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ARTICLE INFO ABSTRACT

Keywords: A significant amount of research has been directed toward developing a more intuitive
Centers of stiffness and compliance appreciation of spatial elastic behavior. Results of these analyses have often been described
Spatial stiffness and compliance in terms of the elastic behavior (stiffness or compliance) centers. This paper investigates the

Compliant mechanisms properties of centers of stiffness and compliance and provides a fresh view of elastic center

locations, specifically, the locus of centers associated with a given mechanism’s topology and
geometry. We show that the location of the center of stiffness (compliance) for a set of elastic
components connected in parallel (in serial) can be described in terms similar to the location
of the center of mass for a set of mass particles. This provides a physical interpretation of the
centers associated with a compliant behavior, and a useful guide in the design of mechanisms
that realize desirable compliant behaviors.

1. Introduction

For stable physical interaction, some form of passive compliance is needed in robotic manipulation. A general model of
passive compliant behavior is a rigid body suspended by passive elastic components. For small displacements, the force-deflection
relationship is characterized by a 6 x 6 matrix K which maps the body motion to the force/torque applied to the body [1]:

w = Kt, (€D)

where t is the body twist motion (a 6-vector), and w is the wrench (force/torque; a 6-vector) applied to the body. If twist t and
wrench w are expressed in Pliicker’s axis and ray coordinates respectively, the stiffness matrix K is symmetric positive semi-definite
(PSD) [2]. If the body suspension is fully elastic, the behavior can be equivalently represented by the compliance matrix C, the
inverse of K.

In compliance analysis, some specific points, defined as “centers”, are of general interest. The remote center of compliance
(RCC) device was shown to be useful in robotic assembly [3,4]. The RCC is an example of elastic mechanisms for which the center
location is determined by the intersection of elastic component axes. This type of center corresponds to a very small set of compliant
behaviors.

Loncaric [2] defined the center of stiffness in a more general way: the center of stiffness is defined to be the origin of the coordinate
frame at which the stiffness matrix has symmetric off-diagonal blocks. Similarly, the center of compliance is defined as the location
of the coordinate frame at which the compliance matrix has symmetric off-diagonal blocks. It was proved that, every fully elastic
behavior has a center of stiffness and a center of compliance. Lipkin and Patterson [5] defined the center of elasticity to be the center
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of the three wrench-compliant axes associated with the elastic behavior. The location of each of these three centers is, in the generic
case, unique.

Many researchers have investigated the properties of these three types of centers. In [6-8], behavior centers were analyzed using
screw theory and the mathematical relationships between these types of centers were investigated. In [9], the uniqueness of the
stiffness center was addressed. In [10], it was shown that any stiffness/compliance can be realized with a parallel/serial mechanism
having concurrent spring/joint axes intersecting at the associated center.

In recent work, screw theory was used in the analysis and synthesis of compliant mechanisms using flexures as joints [11-13].
In [14-16], compliance synthesis of parallel mechanisms having a specified topology was addressed. In our recent work [17-20],
geometric approaches to the realization of general planar compliant behavior were developed for planar mechanisms, each having
a different number (3-6) of elastic components. Although the relationship between mechanism geometry and possible compliance
center locations was addressed in each, the results presented in [16-19] were only for planar cases. Very little work has considered
the relationships between mechanism geometry and the locations of the elastic behavior centers for spatial cases.

The work presented here is motivated by the desire for a better physical understanding of spatial compliant behavior, especially
in terms of behavior centers. This paper addresses the relationship between mechanism geometry and the centers of stiffness and
compliance defined by Loncaric [2]. A physical interpretation of the mathematically defined center locations is helpful in the design
of compliant mechanisms for specific applications. The main contributions of the paper are:

» The identification of the relationship between a compliant mechanism description (configuration and component elastic
properties) and the center location of the compliant behavior realized by the mechanism;

+ The identification of the analogy between the center of compliance/stiffness and the center of mass, which provides a more
intuitive physical interpretation of the centers associated with a compliant behavior;

» The development of a means to determine the locus of stiffness (compliance) centers associated with a configuration of a
parallel mechanism (serial mechanism), which bounds a mechanism’s ability to realize a compliant behavior and provides
guidance in the geometrical design of a compliant mechanism.

