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AbstractÐUsing millimeter wave (mmWave) signals for imaging has an important advantage in that they can penetrate through poor

environmental conditions such as fog, dust, and smoke that severely degrade optical-based imaging systems. However, mmWave

radars, contrary to cameras and LiDARs, suffer from low angular resolution because of small physical apertures and conventional

signal processing techniques. Sparse radar imaging, on the other hand, can increase the aperture size while minimizing the power

consumption and read out bandwidth. This paper presents CoIR, an analysis by synthesis method that leverages the implicit neural

network bias in convolutional decoders and compressed sensing to perform high accuracy sparse radar imaging. The proposed system

is data set-agnostic and does not require any auxiliary sensors for training or testing. We introduce a sparse array design that allows

for a 5.5× reduction in the number of antenna elements needed compared to conventional MIMO array designs. We demonstrate our

system’s improved imaging performance over standard mmWave radars and other competitive untrained methods on both simulated

and experimental mmWave radar data.

Index TermsÐmmWave imaging, sparse array radar, implicit neural representations, compressed sensing

✦

1 INTRODUCTION

D EPTH imaging is a crucial component in many appli-
cations such as simultaneous localization and map-

ping (SLAM) [1], autonomous driving [2], and security
monitoring [3]. Typically, these depth imaging applications
are accomplished using a combination of visual cameras,
LiDAR, and inertial sensors [4]. Visual cameras provide a
high angular resolution image of the environment that can
be used for near-field dense depth imaging with stereo sys-
tems or monocular depth estimation algorithms [5]. LiDARs
directly output a dense point cloud of the environment with
high range and angular resolutions. However, since visual
cameras and LiDARs operate at optical wavelengths their
depth estimation performance is significantly reduced in
visually degraded environments containing low light, fog,
smoke, snow, and dust [2], [5]. These natural occurrences
are especially problematic for depth imaging applications
that involve robot and human interactions such as disaster
relief and autonomous self-driving scenarios.

Another depth sensing modality commonly used is mil-
limeter wave (mmWave) radar. Since these radars operate
at millimeter wavelengths, they can penetrate through envi-
ronments with airborne particles common in fog and smoke
without significant performance degradation [6]. Addition-
ally, recent availability of low-cost and low-power single
chip 77-81 GHz RF bandwidth radars make these devices
favorable for integration into low form-factor and power-
constrained systems [7], [8]. The main limitation of using
single chip mmWave radars for depth imaging is their low
angular resolution δ ≈ λ/d, which is a function of the oper-
ating wavelength λ and aperture size d. A naive approach
to increasing the angular resolution is to create a larger
aperture which in turn can lead to antenna coupling [9]
and increased power consumption and read-out bandwidth.
For example, to achieve an angular resolution of 15◦ for
a 77 GHz linear array at Nyquist sampling would require
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approximately 8 antennas. If the desired angular resolution
was increased to 1◦ this would require around 115 antennas.
In practice, designing such large arrays to achieve high
angular resolution mmWave imaging is often difficult or
expensive.

There are several techniques used to circumvent the low
angular resolution of mmWave radars: 1) synthetic aper-
ture radars (SAR) [3] and multiple-input multiple-output
(MIMO) arrays [10], [11], 2) sensor fusion [5], 3) optimiza-
tion with hand-crafted priors [12], [13], [14], [15], and 4)
deep learning [2], [16], [17], [18], [19], [20], [21]. These
techniques either have slow acquisition times, increased
hardware complexity and calibration, require large data
sets, or have limited generalizability.

We propose CoIR, an analysis by synthesis method
that leverages implicit neural representations (INR) and
compressed sensing to perform high accuracy sparse radar
imaging. We design a sparse linear array that allows for a
5.5× reduction in the required receiving antennas compared
to conventional MIMO linear arrays. This sub-Nyquist sam-
pling leads to a compressed sensing inverse problem, where
the objective is to estimate an image of a scene’s reflectivity
distribution from an under-sampled set of radar measure-
ments. To solve this problem, our key enabling observation
is that the INRs from untrained neural networks have been
shown to provide an inductive bias towards natural solu-
tions over various imaging inverse problems [22], [23], [24],
[25]. In this paper, we develop an untrained neural network
reconstruction method, shown in Fig.1, for sparse radar
imaging and demonstrate its superior performance against
other competing untrained methods on both simulated and
experimental data.

