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A B S T R A C T

A significant amount of research has been directed toward developing a more intuitive
appreciation of spatial elastic behavior. Results of these analyses have often been described
in terms of the elastic behavior (stiffness or compliance) centers. This paper investigates the
properties of centers of stiffness and compliance and provides a fresh view of elastic center
locations, specifically, the locus of centers associated with a given mechanism’s topology and
geometry. We show that the location of the center of stiffness (compliance) for a set of elastic
components connected in parallel (in serial) can be described in terms similar to the location
of the center of mass for a set of mass particles. This provides a physical interpretation of the
centers associated with a compliant behavior, and a useful guide in the design of mechanisms
that realize desirable compliant behaviors.

1. Introduction

For stable physical interaction, some form of passive compliance is needed in robotic manipulation. A general model of
assive compliant behavior is a rigid body suspended by passive elastic components. For small displacements, the force–deflection
elationship is characterized by a 6 × 6 matrix 𝐊 which maps the body motion to the force/torque applied to the body [1]:

𝐰 = 𝐊𝐭, (1)

where 𝐭 is the body twist motion (a 6-vector), and 𝐰 is the wrench (force/torque; a 6-vector) applied to the body. If twist 𝐭 and
wrench 𝐰 are expressed in Plücker’s axis and ray coordinates respectively, the stiffness matrix 𝐊 is symmetric positive semi-definite
(PSD) [2]. If the body suspension is fully elastic, the behavior can be equivalently represented by the compliance matrix 𝐂, the
inverse of 𝐊.

In compliance analysis, some specific points, defined as ‘‘centers’’, are of general interest. The remote center of compliance
(RCC) device was shown to be useful in robotic assembly [3,4]. The RCC is an example of elastic mechanisms for which the center
ocation is determined by the intersection of elastic component axes. This type of center corresponds to a very small set of compliant
ehaviors.
Loncaric [2] defined the center of stiffness in a more general way: the center of stiffness is defined to be the origin of the coordinate

rame at which the stiffness matrix has symmetric off-diagonal blocks. Similarly, the center of compliance is defined as the location
f the coordinate frame at which the compliance matrix has symmetric off-diagonal blocks. It was proved that, every fully elastic
ehavior has a center of stiffness and a center of compliance. Lipkin and Patterson [5] defined the center of elasticity to be the center
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of the three wrench-compliant axes associated with the elastic behavior. The location of each of these three centers is, in the generic
case, unique.

Many researchers have investigated the properties of these three types of centers. In [6–8], behavior centers were analyzed using
crew theory and the mathematical relationships between these types of centers were investigated. In [9], the uniqueness of the
tiffness center was addressed. In [10], it was shown that any stiffness/compliance can be realized with a parallel/serial mechanism
aving concurrent spring/joint axes intersecting at the associated center.
In recent work, screw theory was used in the analysis and synthesis of compliant mechanisms using flexures as joints [11–13].

n [14–16], compliance synthesis of parallel mechanisms having a specified topology was addressed. In our recent work [17–20],
eometric approaches to the realization of general planar compliant behavior were developed for planar mechanisms, each having
different number (3–6) of elastic components. Although the relationship between mechanism geometry and possible compliance
enter locations was addressed in each, the results presented in [16-19] were only for planar cases. Very little work has considered
he relationships between mechanism geometry and the locations of the elastic behavior centers for spatial cases.
The work presented here is motivated by the desire for a better physical understanding of spatial compliant behavior, especially

in terms of behavior centers. This paper addresses the relationship between mechanism geometry and the centers of stiffness and
compliance defined by Loncaric [2]. A physical interpretation of the mathematically defined center locations is helpful in the design
of compliant mechanisms for specific applications. The main contributions of the paper are:

• The identification of the relationship between a compliant mechanism description (configuration and component elastic
properties) and the center location of the compliant behavior realized by the mechanism;

• The identification of the analogy between the center of compliance/stiffness and the center of mass, which provides a more
intuitive physical interpretation of the centers associated with a compliant behavior;

• The development of a means to determine the locus of stiffness (compliance) centers associated with a configuration of a
parallel mechanism (serial mechanism), which bounds a mechanism’s ability to realize a compliant behavior and provides
guidance in the geometrical design of a compliant mechanism.

The paper is outlined as follows. Section 2 reviews the existing definitions of the center of stiffness and the center of compliance.
Screw representations of compliant components in parallel and serial mechanisms, and the realization of a compliant behavior
using these two types of mechanisms are also reviewed. In Section 3, properties of the stiffness centers and compliance centers
are investigated in terms of parallel and serial mechanisms that can be used to realize the behavior. In Section 4, the relationship
between the center of stiffness (compliance) and its realization in a fully parallel mechanism (serial mechanism) is presented. In
Section 5, a discussion and brief conclusion are provided.

2. Background

In this section, existing concepts of centers of stiffness and compliance are summarized. Screw representations of parallel and
serial mechanism configurations and the realization of elastic behaviors are also reviewed.