The paper is outlined as follows. Section 2 reviews the existing definitions of the center of stiffness and the center of compliance.
Screw representations of compliant components in parallel and serial mechanisms, and the realization of a compliant behavior
using these two types of mechanisms are also reviewed. In Section 3, properties of the stiffness centers and compliance centers
are investigated in terms of parallel and serial mechanisms that can be used to realize the behavior. In Section 4, the relationship
between the center of stiffness (compliance) and its realization in a fully parallel mechanism (serial mechanism) is presented. In
Section 5, a discussion and brief conclusion are provided.

2. Background

In this section, existing concepts of centers of stiffness and compliance are summarized. Screw representations of parallel and
serial mechanism configurations and the realization of elastic behaviors are also reviewed.

2.1. Center of stiffness and center of compliance

Consider a general spatial stiffness matrix K that maps twist t (described in Pliicker’s axis coordinates) to wrench w (described
in Pliicker’s ray coordinates). The partitioned form of K is:

A B
K= 2
[ B” D ] ’ )

where K € R%¢, A, B and D € R¥3,
Loncaric [2] defined the center of stiffness as the location at which the 3 x 3 off-diagonal block of the stiffness matrix, B, is
symmetric. For the generic case, the position of the stiffness center relative to the frame at which K is described is calculated using

r; = —[A — trace(A)I]™'b, 3)

where I is the 3 x 3 identity matrix and b is the 3-vector associated with the anti-symmetric part of B [2]. Note that the stiffness
center location only depends on matrices A and B.

Eq. (3) presented in [2] was obtained using a Lie group approach. The derivation process was to eliminate the skew-symmetric
part in the off-diagonal block by coordinate transformation. Although Eq. (3) identifies a coordinate frame location at which K has
a specific form, the geometric significance of this equation is not evident due to the matrix inverse operation.

Similarly, the center of compliance is defined as the location at which the 3 x 3 off-diagonal block of the compliance matrix is
symmetric. If a compliance matrix is partitioned in the form:

c:[(fr g] @

the position of the compliance center is

r,=—-[H- trace(H)I] ™' g, ;
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where g is the 3-vector associated with the anti-symmetric part of G [2]. The compliance center location only depends on matrices
H and G.
It is known [2] that, for the generic case, the two centers are unique and non-coincident.

2.2. Compliant behavior and compliant mechanisms

Consider a parallel mechanism having » springs. The geometry of each spring can be described by a unit screw defined as the
spring wrench [21]. In Pliicker’s ray coordinates, a general screw spring wrench has the form

w5=[ n ] ®)

hn+rXxn

where n is a unit 3-vector indicating the direction of the spring axis, & is the pitch of the screw spring, and r is a position vector
from the coordinate frame to an arbitrary point on the spring axis. When s = 0, w, represents a conventional (simple) line spring.
For a torsional spring, the spring wrench is

(1]

n

where the unit 3-vector n indicates the direction of the rotation axis. Note that, since w, is a free vector, it can be located anywhere
in space.
If a 6 x 6 stiffness matrix K is realized with a passive n-spring parallel system, then,

K= k,wlwf + kzwzwg + e+ kﬂw,,wf, (8

where k; > 0 is the spring stiffness associated with w; [21].
Dual to a parallel mechanism, the geometry of a joint in a serial mechanism can be described by a unit twist defined as the joint
twist [22]. In Pliicker’s axis coordinates, a general screw joint twist has the form:

tS:[hn+r><n], ©
n

where the unit 3-vector n indicates the direction of the twist axis, 4 is the pitch of the screw joint, and r is the position vector from
the coordinate frame to an arbitrary point on the twist axis. When 4 = 0, the joint is a conventional (simple) revolute joint. When
h = o0, the joint is a conventional (simple) prismatic joint. For a prismatic joint, the joint twist is:

v=la ]

where the unit 3-vector n indicates the direction of the prismatic axis. Note that, since t, is a free vector, it can be located anywhere
in space.
If a 6 x 6 compliance matrix C is realized with a passive n-joint serial system, then,

C=cityt] +cytyt] + - +¢,t,t7, 10)

where ¢; > 0 is the joint compliance associated with t; [22].
3. Center locations relative to the axes of compliant components

In this section, the relationship between the locations of the behavior centers and the screw axes of the compliant components
is presented.

