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Abstract—Using millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor
environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave
radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional
signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power
consumption and read out bandwidth. This paper presents ColR, an analysis by synthesis method that leverages the implicit neural
network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system
is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows
for a 5.5 reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our
system’s improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated

and experimental mmWave radar data.

Index Terms—mmWave imaging, sparse array radar, implicit neural representations, compressed sensing

1 INTRODUCTION

EPTH imaging is a crucial component in many appli-
Dcations such as simultaneous localization and map-
ping (SLAM) [1], autonomous driving [2], and security
monitoring [3]. Typically, these depth imaging applications
are accomplished using a combination of visual cameras,
LiDAR, and inertial sensors [4]. Visual cameras provide a
high angular resolution image of the environment that can
be used for near-field dense depth imaging with stereo sys-
tems or monocular depth estimation algorithms [5]. LIDARs
directly output a dense point cloud of the environment with
high range and angular resolutions. However, since visual
cameras and LiDARs operate at optical wavelengths their
depth estimation performance is significantly reduced in
visually degraded environments containing low light, fog,
smoke, snow, and dust [2], [5]. These natural occurrences
are especially problematic for depth imaging applications
that involve robot and human interactions such as disaster
relief and autonomous self-driving scenarios.

Another depth sensing modality commonly used is mil-
limeter wave (mmWave) radar. Since these radars operate
at millimeter wavelengths, they can penetrate through envi-
ronments with airborne particles common in fog and smoke
without significant performance degradation [6]. Addition-
ally, recent availability of low-cost and low-power single
chip 77-81 GHz RF bandwidth radars make these devices
favorable for integration into low form-factor and power-
constrained systems [7], [8]. The main limitation of using
single chip mmWave radars for depth imaging is their low
angular resolution ¢ ~ \/d, which is a function of the oper-
ating wavelength A\ and aperture size d. A naive approach
to increasing the angular resolution is to create a larger
aperture which in turn can lead to antenna coupling [9]
and increased power consumption and read-out bandwidth.
For example, to achieve an angular resolution of 15° for
a 77 GHz linear array at Nyquist sampling would require
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approximately 8 antennas. If the desired angular resolution
was increased to 1° this would require around 115 antennas.
In practice, designing such large arrays to achieve high
angular resolution mmWave imaging is often difficult or
expensive.

There are several techniques used to circumvent the low
angular resolution of mmWave radars: 1) synthetic aper-
ture radars (SAR) [3] and multiple-input multiple-output
(MIMO) arrays [10], [11], 2) sensor fusion [5], 3) optimiza-
tion with hand-crafted priors [12], [13], [14], [15], and 4)
deep learning [2], [16], [17], [18], [19], [20], [21]. These
techniques either have slow acquisition times, increased
hardware complexity and calibration, require large data
sets, or have limited generalizability.

We propose ColR, an analysis by synthesis method
that leverages implicit neural representations (INR) and
compressed sensing to perform high accuracy sparse radar
imaging. We design a sparse linear array that allows for a
5.5 reduction in the required receiving antennas compared
to conventional MIMO linear arrays. This sub-Nyquist sam-
pling leads to a compressed sensing inverse problem, where
the objective is to estimate an image of a scene’s reflectivity
distribution from an under-sampled set of radar measure-
ments. To solve this problem, our key enabling observation
is that the INRs from untrained neural networks have been
shown to provide an inductive bias towards natural solu-
tions over various imaging inverse problems [22], [23], [24],
[25]. In this paper, we develop an untrained neural network
reconstruction method, shown in Fig.1, for sparse radar
imaging and demonstrate its superior performance against
other competing untrained methods on both simulated and
experimental data.

Contributions: We propose CoIR, a new method for
achieving high accuracy, sparse radar imaging using a sin-
gle radar chip. Our code is available online’.We make the
following contributions:

1. https:/ / github.com/sfarrell/supplement-ColIR.git
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Fig. 1: Proposed Method ColR: (a) In the radar imaging forward model a transmitter illuminates a scene with a mmWave
FMCW pulse. Objects in the scene reflect some of the incident mmWave energy back to a sparse linear receive array. Each
antenna in the receive array measures a time domain beat signal, which corresponds to a single row in the measured
radar data cube. (b) ComDecoder represents the scene’s reflectivity distribution (red box) using a convolutional neural
network decoder. From fixed random noise ComDecoder outputs a complex valued polar image of the scenes reflectivity
distribution. Using a 2D FFT, a simulated full radar data cube is synthesized. Next the rows of the simulated data cube
corresponding to the sparse array antenna locations are retained. During the reconstruction, the weights of ComDecoder
are updated to minimize the difference (loss) between the acquired radar data cube and the simulated radar data cube.

e We present a sparse linear array design that achieves
a 5.5x reduction in the number of receive antennas
compared to conventional MIMO array design [26].

e We propose a fully convolutional INR architecture
called ComDecoder, which is an adaptation of Con-
vDecoder [27] improvised for better performance.

¢« We compare ComDecoder against competing state-
of-the-art untrained methods: Deep Image Prior
(DIP), SIREN, and /;-norm gradient descent used
in computer vision and radar imaging. We evaluate
all methods on both simulated and experimental
mmWave data from the ColoRadar dataset [4].

