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ABSTRACT: Catalytic hydrothermal processing is a promising technology for the
production of biofuels used in transportation to alleviate the energy crisis. An
important challenge for these processes is the need for an external supply of
hydrogen gas to accelerate the deoxygenation of fatty acids or lipids. It follows that
in situ-produced hydrogen can improve process economics. This study reports on
the use of various alcohol and carboxylic acid amendments as sources for in situ
hydrogen production to accelerate Ru/C-catalyzed hydrothermal deoxygenation of
stearic acid. Addition of these amendments significantly increases yields of liquid
hydrocarbon products, including the major product heptadecane, from stearic acid
conversion at subcritical conditions (330 °C, 14—16 MPa during the reaction). This
research provided guidance for simplifying the catalytic hydrothermal process of
biofuel production, making the production of the desired biofuel in one pot possible

without the need for an external H, supply.

1. INTRODUCTION

In recent years, due to the depletion of nonrenewable fossil
fuels and increasing global concern for environmental
pollution, biofuels have received increasing attention.' Biofuels
derived from lipid materials, such as vegetable oils, animal fats,
waste oils, and microalgae oils, have become attractive
alternatives.” In addition, population growth and economic
development produced growing quantities of waste. The
production of waste lipids, including waste vegetable oil,
waste animal fat residuals from meat animal processing
facilities, and sewer trap grease, in the U.S. exceeds 10 billion
pounds per year.” In China, more than 11 billion pounds of
waste cooking oil is produced per year, some of which is
recollected, recolored, and blended with fresh vegetable oil for
resale, posing a significant threat to public health. Thus,
identifying economically and environmentally sustainable
pathways for converting waste lipids into viable biofuels can
help to alleviate the energy crisis and provide an attractive
alternative to unsafe reuse practices.

The main components of lipids are triglycerides and free
fatty acids. Under hydrothermal conditions, triglycerides are
rapidly hydrolyzed to free fatty acids and a glycerol coproduct.
At present, there are two main deoxygenation strategies for
converting fatty acids into alkane fuels, hydrodeoxygenation
(HDO) and decarboxylation/decarbonylation (DCX/
DCN).>* The presence of excess hydrogen (H,) in the
reaction matrix serves both as an activator for some catalytic
metals and metal oxide supports™® and as a direct participant
in HDO reactions.” In the absence of H,, many unsaturated
compounds are stable and will adsorb to and poison the active
catalytic sites.” '’ Some unsaturated compounds can also
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undergo polymerization reactions, producing coking deposits
that can also contribute to catalyst deactivation'' and reduce
carbon recovery."

Compared with externally supplied H,, which requires an
on-site delivery, H, produced in situ from organic coproducts
or co-constituent amendments like glycerol,s’13 methanol,"*'*
and formic acid'® is an attractive alternative.'® This can lower
the net costs for production of hydrocarbon fuels. For example,
the biodiesel industry produces a surplus of glycerol as a
coproduct that is increasingly becoming a problem, so the use
of such byproducts to accelerate the lipid and fatty acid
deoxygenation process is a promising strategy for waste
valorization. Hollak et al."* have verified the positive effect of
glycerol on the hydrothermal deoxygenation of triglycerides
and fatty acids over a Pd/C catalyst without an external
hydrogen supply. Vardon et al.'” employed glycerol as a
hydrogen-generating amendment in the hydrogenation and
deoxygenation of fatty acids over a Pt—Re/C catalyst in an
inert atmosphere. They found that in situ-generated H, from
glycerol accelerated both hydrogenation and decarboxylation
reactions, even though the latter reaction does not include H,.
Similarly, the Pt—Ni/Al,O; catalyst was reported to promote
the aqueous phase reforming of glycerol, supporting the
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Table 1. Products after Hydrothermal Reactions with Hydrogen Donors as Feedstock Alone

products (mmol)

entry feedstock reaction time (h) conversion (C%)““ CH, C,Hg CcoO, H,
1 methanol 2.5 97.9 4.57 0.00 2.03 1.47
2 ethanol 2.5 98.7 6.58 0.00 2.39 0.90
3 n-propanol 2.5 86.0 6.87 0.09 232 0.79
4 n-butanol 2.5 74.5 6.38 0.00 2.31 0.87
N ethylene glycol 2.5 59.3 2.52 0.00 1.61 0.54
6 propylene glycol 2.5 713 3.95 0.02 2.10 0.81
7 glycerol 2.5 100.0 5.40 0.08 1.90 0.83
8 2-propanol 2.5 48.1 4.02 0.37 148 191
9 n-propanol 0 58.8 3.74 0.87 1.78 1.02
10 propylene glycol 0 69.6 3.79 0.10 2.03 0.77
11 glycerol 0 79.0 3.10 0.03 2.43 0.94