2.1. Center of stiffness and center of compliance

Consider a general spatial stiffness matrix 𝐊 that maps twist 𝐭 (described in Plücker’s axis coordinates) to wrench 𝐰 (described
in Plücker’s ray coordinates). The partitioned form of 𝐊 is:

𝐊 =
[

𝐀 𝐁
𝐁𝑇 𝐃

]

, (2)

where 𝐊 ∈ R6×6, 𝐀, 𝐁 and 𝐃 ∈ R3×3.
Loncaric [2] defined the center of stiffness as the location at which the 3 × 3 off-diagonal block of the stiffness matrix, 𝐁, is

symmetric. For the generic case, the position of the stiffness center relative to the frame at which 𝐊 is described is calculated using

𝐫𝑘 = −[𝐀 − trace(𝐀)𝐈]−1𝐛, (3)

where I is the 3 × 3 identity matrix and 𝐛 is the 3-vector associated with the anti-symmetric part of 𝐁 [2]. Note that the stiffness
center location only depends on matrices 𝐀 and 𝐁.

Eq. (3) presented in [2] was obtained using a Lie group approach. The derivation process was to eliminate the skew-symmetric
part in the off-diagonal block by coordinate transformation. Although Eq. (3) identifies a coordinate frame location at which 𝐊 has
a specific form, the geometric significance of this equation is not evident due to the matrix inverse operation.

Similarly, the center of compliance is defined as the location at which the 3 × 3 off-diagonal block of the compliance matrix is
symmetric. If a compliance matrix is partitioned in the form:

𝐂 =
[

𝐄 𝐆
𝐆𝑇 𝐇

]

, (4)

the position of the compliance center is
−1
2

𝐫𝑐 = −[𝐇 − trace(𝐇)𝐈] 𝐠, (5)
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where 𝐠 is the 3-vector associated with the anti-symmetric part of 𝐆 [2]. The compliance center location only depends on matrices
and 𝐆.
It is known [2] that, for the generic case, the two centers are unique and non-coincident.

.2. Compliant behavior and compliant mechanisms

Consider a parallel mechanism having 𝑛 springs. The geometry of each spring can be described by a unit screw defined as the
pring wrench [21]. In Plücker’s ray coordinates, a general screw spring wrench has the form

𝐰𝑠 =
[

𝐧
ℎ𝐧 + 𝐫 × 𝐧

]

, (6)

where 𝐧 is a unit 3-vector indicating the direction of the spring axis, ℎ is the pitch of the screw spring, and 𝐫 is a position vector
from the coordinate frame to an arbitrary point on the spring axis. When ℎ = 0, 𝐰𝑠 represents a conventional (simple) line spring.

For a torsional spring, the spring wrench is

𝐰𝜏 =
[

𝟎
𝐧

]

, (7)

where the unit 3-vector 𝐧 indicates the direction of the rotation axis. Note that, since 𝐰𝜏 is a free vector, it can be located anywhere
in space.

If a 6 × 6 stiffness matrix 𝐊 is realized with a passive 𝑛-spring parallel system, then,

𝐊 = 𝑘1𝐰1𝐰𝑇
1 + 𝑘2𝐰2𝐰𝑇

2 +⋯ + 𝑘𝑛𝐰𝑛𝐰𝑇
𝑛 , (8)

where 𝑘𝑖 ≥ 0 is the spring stiffness associated with 𝐰𝑖 [21].
Dual to a parallel mechanism, the geometry of a joint in a serial mechanism can be described by a unit twist defined as the joint

twist [22]. In Plücker’s axis coordinates, a general screw joint twist has the form:

𝐭𝑠 =
[

ℎ𝐧 + 𝐫 × 𝐧
𝐧

]

, (9)

where the unit 3-vector 𝐧 indicates the direction of the twist axis, ℎ is the pitch of the screw joint, and 𝐫 is the position vector from
the coordinate frame to an arbitrary point on the twist axis. When ℎ = 0, the joint is a conventional (simple) revolute joint. When
ℎ = ∞, the joint is a conventional (simple) prismatic joint. For a prismatic joint, the joint twist is:

𝐭𝜌 =
[

𝐧
𝟎

]

,

where the unit 3-vector 𝐧 indicates the direction of the prismatic axis. Note that, since 𝐭𝜌 is a free vector, it can be located anywhere
n space.
If a 6 × 6 compliance matrix 𝐂 is realized with a passive 𝑛-joint serial system, then,

𝐂 = 𝑐1𝐭1𝐭𝑇1 + 𝑐2𝐭2𝐭𝑇2 +⋯ + 𝑐𝑛𝐭𝑛𝐭𝑇𝑛 , (10)

here 𝑐𝑖 ≥ 0 is the joint compliance associated with 𝐭𝑖 [22].

. Center locations relative to the axes of compliant components

In this section, the relationship between the locations of the behavior centers and the screw axes of the compliant components
s presented.

.1. Compliant component axes relative to the behavior centers

Consider an elastic behavior described by stiffness matrix 𝐊. When the behavior 𝐊 is described with a frame located at the center
of stiffness 𝐶𝑘, the stiffness matrix has symmetric off-diagonal blocks, 𝐁 = 𝐁𝑇 and

𝐊 =
[

𝐀 𝐁
𝐁 𝐃

]

. (11)

Proposition 1. If a stiffness matrix 𝐊 is realized with a parallel mechanism whose geometry is described by a set of spring wrenches 𝐰𝑖
𝑛 = 1, 2,… , 𝑛), then,

𝑘1𝐫𝑘1 + 𝑘2𝐫𝑘2 +⋯ + 𝑘𝑛𝐫𝑘𝑛 = 𝟎, (12)

where each 𝑘𝑖 ≥ 0 is the value of stiffness associated with 𝐰𝑖 and each 𝐫𝑘𝑖 is the perpendicular vector from the center of stiffness 𝐶𝑘 to the
pring axis of 𝐰𝑖.
3
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Fig. 1. Coordinate frame at the center of stiffness. Geometric relation: 𝐫𝑘𝑖 is the perpendicular vector from the stiffness center 𝐶𝑘 to the spring wrench axis 𝐰𝑖
and 𝐫𝑘𝑖 = 𝐫𝑖 + 𝐫𝑝𝑖.

