁Rt → R] is the stretch factor of the obvious homotopy class of topological embed-
dings.

Proof. By Proposition 1.2, it suffices to construct a family of quasi-conformal maps ft : ˆ︁Rt →
R with quasi-conformal constant Kt that approaches 1 as t approaches 0. The assumption
that q is positive on ∂R guarantees that near each component Ci of ∂R there is an annulus Ai

foliated by leaves of Fh(q), with circumference ri and width wi (with respect to the Euclidean
metric induced by q). Let Bi,t be the annulus added to this boundary component in ˆ︁Rt, and
let ιt : ˆ︁Rt → R be the affine map of Ai ∪ Bi,t onto Ai and the identity outside of Ai ∪ Bi,t.
Then ιt has quasi-conformal constant equal to

max
i

wi + t

wi

,

which goes to 1 as t → 0 as desired. □

Proof of Theorem 2. (2) ⇒ (1): An annular conformal embedding is also a strict conformal
embedding, so this is clear.

(1) ⇒ (4): Suppose that f is a strict conformal embedding, and let K < 1 be the
constant from Lemma 5.1. For any multi-curve [C] ∈ C+(R), let q ∈ Q+(S) be the quadratic
differential that realizes extremal length for [f(C)], and consider the pull-back metric µ =
f ∗|q| on R. Since (R, µ) and (f(R), |q|) are isometric, but there are more curves in the
homotopy class [C] on S than those that lie in f(R), we have ℓµ[C] ≥ ℓ|q|[f(C)]. Therefore,

ELR[C] ≥ ℓµ[C]2

Aµ(R)
≥

ℓ|q|[f(C)]2

KA|q|(S)
= K−1 ELS[f(C)]
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implying that EL[f(C)]
EL[C]

≤ K. Since C was arbitrary, SF[f ] ≤ K.
(4) ⇒ (2): Suppose that SF[f ] < 1. Pick a quadratic differential q ∈ Q+(R) that is real

and strictly positive on ∂R. Let ˆ︁Rt be the family of annular extensions of R with respect
to q as in Lemma 5.2, and let ˆ︁ft : ˆ︁Rt → S be the composite topological embeddings. Then
by Proposition 3.19,

SF[ ˆ︁ft] ≤ SF[ ˆ︁Rt → R] · SF[f ].
It follows from Lemma 5.2 that for t sufficiently small, SF[ ˆ︁ft] ≤ 1, so by Theorem 1, ˆ︁ft is
homotopic to a conformal embedding.

(4) ⇔ (3): This is a consequence of Proposition 1.7, which we prove next. □

Proof of Proposition 1.7. We first handle the harder case when SF[f ] ≤ 1. By compactness
of balls in Teichmüller space, it suffices to show, on one hand, that if d(S, S ′) < −1

2
log SF[f ],

then there is a conformal embedding of R in S ′; and, on the other hand, that there are
surfaces S ′ with d(S, S ′) arbitrarily close to −1

2
log SF[f ] so that R does not conformally

embed in S ′.
For the first part, suppose d(S, S ′) < −1

2
log SF[f ]. Let idS,S′ be the identity map from

the marking. Then

SF[idS,S′ ◦ f ] ≤ SF[f ] · SF[idS,S′ ] ≤ SF[f ] · SF±[idS,S′ ] = SF[f ] · e2d(S,S′) < 1.

as desired.
To get the other direction of the inequality, pick ε > 0, and set K = eε/ SF[f ] and λ = K−1

K+1
.

Find a simple closed multi-curve C on R near the supremum defining SF:

ELS[f(C)]

ELR[C]
> e−ε SF[f ].

Let q = qf(C) ∈ Q+(S) be the associated Jenkins-Strebel quadratic differential, and set
µ = λ · q/|q| to be an associated Beltrami differential. Let S ′ be S stretched by µ, so that

d(S, S ′) =
1

2
log SF±[idS,S′ ] =

1

2
log SF[idS,S′ ] =

1

2

ELS′ [f(C)]

ELS[f(C)]
=

logK

2
= −1

2
log SF[f ] +

ε

2
.

