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ABSTRACT

In this paper, we examine the properties of the Jones polynomial using dimensionality
reduction learning techniques combined with ideas from topological data analysis. Our
data set consists of more than 10 million knots up to 17 crossings and two other special
families up to 2001 crossings. We introduce and describe a method for using filtrations
to analyze infinite data sets where representative sampling is impossible or impractical,
an essential requirement for working with knots and the data from knot invariants. In
particular, this method provides a new approach for analyzing knot invariants using
Principal Component Analysis. Using this approach on the Jones polynomial data, we
find that it can be viewed as an approximately three-dimensional subspace, that this
description is surprisingly stable with respect to the filtration by the crossing number,
and that the results suggest further structures to be examined and understood.

Keywords: Knot invariants; knot polynomials; Jones polynomial; signature; topological
data analysis; PCA; filtered PCA; data analysis.
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1. Introduction

Throughout the development of low-dimensional topology, there has been an

emphasis on the study of invariants from algebraic, combinatorial and geomet-

ric perspectives. The scarcity of results considering the statistical nature of these

∗Corresponding author.

2250095-1



J. S. F. Levitt, M. Hajij & R. Sazdanovic

invariants is quite surprising given the abundance of available data. Examining the

distributions that arise from invariants should reveal and illuminate structures that

are difficult to see using traditional tools. We consider the Jones polynomial from a

statistical perspective and provide an outline of how to use filtrations to investigate

infinite data sets of this type.

The techniques of big data and deep learning provide useful tools for analyz-

ing the statistical nature of knot invariants. Multiple advances have resulted from

melding traditional methods in Physics and Mathematics with the emerging data-

driven techniques of scientific computing. These have ranged from solving previously

intractable problems in Computer Vision to providing significant improvements in

earthquake prediction models. Despite the wide number of techniques available,

the study of how to use these powerful statistical tools in pure mathematics is

in its infancy. Machine learning and data mining techniques have just started to

attract attention in knot theory, see [29, 32, 56] and to our knowledge have largely

been used for predicting valuations. This is the first in a series of papers examin-

ing how to apply these techniques to low-dimensional topology to gather structural

insights [13]. We start by focusing on dimensionality reduction, with further analysis

using supervised machine learning techniques [26] and persistent homology [17, 45]

forthcoming.

Low-dimensional topology, and knot theory in particular, is among the most

data-rich of mathematical sub-fields. Tabulating data concerning knots is a long-

standing tradition dating back to the 1860s [52]. As computing power improves and

people continue to search for answers to fundamental questions in knot theory such

as the Jones unknot conjecture [33] and the hyperbolic volume conjecture [43], peo-

ple have continued to enlarge our tabulations of known knots e.g. [4, 27, 31, 41, 49].

Recently, Burton tabulated all the prime knots up to and including 19 crossings [9],

finding over 350 million total prime knots. This tabulation was summarized as part

of the software package Regina [8] with published DT-codes as defined in [15]. A

separate effort at tabulating large numbers of unique knots was also recently under-

taken by Tuzun and Sikora in their demonstration that no counterexamples to the

Jones unknot conjecture exist up to 24 crossings [54, 55]. In their tabulation, over

10 trillion knot diagrams were considered using distinct methods from Burton’s.

While the exact number of distinct knots with a certain number of crossings is still

unknown, we do know that this number grows at an exponential rate as we increase

the number of crossings [21]. This ensures that data-related questions arising from

knot theory naturally fit into a big data framework.

The first major contribution of this paper is to demonstrate a reliable technique

by which dimensionality reduction technique such as Principal Component Analysis

can be applied to infinite data sets where representative sampling is impossible or

impractical. We describe how to analyze and construct a usable filtration on the

infinite set of knots, where the Jones polynomial is unbounded in degree. The

experimental results of this demonstrates that our Jones invariant data is well
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approximated by a three-dimensional subspace, consistent across our filtration up

to computation limits.

Meaningfully applying dimensionality reduction techniques to our data proved

difficult. It is unknown how to create a representative subsample of Jones polyno-

mial data. Any conclusions drawn must remain consistent when choosing compa-

rable subsets of the data. Results were sensitive to the choice of how encode the

data for comparison. Using the same approach as was used to find patterns in the

more general colored Jones polynomial, [2, 6, 7, 19, 39, 42] provided data where

any structures proved transient. Fortunately, exactly one model for encoding the

data provided results that were both remarkable and persistent, as is discussed in

Sec. 3.

The requirement that results be persistent across comparable subsets of the

data required detailed analysis of how to filter sets of knots into related families.

