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We analyze the question of which motivic homotopy types admit smooth schemes
as representatives. We show that given a pointed smooth affine scheme X and an
embedding into affine space, the affine deformation space of the embedding gives
a model for the P! suspension of X; we also analyze a host of variations on this
observation. Our approach yields many examples of A!-(n — 1)-connected smooth affine

2n-folds and strictly quasi-affine A'-contractible smooth schemes.

Introduction

A very basic question in topology is: which homotopy types admit (smooth) manifold
representatives? When a given homotopy type admits a manifold representative, one can
then ask: can the homeomorphism (resp. diffeomorphism) types be enumerated? Broadly
speaking, this note concerns algebro-geometric variants of such questions: we replace
manifolds by smooth algebraic varieties (frequently affine) and the ordinary homotopy
category by the Morel-Voevodsky A!-homotopy category [33]. To guide the discussion,

consider the following:
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2 A. Asoket al.

Question 1.

1. Which motivic homotopy types admit representatives that are smooth
schemes?
2. If a motivic homotopy type admits at least one smooth representative, can

one distinguish the isomorphism classes of distinct representatives?

An implicit impediment to making the above questions precise is the issue of
specifying motivic homotopy types. The simplest motivic homotopy type, namely that
of a point, admits many non-isomorphic representatives. We refer the reader to [5] for a
survey of results in this direction. For this reason, instead of trying to specify motivic
homotopy types, we will focus on describing how such types can change. Here is a

sample result.

Theorem 2 (See Theorem 3.2.1). Assume B is a scheme, X is a B-scheme, and 7 : X — A}
is a smooth morphism admitting a section s. If, setting U := A™ \ 0, the morphism
7|y : X|y — U is an Al-weak equivalence, then there is an induced (pointed) A!-weak

equivalence

P A (X4, 5(0) ~ (X, 5(0)).

Remark 3. Theorem 2 is deduced from the more general result Theorem 3.1.1. Rather
than stating this more general result here, let us explain the general principle at work.
A smooth morphism 7 : ¥ — Y will be called a generic A'-weak equivalence if there
exists a dense open subscheme U C Y such that 7|, is an Al-weak equivalence. In
that setting, the motivic homotopy type of X can be obtained by gluing (as in [33,
Theorem 2.21]) the motivic homotopy type of U with the motivic homotopy type of X|y._ .
Under suitable additional hypotheses, we can control the Al-homotopy type of the
gluing.

Our next order of business is to create an ample supply of generic A!-weak
equivalences to which our techniques apply. One source of such morphisms is provided
by the deformation to the normal cone construction a la Fulton-MacPherson: the
deformation space of an embedding of a smooth affine variety k-variety in A} will
yield a family to which the preceding result may be applied. The following result is
a straightforward consequence of the results above, combined with the Jouanolou-

Thomason homotopy lemma.
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Theorem 4 (See Corollary 4.1.6). Suppose B is a quasi-compact and quasi-separated

(gcgs) base scheme. Assume (X, x) is a finitely presented pointed smooth B-scheme.

1. If the structure map X — B is furthermore affine, then for any integer i > 0,
the motivic space Sia G,/,\ni/\X has the A'-homotopy type of a pointed B-scheme
that is smooth and affine over B.

2. If B is affine and regular (e.g., the spectrum of Z or a field), then the same
statement holds for any B-scheme X that is smooth and has affine diagonal

over B (thus, any smooth separated B-scheme satisfies the hypotheses).

Remark 5. Theorem 4 can be viewed as a refinement and extension of the technique
conceived in [3]. In that paper, an inductive argument was used to show that the smooth
affine quadric hypersurface Q,, defined by the equation >, x;y; = z(1 — 2) has the
motivic homotopy type of the motivic sphere Six (G},Ani [3, Theorem 2]. In retrospect, this

smooth affine quadric is itself an iterated deformation space.

Construction 2.1.2 gives a generalization of the deformation to the normal
cone construction. Loosely speaking, this construction lets us specify a degeneration
locus Z in a suitable parameter space W and then construct a morphism whose
degeneration locus is precisely Z with control over the fibers over Z. Proposition 2.2.1
explains the relevant technical hypotheses that we will use to construct generic A!-weak
equivalences. One reason for making Construction 2.1.2 in such generality is that we
obtain a plethora of smooth scheme models of a given A!-homotopy type. This flexibility
allows us to encompass a large class of examples in affine algebraic geometry. Indeed,
the problem of distinguishing isomorphism classes of smooth affine schemes within a
given A!-homotopy type contains many classical problems in affine algebraic geometry
and the examples we construct.

The remainder of this note is then devoted to constructing several classes of
examples. First, we generalize the results of [3] in two ways: (1) we construct new
examples of highly A!-connected hypersurfaces by producing and analyzing a variation
on Danielewski’s construction; for example, we construct many examples of Al-(n — 1)-
connected smooth affine 2n-folds; (2) we build new examples of strictly quasi-affine A!-
contractible smooth schemes. The problem of classifying A!-(n — 1)-connected smooth
affine 2n-folds is reminiscent of (a non-compact version of) that studied for manifolds
by C.T.C. Wall in [40]. Finally, we give examples to show that varieties that are not
Al-contractible can become so after P!-suspension; these results provide evidence

supporting [5, Conjecture 14].
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4 A. Asok et al.

Theorem 6 (See Theorem 4.4.1 and Remark 4.4.2). If X is a topologically Z-acyclic
smooth complex surface that is not isomorphic to AZ, then X is not Al-connected, but
for every integer N > 2, the space P"Y A X has the Al-homotopy type of a smooth affine

C-scheme and is A!-contractible.

1 Preliminaries and Notation

Fix a base scheme B; if we do not explicitly mention otherwise in the body of the
text, the reader should not assume any additional finiteness hypotheses are imposed
upon B. Next, write Smy for the category of schemes that are smooth over B. For the
convenience of referencing, we follow [36, Tag 01V5] for our definition of smoothness
as opposed to [21, Definition 17.3.2]; note that, either way, objects of Smy are locally of

finite presentation over B.

1.1 Simplicial presheaves and homotopy categories

Write Spcy for the category of simplicial presheaves on Smyg. We will typically use
calligraphic letters to denote spaces. Objects of Spcy will be referred to as B-spaces or
simply spaces if B is clear from context. The category Spcy has B as a final object, and
we write Spcy , for the category of pointed spaces, that is, spaces 2" provided with a
morphism B — 2 splitting the structure map. The forgetful functor Spcy , — Spcp has a
left adjoint (—), of “adding a disjoint base-point”; this functor sends 2" to 27, := 2 UB.
Categorical constructions like A and Vv will all occur in Spcg,, but sometimes we will
explicitly indicate the base scheme B (e.g., Ag) for emphasis.

We view Smy as a site by equipping it with the Nisnevich topology (in general,
this is the topology generated by the Nisnevich cd-squares). We write H(B) for the
Morel-Voevodsky A!-homotopy category: this category is constructed when B is Noethe-
rian of finite Krull dimension in [33], but we follow [23, Appendix C, page 3649] for the
general case. While H(B) is described using the language of co-categories in [23], one
may also use model structures as described in [4, §3.1, 4.1, and 5.1], [17, §2]. In brief, we
realize H(B) as the left Bousfield localization of the injective Nis-local model structure
on Spcg with respect to the Al-weak equivalences. Isomorphisms in H(B) will be called

Al-weak equivalences, and we write
[32//, @]Al = HOInH(B)(&V, g/),

by analogy with homotopy classes of maps in topology.
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Remark 7. When B is not Noetherian of finite Krull dimension, we caution the reader
that the A'-homotopy category as defined here differs from the naive extension of

Morel-Voevodsky's definition; see [4, Remark 3.1.4] for more details.

1.2 Cofiber sequences

We now collect for the reader’s convenience some well-known useful facts about cofiber
sequences in pointed model categories. First, the motivic model structure we use is
left proper, that is, pushouts of Al-weak equivalences along cofibrations are again A!-
weak equivalences. Left properness has the following useful consequence that we use

repeatedly.