Proof. Suppose a set of springs with stiffness 𝑘𝑖 and spring wrench 𝐰𝑖 realizes a stiffness 𝐊. Then,

𝐊 = 𝑘1𝐰1𝐰𝑇
1 + 𝑘2𝐰2𝐰𝑇

2 +⋯ + 𝑘𝑛𝐰𝑛𝐰𝑇
𝑛 . (13)

In the frame at the stiffness center 𝐶𝑘, let

𝐰𝑖 =
[

𝐧𝑖
ℎ𝑖𝐧𝑖 + 𝐫𝑖 × 𝐧𝑖

]

, (14)

where 𝐧𝑖 is a unit 3-vector (indicating the direction of the spring), ℎ𝑖 is the pitch of the screw, and 𝐫𝑖 is the vector from the
coordinate origin 𝐶𝑘 to an arbitrary point 𝑃𝑖 on the spring axis. Let 𝑃𝑘𝑖 be the point on the axis of spring wrench 𝐰𝑖 associated with
the perpendicular position vector 𝐫𝑘𝑖 from the center of stiffness, and let 𝐫𝑝𝑖 be the vector from 𝑃𝑖 to 𝑃𝑘𝑖 as shown in Fig. 1. Then,

𝐫𝑝𝑖 = −(𝐫𝑖 ⋅ 𝐧𝑖)𝐧𝑖, (15)

and

𝐫𝑘𝑖 = 𝐫𝑖 + 𝐫𝑝𝑖. (16)

Consider the rank-1 stiffness matrix 𝐊𝑖 associated with spring wrench 𝐰𝑖 in the partitioned form:

𝐊𝑖 = 𝑘𝑖𝐰𝑖𝐰𝑇
𝑖 =

[

𝐀𝑖 𝐁𝑖
𝐁𝑇
𝑖 𝐃𝑖

]

, (17)

where:

𝐀𝑖 = 𝑘𝑖𝐧𝑖𝐧𝑇𝑖 ,
𝐁𝑖 = 𝑘𝑖ℎ𝑖𝐧𝑖𝐧𝑇𝑖 + 𝑘𝑖𝐧𝑖(𝐫𝑖 × 𝐧𝑖)𝑇 ,
𝐃𝑖 = 𝑘𝑖(ℎ𝑖𝐧𝑖 + 𝐫𝑖 × 𝐧𝑖)(ℎ𝑖𝐧𝑖 + 𝐫𝑖 × 𝐧𝑖)𝑇 .

The stiffness matrix 𝐊 is the sum of 𝐊𝑖:

𝐊 =
[

𝐀 𝐁
𝐁 𝐃

]

=
𝑛
∑

𝑖=1

[

𝐀𝑖 𝐁𝑖
𝐁𝑇
𝑖 𝐃𝑖

]

. (18)

The 3 × 3 off-diagonal block 𝐁 in 𝐊 is:

𝐁 =
𝑛
∑

𝑖=1
(𝑘𝑖ℎ𝑖𝐧𝑖𝐧𝑇𝑖 + 𝑘𝑖𝐧𝑖(𝐫𝑖 × 𝐧𝑖)𝑇 ). (19)

Denote:

𝐁1 =
𝑛
∑

𝑖=1
𝑘𝑖ℎ𝑖𝐧𝑖𝐧𝑇𝑖 , 𝐁2 =

𝑛
∑

𝑖=1
𝑘𝑖𝐧𝑖(𝐫𝑖 × 𝐧𝑖)𝑇 ,

then,

𝐁 = 𝐁1 + 𝐁2, (20)

and since 𝐁 and 𝐁1 are symmetric, 𝐁2 must be symmetric. Thus, at the center of stiffness,

𝐁2 − 𝐁𝑇
2 = 𝟎, (21)

which yields
𝑛
∑

𝑘𝑖[𝐧𝑖(𝐫𝑖 × 𝐧𝑖)𝑇 − (𝐫𝑖 × 𝐧𝑖)𝐧𝑇𝑖 ] = 𝟎. (22)
4

𝑖=1



Mechanism and Machine Theory 167 (2022) 104565S. Huang and J.M. Schimmels

w
i

Using the identity, 𝐚𝐛𝑇 −𝐛𝐚𝑇 = [𝐚 × 𝐛]×, where 𝐚 and 𝐛 are arbitrary 3-vectors and [𝐚]× is the 3 × 3 skew symmetric matrix associated
with the cross product operation of a, Eq. (22) can be expressed as:

𝑛
∑

𝑖=1
𝑘𝑖(𝐫𝑖 × 𝐧𝑖) × 𝐧𝑖 = 𝟎. (23)

Using the triple cross-product identity and noting that each 𝐧𝑖 is a unit vector, Eq. (23) yields
𝑛
∑

𝑖=1
𝑘𝑖[(𝐫𝑖 ⋅ 𝐧𝑖)𝐧𝑖 − (𝐧𝑖 ⋅ 𝐧𝑖)𝐫𝑖] = 𝟎,

𝑛
∑

𝑖=1
𝑘𝑖[(𝐫𝑖 ⋅ 𝐧𝑖)𝐧𝑖 − 𝐫𝑖] = 𝟎. (24)

By Eqs. (15) and (16),

𝐫𝑘𝑖 = 𝐫𝑖 − (𝐫𝑖 ⋅ 𝐧𝑖)𝐧𝑖, 𝑖 = 1, 2, ..., 𝑛.