Knot theory has always driven researchers to calculate knot invariants and organize

them into data tables in a process called knot tabulation [27, 28]. Originally envi-

sioned as a way to distinguish different atomic properties [52], modern work has

suggested that a classification system could assist in the understanding of glueball

particles [22]. Since then a series of systems have been suggested for ordering or

relating knots within these ever expanding tabulations [10, 14].

Upon generating our Jones polynomial data for all knots up to 17 crossings,

we examined several methods for organizing the data. We considered the crossing

number, Rasmussen s-invariant [47], signature, unknotting number, and a wide

variety of properties intrinsic to the Jones data itself. As we discuss in Sec. 5,

organizing the data by crossing number yields persistent results despite the manner

in which the set varies dramatically in both the ratio of alternating to nonalternating

knots present in the sample and the expanding size of the data considered.

The second major result from this study is to demonstrate a new tool for com-

paring knot invariants and understanding their structure. Applying dimensionality

reduction to the Jones data using Principal Component Analysis (PCA) [57] as in

Fig. 1, we see a rich three-dimensional structure with large scale features differen-

tiated by their signature with subfeatures of smaller ‘tendrils’ with as yet unknown

Fig. 1. A PCA projection of the Jones polynomial data into three dimensions colored by the
knot signature to highlight internal structure.
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significance. We propose the following definition for understanding the results of

dimensionality reduction via PCA, given the discussion of Remark 2.1.

Let k be the value for which the normalized explained variance of the first k

PCA components sums to more than 95%. If across the crossing filtration, then the

polynomial knot invariant P has dimension k.

Under this convention, the Jones polynomial is three-dimensional, the Z0 poly-

nomial of Bar-Natan and van der Veen [5] is two-dimensional and the Alexander

polynomial [1] is one-dimensional. In this paper, we will focus solely on understand-

ing how the Jones polynomial is three-dimensional under this definition, while the

remaining calculations will be published in upcoming work.

To perform this analysis, we relied on the tools from the KnotTheory package [4]

for calculating the Jones polynomial for all knots. The DT codes we used for knots

up to 16 crossings were exactly those in the KnotTheory package, while to calcu-

late data for the 17 crossing knots we added the DT codes from Burton’s Regina

program [9] to the KnotTheory data tables. The PCA calculations were done using

the scikit-learn library [46] and in Mathematica [58]. Finally, knot figures were

generated using Inkscape [30].

2. Background

In this section, we briefly provide the reader with an overview of the definitions and

notions used in the paper. We begin with the definition of the Jones polynomial,

followed by an overview of the basic properties of the PCA technique.

2.1. The Jones polynomial

The Jones polynomial [33] and its generalizations [44, 48, 53] play a fundamental

role in low-dimensional topology [34, 43, 44]. The discovery of the Jones polynomial

has led to multiple major discoveries in various areas of low-dimensional topology [3,

12, 23, 35–38]. Understanding the discriminative power of the Jones polynomial, its

relations to other classical invariants of knots and links, as well as the information

encoded in its coefficients, conjectured to be related to the hyperbolic volume of

the knot, are important problems in low-dimensional topology. Furthermore, the

coefficients of the Jones polynomial and its generalizations have been proven to be

related to many interesting areas in number theory, and have been the subject of

an extensive research effort [2, 6, 7, 18, 19, 24, 25, 39, 42].

Let L be a knot in S
3. The Jones polynomial, denoted by JK(q), is a Laurent

polynomial in Z[q±
1
2 ]. The Jones polynomial can be characterized by the require-

ments that JL(q) = 1, when L is the unknot, and that it satisfies the following skein

relation:

(q1/2 − q−1/2)JL0
(q) = q−1JL+

(q) − qJL−(q).
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Fig. 2. The three pictures on the left represent a positive crossing, a smoothing and a negative
crossing, denoted L+, L0 and L−, respectively. The right picture represents the same concept,
fixed on the top crossing in the trefoil diagram L first with L+, a diagram of an unknot with L−

next and of the Hopf link with L0 at the end.

Here L0, L− and L+ are three oriented link diagrams that are identical everywhere

except at single crossing as appears on the right in Fig. 2. The skein relation can

be used to compute the Jones polynomial for any given link L.

2.2. Principal component analysis

Principal Component Analysis (PCA) is one of the most popular multivariate statis-

tical techniques in big data. PCA is defined as an orthogonal linear transformation

that maps a given data set X to a new orthonormal basis that is aligned with the

core properties of the data. To accomplish this, PCA finds and ranks the linear

directions along which the data has maximal variance.

