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Abstract

In the era of big data, we are often facing the chal-
lenge of data heterogeneity and the lack of label infor-
mation simultaneously. In the financial domain (e.g.,
fraud detection), the heterogeneous data may include
not only the numerical data (e.g., total debt and yearly
income), but also text and images (e.g., financial state-
ment and invoice images). At the same time, the la-
bel information (e.g., fraud transactions) may be miss-
ing for building predictive models. To address these
challenges, many state-of-the-art multi-view clustering
methods have been proposed and achieved outstand-
ing performance. However, these methods typically do
not take into consideration the fairness aspect, and are
likely to generate biased results using sensitive informa-
tion such as race and gender. Therefore, in this pa-
per, we propose a fairness-aware multi-view clustering
method named Fair-MVC. It incorporates the group
fairness constraint into the soft membership assignment
for each cluster to ensure that the fraction of differ-
ent groups in each cluster is approximately identical to
the entire data set. Meanwhile, we adopt the idea of
both contrastive learning and non-contrastive learning,
and propose novel regularizers to handle heterogeneous
data in complex scenarios with missing data or noisy
features. Experimental results on real-world data sets
demonstrate the effectiveness and efficiency of the pro-
posed framework. We also derive insights regarding the
relative performance of the proposed regularizers in var-
ious scenarios.

1 Introduction

In the era of big data, the volume of data grows at an
unprecedented rate. Compared with homogeneous data
in the past, nowadays, the data collected from many
real-world applications usually exhibit the nature of
heterogeneity (e.g., view heterogeneity). For instance,
on social media, one or two decades ago, users shared
their daily lives with others mainly via text data; but
with the development of electronic devices, users tend
to share their experiences by a mixture of multiple types
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Figure 1: Performance of SOTA methods on the Credit
Card data set in missing feature scenario, where p
denotes the percentage of missing features.

of data, such as a recorded video or several photos along
with the text description. Another example is in the fi-
nancial domain. Take fraud detection as an example:
the heterogeneous data may include not only the nu-
merical data (e.g., total debt and yearly income) but
also text and images (e.g., financial statements and in-
voice images). On the other hand, with the advent of
big data across multiple high-impact domains, the label
information is largely lacking. This phenomenon may
be caused by the expensive labeling cost or the mis-
match between the speed of generating data and label-
ing data [25]. Regardless of the reasons behind this phe-
nomenon, exploring and analyzing these newly-created
data is urgent in many domains [10, 17]. To address
this problem, many state-of-the-art (SOTA) multi-view
clustering algorithms have been proposed, including the
earliest work (e.g., Co-EM algorithms [4, 26], Canonical
Correlation Analysis-based clustering methods [3, 5])
and current deep learning based methods [14, 33, 44]. In
addition, the collected data sometimes consist of miss-
ing entries or noisy data. However, many existing SOTA
algorithms [3, 5, 14, 33, 39, 40] fail to effectively handle
such complex scenarios. For instance, Figure 1 shows
the performance of SOTA methods in terms of normal-
ized mutual information score on the Credit Card data
set [35] in the missing feature scenario. In particular,
the x-axis is the percentage of the missing features and
the y-axis is the normalized mutual information score.
By observation, when the percentage of missing fea-
tures increases, the performance of these state-of-the-art
methods (e.g., DEC, LF-IMVC, CC) starts to decrease
dramatically, suggesting that they couldn’t effectively
handle the missing feature scenario.



On the other hand, the collected data may contain
sensitive information (e.g., race, gender) in many do-
mains. The straightforward application of existing ma-
chine learning algorithms may render severely biased re-
sults [11]. For instance, when analyzing whether a bank
should increase the interest rate for a credit card holder,
some sensitive information, such as race and gender,
should be excluded from the algorithms. In other words,
these algorithms are expected to achieve good perfor-
mance while satisfying the fairness constraint. De-
spite the outstanding performance of these aforemen-
tioned methods for addressing their respective prob-
lems [14, 19, 27, 32, 33, 38], most (if not all) of these
multi-view clustering methods only aim to improve the
performance, and thus fail to consider the fairness con-
straint. Besides, though the existing fair single view
clustering methods [7, 18, 37] achieve the excellent per-
formance, we couldn’t directly apply them to handle
multi-view data sets as a study [34] shows that sim-
ply concatenating multiple views into one feature vector
may lead to sub-optimal solution.

To fill in this gap, in this paper, we propose
a fairness-aware multi-view clustering method named
Fair-MVC. It seamlessly integrates the fairness con-
straint into the clustering process of multi-view data.
More specifically, Fair-MVC maximizes the mutual
agreement of the soft membership assignment from each
view to generate the clusters. In the meanwhile, it in-
corporates the group fairness constraint into the soft
membership assignment for each cluster to ensure that
the fraction of different groups in each cluster is approxi-
mately identical to the fraction in the whole data set. In
addition, to handle heterogeneous data in complex sce-
narios with missing data or noisy features, we adopt the
idea of contrastive learning and non-contrastive learning
and propose novel regularizers.

Our main contributions are summarized below.

• We formalize a new problem setting: fairness-aware
multi-view clustering;

• We propose novel contrastive and non-contrastive
regularizations to handle complex scenarios with
missing data or noisy features;

• We provide insights regarding the relative perfor-
mance of contrastive and non-contrastive regular-
izers in various scenarios;

• Experimental results on both synthetic and real-
world data sets demonstrate the effectiveness and
efficiency of the proposed framework.

The rest of this paper is organized as follows. After
a brief review of the related work in Section 2, we

introduce the problem definition and our proposed
framework to address this problem in Section 3. The
systematic evaluation of the proposed framework on
both synthetic and real-world data sets is presented in
Section 4 before we conclude the paper in Section 5.