We also have

SF[idS,S′ ◦ f ] ≥ ELS′ [f(C)]

ELR[C]
>

(︁
eε/ SF[f ]

)︁(︁
e−ε SF[f ]

)︁
= 1

so S ′ /∈ TR(S). Since ε can be chosen arbitrarily small, we get the desired result.
For the case SF[f ] > 1, Ioffe’s Theorem 4.2 applies and gives us a quadratic differential

qS on S. Stretching along this quadratic differential gives us a structure S1 at distance
d = 1

2
log SF[f ] from S for which there is a conformal embedding. For a structure S ′ at

distance less than d, consider the map fS′ from R to the surface with the structure S ′; we
then have

SF[f ] ≤ SF[idS,S′ ] · SF[fS′ ] ≤ e2d SF[fS′ ].

Combined, this implies that SFR,S′ [f ] > 1. Since this holds for every such S ′, we have
d(S, ∂TR(S)) = d(S, S1) as desired. □

Remark 5.3. It follows from the proof that the stretching to a nearest point on ∂TR(S) is
horizontal on the boundary.
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Remark 5.4. The nearest point to S on ∂TR(S) is not always unique, as we can see from
the fact that ˜︂SF[f ] ̸= SF[f ] in Examples 6.6 and 6.7 below. Indeed, let f : R ↪→ S be a
conformal embedding and let ˜︁f : ˜︁R ↪→ ˜︁S be a regular covering with SF[f ] < SF[ ˜︁f ] < 1.
Then if there were a unique nearest point ˜︁S ′ to ˜︁S on ∂T ˜︁R(˜︁S), it would be invariant under
the deck transformations, and so would descend to give a point S ′ on ∂TR(S), contradicting
SF[f ] < SF[ ˜︁f ].

6. Behavior under finite covers

We now turn to the behavior of the stretch factor under finite covers. We start with some
easy statements.

Lemma 6.1. Let π : ˜︁S → S be a covering map of Riemann surfaces of finite degree d. For
C a weighted multi-curve on S, define π−1C to be the full inverse image of C, with the same
weights. Then EL˜︁S[π−1C] = dELS[C].

Proof. By Proposition 3.13, ELS[C] = AqC (S), where qC is the Jenkins-Strebel quadratic
differential corresponding to C. Then f ∗(qC) is a Jenkins-Strebel quadratic differential cor-
responding to π−1(C), and so

EL˜︁S[π−1(C)] = Af∗(qC)(S) = dAqC (S) = dELS[C]. □

Lemma 6.2. For ˜︁f a finite cover of f : R ↪→ S, we have SF[ ˜︁f ] ≥ SF[f ].

Proof. Follows from Lemma 6.1 and the definition of SF, as the supremum involved in
computing SF[ ˜︁f ] is over a larger set. □

Proposition 6.3. If f : R ↪→ S is a topological embedding of Riemann surfaces with SF[f ] ≥
1 and ˜︁f is a finite cover of f in the sense of Definition 1.8, then SF[ ˜︁f ] = SF[f ].

Proof. If SF[f ] = 1, the result follows from Lemma 6.2 and Theorem 1.
If SF[f ] > 1, by Proposition 1.2 SF[f ] is the minimal quasi-conformal constant of any

map homotopic to f , which by Theorem 4.2 is given by a Teichmüller embedding g. Let˜︁g be the corresponding cover of g. Then ˜︁g is also a Teichmüller embedding with the same
quasi-conformal constant, and so SF[ ˜︁f ] is the quasi-conformal constant of ˜︁g. □

Remark 6.4. Proposition 6.3 relies on ˜︁f being a cover of finite degree of f . McMullen [McM89,
Corollary 1.2] shows that, in the case that R and S are closed surfaces, f is a Teichmüller
map, and ˜︁f is a non-amenable cover of f , then ˜︁f does not minimize the quasi-conformal
distortion in its bounded homotopy class.

