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A B S T R A C T

Scaolds delivered to injured spinal cords to stimulate axon connectivity oten match the anisotropy o native
tissue using guidance cues along the rostral-caudal axis, but current approaches do not mimic the heterogeneity
o host tissue mechanics. Although white and gray matter have dierent mechanical properties, it remains un-
clear whether tissue mechanics also vary along the length o the cord. Mechanical testing perormed in this study
indicates that bulk spinal cord mechanics do dier along anatomical level and that these dierences are caused
by variations in the ratio o white and gray matter. These results suggest that scaolds recreating the hetero-
geneity o spinal cord tissue mechanics must account or the disparity between gray and white matter. Digital
light processing (DLP) provides a means to mimic spinal cord topology, but has previously been limited to
printing homogeneous mechanical properties. We describe a means to modiy DLP to print scaolds that mimic
spinal cord mechanical heterogeneity caused by variation in the ratio o white and gray matter, which improves
axon inltration compared to controls exhibiting homogeneous mechanical properties. These results demonstrate
that scaolds matching the mechanical heterogeneity o white and gray matter improve the eectiveness o
biomaterials transplanted within the injured spinal cord.

1. Introduction

A potential benet o transplanting bioengineered scaolds is the
delivery o a matrix with mechanical properties that mimic the host
tissue, but the mechanics o native tissue are oten heterogeneous and
dicult to characterize. In particular, our understanding o the me-
chanical properties o the central nervous system (CNS), specically the
spinal cord, is primarily inormed by macroscale measurements [1ϵ3].
These studies show that CNS mechanics are heterogenous via tensile,
shear, compression testing [4,5] and magnetic resonance elastography
[6,7]. In order to supplement bulk approaches, atomic orce microscopy
(AFM) is a useul tool to measure the stiness o the spinal cord with
higher spatial resolution. However, published data are contradictory
regarding the dierence in mechanical properties between white and

gray matter [8ϵ10]. Physiologically, white and gray matter exhibit di-
erences in cellular and matrix composition: white matter mainly con-
sists o glial cells and myelinated axons aligned along the rostral-caudal
direction, whereas gray matter is mostly comprised o neuronal cell
bodies, which likely alters its mechanical properties. Moreover, the
complex and variable environment o a spinal cord injury (SCI) alters
cord mechanics [11]. Thereore, transplanting a scaold that mimics the
mechanical heterogeneity o white and gray matter may improve axon
inltration at the site o spinal cord injury.

Several studies have interrogated the eect o injury on the me-
chanical properties o the spinal cord. In the atermath o a spinal cord
injury, an infux o infammatory cytokines and localized ischemia
impose a biochemical barrier, while the ormation o a glial scar alters
the composition and the mechanical properties o the cord tissue that
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mitigates axon growth [12,13]. Studies using AFM to characterize cord
mechanics ater injury indicate that the tissue undergoes an initial
decrease in stiness in a complex process that involves alteration to the
cord extracellular matrix, cell death, and axon retraction and demye-
lination. Thereore, axons attempting to bridge the site o CNS injuries
ace an insurmountable challenge, in part due to the body–s own
response to the damage. One potential treatment strategy currently
being investigated in clinical trials is the use o implantable scaolds to
aid axon growth at the site o injury.

Bioengineered scaolds with a wide array o mechanical properties
have previously been used in spinal cord injury. The overall goal o
transplanted hydrogels or conduits is to bridge the injured area by
acilitating axon connectivity and eventual unctional recovery or pa-
tients. Previously used scaolds in animal studies and human clinical
trials incorporate a wide variety o biomaterials including collagen [14],
polycaprolactone [15ϵ18], electrospun bers [19ϵ21], brin [22ϵ24]
and can either be injected [25,26] or delivered as solid conduits [14].
These approaches use several repair strategies including delivery o
neurotrophic actors or cells [27], implementation o a conductive
microenvironment using electrically active materials [28], and
providing guidance cues by anisotropic topologies including cylindrical
voids [16,29,30]. Considerations or biomaterials used in previous spi-
nal cord scaolds include biocompatibility, degradability, permissivity
to inltrating axons rom the host, and matching approximate, bulk
mechanical properties o the spinal cord [31]. Yet, none o the previous
approaches tune the mechanical heterogeneity within the construct as a
potential repair strategy or spinal cord regeneration.

3D-printed scaolds provide a means to abricate heterogeneous
mechanical properties that match native spinal cord tissue. Previous
approaches have demonstrated that photocrosslinkable hydrogels can
be used in 3D-printed systems that can mimic the anisotropy o various
tissues including skeletal muscle [32], bone [33ϵ35], cartilage [36ϵ39],
and neural tissue [40,41]. 3D-printing has also been used to abricate
spinal cord conduits that eature voids aligned in the rostral-caudal to
mimic specic axon tracts [42]. However, the scaolds in that particular
study exhibited an elastic modulus exceeding 200 kPa, which ar sur-
passes the mechanical properties o the surrounding spinal cord tissue
and precludes the ability to dierentiate between the stiness o white
and gray matter. Recent innovations in 3D-printing approach, speci-
ically digital light processing (DLP) have been used to create complex
topologies within tunable 3D scaolds that overcomes the limitations o
previous strategies [43,44]. This process can control and guide the
growth o axons in scaolds with heterogeneous mechanical properties
to acilitate both inltration and outgrowth rom the site o injury. In
this study, an array o macroscale and microscale mechanical tests are
used to characterize the mechanical properties o native spinal cord
tissue, which then inorm a DLP-based approach to mimic the me-
chanical heterogeneity in transplantable scaolds.