2 Related Work

In this section, we briefly review the related works.
Multi-view Clustering: Multi-view clustering has
been studied for decades. Starting from the earliest
work, such as Co-EM algorithms [4, 26], Canonical Cor-
relation Analysis-based clustering methods [3, 5], to cur-
rent works [19, 27], more and more researchers pay at-
tention to deep multi-view clustering [14, 33] due to the
great performance to handle various types of data. [21]
proposed a novel multi-view clustering method in the
adversarial setting by learning the latent representation
with an auto-encoder and capturing the data distribu-
tion with adversarial training. However, all of these
neglect the importance of fairness and to bridge the
gap, we propose the fairness-aware multi-view cluster-
ing method, which incorporates group fairness into our
proposed multi-view clustering algorithm.
Fairness Machine Learning: Recent year has wit-
nessed the surge of the fairness machine learning algo-
rithms [1, 7, 13, 18, 36, 37]. [37] considered both group
fairness and individual fairness by encoding the input
data as well as fairness constraint into a latent space
and meanwhile obfuscating the membership informa-
tion. [13] proposed a fairness measure against sensi-
tive attributes in the classification problem to ensure
equal opportunity for both protected and unprotected
groups. [12] introduced a fairness measure for classi-
fication problems and provided theoretical results to
demonstrate the effectiveness of the test for disparate
impact on real-world datasets. Different from these
fairness algorithms, we propose a novel fairness-aware
clustering algorithm in a more sophisticated setting by
considering the data heterogeneity.
Contrastive Learning: Recently, contrastive learning
has exhibited outstanding performance by modeling the
data without supervision. One of the earliest works [29]
proposes the contrastive predictive coding framework
(Info-NCE) to extract a compact lower-dimensional rep-
resentation to maximize the mutual information be-
tween the hidden representation of the input data and
the targeted signal. Recent studies [6, 15, 22, 28, 41, 42]
reveal a surge of research interest in contrastive learn-
ing. [28] extended contrastive coding to a multi-view
setting by maximizing the mutual information between
each pair of views. [8] addressed the drawbacks of con-
trastive learning-based methods by removing the nega-
tive pairs and only maximizing the similarity of positive



pairs. Nevertheless, directly combining the current con-
trastive learning with the multi-view clustering method
may lead to sub-optimal performance in some specific
scenarios To address this issue, we propose novel con-
trastive and non-contrastive regularizations, which en-
able our proposed method to handle the perturbed data
in more sophisticated scenarios.

3 Proposed Fair-MVC Framework

In this section, we present our proposed Fairness-Aware
Multi-view Clustering (Fair-MVC) framework. We
first introduce the major notation and the problem
definition; then we discuss the proposed Fair-MVC
framework along with the regularization terms. Finally,
we provide the overall objective function.

3.1 Notation and Problem Definition In this
paper, we denote D = {X1,X2, ...,Xv,R} as a data
set with V views and n samples, where Xi ∈ Rn×di is
the input feature matrix for the ith view, R ∈ Rn×dr

is the sensitive features (e.g., race, gender, etc.), dr is
the dimensionality of sensitive features, and di is the
dimensionality of the input features for the ith view.
We aim to assign the n samples into k clusters with
the membership matrix Qv ∈ Rn×k, each represented
by a centroid µv

j ∈ Rd, j = 1, ..., k, where d is the
dimensionality of the centroid. Instead of clustering
these samples directly in the input space, we propose to
first transform these samples with a non-linear mapping
fv : Xv → Zv, i.e., Zv = fv(Xv), where Zv ∈ Rd is
the latent representation for the vth view. We denote xi

as the ith sample and zi as the hidden representation of
xi. Throughout this paper, we use xj

i to denote the

jth view of the ith sample in Xj , zj
i to denote the

representation of the sample xj
i and ri to denote the

sensitive feature of the the ith sample. For the ease
of explanation, we only consider two views in the next
few subsections, although our proposed method could
be naturally extended to multiple views. With all the
aforementioned notation, we are ready to formalize the
fairness-aware multi-view clustering problem as follows.

Problem 1. Fairness-aware Multi-view Cluster-
ing

Input: a set of unlabeled data D along with the sensi-
tive features R and the number of the clusters k.

Output: : the membership matrix Q for each sample
in D with the fairness constraint.

3.2 Fairness-Aware Multi-view Clustering Fol-
lowing the strategy in [32], we measure the similarity
between the hidden representation zv

i and centroid µj

as follows.

(3.1) qv
ij =

esim(zv
i ,µ

v
j )∑

j′ e
sim(zv

i ,µ
v
j′
)

where sim(zv
i ,µ

v
j ) = −|zv

i −µv
j |2. Here, we denote qv

ij

as the element in the the ith row and the jth column of
Qv. After getting the probability of the soft assignment,
we could update the centroid via the formulation below:

(3.2) µv
j =

∑n
i=1 q

v
ijz

v
i∑n

i=1 q
v
ij

In many real-world applications, we want the clustering
results to be fair, and to not discriminate against any
protected group. For instance, when a bank makes
a decision to increase the interest rate for a credit
card holder, some sensitive information, (e.g., race and
gender) should not be included in the algorithm but
fairness measurement should be taken into consideration
to ensure the fair results for its customers. Based on
the above equations, to minimize the potential bias,
we follow the idea proposed in [16] that each group is
approximately represented with the same fraction as in
the whole data set. Given the sensitive features R, the
group fairness constraint could be formalized as follows.

sj =

∑n
i=1

∑V
v=1 q

v
ijri∑n

i=1

∑V
v=1 q

v
ij

, sD =
1

n

n∑
i=1

ri

LF =
k∑

j=1

∥sj − sD∥22(3.3)

where ri is the sensitive feature of the the ith sample
in R, sj represents the weighted mean of each sensitive
feature in the jth cluster and sD measures the average
value of each sensitive feature in the whole data set. In-
tuitively, minimizing LF imposes the constraint that the
fraction of sensitive features in each cluster should be
close to the fraction of sensitive features in the whole
data set. Besides simply adding the fairness regular-
ization term (i.e., LF ) as a regularizer, we incorporate
the fairness constraint in the soft assignment to further
mitigate the potential bias as follows.