3.1. Compliant component axes relative to the behavior centers

Consider an elastic behavior described by stiffness matrix K. When the behavior K is described with a frame located at the center
of stiffness Cy, the stiffness matrix has symmetric off-diagonal blocks, B = B” and

A B
K=[B D]. an

Proposition 1. If a stiffness matrix K is realized with a parallel mechanism whose geometry is described by a set of spring wrenches w;
(n=1,2,...,n), then,
kyrp + kolyp + - + kg, = 0, (12)

where each k; > 0 is the value of stiffness associated with w; and each r,; is the perpendicular vector from the center of stiffness C, to the
spring axis of w;.
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Fig. 1. Coordinate frame at the center of stiffness. Geometric relation: r,; is the perpendicular vector from the stiffness center C, to the spring wrench axis w,
and ry; =r; +1,.

Proof. Suppose a set of springs with stiffness k; and spring wrench w; realizes a stiffness K. Then,
K= klwlwlr+k2w2w;+---+k,,w,,wnT. (13)

In the frame at the stiffness center C;, let

W, = [ " ] : a4

hin; +1; Xn;

where n; is a unit 3-vector (indicating the direction of the spring), A; is the pitch of the screw, and r; is the vector from the
coordinate origin C; to an arbitrary point P, on the spring axis. Let P,; be the point on the axis of spring wrench w; associated with
the perpendicular position vector r; from the center of stiffness, and let r,; be the vector from P; to P; as shown in Fig. 1. Then,

r, = —(; -n)n,, (15)
and
I =T +T,. (16)

Consider the rank-1 stiffness matrix K; associated with spring wrench w; in the partitioned form:

A, B
K, = kww! = [ Bi; D[,- ] a7
where:
A = kl-n,-n,.T,
B, = k;hnn! + kn(r; xny)T,

D; = k;(hn; +1; xn)(hn; +1; Xn,)7 .

The stiffness matrix K is the sum of K;:
A B [ A, B,
K= = ! . 1
[B D] ;[B.T D-] (18
The 3 x 3 off-diagonal block B in K is:
n
B =Y (khnn! +kn(r; xn)"). 19
i=1
Denote:
n n
B, = Y khnn!, B,=) knr,xn)",
i=1 i=1
then,
B=B, +B,, (20
and since B and B, are symmetric, B, must be symmetric. Thus, at the center of stiffness,

B, -Bl =0, 2D

which yields

D kny(r; xm)" = (r; xm)n] 1= 0. (22)
i=1
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Using the identity, ab” —ba” = [a x b],, where a and b are arbitrary 3-vectors and [a], is the 3 x 3 skew symmetric matrix associated
with the cross product operation of a, Eq. (22) can be expressed as:

Zki(ri xn)xmn; =0. (23)

i=1

Using the triple cross-product identity and noting that each n; is a unit vector, Eq. (23) yields

Z ki[(x; -my)n; —(m; -nyr;] = 0,

i=1

Y kil nm; —x,] = 0. (24)

i=1

By Egs. (15) and (16),
ry; =r; — (r; -n)n;, i=1,2,..,n

Thus,

n
Z kiry; =0,
i=1

which proves Eq. (12). (]
By duality, the results for stiffness and parallel mechanisms hold for compliance and serial mechanisms.

Proposition 2. If a compliance matrix C is realized with a serial mechanism whose configuration is described by a set of joint twists t;
(i=1,2,...,n), then,

Ty +eorp + - +c,r., =0, (25)

where each ¢; > 0 is the joint compliance associated with t; and each r,; is the perpendicular vector from the center of compliance C, to the
joint axis of t;. []

Proposition 1 reveals the relationship between the location of the stiffness center and a set of springs connected in parallel that
realize the behavior. The stiffness weighted average distance from the stiffness center to the spring axes is zero.

This result indicates the analogy between the stiffness center of a set of springs connected in parallel and the mass center of a
set of particle masses. For a set of particles (m,,m,,...,m,), if (r|,r,,...,r,) are the corresponding position vectors from the center
of mass G to the locations of particles, then,

mry + myr, + - +m,r, =0, (26)

which indicates that the mass weighted average distance from the mass center to the particles is zero. Thus, Eq. (12) for the stiffness
center is analogous to Eq. (26) for the mass center.

Dual to the stiffness and parallel mechanism relationship, an analogy between the compliance center associated with a set of
compliant joints and the mass center associated a set of mass particles can be drawn in a similar way.

