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considered in a machine learning pipeline to predict overall survival (primary end-point) and
local and regional tumour control (secondary end-points); serially, imaging features were consid-
ered for optional model improvement. Finally, patients were stratified into high-, intermediate-,
and low-risk groups.

Results: Performance score, AJCC*™ stage, pack-years, and Age were identified as predictors for
overall survival, demonstrating good performance in both the training cohort (c-index = 0.72
[95% CI, 0.66—0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69—0.83], 0.73 [0.68
—0.77], and 0.75 [0.68—0.80]). Excellent stratification of patients with HNC into high, interme-
diate, and low mortality risk was achieved; with 5-year overall survival rates of 17—46% for the
high-risk group compared to 92—98% for the low-risk group. The addition of morphological
image feature further improved the performance (c-index = 0.73 [0.64—0.81]). These models
are integrated in a clinic-ready interactive web interface: https://uic-evl.github.io/hnc-predictor/
Conclusions: Robust model-based prediction was able to stratify patients with HNC in distinct
high, intermediate, and low mortality risk groups. This can effectively be capitalised for perso-
nalised radiotherapy, e.g., for tumour radiation dose escalation/de-escalation.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Head and neck cancer (HNC) affects almost 650,000
individuals and causes 350,000 deaths worldwide
annually [1]. Historically, the main etiological HNC risk
factor was smoking; hence, HNC incidence rates were
expected to decrease along with the decline in societal
smoking [2—5]. Yet, HNC cases increased due to a
relatively new epidemiological subtype, human papil-
loma virus (HPV)-related HNC, which affects relatively
younger patients and is associated with much better
prognosis compared to HPV-negative HNC [6,7].

Radiotherapy is a cornerstone for curative HNC treat-
ment. To date, a ‘one-dose-fits-all’ approach is deployed,
1.e., all patients receive roughly similar tumour radiation
dose prescription based mainly on historic pre-HPV clinical
trials. Currently, personalising radiation dose to optimise
tumour control is relatively unexplored. For instance, only
tumour stage (i.e., early stage versus locally advanced) is
used to select eligible patients in recent dose-escalation
clinical trials, aiming to improve treatment control by
increasing the radiation tumour dose [8—11]. The risk of
severe radiation-induced sequelae from dose-escalation [10]
makes improved selection a vital unmet need. On the other
hand, patients with a low risk of treatment failure might
benefit from de-intensified treatment, e.g., MR-guided dose
de-escalation [12]. To date, attempts at therapeutic de-
intensification in large heterogenous cohorts without
patient-specific criteria have been uncompelling [13—15];
consequently, granular treatment outcome estimation for
directed dose modification remains a substantive opportu-
nity for HNC treatment personalisation.

Robust treatment outcome prediction based on
multifactorial clinical variables is thus crucial to
improve treatment success and establish effective per-
sonalised radiotherapy [16,17]. While clinical models
have been developed [18—21], they are largely unused;
clinical implementation has been hampered due to the

lack of clinically useful prediction tools that are backed
by large representative multi-institutional dataset for
training and validation. Additionally, radiomics features
— tumour-specific characteristics quantified from medi-
cal images — have been shown to improve HNC treat-
ment outcome prediction [22—24]. An approach to add
imaging features to well-established clinical models is
needed for robust radiomics applications.

The main aim was to establish a large-scale multi-
institutional standard for a more individualised outcome
prediction in patients with HNC of overall survival (OS)
and oncologic outcomes (i.e., local [LC] and regional
control [RC]) following radiotherapy using large high-
quality international datasets (>4500 patients with HNC).
Additionally, an interactive web-based risk prediction tool
was pursued to make the models direct clinically actionable
for clinicians. Finally, we present a serial prediction model
approach, where the clinical models can be enriched by an
optional imaging component (Fig. 1A).

2. Methods
2.1. Patient considerations

The MD Anderson Cancer Center (MDACC) Big Data
Radiotherapy HNC collection effort has been initiated for
this study. The prospective and retrospective data collec-
tion was approved by the MDACC Institutional Review
Board [PA14-0947/RCR03-0800]. This dataset was used
for training and independent validation. Prospectively
collected data from the University Medical Center Gro-
ningen (UMCG) were used for external validation (Stan-
dardized Follow-up Program: NCT02435576). The
publicly available data from Princes Margret Hospital
(PMH) on The Cancer Imaging Archive (TCIA) were used
for additional external validation [25].