qv
ij =

esim(zv
i ,µ

v
j )+αG(sj ,sD,ri)∑

j′ e
sim(zv

i ,µ
v
j )+αG(sj′ ,sD,ri)

G(sj , sD, ri) = ||sj − κ− sD||22 − ||sj − sD||22

(3.4)

where κ =
∑V

v=1 qv
ijri∑n

i=1

∑V
v=1 qv

ij−
∑V

v=1 qv
ij

is the re-weighted

sensitive feature of the i-th sample and α is a constant
parameter balancing two terms. The intuition of the



fairness constraint G(sj , sD, ri) is straightforward. If
G(sj , sD, ri) > 0, it means that removing the i-th
sample from j-th cluster (i.e., ||sj −κ−sD||22) increases
the difference between sj and sD, and it will cause the
clustering results to be unfair. Thus, we should keep
the i-th sample in j-th cluster. Otherwise, we should
remove the i-th sample from j-th cluster to decrease
the difference.

After mitigating the bias in the soft assignment, we
propose to iteratively refine the clusters by minimizing
the distance between zv

i and µv
i as follows.

Ld =
∑
i,j,v

cvij∥zv
i − µv

j ∥22(3.5)

where cvij ∈ {0, 1} denotes whether the ith sample be-

longs to the jth cluster based on the vth view. Ld aims
to ensure that the samples belonging to the same cluster
will get closer. In addition, based on the assumption [34]
in multi-view learning that the information contained
in each view is consistent, we aim to match the soft
assignment made by the first view to the soft assign-
ment made by the second view by minimizing the KL
divergence between two distributions:

LKL = KL(Q1||Q2) +KL(Q2||Q1)

=
∑
i

∑
j

(q1
ij log

q1
ij

q2
ij

+ q2
ij log

q2
ij

q1
ij

)(3.6)

where Q1 and Q2 are two soft assignment matrices.

3.3 Regularization The main idea of the unsuper-
vised contrastive loss is to utilize the rich unlabeled data
to enhance the quality of the hidden representation.
Rather than directly imposing the contrastive constraint
on the latent space Z, we first transform Z into another
space H with the second encoder gv (e.g., hv

i = gv(zv
i ))

by following the idea proposed in [6] to avoid distorting
the hidden representation Z and then we regularize the
hidden space H as follows.

L1 = −Exi∈D[log
f(h1

i ,h
2
i )

f(h1
i ,h

2
i ) +

∑
xj∈ND

i

∑
v f(h

v
i ,h

v
j )

]

(3.7)

where xv
j is the vth view of xj , h

v
j is the hidden rep-

resentation of xv
j after non-linear mappings, f(h1

i ,h
2
i )

is a similarity measurement function, e.g., f(a, b) =
exp(a·bτ ), τ is the temperature, and ND

i = D\{i}. How-
ever, L1 suffers from the class collision problem [43],
where minimizing L1 pushes two samples from the same
cluster away from each other and thus leads to sub-
optimal performance. To alleviate these potential con-

cerns, we propose a novel weighting strategy as follows.

Lctr = −Exi∈D[log
f(h1

i ,h
2
i )

f(h1
i ,h

2
i )+

∑
xj∈ND

i

∑
v sim(qi,qj)f(hv

i ,h
v
j )
](3.8)

where qi = [q1i ; ...; q
v
i ] is the concatenation of the v views

soft membership for the ith samples and sim(qi, qj) =
exp(1− qi·qj

|qi||qj | ). The intuition of the weighting function

sim(qi, qj) is that if two samples have the similar
probabilities of being assigned to the same cluster, then
this pair of samples should be considered as a positive
pair, and we need to reduce the weight of this pair of
samples in the denominator in Equation 3.8 in order
to address the class collision issue. Notice that if qi
and qj are equal in the extreme case, then the value
of the weighting function is 1. The more dissimilar qi
and qj are, the large the value of the weighting function
sim(qi, qj) is. Eq. 3.7 assigns the equal weight to all
negative samples, which inevitably pushes two samples
from the same cluster away from each other, while in
our proposed weighted contrastive loss Lctr, we utilize
the pseudo-label to alleviate such an issue.

One drawback of the contrastive learning based
regularization is the high computational cost as well
as the high memory requirement to compute and store
the similarity matrix for any pairs of two samples [8].
To address this issue, a non-contrastive learning based
method [8] has been proposed:

L2 = −Exi∈D(
h1

i

|h1
i |2

· SG(
z2
i

|z2
i |2

) +
h2

i

|h2
i |2

· SG(
z1
i

|z1
i |2

))(3.9)

where SG denotes stop gradient operation, and Hv
i =

g(Zv
i ) ∈ Rn×d. Notice that different from contrastive

regularization Lctr, g(·) is shared by two views in
L2. Intuitively, L2 aims to maximize the similarity
of the hidden representations of two views. However,
in practice, if parts of the original features are missing
or noisy, L2 might also result in sub-optimal solution,
which is examined in the case study in Section 4.4.
Inspired by [24], we propose a cross attention module to
borrow the information from the other view to alleviate
this issue:

C1,2 = H1W1,2(H
2)T

O1 = tanh(Z1W1 +Z2W2C1,2)

O2 = tanh(Z2W2 +Z1W1C
T
1,2)

Av = softmax(Ov)

T v = Hv ⊙Av

(3.10)

where Hv = g(Zv) ∈ Rn×d denotes the hidden repre-
sentation after the mapping function g(·), W1,2 ∈ Rn×n,
W1 ∈ Rd×d and W2 ∈ Rd×d are the weight matrices
and C1,2 ∈ Rd×d aims to capture the relatedness of



features across two views. By leveraging the consensus
information to measure the importance of each feature,
O1 ∈ Rn×d and O2 ∈ Rn×d encode the information
from both views in order to alleviate the issue of miss-
ing or noisy features. Av ∈ Rn×d is the attention matrix
for the vth view, T v ∈ Rn×d is the output of the cross
attention module for the vth view and ⊙ denotes the
element-wise multiplication operation. The main differ-
ence between Hv and T v is that Av first encodes the
information from both views and then adjust the im-
portance of the features in Hv based on the consensus
information from both views to mitigate the issue of
the missing or noisy features. Similar to L2, the non-
contrastive learning loss could be updated as follows.