There is one significant difference between the relation between the elastic behavior centers and elastic components and the
relation between mass centers and particle masses. Note that in an arbitrary coordinate frame, the location of the mass center can

be expressed as the mass weighted average of particle position:
mry + myry + - +m,r,

rg = B (27)
my+my+ - +my,

where r; is the position vector of mass m;. The location of stiffness center r, (or compliance center r,), however, cannot be interpreted
in terms of the vectors r;; (or r,;) in the same form of Eq. (27). This is because, unlike the particle mass case (in which each r; is
the position of a point), each r;; (r,;) is the perpendicular vector from the frame to a line (screw axis). If the origin of the frame is
changed, the point on the spring axis associated with the perpendicular vector is also changed. However, with some modification,
the location of stiffness center r, (and compliance center r.) can be expressed in an arbitrary frame in a form similar to Eq. (27) as
shown below.

3.2. Centers in an arbitrary frame

The results described above apply to the perpendicular position vectors of the spring/joint axes relative to the center of stiff-
ness/compliance. The following results apply to position vectors of spring/joint axes and the position vector of stiffness/compliance
center in an arbitrary frame.

Suppose P;; is the point on the spring wrench w; associated with the perpendicular distance vector r;; from the stiffness center
C, as illustrated in Fig. 2. For each spring wrench w;, point P; is unique. In an arbitrary frame, we have:
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]

Fig. 2. Stiffness center in an arbitrary coordinate frame. Geometric relation: rp; =1, +ry;.

Proposition 3. In an arbitrary frame, if r, is the position vector identifying the location of stiffness center C,, and r p; is the position vector
from the frame origin O to point P,;, then

_kirpp+korpy + e+ kyrp,

= 28
g ky +ky+ -+ k, (28)
Proof. From the geometry illustrated in Fig. 2,
Ip; =Ty + Ty (29)
Thus,
n n n n
N okirp = D ki 1) = O ko + Y kry. (30)
i=1 i=1 i=1 i=1
By Proposition 1, the second sum in Eq. (30) is zero. Hence,
n n
QL ke =Y kirpy, (31)
i=1 i=1

which proves Eq. (28). [

Similarly, suppose that a compliance matrix C is realized with an n-joint serial mechanism at a configuration described by
joint twists (t;,t,,...,t,) and that P,; is the point on the axis of twist t; associated with the perpendicular distance vector from the
compliance center to the axis. In an arbitrary frame, we have:

Proposition 4. In an arbitrary frame, if r, is the position vector identifying the location of the compliance center C,, and rp; is position
vector from the frame origin O to point P,;, then
_oarpy +crpy + -+, I'p,

B C|+C2+"'+C” ’

(32)

c

Note that, unlike Eq. (27) for the mass center of a particle mass system, Eq. (28) (or Eq. (32)) cannot be used directly to find
the stiffness (or compliance) center location because the screw axis perpendicular position vectors are not known. Propositions 3
and 4 are merely generalizations of Propositions 1 and 2 that take the form of Eq. (27). These results, however, can be used to find
behavior center locations directly from a description of the mechanism geometry and component stiffnesses (as shown below).

3.3. Center location from mechanism screws

Using the results presented above, the location of the stiffness/compliance center can be determined from the mechanism
geometry alone without calculating the stiffness matrix.

Consider an n-spring parallel mechanism described by spring wrenches w; (i = 1,2, ...,n) with line-of-action s; (spring axis) of
each w; expressed as:

n; .
;= s =1,2,...,n, 33
K [ r; Xn; ] l " (33)

where n; is the unit direction vector of the spring axis w;, and r; is the perpendicular vector from arbitrary coordinate frame origin
O to the spring axis s; at point 7; as illustrated in Fig. 3.
In order to determine the location of the stiffness center, consider an arbitrary point P in space having position vector

r=[xyz" (34)

in an arbitrary coordinate frame Oxyz. Let r,; (from P to P,) be the perpendicular vector from P to spring axis s;, r,; be the vector
from T; to P, and r,; be the vector from T, to P, along n; as illustrated in Fig. 3.
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Fig. 3. The perpendicular vector from an arbitrary point P to spring axis s;. Vector r, is a linear function of r = [x, y,z]" determined by Eq. (35).