2 RELATED WORK

ColR draws motivation from prior work related to
mmWave imaging, compressed sensing, and implicit neural
representations. We discuss relevant prior works in this
section.

mmWave Imaging Systems. In recent years, there has
been an increased interest in mmWave sensing applications
due to the affordability of commercial sensors and increased
bandwidth compared to sub-6 GHz systems [28], [29]. Prior
works have used mmWaves for object tracking [30], [31],
[32], human activity sensing [33], [34], [35], and material
identification [36]. The main challenge of transitioning
from sensing to imaging with mmWave systems is their
low angular resolution, a factor of 10x below conventional

optical imaging methods. To increase the angular resolution
of mmWave systems and achieve imaging functionality,
prior works exploit large physical arrays [37], MIMO arrays
[10], [11], or SAR techniques [3].

Large physical arrays allow for real-time image capture
but are expensive to build and produce large volumes of
readout data. SAR techniques use spatial multiplexing to
synthetically produce a large array from a small physical
array. While this approach allows for low cost, single chip
radars to achieve high imaging resolutions, the SAR tech-
nique typically results in slow imaging rates and bulky
scanner systems. Recent work [38], [39] has investigated
handheld mmWave SAR imaging techniques to circumvent
the challenges of traditional SAR systems. Though handheld
SAR techniques allow for increased imaging flexibility, these
approaches require extensive preprocessing of radar data to
compensate for motion errors and radar position ambiguity.
Moreover, SAR methods still require a static imaging scene.
Conventional MIMO techniques leverage multistatic radar
principles to reduce the number of physical array elements
but typically require a dense virtual array and thus a cascade
of radar chips to achieve large apertures [7]. ColR differs
from these previous works in that we increase the aperture
of our imaging system by leveraging a sparse MIMO array
design that only requires a single radar chip.

More recent works have begun exploring the
applications of sensor fusion [5], [40] and deep learning
[2], [16], [17], [18], [19], [20], [21] to enhance the imaging
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resolution and functionality of mmWave systems. Sensor
fusion exploits the combination high resolution imaging
modalities (optical cameras or LiDAR) with mmWave
systems to increase the overall imaging resolution.
However, if one sensing modality fails, it causes the
performance of the whole system to degrade [5]. The closest
deep learning approaches to our work are [17] and [19].
[17] proposes a sparse 2D MIMO array design for near-field
mmWave imaging and exploits a trained CNN to increase
the imaging resolution. [19] operates in the far-field and
uses a trained U-net CNN to increase the imaging resolution
of a single chip mmWave radar. The network is trained on
low resolution mmWave image and high resolution LiDAR
image pairs of indoor scenes. The challenge with the first
approach [17] is it’s limited to near-field scenes which
require prior knowledge about the depth of the reflector,
while latter approach [19] is tuned for indoor scenes hence
limiting generalizability, and both approaches require a
large training data set. ColR, in contrast, operates in the
far-field and leverages an untrained neural network to
increase the resolution for a single chip mmWave sparse
array radar circumventing the need for a training data set.

Sparse Radar Imaging. Our work is also related to sparse
radar imaging, which we broadly categorize into two
groups: sparse aperture array design and sparse reconstruc-
tion methods. Sparse aperture designs apply sub-Nyquist
sampled physical arrays or MIMO virtual arrays to reduce
the number of antenna elements required for high resolution
imaging applications [26], [41], [42], [43], [44], [45]. These
approaches are optimization-based techniques that either
use convex relaxations or prior knowledge of the number
of reflectors in the scene. ColR’s array design approach is
inspired by [26] two step design method. However, due
to our hardware integer constraint on antenna positions
we cannot directly use the convex optimization approach
in [26], and instead perform a grid search over feasible
solutions.

Traditional sparse reconstruction methods either
leverage eigenvalue super resolution methods such as
MUSIC [46] and ESPRIT [47] or compressed sensing
(CS) optimization techniques [12], [13], [14], [15]. Super
resolution algorithms MUSIC and ESPRIT have limited
practical use with radar imaging since they require signals
arriving from different reflectors to be incoherent and
the number of targets known. Classic CS approaches
require a hand-crafted sparsity prior to limit the feasible
set of solutions. For example, one approach is assuming
the mmWave image is sparse in the spatial domain (i.e.
the image is composed of a few reflectors) [13], [15].
Another well-established prior is total-variation norm,
which enforces sparsity in the spatial domain gradients (i.e.
the image is piece-wise smooth) [14]. While both of these
untrained priors have shown to be reasonable in practice for
sparse mmWave imaging, they can be challenging to design
and are strongly scene dependent. Contrary to classic CS
approaches, ColR uses the inductive bias of untrained
neural networks as a complex prior that has an affinity for
solutions with visually salient features over a wide range of
scenes while retaining a high impedance to noise.

Implicit Neural Representations. INRs have shown an
implicit bias towards smooth natural solutions in a wide
class of computer vision inverse problems. INRs can be
divided broadly into convolution and MLP based archi-
tectures. Convolutional methods have shown good perfor-
mance on compressed sensing problems [22], [23]; image
super resolution [25]; image denoising [48]; and accelerated
MRI imaging [27]. Coordinate-based MLP methods have
shown successful performance on novel view synthesis
[24], dynamic structure illumination [49], partial differential
equation solutions [50], and image deconvolution [51]. CoIR
expands on the previously mentioned INR methods and
proposes a new convolutional decoder architecture tailored
for sparse radar imaging: ComDecoder.