Lnctr = −EXi∈D(
t1i

|t1i |2
· SG(

z2
i

|z2
i |2

) +
t2i

|t2i |2
· SG(

z1
i

|z1
i |2

))(3.11)

3.4 Objective Function and Proposed Algo-
rithm Now, we are ready to introduce the overall ob-
jective function:

min J = LKL + γLd + αLF + βLreg(3.12)

where LKL is KL-divergence maximizing the mutual
agreement of soft assignment of two views, Ld ensures
that the samples belonging to the same cluster will get
closer, LF is the group fairness constraint, Lreg is either
Lctr or Lnctr regularizing the latent representations, and
α, β, and γ are positive hyper-parameters balancing
these terms. Notice that α is the same parameter
as in Equation 3.4. The proposed method could be
solved in Expectation-Maximization (EM) steps. Our
algorithm is presented in Appendix A.1. Specifically,
we take the results of K-means as the initial centroids
of k clusters in the first step. Next, we first compute the
soft assignment based on Equation 3.4, and maximize
the mutual agreement of soft membership of multiple
views based on Equation 3.12 in Step 2 and Step 3;
then we update the centroid of each cluster based on
Equation 3.2 in step 4. These steps are repeated T
times, where T is the number of the iterations. Finally,
we compute the soft assignment based on Equation 3.1
by excluding the sensitive features at the test phase.

4 Experiments

In this section, we demonstrate the performance of
our proposed framework in terms of effectiveness by
comparing it with state-of-the-art methods.

4.1 Experimental Setup We mainly evaluate our
proposed algorithm on three data sets with fairness
constraints, including Credit Card data set [36], Bank
Marketing data set [36] and Zafar data set [36], and
two data sets without fairness constraints, including

Noisy MNIST [2] and X-ray Microbeam (XRMB) [31].
Specifically, the sensitive feature on the Credit Card
data set is gender, The sensitive feature on Bank
Marketing data set is marital status. Zafar data set [36]
is a widely-used synthetic data set, where one binary
value is generated as the sensitive feature. More details
of these data sets could be found in Appendix A.2.
Baselines: In the experiment, Lctr is the regularization
term (i.e., Lreg) in Fair-MVC-C and Lnctr is the reg-
ularization term (i.e., Lreg) in Fair-MVC-N. We com-
pare the performance of our methods with the following
baselines: (1). K-means: a method aiming to partition
samples into several clusters where each sample is as-
signed to the nearest cluster; (2). DEC [32]: a deep
embedded clustering method by learning feature rep-
resentations and cluster assignments with deep neural
networks; (3). Contrastive-Clustering (CC) [20]: a con-
trastive learning based clustering method, which opti-
mizes the instance-level and cluster-level contrastive loss
simultaneously; (4). MvDSCN [45]: a multi-view deep
subspace clustering network aiming to learn a multi-
view self-representation matrix; (5). LF-IMVC [23]:
an incomplete multi-view clustering method (as this
method is designed for missing feature scenario, we
only report its performance in table 2). To investigate
the contributions of different parts of Fair-MVC-N
and Fair-MVC-C, we conduct ablation study by intro-
ducing four variations of Fair-MVC, including Fair-
MVC-NF that removes fairness constraint from Fair-
MVC-N, Fair-MVC-CF that removes fairness con-
straint from Fair-MVC-C, Fair-MVC-1 where Lreg

is replaced by L1, and Fair-MVC-2 where Lreg is re-
placed by L2.
Evaluation: We present the results regarding the fol-
lowing metrics: (1) NMI [9]: normalized mutual infor-
mation, which measures the mutual dependency of two
variables. (2) Balance: a group fairness measurement,
which is formulated as follows:

Balance = min
i

mina |Ci ∪ rj |
|Ci|

(4.13)

where Ci ∈ {0, 1} denotes the i-th cluster and rj denotes
the j-th protected subgroup. Typically, the upper
bound of balanced is determined by the distribution
of the sensitive feature, and a higher value of balance
indicates a fairer result.

4.2 Experimental results In this subsection, we
demonstrate the effectiveness of the proposed method.
Table 1 shows the performance of state-of-the-art meth-
ods and our proposed methods. By observations, we
find that (1) most baselines fail to provide fair results,
though many of them achieve outstanding performance;



Table 1: Results on three data sets with sensitive features. (Higher balance score indicates better fairness.)
- Credit Card Zafar Bank Marketing

Model NMI Balance NMI Balance NMI Balance
K-means 0.2094 ± 0.0114 0.3553 ± 0.0037 0.7032 ± 0.0078 0.1706 ± 0.0076 0.2867 ± 0.0144 0.3765 ± 0.0066
DEC 0.2103 ± 0.0209 0.3596 ± 0.0060 0.7255 ± 0.0192 0.1685 ± 0.0073 0.3093 ± 0.0115 0.3760 ± 0.0096