Contributions: We propose CoIR, a new method for
achieving high accuracy, sparse radar imaging using a sin-
gle radar chip. Our code is available online1.We make the
following contributions:

1. https://github.com/sfarrel1/supplement-CoIR.git
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resolution and functionality of mmWave systems. Sensor
fusion exploits the combination high resolution imaging
modalities (optical cameras or LiDAR) with mmWave
systems to increase the overall imaging resolution.
However, if one sensing modality fails, it causes the
performance of the whole system to degrade [5]. The closest
deep learning approaches to our work are [17] and [19].
[17] proposes a sparse 2D MIMO array design for near-field
mmWave imaging and exploits a trained CNN to increase
the imaging resolution. [19] operates in the far-field and
uses a trained U-net CNN to increase the imaging resolution
of a single chip mmWave radar. The network is trained on
low resolution mmWave image and high resolution LiDAR
image pairs of indoor scenes. The challenge with the first
approach [17] is it’s limited to near-field scenes which
require prior knowledge about the depth of the reflector,
while latter approach [19] is tuned for indoor scenes hence
limiting generalizability, and both approaches require a
large training data set. CoIR, in contrast, operates in the
far-field and leverages an untrained neural network to
increase the resolution for a single chip mmWave sparse
array radar circumventing the need for a training data set.

Sparse Radar Imaging. Our work is also related to sparse
radar imaging, which we broadly categorize into two
groups: sparse aperture array design and sparse reconstruc-
tion methods. Sparse aperture designs apply sub-Nyquist
sampled physical arrays or MIMO virtual arrays to reduce
the number of antenna elements required for high resolution
imaging applications [26], [41], [42], [43], [44], [45]. These
approaches are optimization-based techniques that either
use convex relaxations or prior knowledge of the number
of reflectors in the scene. CoIR’s array design approach is
inspired by [26] two step design method. However, due
to our hardware integer constraint on antenna positions
we cannot directly use the convex optimization approach
in [26], and instead perform a grid search over feasible
solutions.

Traditional sparse reconstruction methods either
leverage eigenvalue super resolution methods such as
MUSIC [46] and ESPRIT [47] or compressed sensing
(CS) optimization techniques [12], [13], [14], [15]. Super
resolution algorithms MUSIC and ESPRIT have limited
practical use with radar imaging since they require signals
arriving from different reflectors to be incoherent and
the number of targets known. Classic CS approaches
require a hand-crafted sparsity prior to limit the feasible
set of solutions. For example, one approach is assuming
the mmWave image is sparse in the spatial domain (i.e.
the image is composed of a few reflectors) [13], [15].
Another well-established prior is total-variation norm,
which enforces sparsity in the spatial domain gradients (i.e.
the image is piece-wise smooth) [14]. While both of these
untrained priors have shown to be reasonable in practice for
sparse mmWave imaging, they can be challenging to design
and are strongly scene dependent. Contrary to classic CS
approaches, CoIR uses the inductive bias of untrained
neural networks as a complex prior that has an affinity for
solutions with visually salient features over a wide range of
scenes while retaining a high impedance to noise.

Implicit Neural Representations. INRs have shown an
implicit bias towards smooth natural solutions in a wide
class of computer vision inverse problems. INRs can be
divided broadly into convolution and MLP based archi-
tectures. Convolutional methods have shown good perfor-
mance on compressed sensing problems [22], [23]; image
super resolution [25]; image denoising [48]; and accelerated
MRI imaging [27]. Coordinate-based MLP methods have
shown successful performance on novel view synthesis
[24], dynamic structure illumination [49], partial differential
equation solutions [50], and image deconvolution [51]. CoIR
expands on the previously mentioned INR methods and
proposes a new convolutional decoder architecture tailored
for sparse radar imaging: ComDecoder.

3 RADAR IMAGING BACKGROUND

In this section we formulate the MIMO radar signal and sys-
tem models, including all notable modeling assumptions.
We consider a MIMO radar array equipped with Mt trans-
mit antennas and Mr receive antennas, which are arranged
to form an M element uniform virtual array aperture with
d = λ/2 inter-element spacing [9]. A static scene is probed
by the radar system via a frequency modulated continuous
waveform (FMCW) signal

ytx(t) = ej2π(f0t+0.5B

T
t2) 0 ≤ t ≤ T (1)

where f0 is the carrier frequency, B the chirp bandwidth,
and T the pulse duration. We assume the transmitted sig-
nals are separated across the array2 through time, code, or
frequency multiplexing [52].