2. Materials and methods

2.1. Solution preparation

Dissecting and measuring articial cerebrospinal fuids were
ormulated to maintain the viability o isolated spinal cords using pre-
vious methods [45,46]. Briefy, dissecting articial cerebrospinal fuid
(d-aCSF) was supplemented with 191 mM sucrose, 0.75 mM K-gluco-
nate, 1.25 mM KH2PO4, 26 mM NaHCO3, 4 mMMgSO4, 1 mM CaCl2, 20
mM glucose, 2 mM kynurenic acid, 1 mM (◦)-sodium L-ascorbate, 5 mM
ethyl pyruvate, 3 mM myo-inositol, and 2 mM NaOH. Additionally,
measuring articial cerebrospinal fuid (m-aCSF) was composed o 121
mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 1.1 mM
MgCl2, 2.2 mM CaCl2, 15 mM glucose, 1 mM sodium L(◦)-ascorbate, 5
mM ethyl pyruvate, and 3 mM myo-inositol. The resulting pH o these
solutions was ~7.3. All the above reagents were purchased rom VWR.

2.2. Spinal cord preparation

Bovine spinal cords were severed at the C3 level and isolated directly
into quart-sized containers o ice-cold dissecting articial cerebrospinal
fuid (d-aCSF) at Bringhurst Meats (Berlin, NJ). Ater measuring the
lengths o the cords, each tissue was divided into three regions: cervical
(between 31 and 35 inches rom caudal end), lumbar (between 20 and
26 inches rom caudal), and sacral (10 inches rom caudal). All regions
were cut along the transverse anatomical plane in approximately 5-6-
mm slices, and then immersed in m-aCSF or testing. For mechanical
testing o rat cords, an established technique or hydraulic extrusion was
used on male Sprague Dawley rats provided by David Li o Dr. Rebecca
Wells–s laboratory at the University o Pennsylvania within an hour o
sacrice [47]. The cords were cut into approximately 5-6-mm transverse
slices and adhered to a 60-mm Petri dish lled with m-aCSF.

2.3. Spinal cord macroscale mechanical characterization

All spinal cord mechanics were examined within 1ϵ2 h ater
extraction and experiments were perormed within 6 h, as previous
studies have shown that cords preserved in aCSF maintain their me-
chanical properties over this timespan [45]. The local mechanics o the
gray and white matter were examined using AFM. Spinal cord sections
were xed to the petri dishes using transglutaminase that has been
shown as a tissue adhesive [48] and ully embedded in m-aCSF during
these measurements. AFM measurements were taken in triplicates in
regions o both gray and white matter using a 20-δm diameter silicon
spherical tip with a cantilever spring constant o 0.6 N/m.

Rheology was conducted at several levels o compressive strain to
characterize the macroscopic mechanical properties o the cord at
dierent regions. Measurements were conducted on a rheometer (Kin-
exus) with a 20-mm parallel attachment. During rheological measure-
ments, m-aCSF was pipetted around the tissue to prevent the cord rom
drying out. The gap was set with respect to the height o each spinal cord
section. The bulk mechanical properties o the cords were evaluated by
measuring the shear modulus at a steady requency o 1 Hz and 1%
strain or 90 s. The test was repeated or successive compression steps o
100 δm.

A Kibron tensiometer was used to measure the relaxation eects o
the gray and white matter o bovine spinal cords. Tissue sections were
submerged in m-aCSF during relaxation measurements. A 500-δm probe
was lowered in the gray and white matter to interrogate the relaxation
proles within each matter region. The relaxation actors were calcu-
lated by measuring the decay in orce with time ater indentation.

2.4. Synthesis of polymer and photoinitiator

The polymers and initiators or the prehydrogel solutions, including
gelatin methacrylate (GelMA) and lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP), were synthesized as previously
described [43]. In brie, GelMA was synthesized through dropwise
addition o methacrylic anhydride to 10 wt% gelatin (Sigma, derived
rom porcine skin; type A; gel strength 300) in carbonate/bicarbonate
buer or 4 h at 50ϵ55 ±C, then precipitated in ethanol. The precipitate
was allowed to dry or multiple days beore resuspension at 20 wt% in
PBS. GelMA was sterilized with 0.22 δm lters and stock solutions were
aliquoted then stored at �20 ±C until use. LAP was prepared by the re-
action o dimethyl phenylphosphinite and 2,3,6-trimethylbenzoyl
chloride under argon overnight at room temperature. Then 4 M excess
lithium bromide dissolved in 2-butanone was added to the reaction
mixture. The solution was heated to 50 ±C or precipitation (~10ϵ30
min), cooled to room temperature or 4 h then ltered with 2-butanone
and diethyl ether. The resulting precipitate was allowed to dry or
several days beore storing under nitrogen at 4 ±C until use. Stock so-
lutions were prepared at 200 mM in PBS, sterile ltered, and protected
rom light until use.
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2.5. Preparation of 3D printed scaffolds