MvDSCN 0.2192 ± 0.0153 0.3582 ± 0.0041 0.7691 ± 0.0042 0.1713 ± 0.0065 0.3624 ± 0.0055 0.3759 ± 0.0067
CC 0.2387 ± 0.0128 0.3574 ± 0.0047 0.7895 ± 0.0068 0.1701 ± 0.0071 0.3623 ± 0.0101 0.3746 ± 0.0097

Fair-MVC-1 0.2423 ± 0.0070 0.3743 ± 0.0028 0.7878 ± 0.0101 0.2735 ± 0.0077 0.3587 ± 0.0050 0.4116 ± 0.0073
Fair-MVC-2 0.2434 ± 0.0039 0.3710 ± 0.0036 0.7996 ± 0.0110 0.2767 ± 0.0055 0.3632 ± 0.0069 0.4106 ± 0.0092
Fair-MVC-CF 0.2386 ± 0.0100 0.3599 ± 0.0028 0.7994 ± 0.0107 0.1770 ± 0.0044 0.3861 ± 0.0103 0.3735 ± 0.0070
Fair-MVC-NF 0.2484 ± 0.0095 0.3618 ± 0.0034 0.8161 ± 0.0157 0.1768 ± 0.0053 0.3899 ± 0.0091 0.3776 ± 0.0091
Fair-MVC-C 0.2459 ± 0.0078 0.3783 ± 0.0032 0.7974 ± 0.0051 0.2896 ± 0.0059 0.3816 ± 0.0116 0.4208 ± 0.0059
Fair-MVC-N 0.2471 ± 0.0041 0.3743 ± 0.0029 0.8119 ± 0.0150 0.2827 ± 0.0074 0.3839 ± 0.0109 0.4240 ± 0.0075

for instance, though CC achieves the competitive per-
formance on the Credit Card data set, Zafar data set,
and Bank Marketing data set, its balance score is much
lower than that of Fair-MVC-C and Fair-MVC-N; (2)
Fair-MVC-NF outperforms all baselines on the Credit
Card data set, Zafar data set and Bank Marketing data
set in Table 1 without considering the fairness; (3)
comparing with state-of-the-art methods, Fair-MVC-
C and Fair-MVC-N achieve much better balance score
by taking fairness into considerations. The experimen-
tal results on non-fairness data sets (i.e., Noisy MNIST
and XRMB) could be found in Appendix A.3.
Ablation study To demonstrate the effectiveness of
each component in our proposed framework, we conduct
an ablation study. In Table 1, comparing the perfor-
mance of Fair-MVC-C with Fair-MVC-CF, the bal-
ance score of Fair-MVC-C increases by more than 63%
on Zafar data set while the NMI of Fair-MVC-C only
decreases by less than 0.25% on Zafar data set, which
demonstrates the effectiveness of Fair-MVC-C. By
comparing the performance of Fair-MVC-2 and Fair-
MVC-N, we demonstrate that our proposed novel non-
contrastive regularizer can improve the performance by
leveraging information from the complementary view
to some extent in the presence of the missing feature
scenario. What’s more, Fair-MVC-C outperforms CC
and Fair-MVC-1 on Credit Card data set, Zafar data
set and Bank Marketing data set. As we mentioned
early, the main drawback of vanilla contrastive regular-
izer (i.e., L1 in Equation 3.7) is that minimizing the
loss function pushes two samples from the same clus-
ter away from each other, resulting in the class collision
problem. Fair-MVC-C and Fair-MVC-CF consider
the soft membership by reducing the weights for any
pairs of samples possibly from the same cluster in the
denominator of Equation 3.8.

4.3 Fairness Analysis Why do we care about the
fairness of the clustering results? To answer this
question, let us first look at the clustering results on
the Credit Card data set. On the Credit Card data set,

Figure 2: Fairness analysis on the Credit Card data set.
Top: Five bars in each group (algorithm) denote the
number of males (sensitive feature) in five clusters. The
more discrepancy to ground truth, the worse fairness.
Bottom: each bar means the standard deviation of the
number of males for each method. The more similar to
the ground truth, the fairer the clustering results.

the attributes consist of the historical payments; the
sensitive feature is gender; it consists of five clusters.
The first cluster means that the customers pay their
debt duly and the rest four clusters mean that the
customers fail to pay the debt in one, two, three, or
more than three consecutive months. If the banks
aim to determine whether to lower the interest rate
of the customers based on their payment records, they
want the decisions made upon the clustering results to
be fair, and to not discriminate against any protected
group. Thus, reducing the potential bias is crucial for
the clustering methods. In Figure 2, we visualize the
fairness measurement in terms of the count of males
in each cluster on the Credit Card data set, as the
sensitive feature in this data set is gender. In Figure 2,
five bars (in the top figure) in each group (algorithm)
denote the number of males (sensitive feature) for five
clusters and the bar in the bottom figure means the
standard deviation of the number of males for each
method. Intuitively, the distribution of males for a fair
clustering result should be identical to the distribution
of males using the ground truth. The more dissimilar
to the ground truth, the more unfair the clustering
results. By observation, we find that Fair-MVC-C is
mostly identical to the ground truth, compared with
other baselines in terms of the count distribution and



the standard deviation of the count of males. These
baselines fail to consider the fairness constraint, thus
leading to lower balance score.