In what follows, we consider a data set X which consists of a collection of points

R
d represented in raw matrix form also denoted by X . Furthermore, assume that

the number of points in our data set X is |X | = n. The PCA linear transforma-

tion is obtained by computing the eigendecomposition of the covariance matrix K

defined by

K =
1

n − 1
(X − x̄)T (X − x̄), where x̄ =

1

n

n∑

i=1

xi.

The matrix K is, by definition, a symmetric matrix and hence diagonalizable by

an orthogonal basis. Therefore, we can find an orthogonal matrix P and a diagonal

matrix Λ, such that K = PΛPT . Consequently, the matrix K defines, via P and Λ,

an orthonormal eigensystem {(λi, vi)}
d
i=1, where Kvi = λivi, with

λ1 ≥ λ2 ≥ · · · ≥ λd. (2.1)

To compute the orthonormal basis in R
d whose directions maximize the variance,

PCA finds the first principal component, which is the direction in R
d along which

projections have the largest variance among all possible directions and then iterates.

In particular,

v1 = max
v∈Sd−1

∑

x∈X

(x − x̄) · v and vi = max
v∈(Sd−1⊥Span{vj}j<i)

∑

x∈X

(x − x̄) · v,

(2.2)

where Sd−1 ⊂ R
d in the standard manner. The second principal component vector,

v2, is the direction that maximizes variance among all directions that are orthogonal
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to the first principal component, with similar properties for vi, 1 < i ≤ d. The

vectors {vi}
d
i=1 defined in (2.2) are precisely the eigenvectors of the covariance

matrix, K, we refer the reader to [50] for further details.

Each eigenvalue, λi, from above explains the variance associated with its paired

eigenvector. As noted in (2.1) the highest eigenvalue denotes to the direction of

highest variance in the data, which is the first principal component, v1. Corre-

spondingly, the eigenvalues obtained from the covariance matrix are often referred

to as the explained variances. The normalized explained variance λi is defined by

λi = 1
P

d
j=1

λj
λi.

Remark 2.1. The value λi describes the percentage of variance in the ith direc-

tion. Intuitively, the normalized explained variance provides a measure of the

degree of importance for each corresponding eigenvector. As these eigenvalues are

ordered (2.1), one can also refer to the most important k PCA directions, where

k ≤ d, and these are the vectors v1, . . . , vk corresponding to the largest k eigen-

values. These properties of the PCA orthonormal eigensystem {(λi, vi)}
d
i=1 can be

used to obtain a heuristic assessment of the dimensionality of distinguishing features

within the original data set X . This heuristic is obtained by measuring the cumu-

lative values of the normalized explained variance Sk :=
∑k

i λi, where 1 ≤ k ≤ d.

In practice, we choose k such that Sk ≥ r, where r is a reasonable percentage value

for which the chosen PCA vectors still capture the original data. In this work, we

have chosen r to be 0.95.

3. Preparing the Data

Regarding the data sets used in this paper, we note the following. Most knots exist

in pairs, (K, mir(K)), such as the left- and right-handed trefoil knots, where one

knot becomes the other when all positive and negative crossings are switched, so

L+ ←→ L− everywhere, giving what is referred to as the mirror image of the

knot. Knot tabulation efforts have generally accepted that it is not necessary to

enumerate both of these paired knots when listing all knots, but many invariants

are sensitive to this choice. For the Jones polynomial Jmir(K)(q) = JK(q−1) [33, 40],

while for the signature σ(mir(K)) = −σ(K) [40], and for the Rasmussen s-invariant

s(mir(K)) = −s(K) as well [47].

In light of this symmetry, to reduce memory overhead and computation time,

as well as to enhance the clarity of the associated data visualizations, we have

chosen to include just one of either K or mir(K) in our data set. We first chose

the embedding where the signature was positive. If the signature was zero, we then

chose K or mir(K), to ensure the Rasmussen s-invariant was positive. When both

the signature and s-invariant are zero, or one was unknown, we chose the embedding

of K or mir(K) for which the most extreme degree was positive (e.g. by choosing

mir(61) over 61 as Jmir(61)(q) = q4 − q3 + q2 − 2q + 2− 1
q + 1

q2 has extreme degrees
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Table 1. Jones polynomials with positive extreme degree and their padded coefficient vectors
aligned at q0.