For all abrication o hydrogel scaolds, prehydrogel mixtures were
prepared containing 15 wt% GelMA, 17 mM LAP, 2.255 mM tartrazine
photoabsorber, and 10% glycerol in sterile 1x PBS. The Volumetric-Ł�
Bioprinter used in abrication was previously developed by the Jordan
Miller lab and Volumetric [43]. This stereolithography-based 3D printer
used a polydimethylsiloxane (PDMS) coated Petri dish as a vat or the
prehydrogel mixture and a build platorm with a bonded rosted-glass
slide onto which the cured gel would attach during printing. Ater
transerring the prehydrogel solution into the vat, the build platorm
was then lowered to the rst abrication layer position to start printing.
A customMatlab script was used to create the 2D photomasks rom a 3D
model. Grayscale patterning was the method used or outputting a
hydrogel with the desired mechanical heterogeneity o localized regions
or the study. The grayscale patterning uses light intensity values be-
tween 0 and 100%, representing black to white, to change the extent o
polymerization o the hydrogel. This process included an analysis o the
3-dimensional model, separating them into even 50-δm sections in the
z-direction, then applying the grayscaled pattern on top o the resulting
slices to create the nal photomasks. A built-in sotware on the printer
was used to import the photomask and control the apparatus by sending
GCode commands or vertical movement o the build platorm and im-
ages to the projector. The photomasks are projected in sequence or a set
exposure time o 14.5 s and light intensity o 20 mW/cm2 (at 100%
grayscale) or each projection to build the 3D hydrogel object through
layer-by-layer photopolymerization. Ater printing was complete, the
3D abricated hydrogels were removed rom the glass slide o the build
platorm with a razor and equilibrated in multiple sterile PBS washes.
The 3D models o T10 rat thoracic regions o the spinal cord were
created in Blender. The grayscale light intensity value or the simulated
white matter was 75% and the gray matter was 100%. These intensity
values were chosen to create substantial heterogeneity in the scaold
stiness without sacricing the delity o the print. The hydrogels were
printed in groupings o 8.

2.6. Scanning electron microscopy (SEM)

The microstructure o 3D-printed GelMA hydrogels was examined
using a scanning electron microscope (FEI SEM). The scaolds were
rozen with liquid nitrogen and lyophilized or 2 h. The reeze-dried
samples were cut in cross-section and sputter coated or 30 s per sam-
ple. The porosity was analyzed by measuring pore diameters with the
measure unction in ImageJ.

2.7. Atomic force microscopy (AFM) of 3D-printed scaffolds

For atomic orce microscopy, raster scans (100 δm − 100 δm) were
perormed to generate orce-distance curves on regions within the re-
gions o gray matter, white matter, and regions that contain both the
gray and white matter. The scaolds were submerged in a-CSF during
the AFM experiments. Measurements were employed using a 20-δm
silicon spherical tip with a spring constant o 0.6 N/m.

2.8. Spinal cord surgery and transplantation

Animal surgeries were conducted at the Drexel University Queen
Lane Medical Campus. All animal procedures were approved by the
Institutional Animal Care and Use Committee o Drexel University Col-
lege o Medicine (approval number: 20,938 21ϵ26) and these experi-
ments were perormed according to the National Institutes o Health
(NIH) Guide or the Care and Use o Laboratory Animals. Nine emale
Sprague-Dawley rats (225ϵ250 g) were housed with a 12-h/12-h light/
dark cycle in this study. These rats were administered with 5% o iso-
furane until unconscious and the concentration o anesthesia was
reduced to 3% during surgery. To create the transection spinal cord

injury model, a laminectomy was perormed at the thoracic 10 (T10)
level and aspiration was perormed to remove the tenth level o the
thoracic cord, leaving a cavity o approximate dimensions o 2 x 2 − 2
mm. Upon transplantation, three scaold conditions were employed: 1)
homogeneous hydrogels exhibiting the stiness o white matter, 2) ho-
mogenous hydrogels with the stiness o gray matter, or 3) heteroge-
neous scaolds that mimic the dierences in gray and white matter
based on the topology o the rat T10 cord. Muscles and skin were sutured
and closed with clips. Buprenex (0.015ϵ0.02 mg/kg) was subcutane-
ously administered ater the surgery. The bladder was manually
expressed twice a day until the end o the experiment. Animals were
sacriced 2 weeks ater peptide injections.

2.9. Bovine spinal cord immunohistochemistry

Bovine spinal cord sections were xed with 4% paraormaldehyde on
ice or 40 min. Ater xation, the spinal sections were embedded in OCT
compound and snap-rozen to cryopreserve the tissue and stored at
�80 ±C until processing. Each tissue region was sectioned at 20 δm
thickness in a cryostat and mounted onto gelatin-coated slides. The
slides were washed with phosphate buered saline (PBS) and sections
were blocked with 1% bovine serum albumin (BSA) or 30 min at room
temperature. Anti-myelin primary antibodies (VWR) were diluted at a
ratio o 1:200 in dilution buer consisting o 1% BSA (VWR), 0.3%
Triton X-100 (Sigma), and 0.01 sodium azide (VWR) and incubated
overnight at 2ϵ8 ±C. The slides were washed thoroughly with PBS and
secondary antibodies were incubated at room temperature or 60 min at
a ratio o 1:500. DAPI stains were added to each slide or an additional
incubation time o 5 min at room temperature. Finally, sections were
washed and mounted in anti-ade mounting media.