4.4 Case studies: Missing Features. In this sub-
section, we first demonstrate the effectiveness of the two
regularizers in our proposed methods (i.e., Fair-MVC-
N and Fair-MVC-C) and state-of-the-art methods in
the presence of missing features. To control the percent-
age of missing features p, we randomly mask the features
with Bernoulli distribution (where p is the possibility of
being masked) on the Credit Card data set. Table 2
shows the performance of these methods and we gradu-
ally increase the ratio of missing features from 0 to 25%
and then to 50%. Notice that the upper bound of the
balance score is determined by the distribution of sen-
sitive features, which is 0.4092 for the Credit Card data
set. Based on the results from Table 2, we have the fol-
lowing observations: (1) when there are no missing fea-
tures (i.e., p = 0%), Fair-MVC-N outperforms Fair-
MVC-C on Credit card data set; (2) when we gradually
increase the percentage of missing features, Fair-MVC-
C gradually outperform Fair-MVC-N; (3) the perfor-
mance of the most baseline methods decreases dramati-
cally as the percentage of missing feature increases. As
for the second observation, we conjecture that the con-
trastive regularizer maximizes the similarity between
two views from the same instance, and meanwhile, it
contrasts the difference between two views from two
different instances. This contrasting operation leverages
the information from other instances to infer the missing
features, thus enhancing the quality of hidden represen-
tation. Different from the contrastive regularizer, the
non-contrastive regularizer only aims to maximize the
similarity between two views from the same instance,
and thus it fails to infer extra information from other
instances. Therefore, the performance of Fair-MVC-N
is a little bit worse than Fair-MVC-C.
Noisy Features. Next, we further investigate the ef-
fectiveness of the two regularizers (i.e., non-contrastive
regularizer and contrastive regularizer) in the presence
of noisy features. Table 3 shows the performance of
state-of-the-art methods. Here is the procedure to per-
turb the raw data. We first use Bernoulli distribution to
select p percent of data and then inject the white noise
(e.g., N (0, 1)) into the raw data on the Credit Card
data set. By observations, we find that when p percent
of white noise is added to raw data, the performance of
most methods begins to decrease. Different from most
baseline methods, the performance of Fair-MVC-C de-
creases slightly, when 50% percent of noise is added.
We conjecture that our proposed contrastive regularizer
is more robust to the noisy feature as it can contrast

one instance’s representation with others’ representa-
tions. However, vanilla contrastive-based method (i.e.,
CC) suffer from the class collision issue and two non-
contrastive regularizers fail to leverage the information
from other instances.

4.5 Discussion Combining the experimental results
from Table 1, Table 2 and Table 3, we observe that
for the clean input data, the non-contrastive regularizer
tends to have better performance than the contrastive
regularizer for clustering, as the contrastive regularizer
usually suffers from the class collision issue. Neverthe-
less, in the presence of missing or noisy features, we
observe that the performance of the non-contrastive reg-
ularizer decreases by a large margin, while the perfor-
mance of the contrastive regularizer decreases slowly by
contrasting with other instances and inferring extra in-
formation form other instances. On the other hand,
based on the experimental results in the efficiency anal-
ysis in Appendix A.5, we observe that although the
contrastive regularizer outperforms the non-contrastive
regularizer, the time complexity of the contrastive reg-
ularizer is quadratic with respect to the number of in-
stances, whereas the time complexity of non-contrastive
regularizer is linear.

5 Conclusion

In this paper, we propose Fair-MVC, a deep fairness-
aware multi-view clustering method. Fair-MVC max-
imizes the mutual agreement of the soft membership
assignment based on each view; in the meanwhile, it
enforces the fairness constraint by requiring that the
fraction of different groups in each cluster be approxi-
mately the same as the fraction in the whole data set. In
addition, we adopt the idea of contrastive learning and
non-contrastive learning, and propose novel regulariz-
ers to handle heterogeneous data in complex scenarios
with missing or noisy features. The experimental results
on both synthetic and real-world data sets demonstrate
the effectiveness of the proposed framework. We also
provide insights regarding the relative performance of
contrastive and non-contrastive regularizers in different
scenarios.
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Table 2: Case Study: Missing Feature Scenario. Results on Credit Card data set, where p denotes the
percentage of missing features. (Higher balance score indicates better fairness.)

- p = 0% p = 25% p = 50%
Model NMI Balance NMI Balance NMI Balance
K-means 0.2094 ± 0.0114 0.3553 ± 0.0037 0.1567 ± 0.0148 0.3602 ± 0.0060 0.1356 ± 0.0063 0.3632 ± 0.0038
DEC 0.2103 ± 0.0209 0.3596 ± 0.0060 0.2005 ± 0.0079 0.3640 ± 0.0078 0.1567 ± 0.0121 0.3626 ± 0.0040

MvDSCN 0.2192 ± 0.0153 0.3582 ± 0.0041 0.2034 ± 0.0159 0.3594 ± 0.0048 0.1634 ± 0.0183 0.3663 ± 0.0069
CC 0.2387 ± 0.0128 0.3574 ± 0.0047 0.2095 ± 0.0094 0.3616 ± 0.0047 0.1762 ± 0.0175 0.3680 ± 0.0049

LF-IMVC 0.2228 ± 0.0093 0.3625 ± 0.0043 0.2039 ± 0.0083 0.3581 ± 0.0040 0.1723 ± 0.0144 0.3621 ± 0.0031
Fair-MVC-C 0.2459 ± 0.0078 0.3783 ± 0.0032 0.2165 ± 0.0054 0.3871 ± 0.0046 0.1871 ± 0.0079 0.3907 ± 0.0076
Fair-MVC-N 0.2471 ± 0.0041 0.3743 ± 0.0029 0.2209 ± 0.0075 0.3820 ± 0.0121 0.1803 ± 0.0060 0.3854 ± 0.0114

Table 3: Case Study: Noisy Feature Scenario. Results on Credit Card data set, where p denotes the
percentage of perturbed features (Higher balance score indicates better fairness.)