Proposition 6.5. For ˜︁f a finite cover of f : R ↪→ S, the quantity SF[ ˜︁f ] is less than one,
equal to one, or greater than one exactly when SF[f ] is less than one, equal to one, or greater
than one.

Proof. If SF[f ] < 1, by Theorem 2, f is homotopic to a strict conformal embedding. Since a
cover of a strict conformal embedding is a strict conformal embedding, we have SF[ ˜︁f ] < 1.
The other cases follow from Proposition 6.3. □

Although there is some good behavior, it is not true in general that SF[ ˜︁f ] = SF[f ].
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Example 6.6. Let R and S both be disks with two points removed, with f : R → S a strict
conformal embedding and g : S → R a homotopy inverse. The surfaces R and S have, up to
equivalence and scale, only one non-trivial simple closed multi-curve (the boundary-parallel
curve), so SF[f ] = 1/ SF[g]. Also, SF [f ] < 1, since f was assumed to be a strict conformal
embedding. Now take any non-trivial finite cover ˜︁R of R and the corresponding cover ˜︁S of S.
Let the corresponding topological embeddings be ˜︁f : ˜︁R → ˜︁S and ˜︁g : ˜︁S → ˜︁R. Since SF[g] > 1,
by Proposition 6.3 we have SF[˜︁g] = SF[g], with the supremum in the definition of stretch
factor realized by a symmetric multi-curve. By Theorem 4.2, the quadratic differentials
realizing this stretch factor are unique, so for any non-symmetric multi-curve C on ˜︁S (or
equivalently ˜︁R), we have

SF[g] = SF[˜︁g] > EL ˜︁R[C]

EL˜︁S[C]
.

But then

SF[ ˜︁f ] ≥ EL˜︁S[C]

EL ˜︁R[C]
> 1/ SF[g] = SF[f ].

Example 6.7. The previous example can be improved to give an examples with arbitrarily
large gap between SF and ˜︂SF: for any 0 < ε < δ < 1, there is an embedding f : R ↪→ S and
two-fold cover ˜︁f so that SF[f ] < ε and SF[ ˜︁f ] > δ. This example is due to Maxime Fortier-
Bourque. Let Rt be the disk with two punctures obtained by doubling a t × 1 rectangle
along three of its sides, and let St be the double cover of Rt branched along one of the two
punctures. Then for s < t the embedding Ss ↪→ St is a cover of the embedding Rs ↪→ Rt.

Let C1 be the only non-trivial simple closed curve on Rt, the curve parallel to the boundary
as shown on the left of Figure 3. Let C2 be the non-symmetric curve on St shown on the
right of Figure 3. By construction, ELRt [C1] = 2/t. As t → ∞, the surface St approaches a
sphere with 4 punctures, specifically the double of a square. The curve C2 is non-trivial on
the 4-punctured sphere, and so its extremal length approaches a definite value:

lim
t→∞

ELSt [C2] = 2.

Thus, for t ≫ s ≫ 0, we have

SF[Rs ↪→ Rt] =
2/t

2/s
=

s

t

SF[Ss ↪→ St] ≥
ELSt [C2]

ELSs [C2]
→ 1,

as desired.
With a little more care, one can show that ELSt [C2] ≈ 2(1+Keπt/2) for some constant K.

This uses the uniformization of S∞ to the double of a square by the composition of z ↦→
sin(πiz/2) and z ↦→

∫︁ z

w=0
dw/

√
w3 − w.

In order to prove Theorem 3, we need some extra control: a strengthening of Lemma 5.1.