2.10. Rat spinal cord immunohistology

Two weeks ollowing transplantations, rats were overdosed with
Euthasol (J. A. Webster) and transcardially perused with 100 mL o
0.9% saline and 500 mL o 4% paraormaldehyde in phosphate buer.
Spinal cords were removed and incubated in 4% paraormaldehyde
overnight and cryoprotected with 30% sucrose/0.1 M phosphate buer
at 4 ±C or 3 days. The cords were transerred to M1 medium and cry-
osectioned with thicknesses o 20 δm. Sagittal sections were separated
into six sets (approximately 10ϵ15 mm in length) with gelatin coated
glass slides. Adjacent sections on glass slides were spaced approximately
120-δm apart within the cord and the histological slides were kept at
�20 ±C.

Histological sections were thoroughly washed and blocked with 10%
goat or donkey serum or 1 h prior to immunohistochemical staining.
Sections were selected or immunohistochemical staining using primary
antibodies Tuj (1:500, Covance) or general axon growth, GFAP (1:1000,
Chemicon) or glial scar ormation, and CGRP (1:2000, Peninsula) or
sensory axons. These sections were incubated in primary antibodies
overnight at room temperature ollowed by incubating in species-
specic secondary antibodies (goat anti-mouse, donkey anti-goat, or
goat anti-rabbit conjugated to FITC or rhodamine, 1:1000, Jackson
ImmunoResearch) or 2 h at room temperature. Sections were cover-
slipped with fuoromount-G with DAPI (SouthernBiotech).

2.11. Confocal microscopy

Immunohistological sections o the bovine spinal cord (thickness: 20
δm) were imaged on a Nikon A1 laser scanning conocal microscope to
generate z-stacks (approximately 10 slices with a 2-δm step size) in the
Nikon Elements sotware. Image quantication was perormed by
normalizing the intensity o either myelin or laminin stains within 100
− 100 δm2 measured areas. A macro in FIJI was written to automate
image processing and quantication over the directory o images. Spe-
cically the Huang Dark method was used to identiy the stain-positive
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region to quantiy the protein o interest and normalized against the
total area o the section measured. Cell nuclei quantication was con-
ducted using moments dark thresholding ollowed by water shedding to
separate the nuclei. Particle analysis was used to count nuclei with di-
ameters o 5ϵ10 δm with a circularity greater than 0.75. The number o
cell nuclei was normalized to the area o each scan (1 mm2). Myelin and
laminin quantication was perormed by normalizing the intensity o
stains within 1 mm2 measured areas. For transplantation analysis, at
least our adjacent sections on each slide (approximately 360 δm in
height) rom each animal were scanned and analyzed. A 4X objective
was used to provide lower magnication images to observe whether
axons inltrated through the rostral end and extended towards the
caudal end. 10X and 20X objectives were used to quantiy the number o
inltrating axons through the preabricated channels in the scaolds.
Tuj ◦ axons and CGRP bers inside the scaolds were quantied using
the multi-point tool in ImageJ. Inltration distance was analyzed using
the measure tool in ImageJ.

2.12. Statistics

One-way ANOVA and post-hoc Tukey–s HSD tests were perormed to
calculate statistical signicance unless stated otherwise. Statistical
analysis o mechanical heterogeneity was calculated using a Welch Two
Sample t-test, assuming normal distributions with unequal variances
between groups between the gray and white matter o the scaolds.
Signicant dierences were denoted with p-values less than 0.05. In
vivo analysis (9 animals total) was averaged rom 3 histological sections
per animal. Three dierent bovine spinal cords with three sections rom
each level (cervical, lumbar and sacral) were examined or rheology,

tensiometry and atomic orce microscopy (AFM). Regarding the tensi-
ometer and AFM experiments, at least 5 measurements were recorded
rom both the gray and white matter and 3 sections rom each level were
examined on the rheometer.

3. Results

I. Microstructural characterization o spinal cord mechanical
properties

In order to examine the heterogeneity o spinal cord tissue, initial
experiments using AFM and tensiometry were conducted to interrogate
dierences in gray and white matter along the transverse anatomical
plane. Previous experiments have ound that the gray matter is stier
than white matter in all anatomical planes (coronal, sagittal and trans-
verse) [45], though there is also conficting evidence o a signicant
dierence between gray and white matter [8]. To clariy the discrep-
ancies between these studies, AFM and tensiometry experiments were
perormed on bovine spinal cord (Fig. 1A and B). The tissue was divided
into three regions: sacral, thoracic/lumbar, and cervical to assess
whether anatomical level aected the mechanical properties o the cord.
AFM, which has been used previously to characterize cord mechanics
[49], revealed that the gray matter exhibits signicant higher elastic
moduli compared to white matter, though there were no statistical di-
erences between the three levels or either region (Fig. 1C). Post-hoc
Tukey tests indicated signicant dierences between gray and white
matter at each level. Tensiometry examined the relaxation actors o
both gray and white matter by measuring stress relaxation ollowing
indentation. Fig. 1D shows the relaxation actors or both gray and white