The scene is composed of multiple point targets, each of
which reflects the impinging transmitted signal energy back
to the radar array. To model the scene, we define the discrete
reflectivity distribution x̄ ∈ C

K×L over a discrete polar
coordinate region. Embedded in x̄ is the hardware gains,
propagation losses, channel phase offsets, and complex re-
flectivity for each reflector. Let nr = 0, 1, ...,K − 1 index
the range bins and nθ = 0, 1, ..., L − 1 index the angle bins
defining the discrete reflectivity distribution. The physical
ranges and angles for each bin are contained in br ∈ R

K×1

and bθ ∈ R
L×1, respectively.

The signal received at each antenna m = 1, · · · ,M in
the virtual receiver aperture is dechirped [53] and sampled
at the Nyquist sampling rate [54] to yield,

z[n,m] =
K−1
∑

nr=0

L−1
∑

nθ=0

x̄[nr, nθ]e
j2π(f0+

B

N
n)( d

c
) sin(bθ[nθ])m×

ej2π(
B

N )( 2br [nr ]
c )n + w[n,m], n = 0, · · · , N − 1. (2)

Here z[n,m] is the n-th sample of the signal received at
the m-th antenna and w[n,m] ∼ CN

(

0, σ2
)

is complex
additive white Gaussian noise. See Supplementary Sec. 1.1
for additional details on deriving Eq. 2.

In Eq. 2 we have made use of the Born approximation
such that multiple scattering events between point reflec-
tors are negligible. Furthermore we have assumed that the

2. In practical applications, it is not favorable to activate all the
transmitters in the array within the same time-frequency allocation due
to inter-element self-interference.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3301553

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fondren Library Rice University. Downloaded on August 18,2023 at 19:36:08 UTC from IEEE Xplore.  Restrictions apply. 



receiver array is in the far-field relative to the scene, hence
the wavefront impinging the receiver array is modeled as a
planar waveform. We additionally employ the narrowband
assumption, which is met when B << f0 [9]. Defining the
angle-dependent spatial frequency

ψθ(nθ) = f0
d

c
sin(bθ[nθ]),

and the normalized range-dependent temporal frequency

ψr(nr) =

(

B

N

)(

2br[nr]

c

)

,

the received signal can be rewritten

z[n,m] =
K−1
∑

nr=0

L−1
∑

nθ=0

x̄[nr, nθ]e
j2πψθ(nθ)mej2πψr(nr)n+w[n,m].

(3)
Importantly, Eq. 3 is space-time separable and has a

form similar to the two-dimensional Fourier transform. The
forward model is compactly written across space and time
as

z = F(x̄) +w, (4)

where F(·) implements the 2D FFT. The advantage of this
approach is it efficiently allows for the computation of a
MIMO radar data cube measurement given a scene reflec-
tivity distribution. In practice, typically the magnitude |x̄| is
used to visualize the reflectivity distribution [2], [5], [9], [17],
[19], [21], [52]. The predicted |x̄| may not theoretically match
the ground truth reflectivity magnitude due to x̄ encapsulat-
ing both the true complex scene reflectivity, channel gains,
and a range dependent phase offset. Nevertheless, we find
that this strategy facilitates both reconstruction accuracy
and computational efficiency in practice.

4 PROPOSED METHOD

We consider the problem of sparse mmWave radar imaging.
An illustration of our proposed method, CoIR, is presented
in Fig. 1.

Our goal is to recover an image of a scene’s complex
reflectivity distribution x̄ ∈ C

K×L from a single under-
sampled measured radar data cube z ∈ C

N×M . Using the
MIMO radar forward model outlined in Eq. 4, the radar data
cube measurements can be obtained as,

z = M⊙F(x̄) +w, (5)

where F(·) implements the 2D FFT, ⊙ is the Hadamard
product, M ∈ {0, 1}N×M is a binary mask that imple-
ments under-sampling, and w ∈ C

N×M is complex white
Gaussian noise with zero mean and variance σ2. Recall the
measurements in z, the radar data cube, are FMCW beat
signal time samples captured at each antenna. If we had a
full uniform linear array with antenna spacing d = λ/2,
the mask M would be a matrix of ones, and the radar
measurements would be acquired according to Eq. 4. In this
case, we can estimate the image up to the uncertainty of the
additive noise as x̂ = F−1(z), where F−1(·) is the inverse
2D FFT.

