

1 **Interaction Effects of Indoor Environmental Quality Factors on Cognitive
2 Performance and Perceived Comfort of Young Adults in Open Plan Offices in
3 North American Mediterranean Climate**

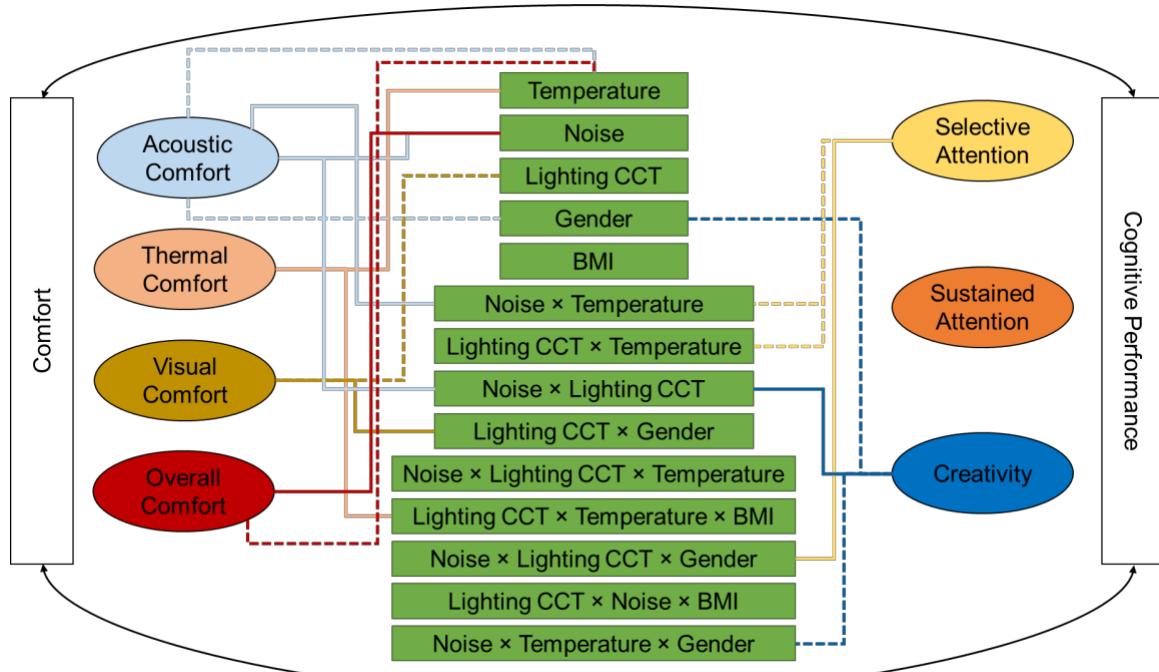
4 Mirmahdi Seyedrezaei ^a, Mohamad Awada ^a, Burcin Becerik-Gerber ^{a,*}, Gale Lucas ^b, Shawn
5 Roll ^c

6 ^a Department of Civil and Environmental Engineering, University of Southern California, USA

7 ^b USC Institute for Creative Technologies, University of Southern California, USA.

8 ^c Chan Division of Occupational Science and Occupational Therapy, University of Southern
9 California, USA

10 **ABSTRACT**


11 While Indoor Environmental Quality (IEQ) factors in an environment co-exist, the interaction
12 effects of these factors and their impacts on cognitive functioning and perceived comfort have not
13 been comprehensively examined. In this study, the interaction effects between temperature,
14 lighting Correlated Color Temperature (CCT), and noise levels on selective attention, sustained
15 attention, creativity, acoustics, thermal, visual, and overall IEQ comfort of young adults in open-
16 plan offices in North American Mediterranean climate were presented. In a mixed-design
17 controlled experimental setting, 52 young adults were recruited, and their objective cognitive
18 performance and subjective comfort were assessed through statistical analysis. The experimental
19 set points included [20 °C, 25 °C], [2700 K, 6500 K], and [50 dB, 65 dB] for temperature, lighting
20 color, and noise, respectively. Additionally, the work took into consideration the gender and Body
21 Mass Index (BMI) of participants. The results show that temperature moderated the effect of noise
22 level and lighting CCT on selective attention, while no effect of IEQ factors on sustained attention
23 was found. Creativity was influenced by gender and its interaction with the noise level. Concerning
24 perceived comfort, acoustic comfort varied significantly with temperature. Thermal comfort was
25 influenced by the combined moderating effect of lighting CCT and BMI on temperature, while
26 visual comfort was driven by the moderation effect of gender on lighting CCT. Overall comfort
27 was affected by the noise level and temperature. Finally, cognitive performance indicators were
28 correlated with perceived IEQ comfort votes. Based on the findings of this study, considerations
29 of interactions between noise, lighting CCT, temperature, gender, and BMI can shape occupant-
30 centric priorities for enhanced cognitive functioning and comfort.

31 **Graphical Abstract:**

* Corresponding author.

E-mail address: becerik@usc.edu (B. Becerik-Gerber).

32

33 **Keywords:** Indoor Environmental Quality; Indoor Environment; Cognitive Functions;
 34 Performance; Comfort; Interaction Effect.