Lemma 1.2.1. If f : (2 ,x) — (#,y) is a morphism of pointed spaces and (2, x) is

Al-contractible, then the canonical map
(#',y) — hocofib(f)
is an A!-weak equivalence.

Next, we recall a general fact about the cofiber of a composite map (sometimes
called the “octahedral axiom” as it gives rise to the octahedral axiom in triangulated

categories).

Proposition 1.2.2. Iff] : 2, — 2] and f,: Z] — %, are pointed morphisms of spaces,

then there is a cofiber sequence of the form:

hocofib(f;) — hocofib(f,f;) — hocofib(f;).

Proof. This is shown in [22, Proposition 6.3.6]. [ |

The following fact has to do with smash products and base-points. Assume
(Z,x) and (%,y) are pointed spaces. In this case, we may form the smash product
2 A% in Spcg,. The base-point x determines a canonical pointed map x : S0 — AN
sending the non-base-point of S° to the point x. Smashing this morphism with id, then

defines a morphism

W= S LS .,
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6 A. Asok et al.

This morphism is split by the morphism 27, — SO that collapses 2 to the non-base-
point. It follows that the displayed morphism is a cofibration in the injective local model

structure since it is a monomorphism.

Proposition 1.2.3. For any pointed spaces (Z,x) and (#/,y), there is a canonical

identification

idAx

hocofib(#% — Z A%)= 2 rY.

Proof. Since the map in question is a cofibration, the homotopy cofiber coincides with
the cofiber. The identification of the cofiber is an exercise in unwinding the definition

of the smash product (for more details, see [3, Proposition 2.2.4]). [ |

2 Deformation to the normal cone revisited

In this section, we study a variation on the “deformation to the normal cone” construc-
tion, which appears in many places; see, for example, [19, §IV.5] or [38, §2]. Our eventual
goal will be to use this kind of construction to produce generic A!-weak equivalences
7 : X — W with good control over the closed subscheme Z C W over which 7 fails to be

an Al'-weak equivalence.

2.1 Parameterized deformation spaces: construction

Henceforth, we assume B is an arbitrary scheme. The deformation to the normal cone
construction can be realized in terms of affine blow-ups. The theory of affine blow-ups
has been worked out in great generality in [32, §2] (see also [14, 29] for special cases),

but we will recall what we need here.

2.1.1 Affine blow-ups

Assume Z C D C X is a triple consisting of a scheme X, a closed subscheme Z defined
by a quasi-coherent sheaf of ideals .# and a locally principal subscheme D defined by a
quasi-coherent sheaf of ideals _# contained in .#. The affine blow-up Bl?(X) is defined
as follows: as usual, we write Bl , Oy for the (graded) blow-up algebra §,,.o #" [36, Tag
052Q]. If we view the local generators of ¢ as living in degree one, then Bl?(X) is the
complement of the variety V, (_#) defined by the homogeneous ideal ¢ in ProjBl , Oy
[32, Definition 2.1, Lemma 2.3]. With these preliminaries in mind, we introduce the

following:
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Construction 2.1.2. Fix a base scheme B. We assume given:

1. A smooth B-scheme W (“the parameter space”);

2. A locally finitely presented flat B-scheme Z equipped with a closed immer-
sion of B-schemes i : Z — W (“the degeneration locus”);

3. A smooth B-scheme Y;
A B-scheme X together with a surjective smooth morphism ¢ : X — Z, and a

closed immersion f : X — Y xz W such that the diagram

*f>Y><BW
);

X
|
7 i

— W

2]

commutes; and

5. Alocally principal divisor D on Y x5 W that contains Y x Z.

The parameterized deformation space
7:DX,i,f) — W
is the affine blow-up Blg(Y xp W).

The next example justifies the terminology parameterized deformation space

for the output = of Construction 2.1.2.

Example 2.1.3. Take W = A}g, fix a closed immersion of finitely presented smooth B-
schemes g: X — Y,letZ =B, takei: Z — All; the zero section, and let D be the Cartier
divisor Y x5 Z C Y xp A}. In that case, if f : X — ¥ x A} is the base-change of g
along the projection map Y x All? — Y, then the structure morphism X — B fits into
a commutative square as in Construction 2.1.2, and D(X, i, f) is the usual deformation

space of the closed immersion g; in this case, we write D(X, Y) for D(X, i, f).

2.2 Parameterized deformation spaces: structural properties

This subsection aims to control the structure of parameterized deformation spaces. In
particular, we want to exhibit hypotheses under which the morphism = : D(X,i,f) > W
is smooth, and we would also like to control the structure of the exceptional locus.

Indeed, if we take Y to be an Al-contractible smooth B-scheme, then as long as
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8 A. Asoket al.

7 is smooth, it is automatically a generic Al-weak equivalence in the sense of the
introduction.

In the setup of Construction 2.1.2, if Z C W is an effective Cartier divisor, then
the fiber product ¥ x5 Z — Y xz W is an effective Cartier divisor as well; we will take
D =Y xzZin the sequel and we write ¢ for the ideal sheaf of Y x5 Zin ¥ x; W. In that
case, the closed immersion v : X — Z necessarily factors through a closed immersion

f 1 X — Y xz Z; we illustrate these observations in the following diagram:

We write .# for the ideal sheaf of X in ¥ x; W and _#x for the restriction of ¢ to X.In
that case, we write %f = )(I%+ _7) for the conormal sheaf of f’ and .47 for its dual,
that is, the normal sheaf of the embedding.

We want to speak about regular immersions, but absent finiteness hypotheses
on our base schemes, this discussion is more involved. We refer the reader to [36, Tag
067M] and [36, Tag 0638] for discussions about regular immersion in this generality. We
freely use the fact that regular immersions always have locally free (co)normal sheaves
(combine [36, Tag 067P] and [36, Tag 063M]).

Since smooth B-schemes are locally finitely presented by assumption, and since
closed immersions are quasi-compact and (quasi-)separated, it follows that a closed
immersion of smooth B-schemes is automatically finitely presented. Moreover, closed
immersions of smooth B-schemes are automatically regular immersions [36, Tag 067U].
Consequently, any closed immersion of smooth B-schemes has a well-defined normal

sheaf .#y,, which is a finite rank locally free Ox-module.

Proposition 2.2.1. Assume (i:Z— W,y : X — Z,f : X — YxgW) are as in Construction

2.1.2, and furthermore suppose Z is an effective Cartier divisor on W.

1. The morphism 7~} (W~ Z) — W\ Z is isomorphic to the projection ¥ x5 (W ~
Z)y —> W Z.

€20z Ae\ L€ U0 1sonb AQ 81 L9 //FEOPEUL/UIWIEGOL 0 L/I0P/S[OILE-00UBAPE/UIWI/WOS"dNO"OILUSPEDE//:SARY WOl PAPEOIUMOC


http://Tag 067M
http://Tag 0638
http://Tag 067P
http://Tag 063M
http://Tag 067U
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2. If the closed immersion f' : X — Y xp Z induced by f is regular (e.g., if f is

regular), then the morphism 7 ~!(Z) — Z is the composite
v, Lx Loz,

where p is a torsor under the vector bundle associated to .47 .
3. If both i and f’ are regular immersions (the latter happens if f is a regular

immersion), then
7 :DX,i,f) — W
is a smooth morphism; if ¥ is furthermore finitely presented, then so is x.
Proof. We set Y’ = Bly(Y xz W) and observe that = factors as
DX,i,f) — Y — Y xzW— W,

where the first morphism is an open immersion, and ¥’ — Y is an isomorphism on the
complement of X [36, Tag 020S]. The first statement then follows from [32, Lemma 2.4],
which states that the exceptional divisor of the affine blow-up, that is, the pre-image of
the center of the affine blow-up, coincides with the pre-image of ¥ x; Z.

It follows from the final observation of the preceding paragraph that the
restriction of 7m to Z also factors as the composite of the projection map from the
exceptional divisor to the center of the blow-up followed by the map ¢ in 2.1.2. In that
case, the second statement is [32, Proposition 2.9(1)]; the assertion that the exceptional
divisor is a torsor under a vector bundle follows by inspecting the proof of that result.