. moles of carbon in feedstock after reaction
“conversion (C %) = (1 - )

moles of carbon in feedstock before reaction

%_100%

complete hydrogenation and partial deoxygenation of fatty
acids.'®"” Kim et al.” applied the Pt—Re/C material to convert
real waste oils (e.g., waste vegetable oil, sewer trap grease) into
diesel-like hydrocarbons without external chemical inputs,
employing the glycerol produced from lipid hydrolysis for in
situ H, generation via aqueous phase reforming. Hwang et al."
examined the hydrothermal deoxygenation of crude jatropha
oil over the Pd/C catalyst using formic acid as an amendment.
They found that addition of formic acid increased the
deoxygenation and initial resistance to catalyst deactivation
significantly. In addition to glycerol and formic acid, a variety
of alcohols and carboxylic acids can also generate H, in situ
through aqueous phase reforming, steam reforming, and
water—gas  shift reactions.””?! However, the net effects of
these amendments on hydrothermal deoxygenation reactions
of long-chain fatty acids (e.g., stearic acid, oleic acid) remain
unclear.

As far as we know, there are very few studies examining the
efficacy of different low-molecular-weight organics for in situ
production of hydrogen and their net effects on hydrothermal
deoxygenation reactions of long-chain fatty acids. In the
present study, we explored the promotion effects of a series of
alcohol and carboxylic acids of low molecular weight on
hydrothermal reactions of stearic acid catalyzed by Ru/C.
Previous work from our team demonstrated stearic acid
decarboxylation and alkane cracking reactions with Ru/C yield
mixtures of liquid alkane and gaseous products that are
dependent upon the headspace composition, with reaction
rates being significantly accelerated under H, headspace.’
Under a N, headspace, the reaction of an intact lipid was also
found to be faster than the reaction of stearic acid due to in
situ generation of H, by aqueous phase reforming of the
glycerol.” Building on this finding, the current study aims to
(1) screen potential hydrogen-forming amendments for their
effects on the deoxygenation of stearic acid; (2) explore the
relationships between characteristics of hydrogen donors and
the net yield of stearic acid-derived hydrocarbon products; and
(3) obtain insights that can be used to identify convenient,
economical, and environmentally friendly strategies for

producing liquid biofuels.

2. EXPERIMENTAL SECTION

2.1. Chemicals. Stearic acid (98%), n-butanol (99%), and
ethanol (99.5%) were obtained from Macklin. The powdered
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Ru/C (5 wt %) catalyst and alkane standard solution C8—C20
were purchased from Sigma-Aldrich. Acetic acid (99.5%),
sodium acetate (99.5%), 1-propanol (99%), 1,2-propanediol
(99%), ethylene glycol (99.5%), propanol (99.5%), n-butanol
(99%), and formic acid (99.5%), were obtained from Keshi.
Methanol (99.5%), glycerol (99%), isopropyl alcohol (99.7%),
iron (99.9%), and aluminum (99.9%) were obtained from
Chuandong Chemical. Dichloromethane (high-performance
liquid chromatography (HPLC) grade) was obtained from
Knowles. Mixed standard samples of gas products were
purchased from Dalian Special Gases.

2.2. Catalytic Hydrothermal Conversion Experiments.
Hydrothermal reactions were conducted in 50 mL high-
pressure batch reactors. Reactor parts were washed with
ethanol and dried in an oven to remove any residual materials.
In a typical experiment, 2 g of stearic acid, 8 mL of water, and
0.2 g of the Ru/C catalyst were loaded into the reactor. The
reactor vessel was then pressurized with the desired headspace
gas (N, or H,) and purged for three cycles before starting the
reaction. The headspace pressure was then increased to the
desired initial value corrected to 25 °C. The reactor
temperature was raised to 330 °C at a rate of ~10 °C min™"
(heat-up time ~1 h) with constant stirring at high speed (500
rpm) applied for the desired reaction time. Time zero was set
to be the time at which the reaction temperature reached the
target value. Once the reaction time elapsed, the reactor was
quenched to room temperature by placing it in a cooling water
bath. After the reaction, a gas headspace sample was collected
with a gas sampling bag for further analysis. All liquid products
were recovered by extraction with dichloromethane. Mass
transfer limitation could be neglected because of the small
catalyst particle size and high stirring speed. Where indicated,
triplicate reactions were performed independently to deter-
mine experimental variability, with error bars representing
standard deviations.