Since n; is a unit vector and r,; L n;, vector r,; can be expressed as:
T T
r, =M -r)n =n (r—r)n, =nn, (r—r;).
Using the vector relations:

Iy =Ty — Xy I, =r—r;,

vector r,; can be expressed as:

r,=mn -D-r), i=12..,n (35)

where I is the 3 x 3 identity matrix.

Since each r; in Eq. (35) is the perpendicular vector from point P to the spring axis s;, if P is the stiffness center, by Proposition 1,
the n vectors r,, rpp, ..., r,, must satisfy

kiry +koryy + oo+ k,ry, = 0. (36)

n'pn

For given spring axes (s;,s,, ... ,s,) and spring rates (k;,k,, ..., k,), Eq. (36) is a linear equation for the position vector r of the
stiffness center. If we denote:

Q; = niniT -1 37)

and
n n
Q= ZkiQp V= ZkiQirh
i=1 i=1
then, Eq. (36) can be written as
n
Zk[Qi(r -r)=0 = Qr=v.
i=1
In the generic case, the 3 x 3 matrix Q is full rank. Hence, the location of the stiffness center C, is uniquely determined by:

r,=Qlv. (38)

Using this result, the location of the stiffness center can be determined directly from the screws used in the behavior realization
without first calculating the stiffness matrix then using Eq. (5).

By duality, if the joint axis twist is given in the form of Eq. (9), and r; is the perpendicular vector from the frame to the axis of
t;, then the location of the stiffness center C, is uniquely determined by:

r, =Py, (39

where
n n
P= ZCiQh u= ZCiQiri’
i=1 i=1

and Q; is the 3 x 3 matrix defined in Eq. (37).
4. Stiffness center locus from mechanism topology and geometry

In this section, the geometric description of the stiffness center locus for parallel mechanisms having different numbers of springs
is presented. The locus for a given mechanism topology does not involve solving Eq. (38), only a geometric analysis of Proposition 1.
Since torsional springs only contribute to the 3 x 3 diagonal block matrix D of K in Eq. (2), they have no influence on the location
of the stiffness center. In the following, only springs having the line-of-action in the form of Eq. (33) are considered.

For a single spring, the stiffness center can be anywhere on the spring axis.
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Fig. 4. The center of stiffness associated with a 2-spring system. (a) Generic case. The locus of stiffness centers is a line segment P, P, on the common
perpendicular of the two spring axes. (b) The two spring axes intersect. The stiffness center is located at the intersection P. (¢) The two spring axes are parallel.
The stiffness center locus is the area between the two spring axes.

4.1. Systems with 2 springs

Consider a 2-spring system having spring wrenches w, and w,. By Proposition 1,
kit +koryp =0, (40)

where r;; and r;, are the perpendicular vectors from C, to screw axes s, and s,. Eq. (40) indicates that vectors r;; and r;, must be
collinear. Consider the following 3 cases.

Case 1: Spring axes are not coplanar (generic case). For this case, the stiffness center C;, must be located on the common
perpendicular /, of the two axes of w; and w,. Since both k; and k, are non-negative, C;, must be located on the line segment
of I, between P, and P, as shown in Fig. 4a. Thus, for a generic 2-spring system, the locus of stiffness centers is line segment P, P,
on the common perpendicular of the two springs axes.

If the values of k; and k, are specified, the location of C, on /, is uniquely determined by Eq. (40). The location of the stiffness
center can be identified on the line segment P, P, by the distance from P, or Py:

_ k2 _ kl
Tk +ky 27k + ky

d d, (41)
where d, is the distance from P, to C; and d is the length of line segment P, P, as illustrated in Fig. 4a.

Now consider the two cases when the two spring wrenches are coplanar.

Case 2: Spring axes intersect at P. For this case, the center of stiffness must be located at intersection point P (Fig. 4b) regardless
of the values of k; and k,.

Case 3: Spring axes are parallel. The locus of stiffness center C, is the area between the two spring axes as illustrated in Fig. 4c.
If the two spring rates are specified, the distances of C, to the two spring axes (Fig. 4c) can be calculated using Eq. (41). The center
can be anywhere on this line between and parallel to the two spring axes.