For the third statement, observe that the smoothness of = under the stated
hypotheses is [32, Proposition 2.16(4)]. If Y is finitely presented, then ¥ xz W — W
is as well. In that case, 7 is finitely presented by [32, Proposition 2.16(1)]. ]

Remark 2.2.2. As observed in [32, §2.3], all of the results in [32, §2] hold under a
weaker hypothesis than stated above. In particular, Proposition 2.2.1 holds replacing

the regularity assumption on i and f’ by H;-regularity in the sense of [36, Tag 063D].

Corollary 2.2.3 (Deformation to the normal cone). If B is a base scheme andi: X — Y is
a closed immersion of finitely presented smooth B-schemes, the morphism 7 : D(X,Y) —

All; (see Example 2.1.3) enjoys the following properties:
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10 A. Asoketal.

1. The morphism 7 ~!(A} \ 0) — A} \ 0 is isomorphic to the projection map
YXBA}R\O—>A]13\O.

2. The B-scheme 7 ~1(0) is isomorphic to V;, the total space of the normal bundle
toi.

3. The morphism 7 is a smooth morphism; if Y is finitely presented, then

sois .

Proof. We check the hypotheses of Proposition 2.2.1 are satisfied. Indeed, here we take
i :Z — W as the closed immersion B <> Al, which is a Cartier divisor and a regular
immersion. The map f’ : X — Y is also a regular immersion by assumption, and the
result follows. The only thing that isn’t immediate is that V; is the normal bundle rather
than a torsor under it. However, the exact sequence of conormal sheaves associated
with the sequence of closed immersions X < Y < Y x5 Al is split by the projection

Y xz Al — ¥, so the final assertion follows from (the proof of) [32, Proposition 2.9(2)].H

Unwinding the definitions of blow-up algebras, it is frequently possible to
explicitly write defining equations for the parameterized deformation spaces described
above. In the opposite direction, one realizes that many varieties presented explicitly by

equations can be identified via the parameterized deformation space construction.

Example 2.2.4. Assume B = Speck is the spectrum of an arbitrary base ring k and
pick coordinates x;,...,x, on A}. Assume that i : Z < A} is a closed immersion of B-
schemes defined by an element g, that Y = SpecR is a smooth affine k-scheme and that
X' < Y is a smooth closed subscheme defined by a regular ideal I = (f},...,f.). Then
f:X =X xzZ— Y xg A" is a regular closed immersion whose image is the smooth
closed subscheme of Y x3 A} defined by the regular sequence (fi, ..., f. g). The scheme
Y xp Z is a Cartier divisor in ¥ xz A% cut out by the single element g. Unwinding the

definitions, we see that the affine scheme of Construction 2.1.2 is given explicitly by:

D(X,i,f) =SpecRlx;,...,x,llI/gl = SpecRIxy,..., X, ty,....t )/ (fy —t19,... . o — t.9).

2.3 The purity isomorphism

We will refer to a closed immersion of smooth B-schemes X C Y as a smooth pair.
By a morphism of smooth pairs f : (X € ¥) - (X' € Y’), we will mean a morphism
of B-schemes f : Y — Y’ such that f restricts to a morphism of B-schemes X — X'.

A morphism of smooth pairs is transversal if X = f~!(X’) and the induced map
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¢ @ Nxyy — [N,y is an isomorphism. Having introduced the above notions, the
homotopy purity theorem takes the following form (we state it here because we could
not find the statement at this level of generality in the literature; the original statement
is [33, §3 Theorem 3.23]).

Theorem 2.3.1 (Homotopy purity). Given a smooth pair X C Y in Smy, there is a

canonical isomorphism in H(B) of the form
X/(X\Y)= Th(m(/y).

Given a transversal morphism of pairs f : (X C ¥) - (X’ C V), there is a homotopy

commutative square of the form

X/(X\Y)g)Th(e/%(/y)

| |

X' /(X' ¥') —= Th( S0 p),

where the vertical maps are induced by f.

Proof. This follows immediately from the proof of [24, Theorem 3.23]. There are two
remarks to make: the additional hypotheses (implicitly) placed on B in [24] stem from
the presence of the action of a group scheme. Moreover, the fact that deformation to the
normal cone construction has the required properties over an arbitrary base scheme B
follows from Corollary 2.2.3. The transversality hypothesis is precisely what is needed
to obtain a morphism of Thom spaces; the classical functoriality statement may be
found at [39, Lemma 2.1]. [ |

3 Al!-Homotopy Types of Generic Weak Equivalences

Fix a base scheme B, and suppose W is a pointed smooth B-scheme. Recall from
the introduction that a smooth morphism 7 : X — W is called a generic A'-weak
equivalence if there exists an open dense subscheme U of W such that 7|y : X|y — U
is an Al-weak equivalence. For U maximal with this property, we will refer to W ~. U as
the degeneration locus of 7. Our aim is to describe the Al-homotopy type of X in terms

of the degeneration locus W \. U of x.
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12 A. Asoketal.
3.1 Degenerations over a subscheme

The goal of this section is to establish the following result.

Theorem 3.1.1. Fix a finitely presented, pointed, smooth B-scheme (W, w) that is Al-
contractible. Assume X is a B-scheme, and = : ¥ — W is a smooth morphism of
B-schemes admitting a section s (point X by s(w)). Assume Z is a finitely presented
smooth B-scheme, i : Z — W is a closed immersion, and letj: U := W~ Z — W be
the complementary open immersion. Write X|; for the restriction of X to U and x|y
for the restricted morphism, and let i’ : X, — X be the base-change of i along . The
morphisms i and i’ are regular immersions. If the morphism 7 |;; : X;; — U is an Al-weak

equivalence, then there is a split cofiber sequence
Th(.#;) — Th(A4;) — X%,

where .#; and .4, are the normal bundles of the corresponding regular immersions.

Proof. For notational convenience, we will suppress B from the notation. Consider the
section s : W — X. By assumption, the restriction of s to X;; coincides with the inclusion
U — Xy. Since r|y is an Al-weak equivalence by construction and since s is a section of
7, it follows that s|;; is an Al-weak equivalence by the 2 out of 3 property for Al-weak

equivalences. The section s then induces a Cartesian square of the form

U——W (3.1.1)

L

Xy —X%.

A diagram chase using the normal sequences attached to the regular closed immersions
i:Z— Wandi : X, - X shows that the above diagram defines a transversal morphism
of pairs.

Note that X, is smooth over B since it is smooth over Z. Since Z — W is a closed
immersion of smooth schemes, it follows that the base-change of = along i, that is,
X, — X, is a closed immersion of smooth B-schemes. As a consequence, 7’ : X, — X is a
regular immersion and thus has a well-defined normal sheaf .4;.

By homotopy purity in Theorem 2.3.1, there is thus an Al!-weak equivalence

X/Xy ~ Th(4;). Since the map U — X is an Al-weak equivalence, we also conclude
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that
hocofib(U — X) = Th(4}).

This description corresponds to computing the homotopy cofiber of the morphism U —
X going along the left and bottom edge of (3.1.1).

Now, we compute the homotopy cofiber of U — X going around the top and
right edge of (3.1.1). To this end, we appeal to Proposition 1.2.2, which tells us there is a

cofiber sequence of the form
hocofib(U - W) — hocofib(U — X) — hocofib(W — X).

The homotopy purity isomorphism applied to the closed immersion Z — W shows that
the first term in the above cofiber sequence is Al-weakly equivalent to Th(.#;). Because
W is Al-contractible, Lemma 1.2.1 implies that the last term is A!-weakly equivalent to
X pointed by any point in the image of W, for example, s(w).

Combining all the observations above, we conclude that there is a cofiber

sequence of the form
Th(.#;) — Th(A4;) — X.

The morphism 7 induces a splitting of the first map in this cofiber sequence and we

conclude. [ |

Remark 3.1.2. Suppose B is qcqs base scheme, W is a finitely presented smooth B-
scheme, and 7 : X — W is a smooth morphism. Assume i:Z — W is a closed immersion
with open complement j : U — W. In that case, there is a homotopy cocartesian gluing

square (see [33, Theorem 2.21] or [24, Theorem 4.18] for a statement in this generality)

of the form
Jiix X
U i.X7.