2.3. Reaction Product Analysis. The liquid hydrocarbon
products were directly analyzed by gas chromatography (GC,
Agilent, 7890B) with a flame ionization detector (FID) using
an HP-S capillary column (liquid samples). The injection and
detection temperatures were both 250 °C. The column
temperature was increased from 100 to 250 °C at a ramp
rate of 20 °C min~". High-purity N, (99.999%) served as the
carrier gas. CH,, C,H, H,, CO, and CO, gas products were
analyzed by a GC (Shimadzu, GC2014CAT) with a thermal
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Figure 1. Effects on Ru/C-catalyzed deoxygenation of stearic acid with or without hydrogen donor amendments. Reaction conditions: 2 g of stearic
acid, 0.216 g of the hydrogen donor, 0.2 g of the Ru/C catalyst, 8 g of H,O, initial headspace gas = 1 MPa N,, 330 °C, 2.5 h.

conductivity detector (TCD), a P—N packed column, and a
13X column. The carrier gas was high-purity Ar (99.999%).
The injection and detection temperatures were both 150 °C.

Stearic acid was used as a model compound for investigating
the synergistic reaction of fatty acids and hydrogen donors
over Ru/C. The conversion was calculated as the number of
moles of C in the reacted stearic acid divided by the number of
moles of C loaded with the stearic acid. Yields were calculated
as the number of moles of C in each product divided by the
total number of moles of C loaded with the stearic acid.
Selectivity was calculated as the number of moles of C in each
product divided by the total number of moles of C in the
reacted stearic acid.

3. RESULTS AND DISCUSSION

3.1. Different Alcohols as Hydrogen Donors. Under
subcritical hydrothermal conditions, stearic acid is converted
by Ru/C into a mixture of alkane products similar to
petroleum-derived diesel and a variety of gas products,
including short-chain alkanes, CO,, and H,.> For simplicity,
C-containing gases, such as CH,, C,Hy and CO,, are
collectively referred to as gas products below. We confirmed
in situ H, production from several alcohols by Ru/C in
separate experiments where alcohol was added to the reactor
without stearic acid. (Table 1). The results show that the
conversion rates of all alcohols are between 48 and 100% in 2.5
h, and a large fraction of H, has been produced during the
initial heat-up stage. It is also found that most of the carbon in
alcohols was converted into CH,, C,H,, and CO, via aqueous
phase reforming, direct dehydrogenation, and water—gas-shift
reactions.”””” Surprisingly, after 2.5 h of reaction, all of the
alcohols produce similar amounts of H, in addition to the main
gas product, CH,. The conversion rate of glycerol reached 79%
during the heat-up stage and further climbed to 100% in 2.5 h
(Figure S1). Further, the reaction of glycerol showed that the
selectivity to CH, increased continuously with increased
reaction time. This is consistent with the fact that H, and
CO, formed initially, subsequently being converted to CH,
(i.e, methanation reaction) in the absence of other sinks for
H,. However, we speculate that the methanation reaction will
be less important in matrices containing stearic acid or other
fatty acids for two reasons. First, fatty acid adsorption to
catalyst-active sites may limit the reaction between dissolved
H, and CO, species. Second, fatty acids will compete with
CO, for hydrogen. Furthermore, in matrices containing stearic
acid, most carbon in the hydrogen donors was transformed
into gas products. We also verified the effect of glycerol dosage
on stearic acid conversion (Figure S2). With increasing the
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glycerol dosage from 0.216 to 0.864 g, the conversion of stearic
acid and the amount of gas products increased steadily, but the
yields of liquid products increased first and then decreased.
This indicates that excessive hydrogen donors would lead to a
large production of H,, which enlarges the cracking reaction
and then increases the formation of gas products but
suppresses the yield of liquid products. Similar conclusions
were also reported by Ouyang et al”* and Yfanti and
Lemonidou.”