K J(K) q0

01 1 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

mir(31) q + q3 − q4 (0, 0, 0, 0, 1, 0, 1, −1, 0, 0, 0)

41 q−2 − q−1 + 1 − q + q2 (0, 1, −1, 1, −1, 1, 0, 0, 0, 0, 0)

mir(51) q2 + q4 − q5 + q6 − q7 (0, 0, 0, 0, 0, 1, 0, 1, −1, 1, −1)

mir(52) q − q2 + 2q3 − q4 + q5 − q6 (0, 0, 0, 0, 1, −1, 2, −1, 1, −1, 0)

mir(61) q−2 − q−1 + 2 − 2q (0, 1, −1, 2, −2, 1, −1, 1, 0, 0, 0)

+ q2 − q3 + q4

mir(62) q−1 − 1 + 2q − 2q2 + 2q3 (0, 0, 1, −1, 2, −2, 2, −2, 1, 0, 0)

− 2q4 + q5

63 −q−3 + 2q−2 − 2q−1 (−1, 2, −2, 3, −2, 2, −1, 0, 0, 0, 0)
+ 3 − 2q + 2q2 − q3

of 4 and −2) as in Table 1. Once a choice between K and mir(K) was made we

constructed each point cloud by the following general method.

Given a finite family of knots F , and a single variable knot polynomial invari-

ant I, we want to construct a point cloud CI
F ⊂ R

n. The procedure we describe here

works for any finite set of knots and any single variable polynomial knot invariant I.

The steps for creating this point cloud are as follows:

(1) For each K ∈ F we compute the polynomial invariant I(K) or I(mir(K)) as in

the second column of Table 1.

(2) Convert each polynomial I(K) to a coefficient vector P (I(K)) — or

P (I(mir(K))).

(3) The set of coefficient vectors {P (I(K)) |K ∈ F} are aligned by padding each

vector with zeroes to ensure that the coefficient of q0 is in a consistent position

and all vectors are of the same length as in the right column of Table 1 and

elaborated upon below. Each padded vector is denoted PF(I(K)).

An example of this method is given for a small set of knots in Table 1. There

we present the choice of embedding for each knot, corresponding Jones polynomial

and the resulting vector in the point cloud of the family of knots up to 6 crossings.

Observe that each vector PF (I(K)) does not solely depend on the knot, K, but

rather also depends on the family F . Indeed, the coefficient vectors, P (I(K)) for

various knots frequently are of differing lengths and belong to different Euclidean

spaces. Constructing CI
F depends explicitly on the family F , since we padded the

shorter vectors in this set to match the longest ones. Even when two polynomi-

als in a family have the same length coefficient vector as with P (I(mir(51))) and

P (I(mir(52))) in Table 1 on the left, alignment frequently pads the vectors differ-

ently. In order to obtain the point cloud data CJ
F , where F is all knots with at most

6 crossings, we align the vectors as shown in the right column of Table 1, padding

with zeros as necessary.
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For generating the data here, we used the KnotTheory package [4] to com-

pute the signature and the Jones polynomial for all knots up to 17 crossings and

received a collection of the s-invariants for all knots up to 15 crossings from Alex

Shumakovitch [51].

For each invariant, we then defined coefficient vectors for each polynomial,

padding the vectors with zeroes as needed to align the position of q0 as done to go

from left to right in Table 1.

4. The Filtration Method

In data analysis, one commonly has to draw conclusions based on incomplete data

sets. Therefore, one hopes to find those properties that do not evolve, but rather

persist unchanged throughout the data set, suggesting that the conclusions are fun-

damental to all of the data rather than as a property of whichever special subset is

being considered. To address this issue, we have applied propose utilizing dimension

reduction algorithms to filtrations of our data, that is, nested sequences of point

clouds indexed with respect to some increasing parameter. This allows us to both

detect essential, conjecturally constant, features, while also detecting those that

meaningfully evolve with respect to different parameters.

Definition 4.1. A filtration of a set F is a finite sequence {Fi}
n
i=1 of nested sets

such that F1 ⊂ F2 ⊂ · · · ⊂ Fn = F .

For our purposes, let each set Fi be a family of knots, and I be a single variable

polynomial knot invariant. The nested sequence in Definition 4.1 induces a nested

sequence on a corresponding filtration of point clouds, denoted:

CI
F1

⊂ CI
F2

⊂ · · · ⊂ CI
Fn

. (4.1)

Now even though Fj ⊂ Fj+1, the corresponding vectors PFj
(I(K)) and

PFj+1
(I(K)) often belong to different Euclidean spaces, but there is always a

natural mapping that sends a point in PFj
(I(K)) to the corresponding point in

PFj+1
(I(K)). Namely, the two vectors can be aligned on the position of q0, padding

the necessary zeros in PFj
(I(K)) so it is embedded in the same Euclidean space

as PFj+1
(I(K)). Using this mapping we can meaningfully embed a point cloud CI

Fj

inside CI
Fj+1

whenever Fj ⊂ Fj+1.