- p = 0% p = 25% p = 50%
Model NMI Balance NMI Balance NMI Balance
K-means 0.2094 ± 0.0114 0.3553 ± 0.0037 0.1793 ± 0.0078 0.3589 ± 0.0080 0.1663 ± 0.0098 0.3561 ± 0.0072
DEC 0.2103 ± 0.0209 0.3596 ± 0.0060 0.1923 ± 0.0087 0.3561 ± 0.0072 0.1779 ± 0.0100 0.3617 ± 0.0030

MvDSCN 0.2192 ± 0.0153 0.3582 ± 0.0041 0.2011 ± 0.0070 0.3612 ± 0.0051 0.1885 ± 0.0051 0.3626 ± 0.0039
CC 0.2387 ± 0.0128 0.3574 ± 0.0047 0.2078 ± 0.0078 0.3609 ± 0.0087 0.1960 ± 0.0083 0.3583 ± 0.0040

Fair-MVC-C 0.2459 ± 0.0078 0.3783 ± 0.0032 0.2490 ± 0.0147 0.3785 ± 0.0041 0.2397 ± 0.0052 0.3819 ± 0.0067
Fair-MVC-N 0.2471 ± 0.0041 0.3743 ± 0.0029 0.2394 ± 0.0051 0.3741 ± 0.0047 0.2256 ± 0.0068 0.3832 ± 0.0054

emerging areas of technology. The views and conclu-
sions are those of the authors and should not be inter-
preted as representing the official policies of the funding
agencies or the government.
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A Appendix

A.1 Algorithm The proposed method could be solved
in Expectation-Maximization (EM) steps. Our algorithm is
presented as follows.

Algorithm 1 Fair-MVC Algorithm

Input: The total number of iterations T , the input
data X1,X2, ...,Xv, the sensitive features R and the
number of cluster k.

Output: The membership matrix Q.
Step 1: Take the output of K-means as the initial
centroids of k clusters or randomly initialize the
centroids.
for t = 1 to T do
Step 2: Compute the soft assignment based on
Equation 3.4.
Step 3: Minimize the overall objective function
based on Equation 3.12.
Step 4 : Update the centroids based on Equa-
tion 3.2.

end for
Step 5: Compute the membership by averaging the
soft assignment of different views based on Eq. 3.1.

A.2 Experimental Setup We mainly evaluate our
proposed algorithm on three data sets with fairness con-
straints, including Credit card clients data set ∗, Bank Mar-
keting Data set †, Zafar data set ‡, and two data sets without
fairness constraints, which are Noisy MNIST data set §, and
X-ray Microbeam (XRMB) ¶. Specifically, the Credit card
clients data set describes the customers’ default payments in
Taiwan and this data set consists of 30,000 samples with 24
attributes. The sensitive feature in this data set is gender.
Bank Marketing Data set is associated with direct marketing
campaigns of a Portuguese banking institution and it aims
to see if the product (bank term deposit) would be (‘yes’) or
not (‘no’) subscribed. The sensitive feature in this data set is
marital status. This data set consists of 1,000 instances and
20 attributes. Zafar data set [36] is a widely-used synthetic
data set, where one binary value is generated as the sensi-
tive feature. For Credit Card, and Bank Marketing data set,
we use two non-linear functions (e.g., Sigmoid and Relu) to
generate two views. Noisy MNIST data set originally con-
sists of 70,000 images of handwritten digits and we follow [30]
by adding white Gaussian noise to each pixel to generate the

∗https://archive.ics.uci.edu/ml/datasets/default+of+

credit+card+clients
†https://ashryaagr.github.io/Fairness.jl/dev/datasets/

#Bank-Marketing-Dataset
‡https://ashryaagr.github.io/Fairness.jl/dev/datasets/

#Fairness.genZafarData
§http://yann.lecun.com/exdb/mnist/
¶https://ttic.uchicago.edu/~klivescu/XRMB_data/full/

README

Table 4: Results on real-world data sets without sensi-
tive features

- NMI NMI
Model XRMB Noisy MNIST
K-means 0.1692 ± 0.0049 0.3882 ± 0.0117
DEC 0.2012 ± 0.0086 0.4899 ± 0.0227
CC 0.2107 ± 0.0100 0.4902 ± 0.0101

MvDSCN 0.2056 ± 0.0078 0.4770 ± 0.0128
Fair-MVC-C 0.2163 ± 0.0101 0.4997 ± 0.164
Fair-MVC-N 0.2214 ± 0.0071 0.4686 ± 0.182

first view, and randomly rotating a figure with an angle from
[-π

4
, π

4
] to generate the second view. XRMB [31] is a multi-

view multi-class data set, which consists of 40 binary labels
and two views. The first view is acoustic data with 273
features and the second view is articulatory data with 112
features. As some state-of-the-art methods are very slow,
we reduce the number of instances for some large data sets
to ensure that we can include the results of most baselines.
We randomly sample 5,000 instances from the Noisy MNIST
data set and 3,000 instances from the XRMB data set from
6 classes.
Configuration: In all experiments, we set the learning rate
to be 0.001 and the weight decay rate to be 0.0005. The
optimizer is momentum SGD. The neural network structure
for fv(·) of the proposed methods is an two-layer Multi-
layer Perceptron (MLP) and The neural network structure
for gv(·) of the proposed methods is an one-layer MLP.
The experiments are repeated 5 times if not specified. The
code of our algorithms could be found in the link ‖. The
experiments are performed on a Windows machine with a
16GB RTX 5000 GPU and 64GB memory.

A.3 Experimental results on real-world data
sets without sensitive features In this subsection, we
evaluate the performance of our proposed method on two
datasets without sensitive features, including Noisy MNIST
and XRMB. Specifically, we randomly sample 5,000 in-
stances from the Noisy MNIST data set and 3,000 instances
from the XRMB data set from 6 classes. Table 4 shows
the performance of state-of-the-art methods and our pro-
posed methods. By observations, we find that our pro-
posed method Fair-MVC-N and Fair-MVC-C outperform
all state-of-the-art methods on the XRMB data set and
Noisy MNIST data set in Table 4.