Inclusion criteria for all cohorts included: (1) proven
squamous cell carcinoma of the head and neck, (2)
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Fig. 1. Study overview. (A) Serial prediction model design. The ‘fundamental clinical model’ component is the core component as it is based
data of >4500 patients; the ‘predicted risk(%)’ can be refined with the ‘optional imaging component’, using radiomics features to improve the
outcome risk prediction (‘refined Predicted Risk (%)’) to stratify patients in low-, intermediate-, and high-risk patients. The imaging
component can be dynamically updated with future technical developments. (B) Datasets for clinical model training, validation, and external
validation. Partial cases are patient that are missing at least one variable. Only complete cases were used for the validation of the models.

treatment with definitive or adjuvant radiotherapy with/
without chemotherapy, and (3) no prior head and neck
radiation. Patients were treated from 2001 to 2019, 2007
to 2020, and 2005 to 2010 at MDACC, UMCG, and
PMH, respectively. Prescribed tumour doses were
60—72 Gy, as detailed previously by each institution
[23,26,27].

2.2. Outcome measures

The primary prediction end-point was OS. The sec-
ondary end-points were LC and RC, which were defined
as recurrent, progressive, or residual disease of the pri-
mary tumour or regional lymph nodes after radio-
therapy, respectively (with death as a censor). Time-to-
event was measured from start of radiotherapy until the
event, alternatively data were censored at last follow-up
date. Systematic follow-up was part of the standard of
care in both treatment centres: every 3 months in year 1,
followed by every 6 months thereafter.

2.3. Clinical variables definitions

The clinical variables (and categorisations) considered in
this study were demarcated as follows: gender (female,
male); age (<55, 55—65, 6575, >75); performance

score (0, 1, >2); smoking status (current, former, never);
pack-years (<5, 5—25, 26—50, >50); T-stage (TO-1, T2,
T3, T4); N-stage (NO-2a/b, N2c¢, N3); tumour site
(oropharynx [OPC], larynx, hypopharynx, nasopharynx,
oral cavity); HPV status (positive and negative), and
tumour stage AJCC*™ (1, 11, III, IV) [28]. The AJCC5™"
staging was generated from the T-stage, N-stage,
tumour site and HPV status with in-house developed
algorithm (eMethods). If HPV status was unknown/
unspecified, it was assumed as HPV-negative for non-
OPC cases. Categorisation was determined on the
Kaplan—Meier curves in the training data to meet
adequate proportionality testing (e¢Fig. 1).

2.4. Statistical analysis

The MDACC dataset was split into a training and in-
dependent validation cohort for the clinical model
development (Fig. 1B). The data with all variables
collected (i.e., complete cases) were split with a 60:40
ratio into training:validation data. Cases with missing
variables (i.e., partial cases) were added to the training
set. Only complete cases were considered for the inde-
pendent and external validation cohorts.

Step-wise forward variable selection was employed to
select variables for the Cox regression OS, LC, and RC
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model based on likelihood ratio test with a Bonferroni-
corrected significance level of p < 0.005. Repeated se-
lection was performed on 10 imputed datasets using
Multivariate Imputation by Chained Equations (R-
package ‘mice’ v3.13.0) with predictive mean matching
across 25 iterations [29]. Based on the variable selection
and intervariable correlation results, potential models
were tested in the validation cohorts. The final models
were used for patient stratification. The final OS model
was compared with a model based on A4JCC*" alone
with the likelihood ratio test.

2.5. Risk-based patient stratification

Patients were stratified into high-, intermediate-, and
low-risk groups based on the predicted 2-year mortality
risk derived from the Cox regression clinical models.
These 2-year mortality risk thresholds were visually
determined in the training cohort by evaluating the
Kaplan—Meier curves for the different risk groups.

2.6. Imaging prediction component

For a subset of patients with available pre-treatment
contrast-enhanced CT scans, image characteristics of the
primary tumour were quantified in geometric and
texture radiomics features using previously developed
libraries [30,31], according to the Image Biomarker
Standardisation Initiative [32]. Features were selected
with bootstrapped forward stepwise variable selection
(1000 samples). Subsequently, model improvement was
tested for the addition of these features to the clinical
risk prediction (i.e., linear predictor).