Studying the eigensystems generated by PCA on a nested sequence of point

clouds provides insight on how their principal component vectors and correspond-

ing normalized explained variances evolve as the size of the point cloud grows. This

can provide more information about the distribution from which this point cloud is

drawn. For instance, by considering the relative sizes between consecutive normal-

ized explained variances from the filtration, we get information on the shape of the

point cloud.
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There are over 50 distinct well-known invariants used to distinguish knots in

tabulations [11]. Most of these naturally define ordered families of knots. One such

natural filtration of families of knots is the one obtained by considering all knots,

up to ambient isotopy, with minimal number of crossings less than or equal to a

particular value k. Let F�k� denote the family of all different knots with crossing

number less than or equal to k. We wish to study the point clouds obtained by the

following filtration:

F�3� ⊂ F�4� ⊂ · · · ⊂ F�j� ⊂ · · · ⊂ F�k�. (4.2)

When paired with a single variable polynomial knot invariant I, the filtration (4.2)

induces a filtration of point clouds as in (4.1). We will refer to the point cloud

filtration induced by (4.2) as a crossing filtration. To specify the PCA eigensystem

obtained at each point cloud in a crossing filtration we will associate to the point

cloud CI
F�j�

the PCA eigensystem {λi(j), vi(j)}.

The second natural filtration on point clouds associated with polynomial knot

invariants is induced by the norm. We default to the l2-norm due to its ease of

use and scalability within the scikit-learn package, but comparisons against other

norms did not produce significantly different results. Given F , a finite family of

knots with I, a single variable polynomial knot invariant, then for any r ∈ R
+,

we define

CI
F(r) := {p ∈ CI

F | ‖p‖ ≤ r}.

For a finite sequence of positive real numbers r1 ≤ · · · ≤ rmax, we define the

filtration

CI
F�k�

(r1) ⊂ CI
F�k�

(r2) ⊂ CI
F�k�

(r3) ⊂ · · · ⊂ CI
F�k�

(rmax) = CI
F�k�

, (4.3)

where rmax = maxp∈CI
F�k�

(‖p‖). We call the point cloud filtration given in (4.3) the

norm filtration and will denote the PCA eigensystem obtained from CI
F�k�

(rj) by

{λi(rj), vi(rj)}.

Remark 4.2. The idea of utilizing filtrations to study stable features in data is

inspired by notions in persistent homology [16] where one studies stable homological

features in the data that persists over some parts of a pre-defined filtration. Note

that the filtration defined in the context of persistent homology is different from

the one we present here.

5. Application to the Jones Polynomial

In this section, we outline the results of running PCA on point clouds obtained

from the Jones polynomial. In total, we use all 9,755,329 knots of at most 17 cross-

ings. In Sec. 5.1 we discuss how filtering by the l2-norm illustrates the shape of

the point cloud CJ
F�17�

using the filtration discussed in Sec. 4. While in Sec. 5.2,
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we examine how the crossing filtration illuminates persistent features of the point

cloud. To see if this behavior continues at higher crossing number we consider

the point cloud for two special subfamilies of knots up to 2001 crossings in

Sec. 6.

Our analysis utilizes two primary visualizations of the PCA data. In the first,

the relative importance of each PCA eigenvector can be visualized by plotting the

normalized explained variance as a function of the ordered indices of the eigensystem

as discussed in Remark 2.1. Similarly, one can also plot the cumulative values of

the normalized explained variance Sk as a function of k. Our second visualization

follows the trajectory of a sequence of PCA eigensystems {λi, vi}j across each step

of the filtration by comparing the values of λi and the directions of the principal

components vi. Ideally, all the principal component vectors would overlap across

the filtration, we measure their deviation by using the classical dot product between

them:

vi(rj+1) · vi(rj) = cos θi,j‖vi(rj+1)‖‖vi(rj)‖ in the norm filtration; (5.1)

vi(j + 1) · vi(j) = cos θi,j‖vi(j + 1)‖‖vi(j)‖ in the crossing filtration. (5.2)

Here θi,j is the angle between the ith principal component in the j and j + 1st

eigensystem in a given filtration.

5.1. Structure from the norm filtration

Having prepped and filtered the data as in Secs. 3 and 4, we set up the norm

filtration of (4.3) using the radii {r7, . . . , ri, . . . , r0}, denoted in Fig. 3. Each radius

is chosen to restrict to the central 1
2i of the point cloud, doubling the number of

points considered with each iteration.