Sparse radar imaging can be employed to reduce the
number of antennas needed for imaging, leading to de-
creased power consumption and read-out bandwidth. In

this work, we will focus on sparse radar imaging where
the number of antennas is under-sampled, resulting in a
sparse linear array. This can be modeled by multiplying
z by a binary mask M, which sets a subset of rows in
z to zero. The problem then amounts to recovering an
image of the scene reflectivity distribution from an under-
sampled set of measurements which can be classified as a
compressed sensing problem. In this compressed sensing
regime, using F−1(·) to estimate the image x̂ will result
in aliasing artifacts from the large sidelobes in the sparse
array’s point spread function (PSF), making it difficult to
discriminate reflectors in the image.

We propose optimizing the weights of an untrained deep
convolutional network to invert Eq. 5. Given an untrained
network G(·; p) : R

c0×K0×L0 → R
c×K×L which takes in

as input C ∈ R
c0×K0×L0 and is parameterized by weights

p ∈ R
W , producing an output G(C; p) ∈ R

c×K×L. In this
approach, the weights of the deep network are optimized
such that the forward model applied to the network output
matches the given radar measurements z. We initialize
G(C; p) with a fixed C drawn from a uniform distribution
i.i.d entries and solve an optimization problem of the form,

p̂ = argmin
p

||z−M⊙F(G(C; p))||2. (6)

In CoIR, we additionally leverage sparsity in the image
domain by applying the ℓ1-norm on the network output.
This helps enforce the prior that mmWave images are
sparse in the spatial domain due to the dominant specular
reflections from objects at this wavelength. Thus, the final
optimization process becomes,

p̂ = argmin
p

||z−M⊙F(G(C; p))||2 + λL||G(C; p)||1, (7)

where λL is the ℓ1-norm hyperparameter. The estimated
image of the scene is given as x̂ = G(C; p̂). This approach
is very similar to traditional sparse recovery, except here
we are optimizing over x̄ in the range of a deep network
conditioned on the ℓ1-norm ball. In traditional compressed
sensing, the optimization is only constrained on the ℓ1-norm
ball [12], [15]. In CoIR, the deep network’s convolutional
structure has an implicit biased towards smooth, natural
images while maintaining a high impedance to noise. We
find that over-parameterizing the deep network by a factor
of around 13 and adding the ℓ1-norm prior helps to find a
solution that balances fitting the salient features in the scene
while suppressing noise and aliasing artifacts. See Supple-
mentary Sec. 2.4 for analysis on over-parameterization.

CoIR addresses several key challenges related to sparse
radar imaging: the design of the sparse radar aperture lay-
out and neural network architecture. The remainder of the
paper is organized as follows. First, we discuss the design
choice for CoIR’s sparse radar aperture in Sec. 4.1. Then
we present CoIR’s custom-designed CNN-based decoder
architecture we call ComDecoder in Sec. 4.2. Next, Sec. 5
briefly describes competing untrained methods. Then, we
present our simulated and experimental results in Sec. 6 and
Sec. 7. We conclude with discussion and limitations in Sec. 8

4.1 Sparse Aperture Design

Our objective is to design a sparse MIMO virtual array
that when used with ComDecoder improves radar imag-
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As found in [27], [48] the convolutional and upsampling
layers apply strong priors on the output image. The convo-
lutional operation captures local information among nearby
pixels at varying resolutions per layer. The upsampling
operation induces a fixed notion of resolution in each layer.
As found in [58] the residual block structure helps propagate
information captured at lower layers up to higher layers by
structurally adding an identity mapping in each layer. The
default architecture used in ComDecoder consists of 6 layers
(including the last layer) with 128 channels per layer, and a
fixed input C ∈ R

128×8×8 drawn from a uniform distribu-
tion. The network weights are updated by optimizing Eq. 7
and backpropagating the loss. Optimizing Eq. 7 for 2000
iterations on a single 256×256 radar reflectivity image takes
under 50 seconds on a NVIDIA GeForce RTX 3080.

5 COMPETING UNTRAINED METHODS

We implement several untrained methods to perform
sparse radar imaging and compare against ComDecoder.
For all methods, we identify the architecture designs
and regularization parameters for the network and
gradient descent methods that maximize the simulated and
experimental reconstruction quality. See Supplementary
Sec. 2.3 for more information in hyper-parameter selection.
We find the reconstruction quality for ComDecoder is
maximized when a ℓ1-norm hyperparameter of 1e-5 is used.
To make the comparison fair with other network methods
the same ℓ1-norm hyperparameter is applied to all network
methods. We run all iterative methods for 2000 iterations
(i.e. until convergence is reached) and retain the images that
correspond to the lowest loss during the optimization. Next,
we describe each untrained method used for comparison.