Thus,
𝑛
∑

𝑖=1
𝑘𝑖𝐫𝑘𝑖 = 𝟎,

which proves Eq. (12). □
By duality, the results for stiffness and parallel mechanisms hold for compliance and serial mechanisms.

Proposition 2. If a compliance matrix 𝐂 is realized with a serial mechanism whose configuration is described by a set of joint twists 𝐭𝑖
(𝑖 = 1, 2,… , 𝑛), then,

𝑐1𝐫𝑐1 + 𝑐2𝐫𝑐2 +⋯ + 𝑐𝑛𝐫𝑐𝑛 = 𝟎, (25)

where each 𝑐𝑖 ≥ 0 is the joint compliance associated with 𝐭𝑖 and each 𝐫𝑐𝑖 is the perpendicular vector from the center of compliance 𝐶𝑐 to the
joint axis of 𝐭𝑖. □

Proposition 1 reveals the relationship between the location of the stiffness center and a set of springs connected in parallel that
realize the behavior. The stiffness weighted average distance from the stiffness center to the spring axes is zero.

This result indicates the analogy between the stiffness center of a set of springs connected in parallel and the mass center of a
set of particle masses. For a set of particles (𝑚1, 𝑚2,… , 𝑚𝑛), if (𝐫1, 𝐫2,… , 𝐫𝑛) are the corresponding position vectors from the center
of mass 𝐺 to the locations of particles, then,

𝑚1𝐫1 + 𝑚2𝐫2 +⋯ + 𝑚𝑛𝐫𝑛 = 𝟎, (26)

which indicates that the mass weighted average distance from the mass center to the particles is zero. Thus, Eq. (12) for the stiffness
center is analogous to Eq. (26) for the mass center.

Dual to the stiffness and parallel mechanism relationship, an analogy between the compliance center associated with a set of
compliant joints and the mass center associated a set of mass particles can be drawn in a similar way.

There is one significant difference between the relation between the elastic behavior centers and elastic components and the
relation between mass centers and particle masses. Note that in an arbitrary coordinate frame, the location of the mass center can
be expressed as the mass weighted average of particle position:

𝐫𝐺 =
𝑚1𝐫1 + 𝑚2𝐫2 +⋯ + 𝑚𝑛𝐫𝑛

𝑚1 + 𝑚2 +⋯ + 𝑚𝑛
, (27)

here 𝐫𝑖 is the position vector of mass 𝑚𝑖. The location of stiffness center 𝐫𝑘 (or compliance center 𝐫𝑐), however, cannot be interpreted
n terms of the vectors 𝐫𝑘𝑖 (or 𝐫𝑐𝑖) in the same form of Eq. (27). This is because, unlike the particle mass case (in which each 𝐫𝑖 is
the position of a point), each 𝐫𝑘𝑖 (𝐫𝑐𝑖) is the perpendicular vector from the frame to a line (screw axis). If the origin of the frame is
changed, the point on the spring axis associated with the perpendicular vector is also changed. However, with some modification,
the location of stiffness center 𝐫𝑘 (and compliance center 𝐫𝑐) can be expressed in an arbitrary frame in a form similar to Eq. (27) as
shown below.

3.2. Centers in an arbitrary frame

The results described above apply to the perpendicular position vectors of the spring/joint axes relative to the center of stiff-
ness/compliance. The following results apply to position vectors of spring/joint axes and the position vector of stiffness/compliance
center in an arbitrary frame.

Suppose 𝑃𝑘𝑖 is the point on the spring wrench 𝐰𝑖 associated with the perpendicular distance vector 𝐫𝑘𝑖 from the stiffness center
𝐶𝑘 as illustrated in Fig. 2. For each spring wrench 𝐰𝑖, point 𝑃𝑘𝑖 is unique. In an arbitrary frame, we have:
5
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Fig. 2. Stiffness center in an arbitrary coordinate frame. Geometric relation: 𝐫𝑃 𝑖 = 𝐫𝑘 + 𝐫𝑘𝑖.

roposition 3. In an arbitrary frame, if 𝐫𝑘 is the position vector identifying the location of stiffness center 𝐶𝑘, and 𝐫𝑃 𝑖 is the position vector
from the frame origin 𝑂 to point 𝑃𝑘𝑖, then

𝐫𝑘 =
𝑘1𝐫𝑃1 + 𝑘2𝐫𝑃 2 +⋯ + 𝑘𝑛𝐫𝑃𝑛

𝑘1 + 𝑘2 +⋯ + 𝑘𝑛
. (28)

Proof. From the geometry illustrated in Fig. 2,

𝐫𝑃 𝑖 = 𝐫𝑘 + 𝐫𝑘𝑖. (29)

Thus,
𝑛
∑

𝑖=1
𝑘𝑖𝐫𝑃 𝑖 =

𝑛
∑

𝑖=1
𝑘𝑖(𝐫𝑘 + 𝐫𝑘𝑖) = (

𝑛
∑

𝑖=1
𝑘𝑖)𝐫𝑘 +

𝑛
∑

𝑖=1
𝑘𝑖𝐫𝑘𝑖. (30)