Figure 3 illustrates the first type of visualization, where we consider the plotted

values of the normalized explained variance. The left-hand set of curves show the

Fig. 3. The normalized explained variance and cumulative normalized explained variance of each
principal component in the norm filtration on the Jones polynomial, plotted on a log scale to
highlight the behavior of the most significant components.
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normalized explained variance of each principal component, ordered as in (2.1),

while the right-hand graph shows the cumulative normalized explained variance. In

both graphs, the PCA calculation is done on the filtration CJ
F�17�

(r7) ⊂ CJ
F�17�

(r6) ⊂

· · · ⊂ CJ
F�17�

(r0) with each family denoted by a distinct color. The exponential

division of the point cloud is both for eventual contrast with the exponential growth

of the crossing filtration and to ensure that at each step the amount of new data is

equal to the amount of preexisting data.

Two trends quickly appear in Fig. 3. The first principal component becomes

more significant as the bounding radius of the point cloud increases, while sub-

sequent components decrease in prominence. This increase in the first principal

component exceeds the decrease in subsequent components and as a result the

cumulative normalized explained variance, Sk, increases for each k. Following the

bound set out in Remark 2.1 we see that for r7, r6 and r5 S5 ≥ 0.968, while for r4, r3

and r2, S4 ≥ 0.959, and then r1 and r0 have S3 ≥ 0.969 and S3 ≥ 0.988, respec-

tively, which suggests that CJ
F�17�

approximates a three-dimensional subspace.

These trends are affirmed by the second type of visualization in Fig. 4, where

the trajectory of the first six components of the normalized PCA eigensystem are

followed across each step of the filtration. The left graph illustrates the gradual

growth of the first principal component at the expense of the remaining components

as the radius of our point cloud CJ
F�17�

(ri) increases. Quantitatively, we solely note

that the maximum relative spread for any of the 3 significant PCA components is

∼91%.

The quality of a filtration is not only reflected in the stability of the λj ’s, we can

also measure the alignment of sequential eigenvectors as in (5.1). On the right-hand

Fig. 4. The left-hand chart plots the normalized explained variance against the radius of the
norm filtration of CJ

F�17�
for the first 6 principal components on a log scale in accordance with our

doubling sample size. Here λ1 grows as the size of this knot family increases, while the λi for i ≥ 2
principally decrease. The figure on the right provides insight on any trends toward stability in the
angle θi,j . In this notation, the x-axis represents the log of the bounding norm of rj , while the
y-axis represents the angle θi,j (measured in radians) and the index i is depicted using different
colors.
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side of Fig. 4, we plot these angles for principal components 1 ≤ j ≤ 6 across radii

15 < r < 2000. The principal components stabilize as the filtration radius increases,

but two details stand out. First, from r4 to r2 the variation between important eigen-

vectors reduces to a stable point. Second, the angles between secondary sequential

components begins to stabilize from r2 to r0. Furthermore, the significance of the

principal component does not appear to correlate directly with the relative degree

of stability across the filtration.

Figure 4 suggests that in the center of the point cloud, the data spreads fairly

evenly in 2 directions, before changing direction between radii of 50–200 and pro-

nouncedly extending out in a single new direction. The cutoffs in the data based on

the doubling radii of the point cloud suggests that the data is disproportionately

densely packed towards the center of the distribution and is sparse towards the

extremes. We consider the shape of the data further when discussing Fig. 7.

5.2. Persistent properties in the crossing filtration

Following the same steps we now consider the crossing number filtration following

from (4.2). This filtration presents distinct features from the norm filtration. The

number of knots in each step of the filtration increases exponentially [21], so to

ensure a sufficient number of data points in the smallest filtration, we only consider

the cases CJ
F�11�

⊆ CJ
F�12�

⊆ CJ
F�13�

⊆ CJ
F�14�

⊆ CJ
F�15�

⊆ CJ
F�16�

⊆ CJ
F�17�

. The

visualization of Fig. 5 when compared to Fig. 3 presents a strong contrast.

In Fig. 5, the normalized explained variances and cumulative normalized

explained variances are essentially indistinguishable. Following the bound set out

in Remark 2.1, we find that 0.992 ≥ S3 ≥ 0.988 for every family in the filtration

and that S2 < 0.95 except for the 12 and 13 crossing families, where S2 =̇ 0.9507.

We also consider the crossing number filtration analogue of Fig. 4 in Fig. 6.

Fig. 5. The normalized explained variance and cumulative normalized explained variance of each
principal component in the crossing filtration on the Jones polynomial plotted on a log scale to
emphasize the behavior of the most important components.
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Fig. 6. The left-hand chart shows the explained variance plotted against the crossing filtration
on CJ

F�17�
. It is remarkably level across the filtration. In the right figure, the x-axis represents the

log of the bounding norm of rj , while the y-axis represents the angle θi,j (measured in radians)
and the index i is depicted using different colors. Note that, the more significant the component,
the more stable it is.