Delay-and-Sum (DAS). The delay-and-sum (DAS) or
conventional beamformer is commonly used in practice [9],
[52] and implements the inverse of MIMO radar forward
model Eq. 4,

x̂ = F−1(z), (8)

where F−1(·) implements the 2D IFFT. Since the DAS
reconstruction method is FFT-based it has the lowest
computational complexity compared to the other untrained
methods and can run in seconds on a modern CPU.
In our experiments, we term this method Sparse DAS
when the data cube z is sub-sampled. For the real-world
experimental data we do not have access to the ground
truth scene reflectivity, and instead approximate it using Eq.
8 with a fully sampled data cube z; we term this method
Full DAS in our results. While we consider the Full DAS as
the ªgold standardº, our method is able to produce better
reconstructions with significantly fewer aliasing artifacts.

Gradient Descent with Convex Relaxation. ComDecoder
leverages the implicit bias of the structure of a convolutional
decoder by optimizing the weights of the network rather
than the scene reflectivity distribution. To test reconstruction
performance without inductive bias we implement a
gradient descent method with ℓ1-norm regularization [13],
[15] that optimizes scene reflectivity distribution directly,

x̂ = argmin
x̄

||z−M⊙F(x̄)||2 + λL||x̄||1, (9)

where λL is the ℓ1-norm regularization hyperparameter.
In Eq. 9 the optimization is biased towards sparse spatial
domain solutions due to the ℓ1-norm handcrafted prior.
We find the reconstruction quality is maximized when
λL = 1e-3 and 1e-2 for simulated and experimental data.
In our experiments, we term this method GD+L1 Reg. The
reflectivity distribution x̄ is initialized with samples from a
uniform distribution.

Implicit Neural Representations. This untrained method
uses an INR that typically consist of multi-layer perception
layers that map an extremely low-level input to a low-level
output [24]. For example, inputs could be coordinates in a
scene (x, y) and the output could be a physical property
of that scene like its mmWave reflectivity. These networks
learn an implicit continuous representation of the input
and output mapping. To implement the INR method with
Eq. 7 the network G architecture is updated and the input
C ∈ R

2×K×L is changed to represent all the range and
angle coordinates in a K by L image normalized between
[−1, 1]. The first INR method we compare against uses
ReLU activation functions with Fourier feature encoding
[60]. For all experiments, we call this method INR-ReLU
and we find setting Q = 256, κ = 20, number of layers
to 7, and neurons per layer to 256 resulted in the best
reconstruction quality for this method.

For additional comparisons, we implement another INR
method using sinusoidal periodic activation functions [50].
This INR architecture does not require an explicit feature
encoding operation but instead adjusts the initial frequency
ω0 of the network’s first layer to scale its ability to learn
high frequency information. For all experiments we term
this method SIREN and find setting ω0 = 30, number of
layers to 7, and neurons per layer to 256 resulted in the best
reconstruction quality for this method.

Deep Image Prior. We implement another untrained neural
network architecture based on Deep Image Prior (DIP) [25].
In [25] a U-net convolutional neural architecture is used
containing an encoder, decoder, and skip connections. This
approach takes a high-dimensional input with samples
drawn from a uniform distribution and outputs a high-
dimensional estimate, i.e. image of the scene reflectivity
distribution. For all experiments, we call this method DIP.
To implement the DIP method with Eq. 7 the network
G architecture is updated and the input C ∈ R

32×K×L

is increased to match the desired output K by L image
dimensions. We find using 128 channels per layer, 6 encoder
and decoder layers, SiLU activation function, and nearest
neighbor upsampling resulted in the best reconstruction
performance for the DIP method.

DeepDecoder. The next untrained neural network method
is based on DeepDecoder [48]. As the name suggests,
this architecture uses a decoder architecture containing
channel-wise convolution, bilinear upsampling, ReLU
activation, and Batch normalization operations per layer.
This method takes in a low-dimensional input and outputs
a high-dimensional estimate. This architecture is unique
because only the upsampling operation applies spatial pixel
coupling. We call this method DeepDecoder. To implement
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