3. Results
3.1. Patients

A total of 4611 HNC patients were used for the ana-
lyses: training (MDACC; n = 2241), independent test
(MDACC; n = 786), external validation cohort 1
(UMCG; n = 1087), and external validation cohort 2
(PMH; n = 497). Patient characteristics per cohort are
shown in Table 1. Noteworthy differences between co-
horts were seen in HPV status (ranging from 16 to 71%)),
OPC incidence  (30—100%), and  pack-years
(n = 20—31). Imputation of clinical variables was only
performed in the training cohort for pack-years (5%
missing), performance score (16%), and HPV status
(19%). The overall median follow-up time was 3.6 year
(interquartile range [IQR]: [1.6—6.0]), and for censored
patients (i.e. excluding patients that die) only 4.3 year
[IQR: 2.1-6.7] (site specific, MDACC: 4.1 [2.1-6.6],
UMCG: 3.2 [1.7-5.1], and PMH: 8.0 [6.1-9.3]).

3.2. Association of clinical variables and treatment
outcome

For OS, univariable analyses showed that all clinical
variables were significant (p < 0.0001), except gender
(eTable 1). For LC or RC, all variables were significant,
except age and gender (p > 0.106), and N-stage for LC
(p = 0.189).

For comprehensive multivariable model analyses and
iterations, please refer to eResults 1.

For OS, the final model included the following clin-
icodemographic variables: performance score, AJCCS™"
stage, pack-years, and age (Table 2); note that AJCC™
stage is based on T- and N-stage, tumour site, and HPV-
status. The performance of the OS clinical model was
good in both the MDACC training (c-index = 0.72 95%
CI [0.66—0.77]) and independent validation cohort (c-
index = 0.76 [0.69—0.83]). External validation showed
good performance in both the UMCG cohort (c-
index = 0.73 [0.68—0.77]) and PMH cohort (c-
index = 0.75 [0.68—0.80]). AJCC%" staging alone was
significantly inferior (p < 0.0001) to clinical OS model
with c-indices: training 0.65 [0.59—0.71]; test 0.72
[0.64—0.80]; UMCG 0.67 [0.62—0.72]; PMH 0.69
[0.62—0.76].

The final LC model contained T-stage, HPV status,
performance score, and pack-years, with resultant c-
indices: training: 0.74 [0.70—0.78]; testing: 0.71
[0.58—0.84]; external wvalidation: 0.70 [0.62—0.76]
(UMCQG); and 0.74 [0.59—0.89) (PMH). T-stage (HR:
T2, 4.19 [2.19-8.03]); T3, 4.36 [2.22—8.58]; T4, 5.02
[2.56—9.83]) and HPV status (HR: 0.5 [0.34—0.73]) were
the most dominant factors in predicting LC.

The final RC model included 4JCC*" stage, tumour
site, and performance score as component variables
(Table 2). Resultant c-indices showed training: 0.74
[0.69—0.78]; testing: 0.73 [0.57—0.89]; external valida-
tion: 0.7 [0.62—0.77] (UMCG) and 0.71 [0.48—0.94]
(PMH). While N-stage can be expected to be an
important predictor for RC, the combination of tumour
characteristics in the A4JCC*" outperformed N-stage
alone.

Overall, the calibration plots and
Hosmer—Lemeshow analyses showed good calibration
of the models in the comparator cohort (eFig. 2). Yet,
significant calibration deviation was seen for the OS
model in the external cohorts.