Theorem 4. Let f : R ↪→ S be a annular conformal embedding of Riemann surfaces. Then
there is a constant K < 1 so that for any quadratic differential q ∈ Q(S),

Af∗q(R) ≤ KAq(S).
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t

1C1

C2

Figure 3. The surfaces from Example 6.7. Left: The family of surfaces Rt,
with the unique non-trivial simple closed curve C1. Right: the double cover
St, with the curve C2.

Furthermore, the constant K can be chosen uniformly under finite covers, in the sense that
for any finite cover ˜︁f : ˜︁R → ˜︁S of f and any quadratic differential ˜︁q ∈ Q(˜︁S),

Af∗˜︁q( ˜︁R) ≤ KA˜︁q(˜︁S).
The technique in Lemma 5.1 will not work to prove Theorem 4, as Q(S) is infinite-

dimensional. (That bound is also not uniform under covers.) As in Lemma 5.1, K depends
on the actual embedding, not just the homotopy class of the embedding.

When S is a disk, Theorem 4 is not hard. For a ∈ C and r > 0, we denote by D(a, r) =
{z : |z − a| < r} the open disk of radius r about a.

Proposition 6.8. Let Ω ⊂ D be an open subset of the disk so that Ω ∩ ∂D = ∅. For any
quadratic differential q ∈ Q(D),

Aq(Ω) ≤ r2Aq(D),
where r is large enough so that Ω ⊂ D(0, r).

Proposition 6.8 is a special case of Proposition 6.9 below, but we give a separate proof
because we can give a precise constant.

Proof. Let r0 be the smallest value so that Ω ⊂ D(0, r0) ⊂ D, and let q ∈ Q(D) be arbitrary.
For 0 ≤ r ≤ 1, we will show that Aq(D(0, r)) ≤ r2 · Aq(D), so that K = r20 suffices. Define

I(r) =

∫︂ 2π

θ=0

|q(reiθ)| dθ

J(r) =

∫︂ r

s=0

sI(s) ds = Aq(D(0, r)),

where we are writing q = q(z) (dz)2 with q(z) a holomorphic function. The function z ↦→
|q(z)| is subharmonic, so if s < r, we have I(s) ≤ I(r). (We would have equality between
the corresponding integrals if |q(z)| were harmonic; see, e.g., [Bur79, p. 142]). We therefore
have J(r) =

∫︁ r

s=0
sI(s) ds ≤ r2I(r)/2, and so

d

dr

J(r)

r2
=

rJ ′(r)− 2J(r)

r3
≥ r2I(r)− r2I(r)

r3
= 0.

It follows that J(r)/r2 ≤ J(1), as desired. □
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Ω

w
ϕ↦−→

ϕ(Ω)

ϕ(w)

Figure 4. Möbius transformations to make the area of a quadratic differential
be concentrated near a point w that is close to ∂D.

Ω
BA

Figure 5. The schematic setup of Proposition 6.9.

Proposition 6.8 is false if Ω is allowed to intersect ∂D. Suppose Ω contains a neighborhood
of a segment of ∂D, and let w be a point very close to this segment. By a conformal
automorphism ϕ of D, we can take w to the center of the disk. Then

(︁
dϕ(z)

)︁2 will have its
measure concentrated near w ∈ Ω, as illustrated in Figure 4.

The following proposition says that this is all that can happen: if the mass of q on Ω gets
large, then the mass of q is concentrating near ∂D.

Proposition 6.9. Let Ω ⊂ D be an open subset of the disk with an open set A in its
complement, and let B ⊂ D be a neighborhood of Ω ∩ ∂D, as illustrated in Figure 5. Then,
for every ε > 0, there is a δ > 0 so that if q ∈ Q(D) is such that q ̸= 0 and

Aq(Ω)

Aq(D)
> 1− δ,

then
Aq(B)

Aq(D)
> 1− ε.