The actual transformation of the hydrogen donor is complex
and continuous. However, the H, formation of the hydrogen
donor can be estimated with the help of theoretical hydrogen
production, which refers to the hydrogen production with this
presumption of the conversion of the hydrogen donor into H,
and CO, through aqueous phase reforming, steam reforming,
and water—gas shift reactions under hydrothermal conditions
egs 1-9202326

methanol: CH;0H + H,0
— CO + H,0 + 2H,

- CO, + 3H, (1)
ethanol: CH,CH,OH + 3H,0 — 2CO, + 6H, (2)
n — propanol: CH,CH,CH,OH + SH,O

- 3CO, + 9.5H, (3)
n — butanol: CH;CH,CH,CH,OH + 7H,0

— 4CO, + 12H, (4)

ethylene glycol: (CH,OH), + 2H,0 — 2CO, + SH,
(%)

propylene glycol: CH,OH — CH, — CH,OH + 4H,0

- 3CO, + 8H, (6)
glycerol: CH,OH — CHOH — CH,OH + 3H,0
- 3CO, + 7H, (7)
2 — propanol: CH, — CH,0H — CH; + SH,0
- 3CO, + 9.5H, (8)
tert — butanol: C(CH,);0H + 7H,0 — 4CO, + 12H,
)
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First, we compared the effects of adding different alcohol-
based amendments on Ru/C-catalyzed reactions of stearic acid
(Figure 1). For comparison, we evaluated four monohydric
alcohols (methanol, ethanol, n-propanol, and n-butanol)
(Figure la), three polyhydric alcohols (ethylene glycol,
propylene glycol, and glycerol) (Figure 1b), and their isomers
(2-propanol, 2-butanol, tert-butanol, iso-butanol) (Figure Ic)
as amendments to stearic acid reactions with a headspace
containing 1 MPa N, prior to heating up to the target reaction
temperature (330 °C). Compared to the amendment-free
reaction, significant promotion of stearic acid deoxygenation
was observed when the four monohydric alcohols were added,
with the promotion climbing with an increased carbon number
in hydrogen donors (Figure la). This is consistent with the
trends in theoretical hydrogen production for these amend-
ments eqs 1—4. It is also worth mentioning that when using n-
butanol as the hydrogen donor, the carbon yield of C8—C20
products is comparable to that observed for the stearic acid
reaction under a H, headspace (Figure S3), indicating the
possibility of replacing an external supply of hydrogen with
alcohol-based solution amendments.

Next, the promotion effect of alcohols possessing different
numbers of hydroxyl groups was examined. As shown in Figure
1b, increasing the number of alcoholic groups in the
amendments led to lower C8—C20 alkane yields. For example,
substituting ethanol with ethylene glycol reduced the C8—C20
alkane yield from 54 to 42%. A similar phenomenon was also
observed for n-propanol (1-OH group; 61%), propylene glycol
(2-OH group; 53%), and glycerol (3-OH group; 44%). This
trend may result from the fact that demand for H atoms to
form H,O instead of H, increases as the number of O atoms
increases in the amendments. Therefore, we speculate that the
smaller proportion of O atoms in the hydrogen donor, the
more H, it yields and the greater the net effect on the
deoxygenation of stearic acid.

The isomer effect of propanol and butanol was also studied.
The promotion of stearic acid conversion with 2-propanol as
an amendment (72% C8—C20 products) was higher than that
observed with n-propanol (61%), whereas switching from n-
butanol to 2-butanol, tert-butanol, and iso-butanol markedly
reduced the yields of C8—C20 alkanes from 68 to 54, 46, and
55%, respectively. Hence, even though these isomers have the
same theoretical H, production, their net effects on the
deoxygenation of stearic acid varied greatly. The position of
the hydroxyl group on the alcohol molecule has a great
influence on the aqueous phase reforming reaction. Under
hydrothermal conditions, n-propanol was dehydrogenated to
active aldehyde intermediates, while 2-propanol was dehydro-
genated to acetone.”” The aldehyde intermediates can quickly
convert into ethane and CO, but acetone can further promote
the deoxygenation of stearic acid (Figure S4) as a hydrogen
donor. Of the four isomers, n-butanol has the highest C8—C20
alkane yield (Figure 1c). In general, secondary alcohols are
more prone to dehydrogenation than primary alcohols, and the
hydrogen formation rate of 2-butanol has been reported to be
faster than n-butanol.”” But the reason for the greater net effect
of n-butanol on stearic acid deoxygenation remains unclear.
The tert-butanol cannot be converted to a ketone and H, due
to the absence of a H atom on the tertiary carbon connecting
to the alcoholic hydroxyl group. The net effect of iso-butanol is
analogous with 2-butanol, possibly due to their similar a-
hydrogen activities.”