3.3. Model-based patient stratification

The survival curves of patients stratified based on their
model-based predicted 2-year mortality risk (2y-risk) are
shown in Fig. 2. Based on the training cohort, the best
separation was seen for predicted 2y-risk lower than 5%
(low-risk), between 5 and 25% (intermediate-risk), and
higher than 25% (high risk). The average observed 5-
year OS was 95% (range: 93—98%) for the low-risk
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Table 1
Demographics for training, independent validation, and two validation cohorts.
MDACC MDACC UMCG TCIA PMH p-value
training validation validation validation
N 2241 786 1087 497
Age (mean (SD)) 59.48 (10.14) 59.74 9.74) 64.17 (10.56) 60.16 (9.90) <0.001
Sex (%)
Female 373 (17) 130 (17) 324 (30) 105 21 <0.001
Male 1868 (83) 656 (83) 763 (70) 392 (79)
T stage (%) <0.001
TO 53 ) 17 ?2) 2 0) 0 0)
T1 507 (23) 178 (23) 196 (18) 90 (18)
T2 788 (35) 288 37 262 24) 162 (33)
T3 453 (20) 162 21) 251 (23) 146 (29)
T4 414 (18) 136 (17) 376 (35) 99 (20)
Tx 26 e 5 (e 0 0) 0 0)
N stage (%) <0.001
NO 487 (22) 152 (19) 435 (40) 82 (16)
N1 276 (12) 116 (15) 130 (12) 48 (10)
N2a-b 1081 (48) 356 (45) 279 (26) 202 (41)
N2c 318 (14) 141 (18) 202 (19) 123 (25
N3 79 4) 21 3) 37 3) 42 ®)
HPYV status (%) <0.001
Negative 617 (28) 288 37) 912 (84) 142 (29)
Positive 990 (44) 498 (63) 175 (16) 355 (71)
Unknown 634 (28) 0 0) 0 0) 0 0)
Site (%) <0.001
Oropharynx 1382 (62) 462 (59) 328 (30) 497 (100)
Larynx 420 (19) 179 (23) 446 (41) 0 0)
Oral Cavity 314 (14) 95 (12) 263 (24) 0 0)
Hypopharynx 50 2) 32 4) 26 2) 0 (0)
Nasopharynx 22 (1) 0 (0) 23 2) 0 (0)
Unkown primary 53 2) 18 (2) 1 (0) 0 (0)
AJCC3™ stage (%) <0.001
I 605 27 271 34 159 (15) 156 3D
II 368 (16) 157 (20) 163 (15) 137 (28)
111 349 (16) 143 (18) 247 (23) 106 @2n
IVa 472 21) 206 (26) 491 (45) 87 (18)
IVb 29 (€))] 9 (€))] 27 ?2) 11 ?2)
Unknown 418 (19) 0 (0) 0 (0) 0 (0)
Performance score (%) <0.001
0 850 (38) 397 (51) 619 (57) 323 (65)
1 620 (28) 319 (41) 350 (32) 125 (25)
>2 181 ®) 70 (C)] 118 (11) 49 (10)
Unknown 590 (26) 0 0) 0 0) 0 0)
Smoking status (%) <0.001
Never 773 (34) 301 (38) 175 (16) 144 (29)
Former 998 (45) 360 (46) 457 (42) 198 (40)
Current 453 (20) 125 (16) 427 39) 155 @31)
Unknown 17 (€9 0 0) 28 3) 0 0)
Pack years (mean (SD)) 22.03 (33.69) 20.01 (28.19) 30.77 (23.90) 24.35 (24.67) <0.001
Chemotherapy (%) <0.001
None 446 (20) 115 (15) 696 (64) 254 (51)
Concurrent 1060 47 410 (52) 389 (36) 243 (49)
Induction 218 (10) 100 (13) 1 0) 0 0)
Induction + concurrent 480 21 161 (20) 1 (0) 0 (0)
Unknown 37 2 0 0) 0 0) 0 0)
Technique (%) <0.001
3DCRT 211 Q) 9 (e 14 e 0 0)
IMRT 1496 (67) 450 (57) 517 (48) 497 (100)
VMAT 466 21) 292 37) 401 37) 0 0)
IMPT 68 3) 35 “4) 111 (10) 0 0)
Unknown 0 0) 0 0) 44 4) 0 0)
Radiotherapy type (%) <0.001
Primary 1727 (77) 644 (82) 852 (78) 497 (100)
Post-operative 251 (11) 40 %) 230 (21) 0 0)
Unknown 263 (12) 102 (13) 5 0) 0 0)
Mortality events (%) 635 (28) 148 (19) 402 37 206 4n <0.001
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Table 1 (continued)

MDACC MDACC UMCG TCIA PMH p-value
training validation validation validation
Local failure events (%) 233 (10) 70 149 (14) 46 ) <0.001
Regional failure events (%) 182 8) 48 105 (10) 31 (6) 0.005

Abbreviations: SD: standard deviation; HPV, human papilloma virus; 3DCRT, three-dimensional conformal radiotherapy; IMRT, intensity-
modulated radiotherapy; VMAT, volumetric-modulated arc therapy; IMPT, intensity-modulated proton therapy.

group, 65% (58—79%) for the intermediate-risk group,
and 29% (17—42%) for the high-risk group. Notably, the
proportion of MDACC and PMH patients stratified as
low risk (20% and 26%) was substantially larger
compared to the UMCG patients (8%). See eFigures
R1.2 and R1.3 for LC and RC analyses.