The proposition implies that given a sequence qn ∈ Q(D), if the percentage of the |qn|-area
of D occupied by Ω tends to 1, then the percentage of the |qn|-area occupied by the set B
of “thickened ends of Ω” also tends to 1. Figure 4 again provides an example of how this
happens.

We give two versions of the proof, one shorter, and the other more explicit and giving
(poor) bounds on the constants.

Proof of Proposition 6.9, version 1. If there are no such bounds as in the statement of the
proposition, there is an 0 < ε < 1 and a sequence of quadratic differentials qn ∈ Q(D) so
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that

Aqn(D) = 1(6.10)
Aqn(B) < 1− ε(6.11)
Aqn(Ω) > 1− 1/n.(6.12)

Consider Aqn as a measure on D. Since the space of measures of unit area on the closed
disk is compact in the weak topology, after passing to a subsequence we may assume that
Aqn converges (weakly) to some limiting measure µ (of total mass 1) on D. Since holomor-
phic functions on the disk that are also in L1(D) form a normal family, after passing to a
further subsequence, we may assume that the sequence qn converges locally uniformly to
some holomorphic function q∞ on D. The restriction of µ to the open disk is then Aq∞ . But
Aqn(A) < 1/n, so Aq∞(A) = 0, so q∞ is identically 0 on A and therefore on the entire open
disk. Hence µ is supported on ∂D. Equation (6.12) implies that the support of µ is also
contained in Ω, and hence in Ω ∩ ∂D. But this contradicts Equation (6.11). □

Proof of Proposition 6.9, version 2. Apply a Möbius transformation so that A contains 0.
We may then assume that Ω ⊂ D \ D(0, 2r0) for some 0 < r0 < 1/2. We identify the
space Q(D) of integrable holomorphic quadratic differentials on D with the Banach space of
L1-integrable holomorphic functions on D, so that Aq(D) =

∫︁
D|q| = ∥q∥.

Suppose q ∈ Q(D) satisfies Aq(D) = 1. We will quantitatively show that the q-area of a
small ball controls the q-area of a big ball. Suppose s is chosen close to 1 with r0 < s < 1.
Suppose |z| ≤ s. The Cauchy Integral Formula applied to the concentric circles comprising
the disk D(z, 1− s) shows that

|q(z)| ≤ 1

π(1− s)2

∫︂
D(z,1−s)

|q| = 1

π(1− s)2
Aq(D(z, 1− s)),

i.e., |q| is subharmonic. Using the assumption that Aq(D) = 1, this implies

|z| ≤ s =⇒ |q(z)| ≤ K(s) :=
1

π(1− s)2
.(6.13)

Similar reasoning shows

|z| ≤ r0 =⇒ |q(z)| ≤ 1

πr20
Aq(D(0, 2r0)).(6.14)

For 0 < t < 1, let Mq(t) be max{|q(z)| : |z| = t}. The Hadamard Three Circles Theorem
[Con78, Theorem 6.3.13] implies that logMq is a convex function of log t. Thus if r and r1
are chosen so that r0 ≤ r ≤ r1 < s then

logMq(r) ≤ logMq(r0) +
logMq(s)− logMq(r0)

log s− log r0
(log r − log r0)

≤ logMq(r0) +
logK(s)− logMq(r0)

log s− log r0
(log r1 − log r0)

=

(︃
1− log r1 − log r0

log s− log r0

)︃
logMq(r0) + logK(s)

log r1 − log r0
log s− log r0

= K1 logMq(r0) +K2
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where K1 and K2 are constants, with K1 > 0, depending only on r0, r1, and s, and not on q.
It follows from (6.14) that there are positive constants c1 and c2 depending only on r0, r1,
and s with

(6.15) Aq(D(0, r1)) < c2Aq(D(0, 2r0))c1 .
Now suppose that δ is small, 0 < δ < 1, and Aq(D \ Ω) < δ. Note that this implies that