A.4 Parameter Analysis In the subsection, we con-
duct the parameter analysis regarding α, β, and γ for Fair-
MVC-C. Specifically, we change the value of one hyper-
parameter, fix the other hyper-parameters, and report the
results. Figure 3 shows the results regarding these three
hyper-parameters. Figure 3 (a) and Figure 3 (b) show the
NMI and balance score when we change the value of α. We
observe that when α = 10, Fair-MVC-C achieves the high-

‖https://drive.google.com/file/d/

1TOsxjOfnNe7JUBYoKyjPydoKIqHFWcd9/view

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://ashryaagr.github.io/Fairness.jl/dev/datasets/#Bank-Marketing-Dataset
https://ashryaagr.github.io/Fairness.jl/dev/datasets/#Bank-Marketing-Dataset
https://ashryaagr.github.io/Fairness.jl/dev/datasets/#Fairness.genZafarData
https://ashryaagr.github.io/Fairness.jl/dev/datasets/#Fairness.genZafarData
http://yann.lecun.com/exdb/mnist/
https://ttic.uchicago.edu/~klivescu/XRMB_data/full/README
https://ttic.uchicago.edu/~klivescu/XRMB_data/full/README
https://drive.google.com/file/d/1TOsxjOfnNe7JUBYoKyjPydoKIqHFWcd9/view
https://drive.google.com/file/d/1TOsxjOfnNe7JUBYoKyjPydoKIqHFWcd9/view


est balance score but its performance is the worst as the
algorithm mainly focuses on minimizing the fairness loss.
When we reduce the value of α, then the performance in-
creases to 24.5% at α = 5 and starts to change slightly from
α = 5 to α = 0.01. However, Figure 3 (b) shows that the
results gradually become unfair (with a lower balance score)
if we decrease the value of α from 10 to 0.01. Based on these
observations, we may conclude that there is a trade-off be-
tween balance score and NMI, and Fair-MVC-C tends to
have a higher NMI and a lower balance score with a lower
α and vice versa. Figure 3 (c) shows the performance of
Fair-MVC-C by changing the value of β. We observe that
the algorithm achieves the best performance when β = 0.01
and it tends to have a large standard deviation when β is
large (e.g., β = 10). In the overall objective function (e.g.,
Equation 3.12), β is the weight of contrastive regularizer.
A large number of β greatly reduces the importance of other
components (e.g., the centrality of the clustering) and thus
it leads to the unstable performance of clustering results.
Figure 3 (d) shows the performance of Fair-MVC-C with
different value of γ. We observe that the algorithm achieves
the best performance when γ is around 10. In the overall
objective function (e.g., Equation 3.12), γ controls the im-
portance of centrality and a large value of γ implies that the
instances assigned to the same cluster will be closer in the
hidden space. Thus, in Figure 3 (d), Fair-MVC-C with a
large value of γ usually tends to have a better performance.

Next, we conduct the parameter analysis regarding α,
β, and γ for Fair-MVC-N. Specifically, we change the value
of one hyper-parameter, fix the rest hyper-parameters, and
report the performance. Figure 4 shows the results regarding
these three hyper-parameters. Figure 4 (a) and Figure 4
(b) show the NMI and balance score when we change the
value of α. We observe that when α = 10, Fair-MVC-N
achieves the best balance score; when we decrease α, then the
performance increases but the results become unfair (with
a lower balance score). Based on the results from Figure 4
(a) and Figure 4 (b), we can also conclude that there is a
trade-off between balance score and NMI, and Fair-MVC-N
has a higher NMI with a lower balance score with smaller
α. Figure 4 (c) shows the performance of Fair-MVC-N by
changing the value of β. We observe that the algorithm
achieves the best performance when β = 0.01 and it tends
to have a large standard deviation when β is large. In
the overall objective function (e.g., Equation 3.12), β is
the weight of contrastive regularizer. A large number of β
greatly reduce the importance of other components (e.g., the
centrality of the clustering), and thus it leads to the unstable
performance of clustering results. Figure 4 (d) shows the
performance of Fair-MVC-N with different value of γ. We
observe that the algorithm achieves the best performance
when γ is 20. In the overall objective function (e.g., Equation
3.12), γ controls the importance of centrality and a large
value of γ implies that the instances assigned to the same
cluster will be closer in the hidden space. Thus, in Figure 4
(d), Fair-MVC-N with a large value of γ usually tends to
have a better performance.

Figure 3: Parameter analysis on Credit Card data set
for Fair-MVC-C

(a) α vs NMI (b) α vs balance score

(c) β vs NMI (d) γ vs NMI

Figure 4: Parameter analysis on Credit Card data set
for Fair-MVC-N

(a) α vs NMI (b) α vs balance score

(c) β vs NMI (d) γ vs NMI



Figure 5: Efficiency analysis: number of instances vs
running time (Best viewed in color)

A.5 Efficiency Analysis In this subsection, we ana-
lyze the efficiency of our proposed algorithm with two dif-
ferent regularization terms (i.e., contrastive regularizer and
non-contrastive regularizer) on the Zafar data set. Specifi-
cally, we increase the number of samples from 1,000 to 10,000
and record the running time (in seconds) for these two reg-
ularizations in Figure 5. The total number of iterations is
1000. The x-axis of this figure is the number of samples and
the y-axis is the running time. By observations, we find that
the running time is almost linear to the number of samples
for non-contrastive regularizer (i.e., Fair-MVC-N) and the
running time is quadratic to the number of samples for con-
trastive regularizer (i.e., Fair-MVC-C). The reason is that
for Fair-MVC-C, we need to compute the similarity of any
given two samples in the denominator of contrastive regu-
larizer in Equation 3.8, while Fair-MVC-N only computes
the similarity of two views for the same sample. Thus, the
time complexity of contrastive-based regularization is O(n2),
whereas the time complexity of non-contrastive-based regu-
larization is O(n), where n is the number of samples.
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