Prediction based on AJCC3™ staging alone gives a
single 2y-risk per category (x-axis Fig. 3-left), while a
sizeable spread can be seen per category in 2y-risk
calculated by the clinical model (y-axis). Fig. 3 shows
that only a select portion of the Stage I is low risk (2y-
risk<5%), and limited number of Stage III-IV patients
are high risk (2y-risk>25%). The ‘by-the-model-identi-
fied’ high-risk patients were correctly classified as the
majority of these patients died (Fig. 3-right).

3.4. Web interface prediction and stratification tool

The clinically usable prediction tool was implemented in
an interactive web interface https://uic-evl.github.io/hnc-
predictor/employing the final clinical models. Here, the
clinical variables of a new patient (c.g., age) can be
interactively submitted, whereafter the patient-specific
predicted OS, LC, or RC curves can be calculated.
Finally, by submitting the desired 2-y risk threshold, the
new patient is stratified into being low, intermediate,
high risk of OS, LC, and/or RC.

3.5. Models in tumour site sub cohorts

The clinical models performed well in two largest sub-
cohorts: OPC (n = 2930 patients) and larynx
(n = 1257) with c-indices of 0.77/0.76/0.71 and 0.70/
0.63/0.73 for OS/LC/RC, respectively (eFig. 3). The
model performance (c-index: 0.66/0.67/0.64) was lower
for the oral cavity patients (n = 805). Overall, the
calibration of the models was good, yet the actual
mortality risk was higher than predicted for the OPC
and oral cavity patients (Hosmer—Lemeshow p-val-
ue<0.05), which was comparable to the total cohort.
The number of hypopharynx (n = 136), nasopharynx
(n = 56), and unknown primary (n = 73) patients was
too low to draw reliable conclusions (eFig. 3).

3.6. Imaging component

For the radiomics features, 455 MDACC patients were
used for training, and 229 UMCG and 430 PMH

patients for external validation. The bootstrapped step-
wise forward selection identified the ‘minor axis length’
of the primary tumour as the most frequently selected
geometric predictor for OS (eResults 2). This image
feature significantly added (likelihood ratio test;
p = 0.004) to predicted risk from clinical model (i.e.,
linear predictor). Compared to the clinical model (c-
index = 0.72 [0.63—0.81]), the performance of this
combined model increased slightly (c-index 0.73
[0.64—0.81]). While the validation c-index increase was
more pronounced in the UMCG cohort (from 0.71
[0.62—0.81] to 0.74 [0.64—0.83]), no performance
improvement was seen in the PMH validation cohort
(from 0.74 [0.67—0.80] to 0.74 [0.67—0.81]). No robust
features could be identified for LC and RC (eResults 2).

4. Discussion

The clear stratification of patients with HNC into high,
intermediate, and low risk of mortality (Fig. 2) by the
models can be effectively used for personalised radio-
therapy, e.g., selecting high-risk patients for tumour
radiation dose escalation or low-risk patients for dose
de-escalation. The impressive survival differences for
patients who are nominally in the same AJCC (including
HPV) risk category allows for more directive and
granular patient-by-patient risk differentiation. For
example, OPC HPV-positive patients are considered for
de-escalation trials [13—15], yet our findings show that
4% and 14% of these patients have a 2-y mortality of
>25% and >15%, respectively, for which dose de-
escalation may not be advisable. By using this interna-
tional big dataset of more than 4500 patients, this study
establishes a benchmark for robust OS, LC, and RC
prediction in patients with HNC. Additionally, the
clinic-ready web-based tool calculates and visualises the
expected survival and tumour outcome for new indi-
vidual patients (https://uic-evl.github.io/hnc-predictor/).
The underlying model code, radiomics, and clinical
data are publicly shared in a Figshare repository:
https://doi.org/10.6084/m9.figshare.21303000.