Aq(D(0, 2r0)) < δ. Given 0 < r1 < 1, let E be the annulus D \ D(0, r1). From the definition
of B, there is some r1 with 0 < r1 < 1 close to 1 for which E ∩Ω ⊂ E ∩B. Choose s so that
r0 < r1 < s < 1; we are in the setup of the previous paragraph. We have

1− c2δ
c1 < Aq(E) by (6.15)
= Aq(E ∩ (D \ Ω)) + Aq(E ∩ Ω)

< Aq(D \ Ω) + Aq(E ∩B)

< δ + Aq(B)

and so Aq(B) > 1− c2δ
c1 − δ, which tends to 1 as δ tends to 0, as required. □

We also need an analogue of Proposition 6.9 for the once-punctured disk. (In fact it is
true in more generality.)

Proposition 6.16. Let D× be the punctured unit disk D\{0}, let Ω ⊂ D× be an open subset
with an open set A in its complement, and let B ⊂ D× be an open neighborhood of Ω ∩ ∂D.
Then, for every ε > 0, there is a δ > 0 so that if q ∈ Q(D×) is such that q ̸= 0 and

Aq(Ω)

Aq(D)
> 1− δ,

then
Aq(B)

Aq(D)
> 1− ε.

Proof. Let s : D → D be the squaring map s(z) = z2. We can apply Proposition 6.9 to
the tuple (s−1(Ω), s−1(A), s−1(B)). For every quadratic differential q ∈ Q(D×) with at most
a simple pole at 0, s∗q is a quadratic differential on D× with no pole, and can thus be
considered as a quadratic differential on D. Since for any X ⊂ D×,

As∗q(s
−1(X)) = 2Aq(X),

the area bounds for s∗q on s−1(Ω) and s−1(B) imply the same bounds for q on Ω and B, as
desired. □

Proof of Theorem 4. For simplicity, if S has no boundary or has non-negative Euler char-
acteristic, remove disks from S \ R until it has boundary and negative Euler characteristic.
Then enlarge R until it is equal to S minus an ε-neighborhood of ∂S, and think about R as
a subset of S.

Now choose a maximal set of simple, non-intersecting and non-parallel arcs {γi}ki=1 on S.
These will divide S into a collection of half-pants (i.e., hexagons) and once-punctured bigons;
arrange the arcs so that they divide R in the same way, as illustrated in Figure 6. Let {Pj}ℓj=1

be the connected components of S \
⋃︁

γi, and let Gi be small disjoint tubular neighborhoods
of the γi inside S. Let P ′

j = Pj ∩ R and let G =
⋃︁

i Gi. As detailed below, we can apply
Propositions 6.9 or 6.16 to each triple

(︁
Pj, P

′
j , Pj ∩G

)︁
to show that if the area of a sequence
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γi τj

Figure 6. Two decompositions of S and R. In this example, S is a sphere
with 4 holes and one puncture and R is a smaller copy of S shaded in red.
The arcs γi (solid, in green) divide the two surfaces into half-pants and a once-
punctured bigon. The tripods τj (dashed, in blue) divide the two surfaces into
rectangles and a once-punctured bigon.

of quadratic differentials qn on S is concentrating within R, then it is actually concentrating
within G.

We also pick another decomposition of R and S into disks. Within each half-pants among
the Pj, pick a tripod τj with ends on the three components of Pj ∩ ∂S and intersecting
∂R in three points, as in Figure 6; ensure that τj is disjoint from G. Let {Qi}ki=1 be the
connected components of S \

⋃︁
j τj. Each Qi is a rectangle or a once-punctured bigon. Pick

a small tubular neighborhood Tj of τj, small enough that each Tj and Gi are disjoint. Let
Q′

i = Qi ∩ R and T =
⋃︁

j Tj. Propositions 6.9 and 6.16 will again show that if the area of a
sequence of quadratic differentials on S is concentrating within R, then it is concentrating
within T ; but this is a contradiction, as G and T are disjoint.