4.2. Systems with 3 springs

Consider a 3-spring system described by spring wrench w;, w, and w;. In order to obtain the locus of stiffness centers, let
r = [x,yz]" be the position vector of the stiffness center C, from an arbitrarily specified frame. Then, using Eq. (35), the
perpendicular vector from C, to the spring axis of w; is:

ry,=mn’ -Dr-r), =123, (42)
where r; is the perpendicular vector from the coordinate frame to the spring axis of w; as illustrated in Fig. 3. By Proposition 1,

ki + kot + kot =0 (43)
must be satisfied by some values of k,, k, and k5. Thus, the three vectors r;;, r;, and r;; must be co-planar, which means

(g X1p0) - 143 = 0. 44

Since each r;; in Eq. (44) is a linear function in (x, y, z), Eq. (44) defines a cubic surface in space. The stiffness center must be
on this surface. It can be seen that the three spring axes s; and the three common perpendiculars /;; formed by any two lines s; and
s; are also on this cubic surface.

It should be noted that not every point on the surface defined by Eq. (44) is the location of a stiffness center associated with the
3-spring system. Since each k; in Eq. (43) is nonnegative, the locus of stiffness center locations is bounded. The boundary of this
area is determined by the three spring axes s; and the three common perpendiculars /;;.

Suppose P;; and P;; are the two points respectively on s; and s; associated with the common perpendicular /;; as illustrated in
Fig. 5. The six line segments Py, P, Py Pas, Py3P3y, PPy, Py Py3, P3P, are on the surface and form a closed polygonal chain
I'. The locus of stiffness center locations is the area on the cubic surface enclosed by I" (as shown in Fig. 5).
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Fig. 6. Three special cases. (a) The three spring axes are concurrent. The stiffness center is located at the intersection point. (b) The three spring axes are
co-planar. The stiffness center is located inside the triangle formed by the tree spring axes. (c) The three spring axes are parallel. The stiffness center is located
anywhere on a line /. inside the triangular prism formed by the three spring axes.

In some special cases, the surface defined in Eq. (44) degenerates to a single point or other simpler space. Consider the following
3 cases.

Case 1: Spring axes are concurrent. For this case, the stiffness center C, is located at the intersection point regardless of the
values of k;, k, and k5 as illustrated in Fig. 6a.

Case 2: Spring axes are co-planar. For this case, the locus of stiffness centers is a triangular area enclosed by the 3 spring axes
as illustrated in Fig. 6b. For any given set of non-negative (k, k,, k3), the center is located at a point within the triangle.

Case 3: Spring axes are parallel. For this case, the locus of stiffness centers is the space of a triangular prism formed by the three
spring axes. For any given set of non-negative (k;, k,, k3), the center is located anywhere on a straight line /. parallel to the three
spring axes inside the triangular prism as illustrated in Fig. 6c.

4.3. Systems with 4 springs

Consider a system having 4 springs. For every combination of three spring axes (s;,s;,s,), a cubic surface can be obtained using
Eq. (44):

(g X1y;) Ty = 0. (45)

An area I;;, on the surface bounded by the six line segments is determined by the three spring axes and the three common
perpendiculars (as described in Section 4.2). In the generic case, there are 4 distinct cubic surface areas (one for each 3-spring

combination). Since every two areas share three of their boundary line segments, the union of the 4 areas:

I3y = UL, (46)

is a closed surface in space. The space V enclosed by I7,3, is the locus of stiffness center locations for the 4-spring system.
Because of the shared lines, V has 4 faces and 10 edges (as illustrated in Fig. 7) that are uniquely determined by the locations

of the 4 spring axes. Each face I, is a portion of the cubic surface defined in Eq. (44) by three spring axes, with 3 spring axes and

the 3 common perpendiculars being its edges.
4.4. Systems with more than 4 springs

For an n-spring system with n > 4, every combination of four spring axes (s;,s;,s,,s,) forms a space V;; . enclosed by 4 faces as

described in Section 4.3. An n-spring system has

ijqr

4 n!

Y (47)

m=
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Fig. 7. Locus of stiffness center locations associated with a 4-spring system. Locus space V is enclosed by portions of 4 cubic surfaces determined by the 4
combinations of any 3 spring axes.

bounded spaces. The union of all m such spaces is the locus of the stiffness centers associated with the n-spring system:
V= UV, (48)

It can be proved that, in the generic case, V is a connected 3-dimensional bounded space.
4.5. Compliance center locus and n-joint serial mechanisms

In physics, a compliance is defined as the inverse of the stiffness. As such, a compliance matrix C is normally full-rank. In an
n-joint serial compliant mechanism described by joint twists (t,,t,, ..., t,), each joint having joint compliance ¢; contributes a rank-1
PSD matrix

C; =c;t;th (49)

defined as the joint compliance matrix [22]. A compliance matrix C associated with an n-joint serial mechanism can be defined using
Eq. (10). As such, all results for the locus of center locations described in Sections 4.1-4.4 for bounding C, in n-spring parallel
mechanisms apply to bounding C, in n-joint serial mechanisms.