Fig. 1. Microstructural mechanical properties o bovine spinal cord tissues. (A,B) Schematic o atomic orce microscopy (AFM) and tensiometer. (C) Measurements
o gray and white matter using AFM. (D) Relaxation actors o gray and white matter via tensiometer. The box plots depict the median, 25 and 75 percentiles, and the
whiskers represent 1.5x the interquartile range. *p � 0.05 (n + 5 measurements per matter with 3 sections rom each level: cervical, lumbar, and sacral stemming
rom 3 animals).
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matter in all three regions, and two-actor ANOVAs revealed a statistical
dierence between the gray and white matter, though again there was
no dierence between levels. Taken together, these results indicated
that the gray matter exhibited stier and more viscoelastic mechanics
compared to white matter, and that there was no dierence in the
microstructural mechanical properties o gray and white matter along
the length o the cord. To veriy that this mechanical heterogeneity also
exists within the rat spinal cord, AFM was conducted on cervical level
slices o the rat cord and indicated a signicantly higher elastic modulus
in the gray matter region compared to the surrounding white matter
region (Supplemental Fig. 1).

II. Macrostructural mechanical properties o spinal cord tissue

Rheology was conducted to characterize bulk mechanics o the cord
at cervical, lumbar, and sacral levels. Three dierent sections rom each
level (cervical, lumbar and sacral) rom three separate bovine spinal
cords were examined with rheology (nine total samples). Given the re-
sults o the AFM testing, these experiments tested the hypothesis that the
disparity in bulk mechanical properties o anatomical levels is due to
dierences in the ratio o gray-to-white matter. Thereore, shear storage
and loss moduli as well as cross-sectional area o gray and white matter
were measured in 5-6-mm thick transverse spinal cord sections taken
rom dierent levels. Fig. 2AϵC shows rheological experiments

Fig. 2. Characterization o macrostructural mechanical properties o bovine spinal cord tissues. Rheological experiments o cervical, lumbar and sacral regions o
spinal cords rom 3 animals showing (A) storage modulus, (B) loss modulus and (C) tan(α). Data presented as mean × s.e.m. (DϵF) Images o spinal cords and (GϵI)
quantication o gray-to-white matter ratios or each animal. The black lines indicate the representative regions o quantied gray matter. Data presented as mean ×
s.d. *p � 0.05 (n + 3 spinal sections rom per level: cervical, lumbar, and sacral stemming rom 3 animals).
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perormed on three dierent bovine spinal cords. The highest storage
and loss moduli were measured in cervical regions o two o the animals
and in the sacral region in the third animal. Moreover, Supplemental
Fig. 2 displays the sections were tested at increasing magnitudes o
compressive strain to demonstrate that the cord exhibited the
compression stiening observed in other tissues [50,51]. In order to
reconcile the bulk testing with the AFM measurements that ound no
dierence in gray or white matter along the cord, transverse spinal cord
sections (Fig. 2DϵF) were imaged and the percentage o gray matter in
the cross-section was expressed as a percentage o the total area
(Fig. 2GϵI). Fig. 2G provides the rheological measurements or animal 1,
Fig. 2H corresponds to animal 2 and Fig. 2I represents the data rom
animal 3 (all measurements were perormed in triplicate). The gray
matter in the cervical region was signicantly higher compared to the
lumbar and sacral regions in the experiment rom the rst two cords, and
highest in the sacral region in the third animal. Thereore, these results
suggested that bulk rheological properties along the cord were deter-
mined by dierences in the ratio o gray to white matter in the
cross-section o the cord, not the anatomical level.

III. Microstructural analysis o gray and white matter

In order to provide insight into structural dierences between gray
and white matter that give rise to mechanical heterogeneity, immuno-
histochemistry was perormed to examine dierences in cell nuclei,
myelin, and laminin expression in both regions along the dierent levels

o the cord. These measurements also provided an opportunity to assess
whether the cords undergo substantial demyelination or changes in
matrix content over the course o the mechanical experiments. Fig. 3
shows cervical, lumbar, and sacral sections xed at the beginning
(Fig. 3A,C,E) and 6 h later at the end (Fig. 3B,D,F) o the mechanical
characterization experiments. Quantication o DAPI, myelin, and
laminin indicated signicant dierences between the white and gray
matter regions at all the levels. There was signicantly higher DAPI
staining in gray compared to white matter at both the beginning and end
o the experiment (Fig. 3G), which is consistent with the results o a
previous study [45]. Myelin and laminin also exhibited a higher in-
tensity in the gray matter (Fig. 3H and I). In the white matter, the
laminin-positive regions revealed a network pattern that may highlight
the vascular bed, due to the prevalence o laminin in the basement
membrane. The gray matter appeared much denser in both the myelin
and laminin staining. Importantly, there was no signicant dierence
between DAPI staining nor expression o myelin and laminin at the
beginning o the experiment compared to the end o the experiment,
veriying that the tissue did not undergo substantial degradation during
the mechanical testing.