Unwinding the definitions, jj*X is simply X|;; considered as a W-scheme. If 7| is an
Al-weak equivalence, then the map JJ*X — Uis an Al-weak equivalence also. The top

horizontal map is a cofibration, and so left properness of the A!-local model structure
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14 A. Asoketal.

implies that X — i,X, is an Al-weak equivalence as well. In essence, Theorem 3.1.1
shows that the additional control afforded by the section s and the smoothness of Z

allows us to identify the homotopy type of i, X, more explicitly.

Remark 3.1.3. If s: X — B is the structure morphism of a smooth B-scheme, and if &
is a finite rank locally free sheaf of 0x-modules, then by a weak trivialization of & we
will mean a pair (&), ¢) consisting of a finite rank locally free sheaf &, of &z-modules
and an isomorphism ¢ : & — s*&,; we will say that & is constant if it admits a weak
trivialization. Extending [33, §3 Proposition 2.7(2)], if & is a constant locally free sheaf

of finite rank with a chosen weak trivialization (&, ¢), then
Th(&) = Th(&y)rpX .

Indeed, this observation follows from that one by simply choosing an open cover of X

along which & is trivial.

While Theorem 3.1.1 does give some insight into the Al-homotopy type of X,
it will be more useful with additional hypotheses in place. For example, we may use

Theorem 3.1.1 to construct Al-contractible smooth schemes via the following corollary.

Corollary 3.1.4. Assume 7 : X — W and Z — W are as in Theorem 3.1.1. If the map

X, — Zis an Al-weak equivalence, then X is A!-contractible.

Proof. In the terminology of [24, Definition 3.17], the smooth pairs (W, Z) and (X, X,)
are weakly excisive, so the assumption that X, — Z is an A!-weak equivalence implies
that the induced map Th(.47,y,) — Th(A4%,/x) is an A'-weak equivalence by properness

of the Al-local model structure. |

3.2 A special case: smooth fibrations over affine spaces

We now reconsider Theorem 3.1.1 under more stringent hypotheses on Z and W. In
particular, if W = A} and Z = 0 C A}, we may obtain a more precise description
of the Al-homotopy type of X. The following result establishes Theorem 2 from the

introduction.

Theorem 3.2.1. Assume X is a B-scheme, and 7 : X — A} is a smooth morphism

admitting a section s such that, if U := 7~ 1(A™ \ 0), then Slano ARNO0 — Uis
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an Al-weak equivalence. If X, := 7~1(0), then there is a canonical (pointed) A!-weak

equivalence

P A (X, 5(0)) ~ (X,5(0)).

Proof. Since 7 is smooth, it follows that X, is a smooth B-scheme. Moreover, since 7 is
flat, by choosing coordinates t,,. .., t,, that is, an identification A} = Spec Gjlt,, ..., t,],
it follows that ¢;,...,t, is a regular sequence on X and X, is defined by the vanishing
of ¢;,...,t,. In particular, the normal sheaf .#3  y is equipped with a corresponding
trivialization (we will call this the canonical trivialization in what follows). For
notational clarity, we henceforth suppress B from the notation (so, e.g., the zero sphere
SYis B, that is, a disjoint union of two copies of B).

Appealing to Theorem 3.1.1 and specializing the notation as necessary, we obtain

the cofiber sequence of the form
Th(Ag/an) — Th(ANzy,z) — X.
The canonical trivialization determines an A!-weak equivalence
Th( A, ) ~ P A (Xo)s

(see [33, §3 Proposition 2.17] or Remark 3.1.3). The restriction of the canonical trivial-
ization of A% /x to .4g4n vields a corresponding trivialization of that normal sheaf and

an identification
Th(Agpn) Z PV A S0 =PI,

Using the compatibility of these trivializations and the conclusions of the two

preceding paragraphs, we see that:

1. There is a cofiber sequence of the form
P — PV A (), — X

2. The left-hand morphism in the above cofiber sequence is the map pIN" =
P1"™ A S0 — P1™ A (%), corresponding to suspending the map S° — (%),
given by sending the non-basepoint of S° to s(0), and consequently

3. The left-hand morphism in the above cofiber sequence is split.
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16 A. Asok et al.

Therefore, appealing to Proposition 1.2.3, there is an Al-weak equivalence
PV A () — X,

with base-points as stated. |

As a variant of the above result, we may also analyze smooth morphisms X — All?

that have multiple degenerate fibers.

Theorem 3.2.2. Assume X is a B-scheme, and 7= : X — A}B is a smooth morphism
admitting a section s. Assume there exists a closed immersion of B-schemes i : Z < Al

with open complement U C A}? having the following properties:

1. The immersion i is defined by a monic polynomial g € &yl[t] that factors as a
product of linear factors with roots in B.

2. There exists a closed subscheme Z = B U --- U B having the same open
complement as Z such that Z is smooth over B.

3. The morphism 7 : 771 (U) — U is an Al-weak equivalence.

Write b;, it = 1,--- , r for the inclusion of the i-th factor of B in Z, xbi for the base-
change of = along the morphism B — Al determined by b;, and point Xp, by x;, obtained

from b; and s. In that case, there is a pointed A!-weak equivalence

where X is pointed by any base-point x;.

Remark 3.2.3. Before getting to the proof, let us observe that conditions in the theorem
are easy to check when B is an integral affine scheme. Indeed, in that case, since g is
a product of linear factors, we can find a separable polynomial g that divides g. The
smoothness condition is equivalent to the assertion that the discriminant disc(g) is a

unit in each residue field at a closed point.

Proof. Write X; for the fiber product of Z and X over Al; note that the base-change of
along Z — Z is a smooth morphism, so the fibers X}, corresponding to the components

of Z are all smooth schemes. Choose base-points as in the statement of the theorem.
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In that case, we may appeal to Theorem 3.1.1. In particular, there is a cofiber

sequence of the form
Th(A51) — Th(Sy,x,) — X

Note that Z is cut out by a separable polynomial § that divides g. This element also
defines a principal divisor on X that cuts out X;. It follows that the normal sheaf to each
embedding is equipped with a trivialization, and these trivializations are compatible.
Therefore, the above cofiber sequence reads:

P'AZ, — P'A(Xp), — X.

Now, if (%, y;) is a finite collection of pointed spaces, for any j € I, we may write
Uier?) 4 = (&) V Uier (3 %) 1

Using this observation, the result follows by repeated appeal to Proposition 1.2.3. |

Example 3.2.4. Assume that B = Speck for some base ring k and let (X, ) C AZ“ is a
pointed smooth hypersurface defined by the vanishing of a polynomial f € klz,, ..., z, ]
and a k-point * of X. Let i : Z — A}c be a hypersurface defined by a polynomial g =
[T, (t — a)?, a; € k, b; € Z_, such that the hypersurface Z defined by the polynomial
g =[1]i_,(t — a;) is smooth over k.

Then the hypersurface X, C AZ+3 defined by the equation f — gx = 0 is smooth

over k and there is an Al-weak equivalence

Xy~ (Vi PHA X, %).

Indeed, let 7 : Xy — A}C be the morphism induced by the projection onto the
x-variable. The ring homomorphism klt, zy, ..., z,,,, x]) — klt, x] factors through a ring
homomorphism k[%g] — klt, x], which yields a section of . The fibers of n : %g — A}c
over the points in A,lc where g vanishes are isomorphic to the total spaces of line bundles
over X (the normal bundles to the embedding of the given component). In particular, each
such fiber is Al-weakly equivalent to X. The claimed A!-weak equivalence thus follows
from Theorem 3.2.2, together with the identification P' A (V]_, (X, x)) ~ (VI_;PHA (X, X).
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18 A. Asok et al.