3 RADAR IMAGING BACKGROUND

In this section we formulate the MIMO radar signal and sys-
tem models, including all notable modeling assumptions.
We consider a MIMO radar array equipped with M; trans-
mit antennas and M, receive antennas, which are arranged
to form an M element uniform virtual array aperture with
d = )\/2 inter-element spacing [9]. A static scene is probed
by the radar system via a frequency modulated continuous
waveform (FMCW) signal

Y (t) = ej27r(fot+0.5¥t2) 0<t<T 1)

where fj is the carrier frequency, B the chirp bandwidth,
and T the pulse duration. We assume the transmitted sig-
nals are separated across the array? through time, code, or
frequency multiplexing [52].

The scene is composed of multiple point targets, each of
which reflects the impinging transmitted signal energy back
to the radar array. To model the scene, we define the discrete
reflectivity distribution x € CX*L over a discrete polar
coordinate region. Embedded in X is the hardware gains,
propagation losses, channel phase offsets, and complex re-
flectivity for each reflector. Let n, = 0,1,..., K — 1 index
the range bins and nyp = 0,1, ..., L — 1 index the angle bins
defining the discrete reflectivity distribution. The physical
ranges and angles for each bin are contained in b, € R¥*1
and by € RL*!, respectively.

The signal received at each antenna m = 1,---,M in
the virtual receiver aperture is dechirped [53] and sampled
at the Nyquist sampling rate [54] to yield,

=¥
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Here z[n,m] is the n-th sample of the signal received at
the m-th antenna and w[n,m] ~ CN (0,0?) is complex
additive white Gaussian noise. See Supplementary Sec. 1.1
for additional details on deriving Eq. 2.

In Eq. 2 we have made use of the Born approximation
such that multiple scattering events between point reflec-
tors are negligible. Furthermore we have assumed that the

2. In practical applications, it is not favorable to activate all the
transmitters in the array within the same time-frequency allocation due
to inter-element self-interference.
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receiver array is in the far-field relative to the scene, hence
the wavefront impinging the receiver array is modeled as a
planar waveform. We additionally employ the narrowband
assumption, which is met when B << fy [9]. Defining the
angle-dependent spatial frequency

Yo(ng) = fo% sin(bp[nel),

and the normalized range-dependent temporal frequency

oron = (2) (o)

the received signal can be rewritten

K-1 L-1

z[nvm] = Z Z j-[nhne]e]?ﬂ'ws(ne)m6127f¢'r'(”'r)n+w[n’m].

n,=0mng=0
®)
Importantly, Eq. 3 is space-time separable and has a
form similar to the two-dimensional Fourier transform. The
forward model is compactly written across space and time
as
z=F(X)+w, 4)

where F(-) implements the 2D FFT. The advantage of this
approach is it efficiently allows for the computation of a
MIMO radar data cube measurement given a scene reflec-
tivity distribution. In practice, typically the magnitude |X| is
used to visualize the reflectivity distribution [2], [5], [9], [17],
[19], [21], [52]. The predicted |X| may not theoretically match
the ground truth reflectivity magnitude due to X encapsulat-
ing both the true complex scene reflectivity, channel gains,
and a range dependent phase offset. Nevertheless, we find
that this strategy facilitates both reconstruction accuracy
and computational efficiency in practice.

4 PROPOSED METHOD

We consider the problem of sparse mmWave radar imaging.
An illustration of our proposed method, ColR, is presented
in Fig. 1.

Our goal is to recover an image of a scene’s complex
reflectivity distribution x € CK*L from a single under-
sampled measured radar data cube z € CV*M. Using the
MIMO radar forward model outlined in Eq. 4, the radar data
cube measurements can be obtained as,

z=MO0o F(X) +w, )

where F(-) implements the 2D FFT, ® is the Hadamard
product, M € {0,1}¥*M is a binary mask that imple-
ments under-sampling, and w € CV*M is complex white
Gaussian noise with zero mean and variance 0. Recall the
measurements in z, the radar data cube, are FMCW beat
signal time samples captured at each antenna. If we had a
full uniform linear array with antenna spacing d = /2,
the mask M would be a matrix of ones, and the radar
measurements would be acquired according to Eq. 4. In this
case, we can estimate the image up to the uncertainty of the
additive noise as X = F~1(z), where F~1() is the inverse
2D FFT.

Sparse radar imaging can be employed to reduce the
number of antennas needed for imaging, leading to de-
creased power consumption and read-out bandwidth. In

this work, we will focus on sparse radar imaging where
the number of antennas is under-sampled, resulting in a
sparse linear array. This can be modeled by multiplying
z by a binary mask M, which sets a subset of rows in
z to zero. The problem then amounts to recovering an
image of the scene reflectivity distribution from an under-
sampled set of measurements which can be classified as a
compressed sensing problem. In this compressed sensing
regime, using F'(-) to estimate the image x will result
in aliasing artifacts from the large sidelobes in the sparse
array’s point spread function (PSF), making it difficult to
discriminate reflectors in the image.

We propose optimizing the weights of an untrained deep
convolutional network to invert Eq. 5. Given an untrained
network G(+;p) : Reo*KoxLo _y RexKXL which takes in
as input C € Re0*KoxLo and is parameterized by weights
p € RY, producing an output G(C;p) € R*E*L In this
approach, the weights of the deep network are optimized
such that the forward model applied to the network output
matches the given radar measurements z. We initialize
G(C; p) with a fixed C drawn from a uniform distribution
i.i.d entries and solve an optimization problem of the form,

p = argmin ||z — M © F(G(C;p))||2. (6)
p

In ColR, we additionally leverage sparsity in the image
domain by applying the ¢;-norm on the network output.
This helps enforce the prior that mmWave images are
sparse in the spatial domain due to the dominant specular
reflections from objects at this wavelength. Thus, the final
optimization process becomes,