By Proposition 1, the second sum in Eq. (30) is zero. Hence,

(
𝑛
∑

𝑖=1
𝑘𝑖)𝐫𝑘 =

𝑛
∑

𝑖=1
𝑘𝑖𝐫𝑃 𝑖, (31)

which proves Eq. (28). □

Similarly, suppose that a compliance matrix 𝐂 is realized with an 𝑛-joint serial mechanism at a configuration described by
joint twists (𝐭1, 𝐭2,… , 𝐭𝑛) and that 𝑃𝑐𝑖 is the point on the axis of twist 𝐭𝑖 associated with the perpendicular distance vector from the
compliance center to the axis. In an arbitrary frame, we have:

Proposition 4. In an arbitrary frame, if 𝐫𝑐 is the position vector identifying the location of the compliance center 𝐶𝑐 , and 𝐫𝑃 𝑖 is position
vector from the frame origin 𝑂 to point 𝑃𝑐𝑖, then

𝐫𝑐 =
𝑐1𝐫𝑃1 + 𝑐2𝐫𝑃2 +⋯ + 𝑐𝑛𝐫𝑃𝑛

𝑐1 + 𝑐2 +⋯ + 𝑐𝑛
. (32)

Note that, unlike Eq. (27) for the mass center of a particle mass system, Eq. (28) (or Eq. (32)) cannot be used directly to find
the stiffness (or compliance) center location because the screw axis perpendicular position vectors are not known. Propositions 3
and 4 are merely generalizations of Propositions 1 and 2 that take the form of Eq. (27). These results, however, can be used to find
behavior center locations directly from a description of the mechanism geometry and component stiffnesses (as shown below).

3.3. Center location from mechanism screws

Using the results presented above, the location of the stiffness/compliance center can be determined from the mechanism
geometry alone without calculating the stiffness matrix.

Consider an 𝑛-spring parallel mechanism described by spring wrenches 𝐰𝑖 (𝑖 = 1, 2,… , 𝑛) with line-of-action 𝐬𝑖 (spring axis) of
each 𝐰𝑖 expressed as:

𝐬𝑖 =
[

𝐧𝑖
𝐫𝑖 × 𝐧𝑖

]

, 𝑖 = 1, 2,… , 𝑛, (33)

where 𝐧𝑖 is the unit direction vector of the spring axis 𝐰𝑖, and 𝐫𝑖 is the perpendicular vector from arbitrary coordinate frame origin
𝑂 to the spring axis 𝐬𝑖 at point 𝑇𝑖 as illustrated in Fig. 3.

In order to determine the location of the stiffness center, consider an arbitrary point 𝑃 in space having position vector

𝐫 = [𝑥, 𝑦, 𝑧]𝑇 (34)

in an arbitrary coordinate frame 𝑂𝑥𝑦𝑧. Let 𝐫𝑝𝑖 (from 𝑃 to 𝑃𝑖) be the perpendicular vector from 𝑃 to spring axis 𝐬𝑖, 𝐫𝑡𝑖 be the vector
6

from 𝑇𝑖 to 𝑃 , and 𝐫𝑛𝑖 be the vector from 𝑇𝑖 to 𝑃𝑖 along 𝐧𝑖 as illustrated in Fig. 3.
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Fig. 3. The perpendicular vector from an arbitrary point 𝑃 to spring axis 𝐬𝑖. Vector 𝐫𝑝𝑖 is a linear function of 𝐫 = [𝑥, 𝑦, 𝑧]𝑇 determined by Eq. (35).

Since 𝐧𝑖 is a unit vector and 𝐫𝑝𝑖 ⟂ 𝐧𝑖, vector 𝐫𝑛𝑖 can be expressed as:

𝐫𝑛𝑖 = (𝐧𝑖 ⋅ 𝐫𝑡𝑖)𝐧𝑖 = 𝐧𝑇𝑖 (𝐫 − 𝐫𝑖)𝐧𝑖 = 𝐧𝑖𝐧𝑇𝑖 (𝐫 − 𝐫𝑖).

sing the vector relations:

𝐫𝑝𝑖 = 𝐫𝑛𝑖 − 𝐫𝑡𝑖, 𝐫𝑡𝑖 = 𝐫 − 𝐫𝑖,

ector 𝐫𝑝𝑖 can be expressed as:

𝐫𝑝𝑖 = (𝐧𝑖𝐧𝑇𝑖 − 𝐈)(𝐫 − 𝐫𝑖), 𝑖 = 1, 2,… , 𝑛, (35)

here 𝐈 is the 3 × 3 identity matrix.
Since each 𝐫𝑝𝑖 in Eq. (35) is the perpendicular vector from point 𝑃 to the spring axis 𝐬𝑖, if 𝑃 is the stiffness center, by Proposition 1,

he 𝑛 vectors 𝐫𝑝1, 𝐫𝑝2, . . . , 𝐫𝑝𝑛 must satisfy

𝑘1𝐫𝑝1 + 𝑘2𝐫𝑝2 +⋯ + 𝑘𝑛𝐫𝑝𝑛 = 𝟎. (36)

For given spring axes (𝐬1, 𝐬2,… , 𝐬𝑛) and spring rates (𝑘1, 𝑘2,… , 𝑘𝑛), Eq. (36) is a linear equation for the position vector 𝐫 of the
tiffness center. If we denote:

𝐐𝑖 = 𝐧𝑖𝐧𝑇𝑖 − 𝐈, (37)

nd

𝐐 =
𝑛
∑

𝑖=1
𝑘𝑖𝐐𝑖, 𝐯 =

𝑛
∑

𝑖=1
𝑘𝑖𝐐𝑖𝐫𝑖,

hen, Eq. (36) can be written as
𝑛
∑

𝑖=1
𝑘𝑖𝐐𝑖(𝐫 − 𝐫𝑖) = 0 ⟹ 𝐐𝐫 = 𝐯.