Fig. 7. (Color online) The distribution of the l2-norms (total count vs. norm) for the alternating
(green), nonalternating (blue) and combined (gray) knots up to 12, 13, 14, 15, 16 and then 17
crossings when taken left to right, top to bottom.

Figure 6 stands in marked contrast to its analogue for the norm filtration. The

normalized explained variance is remarkably stable for the 3 significant components

with a maximal relative spread of ∼ 3.5%, a significant improvement in consistency.

The principal components also behave differently when measuring the angle between

vi ∈ CJ
F�k�

and vi ∈ CJ
F�k+1�

compared to the norm filtered case. There may be

more total variation across the filtration, but that variation is more orderly, with

θi,k < θi+1,k for all k and all significant i, where λi > 0.00001. It is not surprising

that these filtrations have some amount of variation as the minimal dimension of

R
n in which CJ

F�k�
can be embedded strictly increases with k. Of further interest

is a mild periodicity in the variation of θi across k, suggesting that the change in

distribution of knots in CJ
F�k�

depends on the parity of k.
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The disparity in stabilization behavior between the norm filtration and the

crossing number filtration begs the question of whether there is something special

about either one. Looking at the distribution of norms for CJ
F�17�

as in the lower

right of Fig. 7 it becomes immediately apparent that the norm filtration suffers

from some structural deficiencies. Namely, the subfamily of nonalternating knots

has a skewed distribution towards lower norms, while the l2-norms of alternating

knots favor a broader distribution. We observed in talking about Fig. 4 that the

angles between principal components experienced an inflection and rapid stabiliza-

tion in the three most important PCA components between r4
.
= 45 and r1

.
= 215.

Additional experimentation has shown that these characteristics stabilize almost

completely for r ≥ 1000. In Fig. 7, we see that, for every family in the crossing

filtration, the nonalternating knots contribute an insignificant fraction of new data

points to the PCA calculation by the point where the alternating knot distribution

peaks. Similarly, the tail of this distribution continues stretching as the crossing

number increases, so in each case only a small number of data points are added

to the point cloud after an r � rmax so it is of little surprise that the principal

components mostly stabilize after a given point.

This dependence on the norm distributions of the alternating and nonalternating

knots suggests that we should also consider these knot classes by themselves. Let

CI
F�k�n

denote the point cloud of nonalternating knots of at most k crossings built

using the single polynomial invariant I and CI
F�k�a

will denote the analogous point

cloud of alternating knots.

In Fig. 8, we first consider the persistence of the PCA eigensystem features under

the crossing number filtration of CJ
F�11�a

⊂ CJ
F�12�a

⊂ · · · ⊂ CJ
F�17�a

on alternating

knots. The normalized explained variances on the left of Fig. 8, suggests they follow

Fig. 8. The left figure plots the normalized explained variance against the radius of the l2-norm
filtration of CJ

F�17�a
. In the right figure, the x axis represents the log of the bounding norm of rj ,

while the y axis represents the angle θi,j (measured in radians) and the index i is depicted using
different colors. This figure shows how the PCA bases obtained from the filtration stabilize as we
increase the radius. (Note that the larger the contribution the less the deviation.)

2250095-14



Big data approaches to knot theory

Fig. 9. The left figure plots the normalized explained variance of CJ
F�17�n

. The figure on the right

shows the how the PCA bases obtained from the filtration change with crossing number. More
precisely, the x axis represents the log of the bounding norm of rj , while the y axis represents the
angle θi,j (measured in radians) and the index i is depicted using different colors. Note that here
the trends are consistent at high crossing number, but not at low crossing number where a dearth
of examples likely lead to noise.

the same general pattern as expressed in Fig. 4, but with a value of λ1
.
= 0.782 and

relative spread of ∼ 1.4%.

Next, we consider the persistence of the PCA eigensystem features under the

crossing number filtration of CJ
F�11�n

⊂ CJ
F�12�n

⊂ · · · ⊂ CJ
F�17�n

on nonalternat-

ing knots, as in Fig. 9. Like the crossing filtration on alternating knots, the PCA

eigensystem values for the crossing filtration on nonalternating knots are stable,

but with λ1
.
= 0.728 and relative spread of ∼1.6%. It is worth noting that the

normalized explained variances of the alternating knots and nonalternating knots

settle at different values, but their combination, at steadily diverging weights, as

illustrated by the relative proportions in Fig. 7, still remains not just consistent

as noted by Fig. 6, but has even less relative spread with λ1
.
= 0.766 and relative

spread of ∼ 1.0%.