Reaction conditions: 0.216 g of feedstock, 0.2 g of the Ru/C
catalyst, 8 g of H,O, initial headspace gas = 1 MPa N,, reaction
temperature 330 °C. The reaction time of 0 h means there was
only the heating up for this feedstock to the predetermined
reaction temperature, and the heating up time was about 45
min.

3.2. Different Carboxylic Acids as Hydrogen Donors.
We also examined the effects of several carboxylic acids as
hydrogen donor amendments for accelerating the deoxygena-
tion of stearic acid (Figure 2). Like alcohol-based amendments,
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Figure 2. Effects of different carboxylic acid hydrogen donor
amendments on Ru/C-catalyzed deoxygenation of stearic acid.
Reaction conditions: 2 g of stearic acid, 0.216 g of the hydrogen
donor, 0.2 g of the Ru/C catalyst, 8 g of H,O, initial headspace gas =
1 MPa N,, 330 °C, 2.5 h.

the addition of carboxylic acids increased the yield of the total
hydrocarbon products. In addition, most carbon in the
carboxylic acids was transformed into CO, and CH, in the
conversion processes.28’29 Formic acid, acetic acid, and
propionic acid increased C8—C20 alkane yields from 35%
(no amendment) to 41, 52, and 56%, respectively. The reason
may be that as the ratio of C/O or H/O in the carboxylic acid
increases, the amount of H, produced increases eqs 10—13

formicacid: HCOOH — CO, + H, (10)
aceticacid: CH;COOH + 2H,0 - 2CO, + 4H,  (11)

propionic acid: CH;CH,COOH + 4H,0 — 3CO, + 7H,
(12)
oxalicacid: HOOC — COOH — 2CO, + H, (13)

In addition to producing H, in situ via aqueous phase
reforming, steam reforming, and water—gas shift reactions,
amending reaction solutions with carboxylic acids may affect
the solution pH. We measured the initial and final pH of the
reaction when using carboxylic acids as hydrogen donors and
found that the initial pH before the reaction was negatively
correlated with the carbon yield of C8—C20 alkanes (Table 2).
After the reaction, the pH increased significantly, suggesting
that the carboxylic hydrogen donors were converted into
neutral substances during the deoxygenation of stearic acid. To
assess the importance of the initial solution pH on stearic acid
reactions, we compared the effects of amending solutions with
acetic acid versus its conjugate base, sodium acetate (which has
comparable theoretical H, production). Application of sodium
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Table 2. pH Changes in the Reactions of Ru/C-Catalyzed
Deoxygenation of Stearic Acid with Different Hydrogen
Donor Amendments”?

formic acetic propionic oxalic

compound none acid acid acid acid
before reaction 5.6 1.9 2.5 2.7 1.1
after reaction 6.6 S.1 4.9 4.9 32

“Reaction conditions: 2 g of stearic acid, 0.216 g of a hydrogen donor,
0.2 g of the Ru/C catalyst, 8 g of H,O, initial headspace gas = 1 MPa
N,, 330 °C, 2.5 h.

acetate in place of acetic acid raised the initial pH from 2.5 to
8.9, but the yield of C8—C20 alkanes from stearic acid was
found to be similar (Figure SS), indicating that solution pH
had little effect on the net deoxygenation of stearic acid. We
also measured the carbon distribution of the alkane products in
the presence or absence of hydrogen donors (Figure 3) and
found that the compositions of alkane products are almost
identical in all systems, with C17 being the dominant one.
3.3. Correlation between the Carbon Yield of Liquid
Hydrocarbons and Theoretical H, Production. As
demonstrated in Figure 4, the carbon yield of C8—C20
alkanes displayed a positive correlation with the theoretical H,
production of different linear alcohol and carboxylic acid
amendments (R® = 0.84), supporting a conclusion that the
promotion of stearic acid reactions is attributed to in situ
generation and availability of H, in the reaction matrix.
Breaking out carboxylic acid- and alcohol-based amendments
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0 10 20 30 40