p = argmin ||z — M © F(G(C;p))ll2 + ALl|G(C;p)ll1, (7)
p

where Ap, is the ¢;-norm hyperparameter. The estimated
image of the scene is given as x = G(C;p). This approach
is very similar to traditional sparse recovery, except here
we are optimizing over X in the range of a deep network
conditioned on the ¢;-norm ball. In traditional compressed
sensing, the optimization is only constrained on the ¢;-norm
ball [12], [15]. In CoIR, the deep network’s convolutional
structure has an implicit biased towards smooth, natural
images while maintaining a high impedance to noise. We
find that over-parameterizing the deep network by a factor
of around 13 and adding the /;-norm prior helps to find a
solution that balances fitting the salient features in the scene
while suppressing noise and aliasing artifacts. See Supple-
mentary Sec. 2.4 for analysis on over-parameterization.
ColR addresses several key challenges related to sparse
radar imaging: the design of the sparse radar aperture lay-
out and neural network architecture. The remainder of the
paper is organized as follows. First, we discuss the design
choice for ColR’s sparse radar aperture in Sec. 4.1. Then
we present ColR’s custom-designed CNN-based decoder
architecture we call ComDecoder in Sec. 4.2. Next, Sec. 5
briefly describes competing untrained methods. Then, we
present our simulated and experimental results in Sec. 6 and
Sec. 7. We conclude with discussion and limitations in Sec. 8

4.1 Sparse Aperture Design

Our objective is to design a sparse MIMO virtual array
that when used with ComDecoder improves radar imag-
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ing accuracy. The quality of the sparse virtual array is
accessed by analyzing its PSE. The PSF’s main lobe half-
power-beamwidth (HPBW), maximum side lobe level (SLL),
and grating lobes provide an indication of the achievable
angular resolution and imaging ambiguities, respectively.
We compute the sparse MIMO virutal array’s PSF in the far-
field by multiplying the PSFs of the physical transmitter and
receiver MIMO arrays [55]. Details on computing the virtual
array’s PSF are in Supplemental Sec. 1.2. The design of the
sparse virtual array must also satisfy hardware constraints
[7] that limit the max aperture to 86\/2 with A = 3.9 mm.
Additionally, a majority of commercial single chip radar
can only support four transmitters and four receivers [8].
In the design of our proposed sparse array we analyzed
the virtual array’s PSF and chose a design that (i) does not
contain grating lobes within a £90° field-of-view (FoV), (ii)
minimizes the HPBW, (iii) minimizes the SLL, and (iv) meets
our hardware constraints.

We compare our proposed sparse virtual array against
three arrays constructed using conventional MIMO ar-
ray design techniques [26]. We call an ideal full aperture
Nyquist sampled array, Full, which could be constructed
by neglecting the single chip hardware constraints (iv). We
denote the next array as Sub-apt and is the largest Nyquist
sampled MIMO array that can be synthesized from four
transmitters and four receivers. The receivers and trans-
mitters are positioned at [0, 1,2,3])\/2 and [0,4,8,12]\/2,
respectively. We call the last array Sub-samp since it is a sub-
sampled array designed to maximize the aperture size using
four transmitters and four receivers while staying within the
maximum aperture limit 86A/2. The receivers and transmit-
ters are positioned at [0, 5,10, 15]\/2 and [0, 20, 40, 60]\/2,
respectively. As expected, in Fig. 2 we observe that Full

(a) Conventional Array - Nyquist sampling over full aperture (Full)

nmm smmE
012 838485
(b) Conventional Array - Nyquist sampling over small aperture (Sub-apt)
nmm .. mmm
012 13 1415
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Fig. 2: Simulated PSFs: Comparison of different MIMO
virtual array designs normalized to /2 increments. The
proposed sparse virtual array (d) has ~ 1° HPBW, com-
parable to the full dense virtual array (a). Additionally,
the proposed sparse array removes grating lobes and has
reduced side lobe level (SLL) of ~ —6 dB.

provides an ideal PSF response with a narrow HPBW, low
SLL, and no grating lobes. Due to the small aperture in Sub-
apt the HPBW is 5.2x larger than in the Full array. In Sub-
samp there are four grating lobes within the FoV due to the
sub-Nyquist sampling of the array.

Our design methodology for ColR’s sparse array is in-
spired by [26], where we divide the design process into two
steps. First, we choose a four element receive array to meet
constraint (i). We use a four element minimum redundant
array (MRA) with receivers located at [0, 1,4,6](\/2) [56].
This array design replicates the spatial frequency coverage
of a seven element uniform array without introducing grat-
ing lobes within our FoV.

After establishing the receiver array design we focus on
the second portion of the design process, the four element
transmitter array. To minimize the HPBW (ii) we place two
transmitters at [0, 79]\/2, which maximizes the virtual array
aperture while still meeting the hardware aperture con-
straints (iv). To determine the best position of the remaining
two transmitters we implement a brute-force grid search
within the set £ € {0,..,79})\/2 that minimizes the SLL
of the virtual array’s PSF (iii). For each of the ~ 3 x 103
transmitter array designs evaluated in the gird search we
multiply the transmitter array PSF by the fixed receiver
array PSF to generate the corresponding virtual array PSE.
We use the MATLAB function findpeaks [57] to determine
the SLL of the virtual array’s PSE. After the grid search we
choose the transmitter array design that minimizes the SLL
in the virtual array PSF. We found positioning transmitters
at [0,46,59,79]\/2 yielded the best results with respect to
constraints (i-iv). The sparse array design used in ColR is
illustrated in Fig. 2(d). The sparse array’s simulated PSF has
a maximum SLL of —6 dB, no grating lobes in the FoV, and
~ 1.3° HPBW.