We now give the concrete estimates alluded to above. Since all areas are with respect to
an arbitrary quadratic differential q ∈ Q(S), we will omit it from the notation for brevity.
For each j, the triple (Pj, P

′
j , G ∩ Pj) is either a triple like (D,Ω, B) as in the statement of

Proposition 6.9 or a triple like (D×,Ω, B) as in the statement of Proposition 6.16. We can
thus find δj according to the propositions so that if A(P ′

j) > (1− δ)A(Pj), then A(G∩Pj) >
(3/4)A(Pj). Let δ := minj δj and δ′ := δ/4.

Claim 6.17. If A(R) > (1− δ′)A(S), then A(G) > 1
2
· A(S).

Proof. Let J ⊂ {1, . . . , ℓ} be the subset of indices j so that A(P ′
j) > (1− δ)A(Pj), and let

PJ :=
⋃︂
j∈J

Pj P ′
J := PJ ∩R

PJ :=
⋃︂
j /∈J

Pj P ′
J
:= PJ ∩R.
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Then we have

(1− δ′)A(S)− A(P ′
J) < A(P ′

J
) ≤ (1− δ)A(PJ) < (1− δ)(A(S)− A(P ′

J))

which simplifies to

A(P ′
J) >

δ − δ′

δ
A(S) =

3

4
· A(S).

On the other hand, by the choice of δ, we have A(G ∩ P ′
J) > (3/4)A(PJ), so

A(G) ≥ A(G ∩ P ′
J) >

3

4
· A(PJ) ≥

3

4
· A(P ′

J) >
3

4
· 3
4
· A(S) > 1

2
· A(S). □

An exactly parallel argument shows that there is a δ′′ > 0 so that if A(R) > (1− δ′′)A(S),
then A(T ) > 1

2
· A(S). Since G ∩ T = ∅, this implies that A(R) ≤ (1 − min(δ′, δ′))A(S),

proving the first statement of the theorem.
Note that the crucial constants δ′ and δ′′ were defined as a minimum over the triples

(Pj, P
′
j , G ∩ Pj) and (Qi, Q

′
i, T ∩ Qi). On a finite cover ˜︁f : ˜︁R ↪→ ˜︁S of f , we can take arcs ˜︁γi

and tripods ˜︁τj to be lifts of γi and τj, respectively. Then the triples on the ˜︁S are lifts of the
triples on S, and the same estimate works in ˜︁f . □

Proof of Theorem 3. If SF[f ] ≥ 1, we have already proved the result in Proposition 6.3. If
SF[f ] < 1, by Theorem 2 we may assume that f is an annular conformal embedding. Let K
be the constant from Theorem 4 for the map f . We must show that for any finite cover ˜︁f :˜︁R → ˜︁S of f and any simple closed multi-curve ˜︁C on ˜︁R,

EL ˜︁R[ ˜︁f( ˜︁C)]

EL˜︁S[ ˜︁C]
< K.

Let ˜︁q be the quadratic differential realizing the extremal length of [ ˜︁f( ˜︁C)]. Then, as in the
proof of Theorem 2,

EL ˜︁R[ ˜︁C] ≥
ℓ ˜︁f∗|˜︁q|[ ˜︁C]2

A ˜︁f∗|˜︁q|( ˜︁R)
≥

ℓ|˜︁q|[ ˜︁f( ˜︁C)]2

KA|˜︁q|(˜︁S) = K−1 EL˜︁S[ ˜︁f( ˜︁C)]. □

7. Future challenges

There are several obvious questions raised by Theorems 1, 2, and 3. The first is an analogue
of Proposition 6.3 when SF[f ] < 1.

Problem 7.1. Give an intrinsic characterization of ˜︂SF[f ] for general maps f : R → S be-
tween Riemann surfaces as an infimum, not just when ˜︂SF[f ] ≥ 1.