Remark 3.2.5. For this remark, we work over the complex numbers. If f(x) and g(y) are
polynomials in m and n variables, then we write f @ g for the polynomial f(x) + g(y)
in n + m-variables. The classical “global” Thom-Sebastiani theorem [34, Theorem 2.4]
states that the homotopy type of general fibers of f @ g is the join of the homotopy types
of the general fiber of f and the general fiber of g. A straightforward analog of this
theorem in A!-homotopy theory cannot be true because the A!-homotopy type of the
fibers of f can vary rather wildly. Example 3.2.4 provides one version of such a theorem
in Al'-homotopy theory. The general fiber of gt is Specklx, é] = Ap N {xp,..., %) C AL
and the join of A}c ~{x;,...,x,} and (X, x) coincides with the wedge sum of a number of

copies of P! with (X, x) by appeal to the purity isomorphism.

4 Examples and Applications

In this section, we put the results of the preceding sections together and study
applications. For example, Section 4.1 shows that iterated P!-suspensions of smooth
schemes admit smooth models in a rather great generality. The remainder of the section

is concerned with building other schemes with controlled A!-homotopy types.

4.1 Deformation spaces model suspensions

Suppose (X, x) is a pointed smooth k-scheme. If Y is a smooth k-scheme and i : X — Y is
a closed immersion, we will point Y by i(x). If D(X,Y) is the deformation space of i (see
Example 2.1.3), then there is a canonical closed immersion X — NX/Y — D(X,Y), where
Nyy is the total space of the normal sheaf JV)(/Y, and we point D(X, Y) by the image of x
under this composite morphism. Note that the choice of base-point determines a section
of the morphism D(X,Y) — Al. With this convention, we may now state the following

result.

Theorem 4.1.1. Assume B is a base scheme and (X, x) is a pointed smooth B-scheme.
If there exists an A!-contractible smooth B-scheme Y and a (pointed) closed immersion

X < Y, then there is a pointed A'-weak equivalence:

LpX — DX, Y).

Proof. By appeal to Corollary 2.2.3, we see that the projection D(X,Y) — A} satisfies
the hypotheses of Theorem 3.2.1 (the section arises from the base-point). In that case,
we conclude that ¥ D(X, Y), ~ D(X, Y), where D(X, Y), is the scheme-theoretic fiber of
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the projection over 0. However, D(X,Y), is the total space of the normal bundle to the
embedding X < Y, and therefore the projection map D(X,Y), — X is a (pointed) Al-
weak equivalence. Thus, we conclude that £p;D(X,Y), — IpiX is a (pointed) Al-weak

equivalence as well. |

The following result gives a rather general condition when the hypotheses of the

preceding theorem are satisfied.

Proposition 4.1.2. If B is a gcqs base scheme, and X is a finitely presented smooth
affine B-scheme, then there exists a finitely presented smooth A'-contractible B-scheme

Y and a closed immersion of B-schemes X — Y.

Proof. In light of the finite presentation hypotheses, there exists a Noetherian scheme
By, a morphism B — Bj and a finitely-presented affine B,-scheme X, such that X =
Xy xp, B [36, Tag 0126] and the structure morphism X, — B, may also be assumed
affine. In that case, the result is classical: covering B, by affines, we may glue together
embeddings corresponding to local generators to obtain a vector bundle over B; into
which X, embeds (this is evidently a finitely presented B-scheme). The base-change of
this vector bundle to B is again a vector bundle, and thus X comes equipped with a

closed immersion into this vector bundle. |

We can also extend Theorem 4.1.1 to the situation where a space admits an
embedding into an affine space up to homotopy. To that end, write Smgff for the full

subcategory of Smy consisting of schemes that are affine in the absolute sense.

Definition 4.1.3. A Jouanolou device for X € Smy consists of a pair (X, ¢) where
X e Smgff and ¢ : X — X is a morphism making X into a torsor under a vector bundle

over X.

Jouanolou observed [26, Lemme 1.5] that quasi-projective schemes always
possess affine vector bundle torsors; Thomason extended this fact, and we recall these

results here.

Proposition 4.1.4 (Jouanolou-Thomason homotopy lemma). Suppose B is a qcqgs base

scheme.
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1. If X € Smy admits an ample family of line bundles, then X admits a
Jouanolou device.
2. If B is furthermore quasi-compact and regular, and X € Smjy has affine

diagonal and is quasi-compact over B, then X admits a Jouanolou device.

Proof. The first assertion is a restatement of [41, Proposition 4.4] in our context. For
the second assertion, since X has an affine diagonal, the structure morphism is quasi-
separated. Since the structure morphism is quasi-compact by assumption, it follows
that X is finitely presented over B.

Since X is finitely presented and smooth over B, which is regular, we claim that X
is regular. To see this, observe first that X is quasi-compact. To check its local rings are
regular, we may assume B = SpecR is affine and X = SpecS, so ¢ : R — S is a smooth
ring map with R regular. In particular, this means that S is a Noetherian R-algebra.
Moreover, smoothness implies ¢ is a flat ring map with regular fibers. Let ¢ C S be a
prime ideal, and let p be its pre-image in R. Choose a regular sequence fi,...,f, in R,
that generates pR,. Since R — S is flat the image of fj,...,f,, in S is again a regular
sequence. Moreover, S,/(¢(f}), ..., ¢(f)) is a fiber of ¢ hence regular. It follows that S,
is regular, and thus so is Sq.

Finally, since X is regular, it is automatically locally factorial by the Auslander-
Buchsbaum theorem [36, Tag OAGO] (in particular normal). In that case, appeal to [9,
Proposition 1.3] implies that X carries an ample family of line bundles. Then, the second

point follows from the first. |

Example 4.1.5. Some separation hypothesis is necessary for Proposition 4.1.4 to
guarantee the existence of a Jouanolou device. If n > 1, then write Ag.o for the
smooth quasi-separated k-scheme given by the affine n-space with a doubled origin;
this scheme is never separated, and it has affine diagonal if and only if n = 1.

The scheme A%.o has a Jouanolou device; in fact, a “standard” choice of a
Jouanolou device is the hypersurface given by xy = z(1 + z) in Ai. In more detail,
consider the inclusion of G,,, C SL, as diagonal matrices with determinant 1. An explicit
computation with invariants identifies the quotient SL, /G,, with the hypersurface in A3
defined by the equation xy = z(1 +z). On the other hand, consider the map SL, — A%~ 0
corresponding to projection onto the first column; this map makes the source into a
G,-torsor over the target and is G,,-equivariant for the action by left multiplication on
SL, and the action of G,,, on A% \ 0 given by ¢ - (x,y) = (tx, t~'y). The geometric quotient

of G,, acting on A? \ 0 exists as a smooth scheme and is identified with Aéo by explicit
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computation: if we cover A% . 0 with the two open sets A% \ {x = 0} and A? \ {y = 0},
then the function xy is invariant and yields identifications A? \ {x = 0}/G,,, = A! and
A2\ 0\ y=0/G,, = Al. It follows that the G,-torsor SL, — A2 \ 0 descends to a
G,-torsor SL, /G, — A} , with the formulas given above.

By contrast, when n > 1, the scheme A}, has strictly quasi-affine diagonal® and
does not admit a Jouanolou device; this is, of course, related to Thomason's observation
that such schemes do not possess the resolution property [37, Exercise 8.6]. Indeed, take
k =7 and suppose 7 : X — A7, is a torsor under a vector bundle. Since a torsor under a
vector bundle on an affine scheme admits a section, hence is a vector bundle, and vector
bundles on A7 are trivial by the Quillen-Suslin theorem [35, Theorem 4], the restriction
of 7 over either copy of A7 is isomorphic to a trivial bundle. On the other hand, since
the inclusion A7 ~ 0 — A7 has complement of codimension > 2, and A7 \ 0 is normal,
any isomorphism between the two restrictions 7 over A7 \ 0 extends over A7. Thus,
one obtains a global isomorphism of X with a product A7 x A7, in particular, X is not

affine.

With the Jouanolou-Thomason homotopy lemma in hand, we can extend
Theorem 4.1.1 to the situation of schemes that may be embedded in an A'-contractible

scheme up to A'-homotopy.

Corollary 4.1.6. Assume B is a regular affine base scheme.