4.2 Neural Network Architecture

We find a variation of the ConvDecoder [27] architecture
to have significant performance improvement in both sim-
ulated and experimental data. We call this network variant
CombDecoder, and like ConvDecoder both are convolutional
neural networks mapping a latent variable to an image,
ie, G : RooxKoxLo _y RexEXL \where ¢ is the number
of output channels of a K by L image with K and L being
the image width and height, respectively. The ComDecoder
architecture is illustrated in Fig. 1.b, where each layer except
the last is composed of upsampling and then a residual
block [58].

Inside the residual block a SiLU activation is used after
the convolution layer instead of the traditional ReLU activa-
tion. We find using the SiLU function resulted in improved
reconstructions. This could be attributed to the SiLU func-
tion being non-monotonic and helping the model be more
expressive [59]. When fitting the network to a given under-
sampled measurement only the parameters in the convolu-
tional and BN layers are optimized. The final layer excludes
upsampling and linearly combines the hidden channels to
the output channels ¢ using a 1x1 convolutional layer. In
all cases since the image of the reflectivity distribution X is
complex, ¢ = 2 for the real and imaginary part of the output
image.
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As found in [27], [48] the convolutional and upsampling
layers apply strong priors on the output image. The convo-
lutional operation captures local information among nearby
pixels at varying resolutions per layer. The upsampling
operation induces a fixed notion of resolution in each layer.
As found in [58] the residual block structure helps propagate
information captured at lower layers up to higher layers by
structurally adding an identity mapping in each layer. The
default architecture used in ComDecoder consists of 6 layers
(including the last layer) with 128 channels per layer, and a
fixed input C € R128*8%8 drawn from a uniform distribu-
tion. The network weights are updated by optimizing Eq. 7
and backpropagating the loss. Optimizing Eq. 7 for 2000
iterations on a single 256 x 256 radar reflectivity image takes
under 50 seconds on a NVIDIA GeForce RTX 3080.

5 COMPETING UNTRAINED METHODS

We implement several untrained methods to perform
sparse radar imaging and compare against ComDecoder.
For all methods, we identify the architecture designs
and regularization parameters for the network and
gradient descent methods that maximize the simulated and
experimental reconstruction quality. See Supplementary
Sec. 2.3 for more information in hyper-parameter selection.
We find the reconstruction quality for ComDecoder is
maximized when a £;-norm hyperparameter of le-5 is used.
To make the comparison fair with other network methods
the same £;-norm hyperparameter is applied to all network
methods. We run all iterative methods for 2000 iterations
(i.e. until convergence is reached) and retain the images that
correspond to the lowest loss during the optimization. Next,
we describe each untrained method used for comparison.

Delay-and-Sum (DAS). The delay-and-sum (DAS) or
conventional beamformer is commonly used in practice [9],
[52] and implements the inverse of MIMO radar forward
model Eq. 4,

x=F"Y(z), ®)

where F~!(-) implements the 2D IFFT. Since the DAS
reconstruction method is FFI-based it has the lowest
computational complexity compared to the other untrained
methods and can run in seconds on a modern CPU.
In our experiments, we term this method Sparse DAS
when the data cube z is sub-sampled. For the real-world
experimental data we do not have access to the ground
truth scene reflectivity, and instead approximate it using Eq.
8 with a fully sampled data cube z; we term this method
Full DAS in our results. While we consider the Full DAS as
the “gold standard”, our method is able to produce better
reconstructions with significantly fewer aliasing artifacts.

Gradient Descent with Convex Relaxation. ComDecoder
leverages the implicit bias of the structure of a convolutional
decoder by optimizing the weights of the network rather
than the scene reflectivity distribution. To test reconstruction
performance without inductive bias we implement a
gradient descent method with ¢;-norm regularization [13],
[15] that optimizes scene reflectivity distribution directly,

% = argmin [}z - M© F®)|l2 + Mg, ©)

where A, is the ¢;-norm regularization hyperparameter.
In Eq. 9 the optimization is biased towards sparse spatial
domain solutions due to the ¢;-norm handcrafted prior.
We find the reconstruction quality is maximized when
Ar = le-3 and le-2 for simulated and experimental data.
In our experiments, we term this method GD+L1 Reg. The
reflectivity distribution X is initialized with samples from a
uniform distribution.

Implicit Neural Representations. This untrained method
uses an INR that typically consist of multi-layer perception
layers that map an extremely low-level input to a low-level
output [24]. For example, inputs could be coordinates in a
scene (z,y) and the output could be a physical property
of that scene like its mmWave reflectivity. These networks
learn an implicit continuous representation of the input
and output mapping. To implement the INR method with
Eq. 7 the network G architecture is updated and the input
C € R?*EXL i5 changed to represent all the range and
angle coordinates in a K by L image normalized between
[-1,1]. The first INR method we compare against uses
ReLU activation functions with Fourier feature encoding
[60]. For all experiments, we call this method INR-ReLU
and we find setting @ = 256, x = 20, number of layers
to 7, and neurons per layer to 256 resulted in the best
reconstruction quality for this method.

For additional comparisons, we implement another INR
method using sinusoidal periodic activation functions [50].
This INR architecture does not require an explicit feature
encoding operation but instead adjusts the initial frequency
wo of the network’s first layer to scale its ability to learn
high frequency information. For all experiments we term
this method SIREN and find setting wy = 30, number of
layers to 7, and neurons per layer to 256 resulted in the best
reconstruction quality for this method.