5. Discussion and conclusion
In this section, a discussion of the results is provided and a conclusion is then presented.
5.1. Discussion

Propositions 1-4 identify the analogy between the stiffness/compliance center for a system of elastic components and the mass
center for system of mass particles. Eq. (12) indicates that the center of stiffness is closer to the spring axis that has the highest spring
rate. When the stiffness of a spring increases, the stiffness center moves toward the axis of that spring. Similarly, for a compliance
associated with a serial mechanism, the compliance center is closer to the joint axis that has the highest joint compliance. When
the compliance of a joint increases, the compliance center moves toward the joint axis of that joint. In most cases, the two centers
are not at the same location in space.

In [7], the relationship between the locations of wrench-compliant axes and the stiffness center was investigated. It was shown [7]
that, if ry; is the perpendicular vector from the stiffness center to wrench-compliant axis w;, then

kv + koo + kpargs =0, (50)

where k /i is the translational stiffness associated with w 7i- As shown in [23], a stiffness K can be expressed as

3 3
K= kpWpit ) kyivys, (51)
i=1 i=1

where each W, is the eigenwrench (unit screw of the wrench-compliant axis), each w,; is a unit couple in the form of Eq. (7)
(along the direction of an eigentwist), and each k,; is the rotational stiffness associated with w,,;. Thus, K can be viewed as being
represented (and therefore realized) by 3 screw springs along the 3 wrench-compliant axes and 3 torsional springs. It can be seen
that Eq. (50) is a special case of Proposition 1 that applies only to the eigenwrenches of the behavior.

The center of elasticity defined in [5] is the geometric center of the three eigenwrenches, which is independent of the three
stiffnesses k ;;’s. Thus, the center of elasticity is not directly related to the set of compliant component locations of mechanisms that
realize the behavior.

It is known [2,9] that, in the generic case, the location of the stiffness center in space is unique. As shown in [9], when non-
uniqueness occurs, the stiffness center either can be located anywhere in space or is located on a straight line. In terms of the
stiffness associated with an n-spring system, using the result of Proposition 1, it can be proved that the location of the stiffness
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center is not unique if and only if the behavior is realized with either a set of torsional springs or a set of springs having parallel
spring axes. For the first case, the locus of stiffness centers is the entire space. For the second case, the locus of stiffness centers is
a straight line parallel to and surrounded by the spring axes.

For a given mechanism, the space of possible locations of the center of stiffness/compliance for all possible spring/joint stiffness
values can be determined using the results of Section 4. The space is bounded by the locations of spring/joint axes and their common
perpendiculars (lines in space). For a mechanism with specified geometry, if a desired compliant behavior has a center outside the
space for that mechanism (as described in Section 4), the behavior cannot be realized by the mechanism regardless of the values
of spring/joint stiffness. Thus, for a given mechanism, the space of compliant behaviors is very limited even if each spring/joint
stiffness is infinitely adjustable.

It should be noted that the restrictions identified in Section 4 on the locus of behavior centers are only necessary conditions for
the realization of the elastic behavior. A compliant behavior that has a center within the locus does not guarantee that it can be
realized with the mechanism. To ensure the realization of a compliant behavior, additional conditions are needed [17,20,24].

5.2. Conclusion

In this paper, the relationships between the mechanism geometry and the centers of stiffness and compliance are investigated.
The results provide a more intuitive physical interpretation of behavior centers and clearly show an analogy between the center of
stiffness/compliance realized with a parallel/serial mechanism and the center of mass for a particle mass system. Using the theory,
the location of the stiffness/compliance center can be determined from the mechanism geometry and the value of each spring/joint
stiffness. The locus of stiffness/compliance center locations can also be determined from the mechanism geometry for all possible
values of spring/joint stiffnesses. This ability is useful as a guide in the design and construction of mechanisms that realize desired
compliant behaviors.
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