To elaborate a little, SF and ˜︂SF are defined as maxima. It would be much easier to find
upper bounds (as in the hard direction of Theorem 3) if there were an alternate definition
of ˜︂SF as a minimum. For example, there are two characterizations of extremal length: as
a maximum over metrics (Definition 3.5) and as a minimum over embeddings of annuli
(Proposition 3.8).

When SF[f ] ≥ 1, Proposition 6.3 serves this role. When SF[f ] < 1, there are many differ-
ent conformal embeddings R ↪→ S in the homotopy class [f ]. The space of such conformal
embeddings is path-connected [FB18]. One could attempt to find a canonical embedding by,
for instance, gluing annuli to the boundary components of R [EM78]. But this embedding
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seems ill-suited to give tight bounds on SF[f ] or ˜︂SF[f ]. Ideally one would want a notion of
“map with quasi-conformal constant less than one”, but that is nonsensical.

Instead, it seems likely we need to consider some sort of “smeared” maps: maps from R
to probability distributions on S.

Problem 7.2. Find an energy of smeared maps g : R → M(S) whose minimum value is˜︂SF[f ].
As an example of what we mean, we give one way to get an explicit upper bound on ˜︂SF[f ].

Definition 7.3. A homotopy class of topological embeddings [f ] : R ↪→ S between Riemann
surfaces is conformally loose if, for all y ∈ S, there is a conformal embedding g ∈ [f ] so that
y /∈ g(R).

Since S is compact, if [f ] : R → S is conformally loose we can find finitely many conformal
embeddings fi ∈ [f ], i = 1, . . . , n so that

(7.4)
n⋂︂

i=1

fi(R) = ∅.

In this case, we say that [f ] is n-loose.

Proposition 7.5. If [f ] : R ↪→ S is n-loose, then ˜︂SF[f ] ≤ 1− 1/n.

Proof. If f is n-loose, then all covers are also n-loose. So it suffices to prove that SF[f ] ≤
1− 1/n.

Let (fi)
n
i=1 be the n different embeddings from Equation (7.4). For a simple multi-curve

C ∈ C+(R), let q = qf(C) ∈ Q+(S) be the quadratic differential corresponding to f(C) from
Theorem 3.12. For at least one i, we will have

Aq(fi(R))

Aq(S)
≤ 1− 1/n

by Lemma 7.6 below. Then the argument from case (1) ⇒ (4) of the proof of Theorem 2
shows that ELR[C] ≤ (1− 1/n) ELS[f(C)], as desired. □

Lemma 7.6. If A1, . . . , An ⊂ X are n subsets of a measure space X so that
⋂︁n

i=1Ai = ∅,
then for at least one i we must have µ(Ai) ≤ (1− 1/n)µ(X).

Proof. This follows from the continuous pigeonhole principle. □

In the language of Problem 7.2, if [f ] is n-loose, then the averaged map

g(x) =
1

n

n∑︂
i=1

fi(x)

is a smeared map from R to S. Likewise, if ˜︁f : ˜︁R → ˜︁S is n-loose where q : ˜︁R → R is a finite
cover of degree k, then the averaged map

g(x) =
1

nk

∑︂
q(˜︁x)=x

n∑︂
i=1

˜︁fi(˜︁x)
is a smeared map from R to S.
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Conjecture 7.7. If f : R → S is a strict conformal embedding of Riemann surfaces where
S has no punctures, there is some finite cover ˜︁f of f that is conformally loose.

If [f ] maps a puncture x of R to a puncture y of S, a neighborhood of y is in the image
of every map in [f ], so [f ] can never be conformally loose. In this case we could pass to a
branched double cover as in the proof of Proposition 6.16.

Remark 7.8. In Problems 7.1 and 7.2, it may be that ˜︂SF[f ] is not the most natural quantity
to consider; there may be a more natural quantity that bounds ˜︂SF[f ] from above and is less
than one when ˜︂SF[f ] is less than one.
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