IV. 3D-printing scaolds with heterogeneous mechanical properties

A novel DLP approach was developed to abricate a scaold that
mimicked the dierence in stiness between gray and white regions
observed by microstructural mechanical testing o the bovine spinal

Fig. 3. Immunohistochemical analysis o gray and white matter. (A) Images o cervical sections treated with anti-myelin and anti-laminin antibodies ater isolation
and (B) at a 6-h time point. (C) Images o lumbar sections treated with anti-myelin and anti-laminin antibodies ater isolation and (D) at a 6-h time point. (E) Images
o sacral sections treated with anti-myelin and anti-laminin antibodies ater isolation and (F) at a 6-h time point. Quantication o DAPI (G),myelin (H), and laminin
(I) within the gray and white matter at both the beginning and end o experiment or all cord levels. The box plots depict the median, 25 and 75 percentiles, and the
whiskers represent 1.5x the interquartile range. *p � 0.05 (n + 3 measurements per matter with 3 sections rom each region: cervical, lumbar, and sacral at each
time point).

K.A. Tran et al.



Biomaterials 295 (2023) 122061

7

cord. Fig. 4A shows a schematic o the printing method, which applied
varying levels o light intensity to a single z-plane using a grayscale
mask. Grayscale patterns were created to alter light intensity values
between 0 and 100%, representing black to white, to modulate the
extent o polymerization o the GelMA hydrogel. In order to veriy this
approach, test patterns o alternating intensity were printed in square
blocks. Fig. 4B shows the grayscale mask used or these preliminary
prints, with stripes o 1-mm thickness in a 10 x 10 x 3-mm block.
Tensiometry was used to validate dierences in mechanical properties.
Quantication o this data and subsequent statistical analysis revealed
signicant dierences between each stripe, demonstrating that the re-
gions exposed to higher light intensities exhibited stier mechanics than
the regions with lower light intensities (Fig. 4C). These results veried
that heterogeneity can be achieved within the 3D-printed scaolds to
mimic the dierence in stiness between gray and white matter regions.

V. Mechanical characterization o 3D-printed scaolds or spinal cord
injury

Having validated the approach to 3D-print scaolds with heteroge-
neous mechanical properties, hydrogels were printed to mimic a rat T10
geometry. Homogenous scaolds were exposed with the same light in-
tensity across the entire cross-section in both the ’gray“� and ’white“�
regions, while heterogeneous scaolds were printed with dierent in-
tensity light between the two regions. Mechanical and microstructural
assays were conducted to characterize these scaolds. Previous studies
have shown that the stiening eect in photocrosslinkable hydrogels
decreases dextran diusivity [52], with the porosity o these scaolds
examined using a scanning electron microscope (SEM). Fig. 5A displays
images o the scaold within the gray and white matter regions in a
homogenous scaold (printed at the same light intensity used or the
white matter o the heterogeneous scaold) and one heterogeneous

scaold. Quantication demonstrated that the pore diameters were
decreased in the simulated gray matter o the heterogeneous scaold
(Fig. 5B), which is consistent with a previous study on modiying GelMA
with altered light intensity [53]. In order to urther validate the dier-
ence between simulated white and gray matter, compression tests were
perormed on bulk hydrogels exposed to varying light intensity.
Compression tests revealed that hydrogels exposed to the light intensity
used to create the gray matter region exhibited a signicantly higher
elastic modulus compared to hydrogels representing white matter
(Fig. 5C). Nonetheless, the compression indicated no signicant dier-
ence in the Poisson ratio o the hydrogels: both white and gray matter
were nearly incompressible (μ�~ 0.4) (Fig. 5D). Having validated that
there was a dierence between the mechanical properties o scaolds
exposed to dierent pixel intensities, images o the homogeneous and
heterogenous scaolds were obtained to demonstrate that the varying
stiness did not aect the geometry o the scaold (Fig. 5E). The sca-
olds contained cylindrical channels with diameters o 325 δm to guide
axonal inltration into the scaold due to their established ability to
align axons along the rostral-caudal direction [16,42]. AFM raster scans
were perormed on the scaold surace to provide two-dimensional
elasticity maps. Three dierent printing conditions were used: homog-
enous stiness printed at 75% intensity (simulated white matter), ho-
mogenous stiness printed at 100% intensity (simulated gray matter),
and heterogenous stiness with varying light intensity in the gray and
white regions. Fig. 5FϵH displays heatmaps o the elastic moduli in both
the homogeneous and heterogeneous scaolds. Two-actor ANOVAs
with post-hoc Tukey tests revealed that the gray matter within the
heterogeneous scaolds exhibited signicantly higher elastic moduli
than the surrounding white matter and the homogeneous hydrogels
printed at 75% intensity. There was no signicant dierence between
the stiness o the gray matter in the heterogeneous scaolds and the
homogeneous scaolds printed at 100% intensity (Fig. 5I). Taken

Fig. 4. 3D-printing scaolds with heterogeneity. (A) Schematic o grayscale patterns to acilitate printing o a single plane with varying levels o light intensity. (B)
Preliminary 3D-printed hydrogels with heterogeneity by using a mask with alternating light intensity. (C) Mechanical quantication o each stripe within the 3D-
printed hydrogels. Data presented as mean × s.d. *p � 0.05 (n + 3, one measurement per stripe rom 3 dierent gels).
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together, this data demonstrated that mechanical heterogeneity can be
achieved in spinal cord scaolds.