Deep Image Prior. We implement another untrained neural
network architecture based on Deep Image Prior (DIP) [25].
In [25] a U-net convolutional neural architecture is used
containing an encoder, decoder, and skip connections. This
approach takes a high-dimensional input with samples
drawn from a uniform distribution and outputs a high-
dimensional estimate, i.e. image of the scene reflectivity
distribution. For all experiments, we call this method DIP.
To implement the DIP method with Eq. 7 the network
G architecture is updated and the input C € R32xKxL
is increased to match the desired output K by L image
dimensions. We find using 128 channels per layer, 6 encoder
and decoder layers, SiLU activation function, and nearest
neighbor upsampling resulted in the best reconstruction
performance for the DIP method.

DeepDecoder. The next untrained neural network method
is based on DeepDecoder [48]. As the name suggests,
this architecture uses a decoder architecture containing
channel-wise convolution, bilinear upsampling, ReLU
activation, and Batch normalization operations per layer.
This method takes in a low-dimensional input and outputs
a high-dimensional estimate. This architecture is unique
because only the upsampling operation applies spatial pixel
coupling. We call this method DeepDecoder. To implement
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Fig. 3: Qualitative Results for Simulated Scenes with
measurement SNR at 19 dB: Sparse radar imaging recon-
struction results from a scene in our simulated data set.
The bottom right image shows the ground-truth reflectivity
image with two focused regions marked by red and orange
squares. The red dot denotes the radar’s location within the
scene. The Sparse DAS reconstruction has extreme blurring
from the large side lobes in the sparse array’s PSE. The
Full DAS has a sinc-like artifact due to the finite array
aperture. The rest of the images contain the reconstructions
from ComDecoder (our method) and competing methods.
While all methods qualitatively improve the image quality
compared to the Sparse DAS reconstruction, we observe
CombDecoder has a significant improvement in fitting ex-
tending reflectors and removing sinc-like artifacts even with
measurement noise.

the DeepDecoder method with Eq. 7 the network G
architecture is updated and the input C € R512xKoxLo
matches the ComDecoder with an increased number of
channels. We find using 6 layers with 512 channels per
layer results in the best reconstruction performance for the
DeepDecoder method.

ConvDecoder. The final untrained neural network
method is based on ConvDecoder [27]. This method
is a variant of DeepDecoder, with the major changes
including 3 x 3 convolutions and Nearest-Neighbor
upsampling per layer. Similar to DeepDecoder this method
takes in a low-dimensional input and outputs a high-
dimensional estimate. For all experiments, we call this
method ConvDecoder. To implement our ConvDecoder
method with Eq. 7 the network G architecture is updated
and the input is generated following the same procedure
as used for ComDecoder. We find using 6 layers with
128 channels per layer resulted in the best reconstruction
performance for the ConvDecoder method.

6 SIMULATION RESULTS

This section evaluates our proposed method and all com-
peting methods on the task of reconstructing an image of

a reflectivity distribution from its simulated undersampled
radar measurement. We use the peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM) [61], and mean
absolute error (MAE) to measure the difference between
the reconstructed and ground truth images. All iterative
methods are optimized for 2000 iterations until convergence
using the ADAM optimizer and are implemented in the
PyTorch framework. The learning rates for each iterative
method is chosen to provide the best performance for the
given method while stabilizing the optimization. We found
learning rates of 8.0e-3 worked well for CNN based meth-
ods, 1e-3 for the INR-ReLU method, and 1e-4 for SIREN. In
all simulated experiments the transmit bandwidth is fixed
to 1.283 GHz, carrier frequency set to 77 GHz, and use the
sparse aperture design proposed in Sec. 4.1.

6.1 Generation of Simulation Data

We build a simulator modified from [2] that synthesizes
mmWave radar data cubes from 2D reflectivity distribu-
tions. An example of our simulation pipeline is shown in
Supplementary Sec. 2.1, Fig. 1. The first step in the simulator
is the creation of realistic outdoor and indoor reflectivity dis-
tributions which requires knowledge about the placement
and radar cross section of each reflector. We use LiDAR
point clouds of outdoor and indoor scenes obtained from the
ColoRadar data set [4] to synthesize realistic reflectivity dis-
tributions. For each point in the LiDAR point cloud, within
the FoV of the radar, we use the LiDAR point’s cartesian
coordinates for the location of the reflector and scaling of
the LiDAR point’s intensity as a proxy for the reflector’s
radar cross section. All points are collapsed to the same
height as the radar to create a 2D reflectivity distribution
which is used as the ground truth reflectivity image. Next,
we model the synthesized reflectivity distribution as a point
reflector model in polar coordinates and use the MIMO
radar forward model Eq. 4 to create a simulated radar data
cube.