All final clinical models included the patient’s per-
formance score; that poor(er) performance scores are
associated with poorer survival has been long recog-
nised [33,34], yet that tumour control is associated with
performance status is less intuitive. The composite
variable AJCC*" staging together with pack-years, age,
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Overall survival (OS)

Variables Category Coefficients Hazard ratio p value
Performance score 0 0 1 ref
1 0.469 1.6 (1.28—1.99) <0.0001
>2 0.781 2.18 (1.51-3.16) 0.0001
AJCC" stage I 0 1 ref
I 0.117 1.12 (0.76—1.65) 0.5545
111 0.679 1.97 (1.42-2.74) 0.0001
IVa 0.793 2.21 (1.66—2.94) <0.0001
IVb 1.509 4.52 (2.79—-17.33) <0.0001
Pack years <5 0 1 ref
5-25 0.267 1.31 (1.01-1.7) 0.0459
26—50 0.499 1.65 (1.3—2.08) <0.0001
>50 0.867 2.38 (1.78=3.17) <0.0001
Age <55 0 1 ref
56—65 0.085 1.09 (0.89—1.33) 0.4113
6575 0.400 1.49 (1.2—1.85) 0.0003
>75 0.753 2.12 (1.56—2.89) <0.0001
Local control (LC)
Variables Category Coefficients Hazard ratio p value
T stage T1 0 1 ref
T2 1.432 4.19 (2.19-8.03) <0.0001
T3 1.473 4.36 (2.22—8.58) <0.0001
T4 1.613 5.02 (2.56—9.83) <0.0001
HPYV status positive = 1 —0.694 0.5 (0.34—0.73) 0.0003
Performance score 0 0 1 ref
1 0.421 1.52 (1.05-2.22) 0.0276
>2 0.801 2.23 (1.38-3.59) 0.0010
Pack years <5 0 1 ref
5-25 —0.039 0.96 (0.58—1.6) 0.8807
26—50 0.294 1.34 (0.87—2.08) 0.1858
>50 0.496 1.64 (1.02—2.64) 0.0403
Regional control (RC)
Variables Category Coefficients Hazard ratio p value
AJCCS8th stage I 0 1 ref
I 0.442 1.56 (0.7—3.46) 0.2774
111 0.984 2.68 (1.28—5.59) 0.0089
IVa 1.567 4.79 (2.34-9.81) <0.0001
IVb 2.565 13 (4.76—35.55) <0.0001
Performance score 0 0 1 ref
1 0.573 1.77 (1.15-2.73) 0.0093
>2 0.793 2.21 (1.27-3.84) 0.0049
Tumour site Hypopharynx 0 1 ref
Larynx —0.118 0.89 (0.45—1.75) 0.7343
Oropharynx —0.648 0.52 (0.25—1.11) 0.0898
Oral cavity —0.853 0.43 (0.21—-0.88) 0.0203
Unknown Prim —1.140 0.32 (0.07—1.51) 0.1493
Nasopharynx —4.995 0.01 (0—21498.48) 0.9932
Model performance (c-index [95%CI])
mMbDACC MDACC validation UMCG external validation 1 MGH external validation 2
Training

Overall Survival (OS)

Local control (LC)

Regional control (RC)

0.72 [0.66—0.78]
0.74 [0.67—0.82]
0.74 [0.64—0.83]

0.76 [0.68—0.83]
0.71 [0.58—0.84]
0.73 [0.57—0.89]

0.73 [0.68—0.78]
0.70 [0.62—0.77]
0.7 [0.62—0.78]

0.75 [0.69—0.81]
0.75 [0.61—0.90]
0.74 [0.56—0.91]

Abbreviations: HPV, human papilloma virus; CI, confidence interval.

and performance score were included in the OS model;
hence, all clinical variables were directly or indirectly
incorporated in this model, except gender. Similar OS
risk factors have been observed in previous studies, age,

tumour location, smoking status, T and N-stage [20,35],
and later HPV status [18,19]. Beesley et al. developed a
US-trained/EU-validated multistate Bayesian clinical
prediction model for radiotherapy OPC patients to
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Fig. 2. Patient stratification based on predicted mortality risk. Survival curves for low risk (in green; 2-year mortality risk<5%), inter-
mediate risk (in orange; risk>5 and <25%), and high risk (in blue; >25%) in training, validation, and two external validation cohort. Note:
Follow-up time was truncated at 6 years for UMCG and 10 years for MDACC and PMH data. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

predict event likelihood parameters [36]. While the
modelling procedure was quite different, similar input
predictors were identified: T, N-stage, HPV status, age,
smoking status; notably, tobacco pack-years and per-
formance score were not included. Overall, these

findings suggest that despite distinct modelling ap-
proaches and datasets, convergent phenomena have
been observed.