VI. Assessing axon inltration into scaolds with heterogeneous
mechanical properties

Transplantation studies were then conducted to determine whether
the heterogeneous scaolds would elicit increased axon inltration
compared to homogeneous controls. Both heterogeneous scaolds and
homogeneous scaolds o stinesses matching the heterogeneous sca-
old were transplanted into a model o acute spinal cord injury. Fig. 6A
displays a schematic o hydrogel abrication, injury model, and trans-
plantation o the T10 scaolds. Immunohistochemistry examined the
inltration o axons into the channels patterned in the scaold two
weeks post-transplantation. The presence o ascending sensory-specic
tracts was measured using calcitonin gene-related peptide (CGRP), a
peptide widely expressed in sensory axons [54] (Fig. 6B). Quantication
o CGRP◦ bers demonstrated that heterogeneous scaolds signicantly
augmented the inltration o sensory axons compared to both homo-
geneous conditions (Fig. 6C). To urther assess axon inltration into the
scaolds, both the rostral and caudal regions o the transplanted sca-
olds were examined or the presence o beta-tubulin III (Tuj) bers.
Fig. 6D displays the presence o Tuj◦ axons located only in the rostral
region o the scaolds with homogeneous mechanics matching the
’white matter“�o the heterogeneous scaold. Fig. 6E indicates a similar
response in the homogeneous scaold matching the gray matter.

However, the inltration and outgrowth o Tuj◦ bers were observed in
both the rostral and caudal sections o the heterogeneous scaolds
(Fig. 6F), demonstrating that the mechanical heterogeneity stimulated
neuronal regeneration. In order to determine whether the heteroge-
neous scaold stimulated increased axon growth, quantication o Tuj
bers was evaluated in the white matter regions o both scaold types
and indicated that the heterogeneous scaolds signicantly promoted
the growth o Tuj◦ bers (Fig. 6G) and stimulated the inltration dis-
tance compared to the homogeneous hydrogels (Fig. 6H). The hetero-
geneous scaolds also exhibited increased inltration o motor specic
(5-HT◦) and regenerating (RT-97◦) axons compared to homogeneous
controls (Supplemental Fig. 3). The scar area, as indicated by GFAP
positive regions, was not substantially dierent between conditions
(Supplemental Fig. 4). Overall, these results demonstrate 3D-printed
scaolds with heterogeneous mechanical properties matching the
anisotropy o host tissue have benecial eects on the inltration and
regrowth o axons.

4. Discussion

The results demonstrate that mimicking the stiness disparity be-
tween gray and white matter in an implantable scaold encourages axon
growth at the site o a rat spinal cord transection injury. Previous studies
have demonstrated that multicellular migration is enhanced along a
gradient in the rigidity o the extracellular matrix, reerred to as dur-
otaxis, in both in vivo [55] and in vitro [56,57] microenvironments. In

Fig. 5. Interrogation o 3D-printed heterogeneous scaolds. (A) SEM images o the gray and white matter in homogeneous and heterogeneous hydrogels. (B)
Quantication o porosity within the scaolds. (C)Mechanical testing o 3D-printed scaolds that exhibit the mechanics o gray matter and white matter. (D) Poisson
ratios o 3D-printed scaolds. (E) Brighteld images o 3D-printed scaolds that mimic the T10 level o rat–s spinal cord and exhibit homogeneous or heterogeneous
mechanics within the constructs. Elasticity heatmaps o homogeneous white (F), homogeneous gray (G) and heterogeneous (H) scaolds. (I) Young–s moduli in both
the gray and white matter within homogeneous and heterogeneous hydrogels. The data in the bar graphs are represented as mean × s.d. The box plots depict the
median, 25 and 75 percentiles, and the whiskers represent 1.5x the interquartile range. Scale + 500 δm *p � 0.05 (n + 3 scaolds with at least 6 measurements rom
each matter).
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Fig. 6. Examination o axon inltration post-transplantation. (A) Schematic showing scaold abrication to transplantation. (B,C) Immunofuorescence and
quantication o CGRP◦ axons inltrating the channels o both the homogeneous and heterogeneous scaolds. (D,E,F) Inltration o Tuj◦ bers within the cy-
lindrical channels in three scaold conditions. Quantication o (G) Tuj ◦ bers and (H) inltrating distance in homogeneous and heterogeneous scaolds. The data
in the bar graphs are represented as mean × s.d. *p � 0.05 (n + 3 histological slides or each condition).
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contrast, the stiness gradient used here is orthogonal to the direction o
axonal growth, though this gradient is more representative o native
spinal cord tissue. The mechanical testing conducted in this study in-
dicates that the inner gray matter is stier than the surrounding white
matter in the cord, and the mechanics o gray and white matter do not
change along the rostral-caudal axis. The primary goal o a spinal cord
scaold or conduit is to encourage axon growth in the rostral-caudal
direction to restore connectivity across the site o injury, since axon
tracts are primarily aligned in this direction [14,25,42]. Thereore, the
axons inltrating the scaold are not growing along a rigidity gradient,
but like axon tracts in native tissue, they are growing in the
rostral-caudal direction that is perpendicular to a disparity in matrix
stiness. The heterogeneity in scaold stiness may also aect the
inltration o other cell types beyond neurons including glial, immune,
and vascular cells that may contribute to dierences in axon inltration.
Overall, the mechanisms underlying increased axon inltration in het-
erogeneous scaolds compared to homogenous controls are likely
dierent than those identied in previous durotaxis studies, including
specic cell-matrix interactions [58,59] and small GTPase-mediated
actomyosin contractility [60ϵ62]. Future studies, which may include
in vitro models o the spinal cord microenvironment, are thereore
required to understand the molecular mechanisms responsible or the
increased axon growth into the heterogeneous scaolds.