6.2 Sparse Radar Imaging and Sensitivity to Noise

In the first experiment, shown in Fig. 4, the performance
of each sparse radar imaging method is quantified under
varying noise levels added to the simulated radar data
cube. In the experiment the measurement noise is swept
between 35 dB and 11 dB and averaged over 25 samples
from our simulated data set. In Fig. 4, we observe that our
proposed method ComDecoder significantly outperforms
competing methods with respect to PSNR across all noise
levels. ComDecoder achieves superior performance in the
SSIM metric up to 15 dB SNR where it achieves comparable
performance to DeepDecoder. This aligns with computer vi-
sion literature where DeepDecoder has shown excellent per-
formance at image denoising [48]. The MAE metric shows
that ComDecoder achieves a similar level of performance
as DIP. Across all metrics DIP performs second best, which
is consistent with high performance on challenging inverse
problems. The remaining CNN architectures ConvDecoder
and DeepDecoder perform the next best followed by the
MLP based architectures INR-ReLLU and SIREN. All meth-
ods outperform Sparse DAS suggesting that regularization
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Fig. 4: Simulated Sparse Radar Imaging Results with Additive Noise: Quantitative reconstruction results for ComDecoder
(our method) and competing methods averaged over 25 samples from our simulated data set under varying noise levels.
The x-axis shows the level of i.i.d Gaussian noise added to the waveforms at each receiver. The y-axis quantifies the quality
of each methods reconstruction to the ground truth image using PSNR (larger is better), SSIM (larger is better), and MAE
(smaller is better) metrics. Qualitative results are presented in Supplementary Table 3 for and SNR of 19 dB.

helps reduce aliasing artifacts and capture the underlying
salient features in the reflectivity distributions.

In Fig. 3 we visualize the reconstructions of two sim-
ulated scenes for all methods at an SNR of 19 dB. We
expand on our choice for this SNR value in Supplemen-
tary Sec. 2.2. We observe that all methods qualitatively
achieve improved reconstructions compared to Sparse DAS
which uses no regularization. ComDecoder demonstrates
a significant improvement in reconstructing extended re-
flectors and removing aliasing artifacts that appear as a
radial blurring of energy in the other images. The observed
increase in performance for ComDecoder over competing
methods aligns with the quantitative metrics shown in Fig.
4. The MLP based methods, INR-ReLU and SIREN, struggle
at differentiating and suppressing the structured aliasing
artifacts from the underlying features in the scene, such
as the wall corner in Fig. 3. We observe that the ¢;-norm
regularized gradient descent method is able to localize the
dominate reflectors in the scene but fails to remove aliasing
artifacts to the level of neural network based methods.

We summarize each methods average reconstruction
performance and speed for 25 simulated samples in Sup-
plementary Table 3. We also performed a comparison with
different CNN decoder methods — ComDecoder (ours), Con-
vDecoder, DeepDecoder, and the results are discussed in
Supplementary Sec. 2.5.

7 EXPERIMENTAL RESULTS

This section discusses sparse radar imaging results using
radar data from the ColoRadar data set [4]. The ideal recon-
struction method should remove spurious artifacts caused
by the high side lobes in the sparse array’s PSF and recover
a radar image of the scene’s reflectivity distribution that
is perceptually similar to the radar image formed using
a dense full array, which we call Full DAS in the results.
However, since the experimental radar data is noisy and is
collected using a finite array the Full DAS reconstruction
contains aliasing artifacts that appear as a radially smearing
of energy in the radar image. In Supplementary Sec. 2.6 we
investigate post-processing steps to improve the Full DAS
reconstruction. We run all the methods for 2000 iterations
until convergence and set the learning rate to le-3 for all
iterative methods except SIREN which uses a learning rate

of le-4 to stabilize the optimization. Each methods hyper-
parameters are set to the values used in Sec. 5

We use experimental mmWave raw ADC radar data
from the ColoRadar data set [4]. The mmWave data was
collected with Texas Instruments MMWCAS-RF-EVM Cas-
caded Imaging Radar Sensor [7] operating at 77 GHz (see
Supplementary Sec. 3.4 for more details). This cascade radar
sensor contains four radar chips, transmits a 1.282 GHz
bandwidth FMCW pulse, and has a 86)/2 uniform linear
array with an azimuth angular resolution of 1.33°. During
acquisition the cascade radar sensor was mounted on a
handheld rig and moved throughout several diverse in-
door and outdoor environments. We specifically evaluate all
methods using outdoor data collected in a courtyard scene
and indoor data collected within office spaces.

7.1 Indoor and Outdoor Sparse Radar Imaging Results

Figure 5 shows sparse radar imaging reconstructions for
our method, ComDecoder, and competing methods based
on two samples from the ColoRadar data set [4]. Since
we do not know the true reflectivity distribution for the
experimental data we use Full DAS as a proxy ground
truth. In Fig. 5 a LiDAR view is shown only for illustrative
purposes and is not used in any method’s reconstruction
process.

Figure 5 (top) shows the reconstruction results for an
outdoor scene with the dominate feature being a staircase.
Observe that ComDecoder, SIREN, and DIP are the only
methods to clearly recover the periodic reflections arising
from the stair steps (red box) in the staircase. Additionally,
ComDecoder significantly outperforms DIP and all other
methods at removing aliasing artifacts arising from side
lobes in the array’s PSF (orange box). We believe that DIP
struggles at achieving the same level of aliasing artifact
suppression as ComDecoder because of its increased num-
ber of parameters. As shown in [25] without additional
regularization such as early stopping DIP has the capacity
to fit both an underlying signal and noise in a measurement.