For the LC prediction, 7-stage, HPV status, perfor-
mance score, and pack-years were selected. Since HPV
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Fig. 3. Predicted overall survival risk based on clinical model versus AJCC*" staging . Predicted 2-year mortality risk (y-axis) depicted per
AJCC3™ stage group (left); percentages on x-axis are risks predicted based on staging alone. Survival curves show clear split with model-
based risk stratification both in patients with low (right, top) and advanced AJCC*"" stage (right, bottom) patients. These figures are based

on the MDACC data.

status was highly correlated to tumour site (Rho = 0.89;
p < 0.0001), it is difficult to determine the impact of
tumour location on LC. In contrast, for RC, tumour site
showed added predictive value to AJCC*" staging,
which is interesting as it based on the tumour site. This
is likely due to the difference of the lymphatic tumour
spread per tumour location [37].

Outcome prediction was robust across multi-
institutional cohorts, even though they had distinct pa-
tient demographic profiles (Table 1); particularly, the
HPV-positive HNC incidence was substantially lower in
European compared to the North American cohorts.
Additionally, OPC, larynx, and oral cavity cancer sub-
analyses (eFig. 3) showed clinical applicable levels of
model performance and calibration. For the hypophar-
ynx, nasopharynx, and unknown primary cancer sub-
cohorts, caution is advised when applying these models
due to the sparse patient numbers.

The serial approach of building the prediction model
presented in this study (Fig. 1A) allows for flexible addi-
tion of imaging features. Higher OS risk was associated
with larger minor axis length of the tumour [32], which
represents an intuitive metric for tumour size. Previous
studies showed the relation between OS and features
indicating larger or more irregular tumours [22,23].

Texture features, in contrast to prior works [22—24],
failed to improve our model discrimination (eResults 2.2);
similar to a previous study [38]. This may be due to the
sensitivity of intensity/texture features to image acquisi-
tion discrepancies [39], arguing for improved image har-
monisation, standardisation, and image quality.

Limitations of the study cohort are that the majority
of tumour locations were OPC, larynx, and oral cavity,
underrepresenting hypopharynx, nasopharynx, and un-
known primary cases. While this is a representative of
the HNC clinical incidence, this may mean that the
presented models are not sufficiently tested for under-
represented tumour sites. Another challenge is the defi-
nition of local and RC, for which an event was broadly
defined as recurrent, progressive, or residual disease.
The detection residual/returning disease can be chal-
lenging [40] and is further complicated when no salvage
treatments are available or when patients are lost from
follow-up, and thus, no pathologic conformation, clin-
ical progression, or imaging can be obtained. This may
therefore potentially result in an underdetection bias of
disease control in the cohorts, which can influence ac-
curacy of the LC and RC models.

As with multi-site data aggregation and risk model-
ling efforts at large scale, there are intrinsic limitations
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as function of data availability, e.g., anaemia identified
by Beesley et al. was not recorded in these datasets [36].
Consequently, the utility of this (or any) predictive
model is necessarily predicated on input variables and
could be modified or altered with updated or augmented
data. Moreover, stage migration considerations between
AJCC 7th and 8th edition should be noted; for example,
extranodal extension was not always specified/recorded
as a formalised component of AJCC 7th ed. and may
have been obscured. Improved incorporation could
improve the models, or alternatively, it could be added
as a separate variable [36]. While we focus on OS, LC,
and RC, future work will focus on predicting distant
metastases and disease-free survival.

Nonetheless, this study is to our knowledge based on the
largest head and neck extant multi-site dataset, which
allowed for the development of statistically robust and
clinic-ready HNC risk models. This provides a benchmark
platform for extended future developments of image-
incorporating prediction methods, such as deep learning.
Moreover, the end-user-enabled web interface (GUI)
provides an accessible decision support tool for patient-
individual risk stratification for therapeutic selection.

5. Conclusion

Developed and assessed in this international ‘big-data’-
set, our prediction models presented excellent capacity
to stratify patients with HNC at high, intermediate, and
low mortality risk — outperforming AJCC*" staging.
This work sets a benchmark for robust OS, LC, and RC
risk prediction in radiotherapy HNC patients, which can
effectively be capitalised for personalised radiotherapy
with the clinic-ready web-based tool prediction tool for
new patients that does not require under-the-hood
knowledge of model mechanics (https://uic-evl.github.
io/hne-predictor/).
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