In the generic case, the 3 × 3 matrix 𝐐 is full rank. Hence, the location of the stiffness center 𝐶𝑘 is uniquely determined by:

𝐫𝑘 = 𝐐−1𝐯. (38)

Using this result, the location of the stiffness center can be determined directly from the screws used in the behavior realization
ithout first calculating the stiffness matrix then using Eq. (5).
By duality, if the joint axis twist is given in the form of Eq. (9), and 𝐫𝑖 is the perpendicular vector from the frame to the axis of

𝑖, then the location of the stiffness center 𝐶𝑐 is uniquely determined by:

𝐫𝑐 = 𝐏−1𝐮, (39)

here

𝐏 =
𝑛
∑

𝑖=1
𝑐𝑖𝐐𝑖, 𝐮 =

𝑛
∑

𝑖=1
𝑐𝑖𝐐𝑖𝐫𝑖,

nd 𝐐𝑖 is the 3 × 3 matrix defined in Eq. (37).

. Stiffness center locus from mechanism topology and geometry

In this section, the geometric description of the stiffness center locus for parallel mechanisms having different numbers of springs
s presented. The locus for a given mechanism topology does not involve solving Eq. (38), only a geometric analysis of Proposition 1.
ince torsional springs only contribute to the 3 × 3 diagonal block matrix 𝐃 of 𝐊 in Eq. (2), they have no influence on the location
f the stiffness center. In the following, only springs having the line-of-action in the form of Eq. (33) are considered.
7

For a single spring, the stiffness center can be anywhere on the spring axis.
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Fig. 4. The center of stiffness associated with a 2-spring system. (a) Generic case. The locus of stiffness centers is a line segment 𝑃1𝑃 2 on the common
erpendicular of the two spring axes. (b) The two spring axes intersect. The stiffness center is located at the intersection 𝑃 . (c) The two spring axes are parallel.
he stiffness center locus is the area between the two spring axes.

.1. Systems with 2 springs

Consider a 2-spring system having spring wrenches 𝐰1 and 𝐰2. By Proposition 1,

𝑘1𝐫𝑘1 + 𝑘2𝐫𝑘2 = 𝟎, (40)

where 𝐫𝑘1 and 𝐫𝑘2 are the perpendicular vectors from 𝐶𝑘 to screw axes 𝐬1 and 𝐬2. Eq. (40) indicates that vectors 𝐫𝑘1 and 𝐫𝑘2 must be
collinear. Consider the following 3 cases.

Case 1: Spring axes are not coplanar (generic case). For this case, the stiffness center 𝐶𝑘 must be located on the common
perpendicular 𝑙𝑐 of the two axes of 𝐰1 and 𝐰2. Since both 𝑘1 and 𝑘2 are non-negative, 𝐶𝑘 must be located on the line segment
of 𝑙𝑐 between 𝑃1 and 𝑃2 as shown in Fig. 4a. Thus, for a generic 2-spring system, the locus of stiffness centers is line segment 𝑃1𝑃 2
n the common perpendicular of the two springs axes.
If the values of 𝑘1 and 𝑘2 are specified, the location of 𝐶𝑘 on 𝑙𝑐 is uniquely determined by Eq. (40). The location of the stiffness

enter can be identified on the line segment 𝑃1𝑃 2 by the distance from 𝑃1 or 𝑃2:

𝑑1 =
𝑘2

𝑘1 + 𝑘2
𝑑, 𝑑2 =

𝑘1
𝑘1 + 𝑘2

𝑑, (41)

where 𝑑𝑖 is the distance from 𝑃𝑖 to 𝐶𝑘 and 𝑑 is the length of line segment 𝑃1𝑃 2 as illustrated in Fig. 4a.
Now consider the two cases when the two spring wrenches are coplanar.
Case 2: Spring axes intersect at 𝑃 . For this case, the center of stiffness must be located at intersection point 𝑃 (Fig. 4b) regardless

of the values of 𝑘1 and 𝑘2.
Case 3: Spring axes are parallel. The locus of stiffness center 𝐶𝑘 is the area between the two spring axes as illustrated in Fig. 4c.

If the two spring rates are specified, the distances of 𝐶𝑘 to the two spring axes (Fig. 4c) can be calculated using Eq. (41). The center
can be anywhere on this line between and parallel to the two spring axes.