The modication to digital light processing described here enables
3D-printing o complex topologies within mechanically heterogeneous
hydrogels. DLP is a powerul tool or recreating complex tissue archi-
tectures in hydrogels, though previously the method has been limited to
printing scaolds exhibiting homogenous mechanics. However, other
existing 3D-printing approaches are capable o printing interacial and
heterogeneous structures. For example, extrusion-based methods have
been used to create heterogeneous aortic valve scaolds [63]. But these
methods are not applicable to soter, cell-permeable hydrogels, which
are more appropriate or printing scaolds with mechanics that match
sot tissue like the spinal cord. And although 3D-printed scaolds with
elastic moduli greater than 200 kPa have been implanted within the
spinal cord and demonstrated axon inltration [42], DLP can recreate
native tissue topology while also incorporating cell-based therapies by
creating cell-permeable scaolds with elastic moduli less than 10 kPa.
One potential consideration or printing low stiness hydrogels that is
not addressed in this study is its eect on degradation rate and whether
heterogeneous stiness yields dierences in degradation between the
white and gray matter regions. Regardless o how the scaolds are
remodeled or degraded over time, the results o this study demonstrate
that the initial stiness gradient patterned in the heterogeneous sca-
olds leads to increased axon inltration at the 2-week time point.
Moreover, the ndings suggest that advancing DLP technology to print
hydrogels with spatially varyingmechanics provides an avenue tomimic
the anisotropy o native tissues and to harness durotaxis by abricating
hydrogels that control cell growth and migration with stiness
gradients.

As advances in 3D-printing technology are made to mimic native
tissue, one limitation to abricating scaolds that recreate the in vivo
microenvironment is our understanding o complex tissue mechanics.
Tissue mechanical properties are a unction o multiple length scales,
creating heterogeneity that is dicult to characterize and then imple-
ment in 3D-printed constructs. In this study, a variety o mechanical
testing, including rheology and atomic orce microscopy, are used to
characterize spinal cord tissue ex vivo. These studies indicate that the
macroscale mechanical properties o the spinal cord change as a unc-
tion o level. Although previous work has shown that the mechanics o
the cord are dierent based on the type o sectioning (e.g. coronal,
sagittal, or transverse) [45], these results are the rst to nd dierences
in mechanical properties along the cord. Combining macroscale with
microscale mechanical testing indicates that although the bulk me-
chanics dier along the cord, the mechanics o white matter and gray
matter remain consistent and gray matter is stier than white matter.

Thereore, the dierences in rheological properties arise rom dier-
ences in the percentage o gray matter in the coronal section and not
intrinsic disparity between levels. These ndings justiy the DLP-based
approach to abricate scaolds that recreate a stier inner region to
mimic the dierence in gray-white matter mechanics. However, one
aspect o the spinal cord tissuemechanics that the scaolds do not mimic
is viscoelasticity: the GelMA scaolds are primarily elastic even though
tensiometry indicated that gray matter exhibited higher stress relaxa-
tion. Thereore, there is a need or photoinks with tunable viscoelas-
ticity, especially or tissues like the spinal cord that exhibit these
properties.

Nonetheless, the DLP approach described here has the fexibility to
incorporate existing neurotrophic therapies. As mentioned, in contrast
to other 3D-printing approaches, the GelMA scaolds printed or these
studies are compatible with cell seeding within the bulk o the scaold.
There are currently ongoing clinical trials evaluating the ecacy o
intrathecal injection o mesenchymal stem cells (MSC) in spinal cord
injury patients [64], with evidence that MSCs release neurotrophic
actors to stimulate axon growth and connectivity. Thereore, uture
studies will interrogate the benet o incorporating MSCs into the het-
erogeneous scaolds ollowing implantation at the site o injury. In
contrast to intrathecal injection, this approach can augment the resi-
dence time or MSCs at the site o injury and determine whether longer
retention is benecial. Moreover, the composition o the scaold is also
tunable. Although GelMA is used here, the DLP approach is compatible
with many photoinks. Thereore, printing heterogeneous mechanics in
degradable [65] or electrically conductive [28] photoinks provides a
new means to combine dierent aspects o regenerative approaches in a
multiunctional scaold that mimics the mechanical anisotropy o
native tissue.

5. Conclusions

The bulk rheological testing o transverse spinal cord sections reveals
that the viscoelastic properties o the cord change along its length. But
rather than being due to dierences in microstructural properties, AFM
and tensiometry indicate that the stiness o gray and white matter does
not change according to level. Thereore, the dierences in bulk me-
chanical properties along the cord are caused by the disparity in the
relative amounts o gray and white matter. A modication to an existing
digital light processing technique that acilitates printing o scaolds
with heterogeneous mechanical properties provides a means to mimic
the dierence in stiness between gray and white matter. Trans-
plantation experiments in an acute transection rat model indicate that
scaolds eaturing this heterogeneous mechanical prole result in
greater axon inltration compared to homogeneous mechanical prop-
erties. Although the mechanism underlying this dierence is unclear,
these results highlight the importance o developing biomaterials that
mimic the spatial heterogeneity o spinal cord tissue.
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