Next to evaluate the generalizability of each methods
sparse radar imaging performance we test each method
on mmWave data captured in an indoor environment. The
indoor reconstruction results are shown in Fig. 5 (bottom),
with the dominate features in this scene being 14 poles
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Fig. 5: Experimental Results: Sparse radar imaging results
on experimental data from the ColoRadar dataset [4]. The
3D scene view is a LiDAR view and is only used for
illustrative purposes to clearly show the contents of each
scene. The red dot denotes the location of the radar module.
We use the Conventional Full DAS reconstruction as the
”gold standard” and compare it to the other sparse radar
imaging methods. We observe in both environments that
our method, ComDecoder, more accurately reconstructions
the periodic features in each scene such as the stair steps and
guard rails (top), and indoor wall (bottom), while removing
aliasing artifacts as shown in the red and orange boxed
regions respectively.

aligned in a row. All methods appear to have improved
performance over the Sparse DAS reconstruction and are
able to localize the reflections from the poles (orange box). In
the indoor scene, Comdecoder and DIP more accurately re-
construct the salient features present in the Full DAS recon-
struction with ComDecoder having superior aliasing artifact
suppression (red box). We observe a significant degradation
in SIREN’s reconstruction quality which could be caused
by an increased level of noise in the measurements from

multipath effects. Since SIREN does not use convolutional
layers there is not an explicit spatial local filtering bias being
applied by the network that can help suppress noise.

7.2 Sparse Radar Imaging Robustness Analysis

In Fig. 6, we demonstrate reconstruction performance of
ComDecoder and competing methods on several outdoor
scenes with varying complexity. In each row on the left,
a LiDAR view provides a perceptual view of the scene.
The reconstructed image from the conventional full array
is used as a benchmark to qualitatively compare against
ComDecoder and the other competing methods. The or-
ange boxed region highlights corresponding features that
are captured in both the LiDAR and mmWave images. All
methods show improved performance over the Sparse DAS
reconstruction, but lack the performance of convolutional
network methods.

Gradient descent with an ¢;-norm prior is able to esti-
mate the dominate reflectors in the scene but is not able to
completely suppress all aliasing artifacts. SIREN fits to both
the strong reflectors in the scene and aliasing artifacts. This
could be because contrary to natural images, radar images
characteristically have small localized regions of high en-
ergy and a sparse distribution of weaker reflectors through-
out the image. This arises from the mmWave’s reflections
being predominately specular instead of diffuse. Thus, even
though SIREN and other MLP based architectures have
shown to have an implicit biased towards natural images
they struggle at differentiating reflectors from structured
aliasing artifacts in the radar images.

CNN architectures have an inductive bias applied by
the convolution operations, upsampling method, and skip
connections. The convolution operations induce a notion
of spatial locality between pixels while upsampling applies
a notion of resolution per layer. The structure of the skip
connections influences the flow of information between lay-
ers and can smooth out the optimization [58]. Together it is
evident that these inductive biases improve the sparse radar
imaging performance. Compared to DIP we observe that
ComDecoder’s reconstructions are qualitatively closer to
the conventional full array’s reconstructions with increased
noise suppression. This could be attributed to ComDecoder
having fewer parameters compared to DIP and uses a
ResNet decoder architecture instead of a U-net. Further de-
tails on the impact that NN architecture and sparse aperture
design have on ComDecoder’s reconstruction quality are in
Supplementary Sec. 3.1 and Sec. 3.2.

8 DISCUSSION & LIMITATIONS

While CoIR has demonstrated significant reconstruction
improvements compared to other untrained techniques for
sparse radar imaging, several limitations of the proposed
method still provide avenues for future work. First, the
radar forward model assumes static scenes and thus does
not capture object motion. It is based on a single bounce
point scattering model and assumes reflectors are omnidi-
rectional scatterers. This can lead to forward model mis-
match in practice and result in a decrease in performance.
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Fig. 6: Experimental Results for Varying Outdoor Scenes: Sparse radar imaging results on experimental data from several
different scenes in the ColoRadar data set. The 3D scene view on the left is LIDAR view and is only used to provide
a perceptual description of each scene. Post processing has been applied to the LiDAR point cloud to remove ground
reflections to make the salient features clearer. The orange box encapsulates corresponding dominant objects visible in
both the LiDAR and mmWave images. The conventional full array is used as the “gold standard” to compare against
each methods sparse reconstruction. Throughout all scenes Comdecoder (our method) demonstrates an increased affinity
towards natural reflectors and a reduction in aliasing artifacts, even when compared to the gold standard.

Additionally, the current reconstruction speed is on the or-
der of tens of seconds due to the iterative nature of optimiz-
ing parameters of implicit neural networks. In future work,
we plan on different strategies for initialization to speed
up reconstruction time. Preliminary work on speeding up
inference time can be found in Supplementary Sec. 3.3.

All the results shown in the paper are 2D depth range
slices of the 3D world due to the use of linear array
antenna. Reconstructing the entire 3D scene requires a 2D
array of antennas, but using conventional methods will
result in a quadratic increase in resource requirements such
as bandwidth and processing. We foresee that our ColR
approach will be hugely beneficial in this scenario due to
its use of a sparse array of antennas and this extension
will be one of our future works. Additionally, CoIR opens
up the opportunity to improve other array-based imaging
modalities beyond mmWave radar, such as geographical
remote sensing and ultrasound imaging.

9 CONCLUSION

We propose ColR, an analysis by synthesis method that
leverages the inductive bias of a CNN decoder, we call
ComDecoder, to enhance the reconstruction quality in
sparse radar imaging applications. Sparse radar imaging

allows for a reduction in hardware resources which in turn
decreases the cost and read bandwidth for a radar system.
We develop a sparse MIMO aperture design for single
chip radars that requires 5.5x fewer elements compared to
conventional MIMO radar designs for apertures of the same
size. We demonstrate ComDecoder’s superior performance
compared to classic and state-of-art untrained methods on
both simulated and experimental mmWave radar data. Ad-
ditionally, we show that CoIR can be extended to a wide
variety of outdoor and indoor scenes without any scene
dependent adjustments.
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