1. If (X,x) is a quasi-compact smooth B-scheme with affine diagonal, then for
i

L, X has the A'-homotopy type

any integer i > 0, the iterated P!-suspension X
of a smooth B-scheme as well.
2. If (X,x) is furthermore affine, then EIiPIX admits a smooth affine model

as well.

Proof. Under the assumptions on B, X satisfies the hypotheses of Proposition 4.1.4.
In particular, there exists a smooth B-scheme X and vector bundle torsor X — X with
affine total space X. The morphism X — X is an A!-weak equivalence.

Since (X, x) is pointed, we have a morphism x : Spec B — X. If we base-change X
along x, we obtain an affine vector bundle torsor B — B. Since B is affine by assumption,

B — Bis isomorphic to a vector bundle over B; fix such an isomorphism, and define

I The condition of having quasi-affine diagonal is equivalent to quasi-separatedness because the diagonal
morphism of a scheme is always an immersion [36, Tag 01KJ] and quasi-compact immersions are quasi-affine
[36, Tag 02JRI.
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a morphism X : B — B to be the image of the zero section under the isomorphism.
Composing this section with the canonical morphism B — X from the fiber product,
we see that (X, %) — (X,x) is a pointed A!-weak equivalence. Therefore, without loss of
generality, we may replace (X, x) by (X, %) and assume that X is affine.

In that case, fix a closed embedding ¢ : X — Y for Y some Al-contractible
smooth B-scheme; such an embedding exists by appeal to Proposition 4.1.2. Granted this
observation, the first point follows immediately by inductive appeal to Theorem 4.1.1.
Note also that if ¥ is a smooth affine B-scheme, then the deformation space D(X,Y) is

automatically a smooth affine B-scheme as well, so the second point follows also. [ |

This following observation generalizes [3, Theorem 2].

1NN

Corollary 4.1.7. For every integer n > 0, P and Gm/\IP’lAn have the Al-homotopy

type of smooth separated Z-schemes.

Proof. The ring homomorphism Z[t] — Z[t]/(t(1 — t)) defines a closed immersion of
smooth schemes Sy — Al. Likewise, the ring homomorphism Zlt;, t,] — Zlty, t,1/(¢,t, —
1) defines a closed immersion of smooth schemes G,, — AZ. The assertion then follows

from Corollary 4.1.6. n

Remark 4.1.8. Note that no separation hypothesis is imposed on objects of Smy in the
construction of H(B). If we do not restrict our attention to smooth separated B-schemes,
affine n-space with doubled origin provides a model for P"" as a smooth B-scheme.

Indeed, the homotopy colimit of the diagram
A" «— A" N0 — A"

coincides with the homotopy pushout of A" ~\. 0 — A" (contract the A" on the left to a
point), that is, Th(%/An), which becomes A!-weakly equivalent to PI"" after fixing a
basis of the tangent space at 0. More generally, the affine space n-space with m-fold
origin provides a model for \/m_1 PI"",

Question 4.1.9. Fix an infinite field k, and a smooth affine k-scheme X of dimension
d. If i > 0 is an integer, what is the minimum dimension of a smooth affine model
of BL, X?
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Remark 4.1.10. If kis an infinite field, and X is a smooth affine k-scheme of dimension
d, then it is well-known that X can be embedded as a closed subscheme of A24+! and that
this bound is optimal [8, Theorem 5.8]. Given the choice of one such closed embedding
X <> A24+1 Theorem 4.1.1 provides a model D(X, A24+1) of $p1 X of dimension 2d + 2.

4.2 Highly Al-connected hypersurfaces

In this section, we analyze a variation of a construction due to Danielewski [12, 18]
to produce hypersurfaces that are “highly A!-connected”. Indeed, up to change of
variables, Danielewski studied the varieties x"y = z(1 — z) as n varies. In the context
of Al-homotopy theory, these varieties are all Jouanolou devices for the affine line
with doubled origin Aé_o discussed previously in Example 4.1.5, and Danielewski was
interested in analyzing their isomorphism types (these varieties are all stably isomor-
phic). The second author considered a significant generalization of the Danielewski
construction in [13, 15] and the version we analyze here can be viewed as axiomatizing

some of the key properties considered in those papers.

A family of generic Al-weak equivalences
Construction 4.2.1. Suppose k is a base ring. Assume Y C A} is defined by a finitely
generated ideal I = (f,...,f,) C klx;,...,x,]. Fix an integer s, and suppose a;,...,a, €

klx,,...,x,] are polynomials. Fora = (a,,...,a,), we define

1

S
Xia= {Zt,fl =[]e=- aj)} C AP =i Specklxy, ... X, by, ..., b, 2]
j=1

Let w : X;, — A} be the morphism defined by the inclusion of klxy,...,x,] into the

coordinate ring of X; .

Proposition 4.2.2. In the setting of Construction 4.2.1, assume that X;, is flat over
k and that the functions {f;};_; . {a;};_; s are not zero-divisors. Then the following
statements hold about the morphism 7 : X; , — A}.
1. The restriction of 7 to A} \ Y is a Zariski locally trivial smooth morphism
with affine space fibers.
2. The morphism 7 admits a section, and if we set Y’ = Spec kix,,...,x,, 2/

(Hf:1 (z— a;),I), the base-change of 7 along the inclusion Y < A} factors as

A}y, — Y — V.
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3. The morphism 7 is finitely presented and faithfully flat.
The morphism 7 is smooth if and only if Y — Y is étale.

5. If the morphism n is smooth, then it factors through a smooth morphism
n' i X;o — A}y, where the target is the non-separated scheme obtained by

gluing s copies of A7 with the identity map along A7 \ Y.

Proof. PutS=«klx,,...,x,,t;,.... ¢t 21, f =2 tfi — ]_[j(z— a;) € Sand R = S/(f).

1. By assumption, f; is not a zero-divisor. Inverting any f; yields an isomorphism
S = klxy, .. Xy f ey B 8 2],

showing that the restriction of 7 to the principal open set D(f;) of X} , is thus isomorphic
to the trivial A"-bundle over the principal open set D(f;) of A™. This provides an explicit
local trivialization of 7 over AY \ Y.

2. Fix an integerj € {1, ..., s} and observe that sending ¢;,i = 1,...,r to 0 and set-
ting z = a; defines a section of z. The factor ring S’ = klx, ... WXy by tr,z]/(]_[f:1 zZ—
a;, I) of S defines the closed subscheme scheme Y’ C Xj - By definition, we have a

commutative square of the form

Y’ —X/a

|k

Y —— A7,

where the horizontal morphisms are closed immersions.The restriction of the section =

to Y yields a section Y — Y’. The base-change of = along Y factors as

n

v—Y —Y, (4.2.1)

where A}, is the spectrum of the polynomial ring in the variables ¢,,...,t, over S'.

3. That 7 is surjective is immediate because it admits a section. That = has
finite presentation is immediate from the definitions. Thus, it remains to check that =
is flat. Since z and the t; are not zero-divisors and the f; and a; are not zero-divisors
by assumption, it follows that f = >, fit; — [[;_;(z — a;) is not a zero-divisor in R. By
assumption X; , is flat over k, which means that S is a flat k-module. Let A be the
localization of k[x|, ..., x,] at a prime ideal p and let B be the localization of R at a prime

ideal q lying above p. Note that by construction, B is essentially finitely presented over
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A, and A — B is a flat ring map. Let m be the maximal ideal of A. Since f is not a
zero-divisor in R, its image in B/mB is not a zero-divisor. By appeal to [36, Tag 046Z], we
conclude that B/(f) is flat over A. Since A and B were arbitrary, it follows that = is flat.

4. Since 7 is flat and of finite presentation by assumption, to check it is smooth,
it suffices to check that its fibers are smooth. This statement is immediate over points
in A} that are contained in the complement of ¥, so it suffices to check smoothness over
points of Y. To this end, consider the factorization of = from (4.2.1). If Y’ is étale over Y,
then this composite is evidently smooth, which shows that 7 is smooth. Conversely, if =
is smooth, then the composite morphism in (4.2.1) is smooth as well. The first morphism
in that factorization is always smooth and surjective. The morphism Y’ — Y is evidently
of finite presentation. Therefore, [36, Tag 02K5] shows that ¥" — Y must also be smooth.
In that case, considerations of relative dimension imply that ¥ — Y must also have
relative dimension 0, in which case it is automatically étale.