4.2. Systems with 3 springs

Consider a 3-spring system described by spring wrench 𝐰1, 𝐰2 and 𝐰3. In order to obtain the locus of stiffness centers, let
𝐫 = [𝑥, 𝑦, 𝑧]𝑇 be the position vector of the stiffness center 𝐶𝑘 from an arbitrarily specified frame. Then, using Eq. (35), the
perpendicular vector from 𝐶𝑘 to the spring axis of 𝐰𝑖 is:

𝐫𝑘𝑖 = (𝐧𝑖𝐧𝑇𝑖 − 𝐈)(𝐫 − 𝐫𝑖), 𝑖 = 1, 2, 3, (42)

where 𝐫𝑖 is the perpendicular vector from the coordinate frame to the spring axis of 𝐰𝑖 as illustrated in Fig. 3. By Proposition 1,

𝑘1𝐫𝑘1 + 𝑘2𝐫𝑘2 + 𝑘2𝐫𝑘2 = 𝟎 (43)

must be satisfied by some values of 𝑘1, 𝑘2 and 𝑘3. Thus, the three vectors 𝐫𝑘1, 𝐫𝑘2 and 𝐫𝑘3 must be co-planar, which means

(𝐫𝑘1 × 𝐫𝑘2) ⋅ 𝐫𝑘3 = 0. (44)

Since each 𝐫𝑘𝑖 in Eq. (44) is a linear function in (𝑥, 𝑦, 𝑧), Eq. (44) defines a cubic surface in space. The stiffness center must be
n this surface. It can be seen that the three spring axes 𝐬𝑖 and the three common perpendiculars 𝑙𝑖𝑗 formed by any two lines 𝐬𝑖 and
𝑗 are also on this cubic surface.
It should be noted that not every point on the surface defined by Eq. (44) is the location of a stiffness center associated with the

-spring system. Since each 𝑘𝑖 in Eq. (43) is nonnegative, the locus of stiffness center locations is bounded. The boundary of this
rea is determined by the three spring axes 𝐬𝑖 and the three common perpendiculars 𝑙𝑖𝑗 .
Suppose 𝑃𝑖𝑗 and 𝑃𝑗𝑖 are the two points respectively on 𝐬𝑖 and 𝐬𝑗 associated with the common perpendicular 𝑙𝑖𝑗 as illustrated in

ig. 5. The six line segments 𝑃12𝑃 21, 𝑃21𝑃 23, 𝑃23𝑃 32, 𝑃32𝑃 31, 𝑃31𝑃 13, 𝑃13𝑃 12 are on the surface and form a closed polygonal chain
8

𝛤 . The locus of stiffness center locations is the area on the cubic surface enclosed by 𝛤 (as shown in Fig. 5).
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Fig. 5. The locus of stiffness centers is the area on the cubic surface enclosed by the closed polygonal chain with vertices 𝑃12 , 𝑃21 , 𝑃23 , 𝑃32 , 𝑃31 and 𝑃13.

Fig. 6. Three special cases. (a) The three spring axes are concurrent. The stiffness center is located at the intersection point. (b) The three spring axes are
co-planar. The stiffness center is located inside the triangle formed by the tree spring axes. (c) The three spring axes are parallel. The stiffness center is located
anywhere on a line 𝑙𝑐 inside the triangular prism formed by the three spring axes.

In some special cases, the surface defined in Eq. (44) degenerates to a single point or other simpler space. Consider the following
cases.
Case 1: Spring axes are concurrent. For this case, the stiffness center 𝐶𝑘 is located at the intersection point regardless of the

alues of 𝑘1, 𝑘2 and 𝑘3 as illustrated in Fig. 6a.
Case 2: Spring axes are co-planar. For this case, the locus of stiffness centers is a triangular area enclosed by the 3 spring axes

s illustrated in Fig. 6b. For any given set of non-negative (𝑘1, 𝑘2, 𝑘3), the center is located at a point within the triangle.
Case 3: Spring axes are parallel. For this case, the locus of stiffness centers is the space of a triangular prism formed by the three

pring axes. For any given set of non-negative (𝑘1, 𝑘2, 𝑘3), the center is located anywhere on a straight line 𝑙𝑐 parallel to the three
pring axes inside the triangular prism as illustrated in Fig. 6c.

.3. Systems with 4 springs

Consider a system having 4 springs. For every combination of three spring axes (𝐬𝑖, 𝐬𝑗 , 𝐬𝑞), a cubic surface can be obtained using
q. (44):

(𝐫𝑘𝑖 × 𝐫𝑘𝑗 ) ⋅ 𝐫𝑘𝑞 = 0. (45)

n area 𝛤𝑖𝑗𝑞 on the surface bounded by the six line segments is determined by the three spring axes and the three common
erpendiculars (as described in Section 4.2). In the generic case, there are 4 distinct cubic surface areas (one for each 3-spring
ombination). Since every two areas share three of their boundary line segments, the union of the 4 areas:

𝛤1234 = ∪𝛤𝑖𝑗𝑞 (46)

s a closed surface in space. The space V enclosed by 𝛤1234 is the locus of stiffness center locations for the 4-spring system.
Because of the shared lines, V has 4 faces and 10 edges (as illustrated in Fig. 7) that are uniquely determined by the locations

f the 4 spring axes. Each face 𝛤𝑖𝑗𝑞 is a portion of the cubic surface defined in Eq. (44) by three spring axes, with 3 spring axes and
the 3 common perpendiculars being its edges.

4.4. Systems with more than 4 springs

For an 𝑛-spring system with 𝑛 > 4, every combination of four spring axes (𝐬𝑖, 𝐬𝑗 , 𝐬𝑞 , 𝐬𝑟) forms a space V𝑖𝑗𝑞𝑟 enclosed by 4 faces as
described in Section 4.3. An 𝑛-spring system has

𝑚 = 𝐶4 = 𝑛! (47)
9

𝑛 4!(𝑛 − 4)!
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Fig. 7. Locus of stiffness center locations associated with a 4-spring system. Locus space V is enclosed by portions of 4 cubic surfaces determined by the 4
ombinations of any 3 spring axes.

ounded spaces. The union of all 𝑚 such spaces is the locus of the stiffness centers associated with the 𝑛-spring system:

V = ∪V𝑖𝑗𝑞𝑟. (48)

t can be proved that, in the generic case, V is a connected 3-dimensional bounded space.