Even considering our final normalized eigenvalue deemed significant by

Remark 2.1, λ3, we find that the relative spread in all knots is ∼ 3.5%, while the

alternating and nonalternating knots have relative spreads of ∼ 9.2% and ∼ 13%,

respectively, when considering crossing filtrations for 12 ≤ k ≤ 17 to ensure at least

1000 knots in every filtration. The possible implications of these observations bear

further investigation.

6. Examining Jones Structure at Higher Crossing Number

To provide insight into what happens for higher crossing numbers, we looked at

two subfamilies of knots whose Jones polynomials were easily computed at higher

crossing number. We consider the torus knots up to 2000 crossings and the positive

double twist links of up to 2001 crossings. Let CJ
F�k�T

denote the point clouds of torus

knots up to k crossings, and CJ
F�k�P

the point clouds of single strand positive double
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Fig. 10. PCA projection into three dimensions of the positive double twist link knots up to 2001
crossings (left) and the torus knots up to 2000 crossings (right).

twist link knots up to k crossings, which were calculated using [4, 20], respectively.

The three-dimensional PCA projections of CJ
F�2001�P

and CJ
F�2000�T

are presented in

Fig. 10 and suggest interesting structures exist. Yet our results are inconsistent

with those of Sec. 5 and reveal more about the challenges of using PCA than they

do specifically about the dimensions of CJ
F�k�

.

Studying the PCA eigensystems of CJ
F�2001�P

⊂ R
5003 using the top row of Fig. 11

it is easy to see that CJ
F�2001�P

should not be considered a 5003-dimensional subspace.

Fig. 11. Top row: PCA on double twist link knots up to 2001 crossings. Top left: λi for component
i. Top right: Cumulative explained variance up to component i. Bottom row: PCA on torus knots
up to 2000 crossings. Bottom left: λi for component i. Bottom right: Cumulative explained variance
up to component i.
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In fact, S4 > 0.969 and S3
.
= 0.948, which by our heuristic suggests that CJ

F�2001�P

approximates a four-dimensional manifold. This suggests that this submanifold of

CJ
F�2001�

approximates a higher dimensional subspace than we measured for CJ
F�17�

and that the apparent stability in λi’s seen in Fig. 6 might slowly evolve as crossing

number increases.

We investigated this phenomenon further for torus knots. A very different pic-

ture emerges from the analysis of the bottom row of CJ
F�2000�T

in Fig. 11. While

the left visualization is broadly similar to the results for CJ
F�2001�P

, the right chart

displays a significant difference. Here the cumulative normalized explained variance

approaches 1 much more slowly with S25 > 0.95 and taking even longer to reach a

stricter restriction used by some of S224 > 0.99.

Two details about CJ
F�2000�T

stand out in contrast to CJ
F�2001�P

. First, CJ
F�2000�T

contains a mere 4501 data points unlike the over 500,000 in CJ
F�2001�P

. Second, while

CJ
F�2001�P

lives in a 5003-dimensional space, CJ
F�2000�T

lives in an 2998-dimensional

space. It is apparent that these two point clouds are not directly comparable even

though they both are contained in CJ
F�2001�

. This suggests that the approximate

dimension of a point cloud is dependent on how it is sampled especially for nonran-

dom samples. Furthermore, a direct examination of the sparsely populated CJ
F�2000�T

,

supports the idea that for a sample size that does not even double the dimen-

sionality of the space it is embedded in it is difficult to have dimensions with

λi �
1

dim CI
F

.

7. Conclusions and Future Work

Studying the features of datasets that arise in pure mathematics has distinct chal-

lenges from those one faces when working with real world data. In this paper, we

have outlined how to utilize one of the most traditional dimensionality reduction

techniques, Principal Component Analysis, to study point clouds of data in this

context. In particular, we introduced the notion of filtrations to analyze a nested

sequence of datasets. The method introduced here is general and applicable to other

scenarios where a conclusion about an infinite dataset is required.

Having explicitly described how this technique can be used to analyze the struc-

ture of the Jones polynomial data, immediate extensions of this work are to study

point clouds arising from other one variable polynomial invariants such as the

Alexander polynomial and to investigate the substructures illustrated in Fig. 1. In

our upcoming works, we will use other big data analysis techniques in the context

of data in low-dimensional topology, further outlining how they can be used to com-

pare numerical and polynomial knot invariants. Additional dimensionality reduction

calculations using ISOMAP on the Z0 polynomial data affirm results obtained using
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PCA. Preliminary research indicates that persistence homology confirms the exis-

tence of the substructures in the Jones polynomial data that also reflect potential

relations of the Jones polynomial and signature.
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