5. Under the assumption that = is smooth, Y — Y is étale by the preceding
point. We build the required factorization by gluing. The statement is tautological if
s =1, so assume s > 2. In that case, define E; to be the closed subscheme of X; , defined
by fi = =f. =[liy(z — ap) = 0. Set X; = X; , \\ E;. Note that {X;}; , , forms an open
cover of X; ,. The restriction of 7 to X; defines a smooth morphism 7; : X; — Ay. For any
j #j, the intersection X] N Xj, is n_l(AZ \ Y), so the restrictions of 7 and mj to X] N XJ-/
coincide with the restriction of = to A \ Y. It follows that the morphisms 7; glue to

yield the morphism =’ : X; , — A}, which is smooth by construction. |

In the case where I is a principal ideal, the A!-homotopy type of the varieties

from Proposition 4.2.2 is relatively straightforward to identify.

Lemma 4.2.3. Assume k is a normal Noetherian domain such that Pic(k) = 0 (e.g., k is
a UFD). Consider the scheme X; , from Proposition 4.2.2, where I = (f) is principal and
assume that s > 2. Let X] =Xra N EJ-, where EJ- is the closed subscheme defined by the
ideal (I, Hi#(z — a;)). Then the following hold:

1. The scheme X; is isomorphic to AZH.

2. If the morphism = : X;, — Ay is smooth, then the projection morphism
n': X; . - Aly is a Jouanolou device (in particular an A'-weak equivalence).

3. If A" \ Y has a k-point, then there is a (pointed) A!-weak equivalence
Xia ~ "H(ZA"™ \ V). If Y, is furthermore smooth over Speck, then
XI,a ~ (Vf;fpl)/\(yred)+‘
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Proof. We first note that under our assumptions, every Zariski locally trivial A!-
bundler over A} is globally trivial. Indeed, recall that the automorphism group Aut(A}c)
is the affine group scheme G,,; x G, (equivalently, if k is integral, direct computation
shows that every k-algebra automorphism of k[x] is of the form x — ax + b with
a € k*b € k). Since AZ is affine, Hzlar(A",Ga) = 0 and since k is Noetherian
and normal, homotopy invariance of Picard groups [7, Corollary 5.10] guarantees that
Hzlar(A",Gm) = Pic(A}) = Pic(Speck), which is trivial by assumption. Therefore, the
long exact sequence in non-abelian cohomology [20, Proposition III.3.3.1] attached to

the short exact sequence of sheaves of groups
1 — Gyp— Aut(A}c) — Gy — 1

allows us to conclude that H}__

(A7, Aut(A})) is also trivial.

1. By the observation above, it suffices to show that o is a Zariski locally trivial
A}c—bundle. By construction, the morphism r; : X; — A} is a Zariski locally trivial Al-
bundle over A" \ Y. Likewise, the morphism nj_l(Y) — Y is a trivial A'-bundle, by the
factorization from Proposition 4.2.2. All fibers of = are thus isomorphic to A}C. Since A}
is a normal Noetherian scheme, [30, Theorem] implies that 7 is a Zariski locally trivial
Aj-bundle.

2. The fact that =’ is a torsor under a line bundle follows immediately from
gluing and the fact that the morphism r; : X; — A} is a trivial A,lc—bundle by the
preceding point.

3. This follows from the previous point and a computation of the homotopy
colimit of the diagram consisting of s maps from A" \ Y to *. Indeed, the homotopy
colimit of s-maps from any (pointed) scheme W to * is a wedge sum of s — 1 copies of
T W. Then, the cofiber sequence A} \ Y — A} — A/(A? \Y) and Al-contractibility of
AY shows that AY /(A N\ Y) ~ ZAY \ Y. If V4 is smooth, then Y,,; — A} is a regular
immersion, and the normal bundle to this embedding has an explicit trivialization given

by f. In that case, homotopy purity implies that XA? \ Y = P A (Yyeq) - |

Remark 4.2.4. Assuming Y,,; is smooth, Lemma 4.2.3 gives complete control of the A!-
homotopy type of X; ,. Thus, for example, if f and f’ define smooth plane curves in A2

whose Picard groups are non-isomorphic and a, = 0,a; = 1, then the affine surfaces

Xpa=ft—2z-1)=0} and Xgp),= {f't—2z(z—1) =0}
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are not Al-weakly equivalent. Note, however, that the isomorphism type of X; , does
depend in general on the scheme structure of Y as well. For example, take a; = 0,a; =1,
and let f C A}C be given by x". In that case, X;, is the Danielewski hypersurface

x"t = z(z — 1) whose isomorphism type is known to be determined by r [11-13, 18].

Example 4.2.5. Suppose B = Speck where k is an integral domain. Assume P(z) =
[1i.,(z — a;) with the a; pairwise distinct elements of k and furthermore assume
that disc(P) is a unit in every residue field at a maximal ideal of k. Given a vector

m= (my,...,m,), m; € Z_,, consider the scheme

Qpp = {anxlmiti = P(z)}.

i=1

In the setting of Construction 4.2.1, we have Qp , = X;, for I = (x{"',...,x,™) and
a=(ay,...,a,). The condition on P(z) guarantees that Spec k[z]/P is smooth over Speck,
hence that Q, p is a smooth k-scheme. Since the corresponding scheme Y, is simply

the origin in A}, we obtain by Remark 4.3.2 that

1NC

_ R )
Qup ~ (VI PP A (Ypeg) . ~ (P! ™yvdegP—1

Observe that these varieties are Al-(n — 1)-connected smooth affine 2n-folds. The
problem of isomorphism classification is thus reminiscent of (a non-compact version
of) that studied in [40].

By an evident change of variables, we may assume that P(z) is of the form zQ(z).
When Q(z) = (1 — z) and m = (1,...,1), the variety Qy, » is the quadric Q,, whose
Al-homotopy type was studied in [3] and the above construction gives another view of
the proof of [3, Theorem 2]. When Q(2) is general and m = (1, 1), the variety Q,, p was
studied implicitly in [2, Proof of Corollary 3.1] as a generalization of a construction of
Winkelmann [42, §2].

The following question can be viewed as a concrete generalization of the

discussion of Remark 4.2.4 in the context of Example 4.2.5.

Question 4.2.6. In the situation of Example 4.2.5, if P is fixed, then can one distinguish

non-isomorphic varieties of the form Q,, » as m varies?
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Remark 4.2.7. For specific integral domains k, the condition on P(z) in Example 4.2.5
can be rather stringent. For example, if k = Z, no polynomial of degree > 2 satisfies the
hypotheses. Indeed, given P as in the statement of degree > 3, there exist 2 roots in Z
that must differ by > 2. The standard expression of the discriminant as a product of
differences of roots then shows that disc P takes values in Z ~ {—1,0, 1}. As such, there

exists a prime p such that Spec k[z]/P has bad reduction modulo p.

4.3 Constructing Al-contractible smooth schemes

The discussion of the preceding section also gives a way to produce many new examples
of Al-contractible strictly quasi-affine schemes generalizing the analysis from I[3,
Theorem 3.1.1]. These provide new instances of exotic Al-contractible schemes (i.e., not

isomorphic to affine k-spaces).

Proposition 4.3.1. Consider the morphism 7 : X; , — A} from Proposition 4.2.2 where
I C klx;,...,x,] has height > 2, the morphism 7 is smooth and Y,,; is smooth over k.
Define E; to be the closed subscheme corresponding to the ideal (Z, Hi#j(z —a;)) and set
X; =X, \ E,.

1. The scheme X; is a strictly quasi-affine Al-contractible smooth k-scheme.

2. The morphism ' : X; , — Al is an A'-weak equivalence.

Proof. Proposition 4.2.2 implies that the morphism x; is smooth and surjective.
Moreover, by the construction of E;, the base-change of 7 along the closed immersion
Y — A} is simply the projection morphism Ay — Y because E; consists precisely of all
but one of the components of A},. In particular, the morphism ]TJ-_I(Y) — Y is always an
Al-weak equivalence. Corollary 3.1.4 thus guarantees that X; is Al-contractible if Y,.4
is smooth. Note that X; is quasi-affine but not affine under the hypothesis that I has
height > 2.