.5. Compliance center locus and 𝑛-joint serial mechanisms

In physics, a compliance is defined as the inverse of the stiffness. As such, a compliance matrix 𝐂 is normally full-rank. In an
-joint serial compliant mechanism described by joint twists (𝐭1, 𝐭2,… , 𝐭𝑛), each joint having joint compliance 𝑐𝑖 contributes a rank-1
PSD matrix

𝐂𝑖 = 𝑐𝑖𝐭𝑖𝐭𝑇𝑖 (49)

defined as the joint compliance matrix [22]. A compliance matrix 𝐂 associated with an 𝑛-joint serial mechanism can be defined using
Eq. (10). As such, all results for the locus of center locations described in Sections 4.1–4.4 for bounding 𝐶𝑘 in 𝑛-spring parallel
echanisms apply to bounding 𝐶𝑐 in 𝑛-joint serial mechanisms.

. Discussion and conclusion

In this section, a discussion of the results is provided and a conclusion is then presented.

.1. Discussion

Propositions 1–4 identify the analogy between the stiffness/compliance center for a system of elastic components and the mass
enter for system of mass particles. Eq. (12) indicates that the center of stiffness is closer to the spring axis that has the highest spring
ate. When the stiffness of a spring increases, the stiffness center moves toward the axis of that spring. Similarly, for a compliance
ssociated with a serial mechanism, the compliance center is closer to the joint axis that has the highest joint compliance. When
he compliance of a joint increases, the compliance center moves toward the joint axis of that joint. In most cases, the two centers
re not at the same location in space.
In [7], the relationship between the locations of wrench-compliant axes and the stiffness center was investigated. It was shown [7]

hat, if 𝐫𝑘𝑖 is the perpendicular vector from the stiffness center to wrench-compliant axis 𝐰𝑓𝑖, then

𝑘𝑓1𝐫𝑘1 + 𝑘𝑓2𝐫𝑘2 + 𝑘𝑓3𝐫𝑘3 = 𝟎, (50)

here 𝑘𝑓𝑖 is the translational stiffness associated with 𝐰𝑓𝑖. As shown in [23], a stiffness 𝐊 can be expressed as

𝐊 =
3
∑

𝑖=1
𝑘𝑓𝑖𝐰𝑓𝑖 +

3
∑

𝑖=1
𝑘𝛾𝑖𝐰𝛾𝑖, (51)

here each 𝐰𝑓𝑖 is the eigenwrench (unit screw of the wrench-compliant axis), each 𝐰𝛾𝑖 is a unit couple in the form of Eq. (7)
along the direction of an eigentwist), and each 𝑘𝛾𝑖 is the rotational stiffness associated with 𝐰𝛾𝑖. Thus, 𝐊 can be viewed as being
epresented (and therefore realized) by 3 screw springs along the 3 wrench-compliant axes and 3 torsional springs. It can be seen
hat Eq. (50) is a special case of Proposition 1 that applies only to the eigenwrenches of the behavior.
The center of elasticity defined in [5] is the geometric center of the three eigenwrenches, which is independent of the three

stiffnesses 𝑘𝑓𝑖’s. Thus, the center of elasticity is not directly related to the set of compliant component locations of mechanisms that
realize the behavior.

It is known [2,9] that, in the generic case, the location of the stiffness center in space is unique. As shown in [9], when non-
niqueness occurs, the stiffness center either can be located anywhere in space or is located on a straight line. In terms of the
tiffness associated with an 𝑛-spring system, using the result of Proposition 1, it can be proved that the location of the stiffness
10
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center is not unique if and only if the behavior is realized with either a set of torsional springs or a set of springs having parallel
pring axes. For the first case, the locus of stiffness centers is the entire space. For the second case, the locus of stiffness centers is
straight line parallel to and surrounded by the spring axes.
For a given mechanism, the space of possible locations of the center of stiffness/compliance for all possible spring/joint stiffness

alues can be determined using the results of Section 4. The space is bounded by the locations of spring/joint axes and their common
perpendiculars (lines in space). For a mechanism with specified geometry, if a desired compliant behavior has a center outside the
space for that mechanism (as described in Section 4), the behavior cannot be realized by the mechanism regardless of the values
of spring/joint stiffness. Thus, for a given mechanism, the space of compliant behaviors is very limited even if each spring/joint
stiffness is infinitely adjustable.

It should be noted that the restrictions identified in Section 4 on the locus of behavior centers are only necessary conditions for
he realization of the elastic behavior. A compliant behavior that has a center within the locus does not guarantee that it can be
ealized with the mechanism. To ensure the realization of a compliant behavior, additional conditions are needed [17,20,24].

.2. Conclusion

In this paper, the relationships between the mechanism geometry and the centers of stiffness and compliance are investigated.
he results provide a more intuitive physical interpretation of behavior centers and clearly show an analogy between the center of
tiffness/compliance realized with a parallel/serial mechanism and the center of mass for a particle mass system. Using the theory,
he location of the stiffness/compliance center can be determined from the mechanism geometry and the value of each spring/joint
tiffness. The locus of stiffness/compliance center locations can also be determined from the mechanism geometry for all possible
alues of spring/joint stiffnesses. This ability is useful as a guide in the design and construction of mechanisms that realize desired
ompliant behaviors.
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