Theoretical Hydrogen Production (mmol)
Figure 4. Correlation between the yield of liquid hydrocarbon
products and theoretical hydrogen production for different hydrogen
donor amendments. Reaction conditions: 2 g of stearic acid, 0.216 g
of the hydrogen donor, 0.2 g of Ru/C catalyst, 8 g of H,O, initial
headspace gas = 1 MPa N,, 330 °C, 2.5 h. Isomers, such as 2-

propanol, 2-butanol, tert-butanol, and iso-butanol are displayed in gray
color in this figure but are not involved in the fitting.

separately, we see a stronger correlation for the former (R* =
0.97; Figure S6a) than for the latter (R* = 0.88; Figure S6b).
This suggests a more consistent mechanism for in situ H,
generation from carboxylic acid- than from alcohol-based
amendments. Based on the results of the correlation, it is
feasible to predict the net effect of a low-molecular
homologous series of alcohols and carboxylic acids according
to the theoretical maximum production of hydrogen.
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330 °C, 2.5 h.
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4. CONCLUSIONS

Both alcohol and carboxylic acid amendments were found to
promote the hydrothermal conversion of stearic acid to liquid
hydrocarbon products over Ru/C. Further, there is a positive
correlation between the yields of C8—C20 alkanes and the
theoretical H, production predicted for the low-molecular
homologous series of alcohols and carboxylic acids. For
monohydric n-alcohol, the longer its carbon chain, the better
the effect of promoting the deoxygenation on stearic acid. For
polyhydric alcohols, the ratio of O atoms in the molecule is
negatively correlated with the deoxygenation effect of stearic
acid. Regarding the isomers of alcohols, the net effects on
stearic acid should be estimated based on the position of the
hydroxyl group in the carbon chain, and the order obtained in
this study is 2-propanol > n-propanol; n-butanol > 2-butanol ~
iso-butanol > tert-butanol. We believe that this result is an
important complement to current hydrogen donor research
studies and provides researchers with a reference for hydrogen
donor selection that has not been covered in previous reports.

Thus, the introduction of hydrogen donor amendments
from low-cost supplies (e.g, waste products) can not only
promote the deoxygenation of fatty acids and elevate the
production of liquid biofuels but also reduce the need for
external H, supplies, which is promising for lowering the cost
of biofuels from the hydrothermal deoxygenation process.
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Figure S2. Hydrothermal deoxygenation reaction of stearic acid under different dosages of
glycerol. Reaction conditions: 2 g stearic acid, 0.2 g Ru/C catalyst, 8 g H>O, 330 °C, 2.5 h; initial
headspace gas = 1 MPa H; or 1 MPa N, with different amounts of glycerol added to reaction
mixture.
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Figure S3. Comparison of the carbon distribution of products following catalytic reaction of
stearic acid with either an external H, supply or in-situ produced H, using n-butanol or 2-propanol
hydrogen donors. Reaction conditions: 2 g stearic acid, 0.2 g Ru/C catalyst, 8 g H,O, 330 °C, 2.5 h;
initial headspace gas = 1 MPa H; or 1 MPa N, with 0.216 g of n-butanol or 2-propanol added to
reaction mixture.
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Figure S4. Comparison of the carbon distribution of products following catalytic reaction of
stearic acid with acetone as hydrogen donor amendments. Reaction conditions: 2 g stearic acid,
0.216 g hydrogen donor, 0.2 g Ru/C catalyst, 8 g H>O, initial headspace gas = 1 MPa N3, 330 °C,
2.5 h. Theoretical hydrogen generation from acetone is described by the following reaction
stoichiometry (eq. S1), and that for 2-propanol and n-propanol are described in eqs. 3 and 8.
Acetone: C3HsO + SH,O — 3 CO, + 8 Ha (eq. S1)
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Figure SS. Comparison of the carbon distribution of products from catalytic reaction of stearic
acid with acetic acid and sodium acetate as hydrogen donor amendments. Reaction conditions: 2 g
stearic acid, 0.216 g hydrogen donor, 0.2 g Ru/C catalyst, 8 g H»O, initial headspace gas = 1 MPa
Nz, 330°C, 2.5 h.
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Figure S6. Correlation between the carbon yield of liquid hydrocarbons and theoretical hydrogen
production from addition of (a) alcohol and (b) carboxylic acid hydrogen donors to the reaction
solution. Reaction conditions: 2 g stearic acid, 0.216 g hydrogen donor, 0.2 g Ru/C catalyst, 8 g
H»O0, initial headspace gas = 1 MPa N, 330 °C, 2.5 h.
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