For the second statement, observe that each of the morphisms T is an Al-weak
equivalence. Since 7’ is the pushout (as Nisnevich sheaves) of all the morphisms nj along
their intersections, it follows that 7’ is also an Al-weak equivalence, which establishes

the second point. |

Remark 4.3.2. Since Y, is smooth, we may apply homotopy purity to describe the
Al-homotopy type of A7, along the lines of the final statement in Lemma 4.2.3. The

corresponding statement is slightly more complicated because the normal bundle to
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Y,

req i1 A} need not be trivial. Of course, if Y,,; — A} is a codimension ¢ complete

intersection, then the normal bundle comes equipped with a trivialization and then

_ AC
XI,a ~ A?Y ~ (ngllpl )A(Yred)Jr'

Remark 4.3.3. In contrast with the situation for principal ideals I considered in
Lemma 4.2.3 (1), Proposition 4.3.1(1) implies that when I has height > 2, the morphism
n' . X;, — A}, is not an affine morphism. This observation has consequences for
a higher-dimensional variant of the Danielewski fiber product construction. Indeed,
suppose I’ C klx;,...,x,] is another ideal corresponding to a closed subscheme Y’ C A7,
and assume Y, ; = Y,,4. Choose a’ such that X, ,, — A} is smooth. In that case, we may
form the fiber product X; , xyn Xp 5. One may show that either projection is an Al-weak
equivalence, again by appealing to Corollary 3.1.4. Nevertheless, neither projection is
affine since n’ is smooth and surjective, and the affineness of a morphism is local in the
fppf topology on the base. As a consequence, neither projection can be Zariski locally

trivial.

Example 4.3.4. With the same notation as in Proposition 4.3.1, assuming that k
is a normal domain, then the isomorphism type of X; is closely tied to the stable
isomorphism type of Y. Indeed, take two A'-contractibles as above, say X and X/,
defined by subschemes Y and Y’ (together with the choices of corresponding a; and
a;). In that case, the normality assumption guarantees that an isomorphism between X
and X’ extends to the hypersurfaces X and X’ in which X and X’ are open subschemes,
and then restricts to an isomorphism ¥ x A" = Y’ x A". Thus, if ¥ and Y’ are not
stably isomorphic, the varieties X and X’ are not isomorphic. Since non-isomorphic
smooth curves of genus g > 0 are never stably isomorphic, by choosing non-isomorphic
smooth curves of genus g > 0 in A3, we may produce many non-isomorphic Al-
contractible smooth schemes. This produces many (e.g., positive dimensional mod-
uli spaces) non-isomorphic strictly quasi-affine Al-contractible smooth schemes of

dimension d > 4.

Question 4.3.5. Assume k is a base ring. If Y,,,; is not necessarily smooth, then is X;
still an Al'-weak equivalence? More generally, if 7 : X — A} is a smooth morphism
of k-schemes whose fibers over closed points are affine spaces, is 7 an A!-weak

equivalence?
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4.4 Topological contractibility revisited

In [5, Conjecture 5.3.11], the first and third authors conjectured that if X is a topologi-
cally contractible smooth complex affine variety, then EE,}IX is Al-contractible for some
n sufficiently large and that n = 2 was probably sufficient. In view of Theorem 4.1.1,
this conjecture can be made significantly more precise. In order to formulate the
result, recall that if k is a field, then a smooth k-scheme X is called HZ-acyclic if,
the structure map X — Speck induces an isomorphism of the Voevodsky motive M(X)
with Z in Voevodsky's derived category of motives; we refer the reader to [5] for further
explanations of the notation, but simply remark that this is a natural motivic analog
of acylicity for usual singular cohomology. The following proposition provides a non-

conjectural result inspired by this circle of ideas.

Theorem 4.4.1. Assume k is a field having characteristic 0, and (X,x) is a pointed

HZ-acyclic smooth k-affine variety.

1. For any integer N > 2, any smooth model of P!"" 1 X is an Al-contractible
smooth scheme; if X is furthermore Al-connected, then N = 1 suffices.

2. If X is a topologically Z-acyclic smooth complex surface, then for any integer
N > 2, P'"Y.X has the Al-homotopy type of an Al-contractible smooth
scheme.

3. If X is given as the vanishing locus of a hypersurface defined by f €

Clx,,...,x,l, then for any integer N > 2 (or 1 if X is Al-connected) and any
N-tuple of integers (a,,...,a,) the hypersurfaces
N

are Al-contractible.

Proof. For the first point, begin by observing that by appeal to Theorem 4.1.1 any
suspension P"¥,X admits a model as a smooth scheme. Next, pointed, smooth k-
schemes are HZ-local by appeal to [25, Lemma 4.1] (this argument appeals to resolution
of singularities, which is where the assumption on the characteristic of k appears).
Then, arguing as in [25, Theorem 4.2], one observes that HZ-acyclicity guarantees that
X is P'-stably A!-contractible.

Next, if either N > 2, or N = 1 and X is Al-connected, then P!V A X is at least

Al-1-connected. By definition, PV, X is at least 1-effective for N > 1 in the sense that
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it lies in the subcategory of Spc; generated under homotopy colimits by spaces of the
form G, U,,U € Smy. In that case [6, Theorem 1.3] guarantees that since PIAN/\X is
P!-stably contractible, it is already A!-contractible.

For the second point, observe that topologically contractible smooth complex
surfaces are HZ-acyclic by [1, Theorem 1]. That P!V, X is Al-contractible then follows
from the first point and admits a smooth affine model by appeal to Corollary 4.1.6(2).

For the third point, we proceed as follows. Observe that if f defines a smooth
hypersurface in A", then projecting onto A! with coordinate u and arguing as in Lemma
4.2.3 one concludes that the hypersurface u®v = f is a model of the P!-suspension
of the hypersurface defined by f. The result then follows by a straightforward

induction. u

Remark 4.4.2. If X is a topologically Z-acyclic smooth complex surface, then X is
necessarily affine and if X is not isomorphic to A% then X necessarily has negative
logarithmic Kodaira dimension [43, Theorem 2.6]. On the other hand, Al-connected
smooth surfaces are log-uniruled by [10, Theorem 4.7], so they necessarily have negative
Kodaira dimension [31, Theorem 1.1]. It follows that topologically Z-acyclic smooth

complex surfaces not isomorphic to A% are not Al-connected.

Example 4.4.3. Assume X is a topologically Z-acyclic smooth complex surface. If X
has logarithmic Kodaira dimension 1, it was observed by Kaliman and Makar-Limanov
[27, §7 Theorem on page 606] that X can always be realized as a hypersurface. Indeed,
suppose k,l, m are integers with k,l > 2, m > 1, ged(k,l) = 1, and assume that f, g € C[x]
are polynomials such that degf,degg < m, f(0) = g(0) = 1, f is arbitrary subject to the

preceding condition and g is uniquely determined by the condition that

_ (@"x+f@) - @y +9@) -z
pk,l,m,f(Xrny) - om

is a polynomial. In that case, the variety Prims=0 defines a topologically contractible
hypersurface of logarithmic Kodaira dimension 1, and every such variety is isomorphic
to a hypersurface of this form. In particular, Theorem 4.4.1 applies here, and we

conclude that the hypersurface X, ; defined by

N
Z U;Vi = DPrimf

i=1
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is Al-contractible for N > 2; this observation can be viewed as an improvement of
[16, Corollary 3.7].

In the special case where N = 1, Kaliman and Zaidenberg observed that the
resulting hypersurfaces could fail to be isomorphic to affine space [28, Theorem 1]. We
conclude from Remark 4.4.2 that the hypersurfaces py; ,, r = 0 are not Al-connected and

Theorem 4.4.1 does not guarantee the hypersurface X, ; is Al-contractible.
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