35 INTRODUCTION

36 The influence of Indoor Environmental Quality (IEQ) factors on the learning experience in
 37 educational settings has been well-documented [1]. Looking ahead to 2030, the implementation
 38 of improved IEQ factors in workspaces holds great potential to not only enhance performance but
 39 also generate significant benefits totaling \$90 billion [2]. Consequently, researchers have
 40 extensively explored the individual impacts of specific IEQ factors on various indicators of
 41 cognitive performance and perceived comfort [3], [4]. However, it is crucial to recognize that the
 42 human sensory system is exposed to multiple indoor environmental factors, and therefore,
 43 occupants' cognitive functioning and perceived comfort are influenced by the combined effects of
 44 these factors rather than a simple sum of their individual contributions. This necessitates a
 45 comprehensive evaluation of the interactions between different domains of IEQ [5]. For instance,
 46 the interplay between noise and temperature can have an impact on cognitive performance,
 47 specifically attention levels [6]. In light of these considerations, the American Society of Heating,
 48 Refrigerating, and Air-Conditioning Engineers (ASHRAE) Guideline underscores the importance
 49 of understanding the interaction effects among IEQ factors on human comfort, well-being, and
 50 productivity. Consequently, it recommends conducting more detailed research in this area [7].

51 Cognitive functions refer to multiple mental abilities and cognitive domains, including learning,
 52 thinking, reasoning, remembering, problem-solving, decision-making, attention, executive
 53 functions, and creativity [8]–[10]. Attention and creativity are two of the main cognitive functions
 54 and abilities that drive performance and productivity in office and educational settings [11], [12].
 55 Attention involves multiple domains, including selective attention and sustained attention.
 56 *Selective attention* is defined as concentration on certain stimuli in the environment and not on
 57 others, enabling important stimuli to be distinguished from peripheral or incidental ones [13].
 58 Among the factors reported to hinder attention, increased temperature, presence of noise, and

59 lower lighting Correlated Color Temperature (CCT) stand out prominently [14]–[16]. *Sustained*
60 *attention* is defined as an attentional focus on a task for an extended length of time [13]. Empirical
61 evidence has demonstrated that task performance requiring sustained attention is generally
62 enhanced under warm-white lighting. Consequently, based on assessments specifically focused on
63 sustained attention, it is recommended to implement lighting with a 6500 K color temperature in
64 university learning environments [17]. *Creativity*, another cognitive function, is defined as the
65 ability to produce or develop original work, theories, techniques, or thoughts [13]. Previous studies
66 have highlighted the interaction effect between noise and heat on creativity [16]. Furthermore, the
67 blue lighting color has been identified as a condition that enhances creativity [18]. In contrast,
68 results of another study reported better performance in the verbal creative task under 3000 K
69 compared to the 6000 K condition in a 300 lx environment [19].

70 In addition to cognitive functions, the level of *perceived comfort* is strongly associated with
71 performance. Higher levels of perceived comfort are consistently linked to improved performance
72 rates. [20]. When examining IEQ factors, the notion of comfort has predominantly focused on
73 investigating physical and physiological sensations, as well as the subjective perception of specific
74 elements, including ambient noise, temperature, lighting brightness/color, and Indoor Air Quality
75 (IAQ) [21]. While research on IEQ factors' interaction effects has received increased attention
76 over the last few decades in the fields of cognitive neuroscience and neurophysiology, the effect
77 of IEQ factors' interaction on indoor environmental perception, including thermal
78 comfort, acoustic comfort, visual comfort, and overall indoor environmental comfort, has not been
79 comprehensively understood [22].

80 The perception of acoustic comfort is largely determined by variables such as noise level, noise
81 type, and noise frequency. Recently, researchers have been discussing the interaction between
82 acoustic and thermal conditions in relation to enhancing acoustic comfort [22]. These effects were
83 identified in some of the previous experimental studies, demonstrating that the impact of
84 increasing noise levels differs between warm and cold environments in terms of acoustic comfort
85 [23]. On the other hand, Tiller et al. [24] reported that acoustic comfort votes were not affected by
86 the ambient temperature [22]. In the realm of thermal comfort literature, thermal acceptability and
87 thermal preference are frequently employed as metrics to evaluate the personal experience of
88 thermal conditions in built environments [25]. Previous studies confirmed that thermal
89 acceptability has a lower threshold than thermal comfort, as occupants might find the environment
90 acceptable even if they do not feel completely comfortable [25], [26]. On the other hand, thermal
91 preference involves gauging occupants' direct inclinations for modifying the thermal environment
92 if they are in control. As a result, this concept finds extensive utility in personalized HVAC control
93 systems that involve human input [25], [27]. Concerning thermal perception, a variety of findings
94 are found in the literature. Thermal sensation, as another thermal comfort metric, was observed to
95 be unaffected by noise [22], [28]. However, higher thermal comfort was reported in conditions
96 with lower sound pressure levels (SPL) [29]. Additionally, previous research demonstrated that
97 thermal perception is sensitive to CCT changes (5700 K vs. 2700 K) in both warm environments
98 and cold environments, such that higher CCT could improve thermal comfort [30], [31]. While the
99 results concluded from using different thermal-comfort metrics are inconsistent, it is expected that
100 in the near thermal-neutral zone, the effect of temperature on acoustic comfort is relatively limited
101 [32]. With regard to visual comfort, the effect of lighting CCT is unclear. While participants of a
102 study evaluated the light in the 2700 K condition as warmer and dimmer and preferred the 2700 K
103 over 5700 K in terms of color and brightness, their visual comfort did not significantly differ
104 between the two CCTs [31]. Moreover, lighting color perception was observed to depend on room

105 temperature [33]. Indoor environmental comfort, as an overall index to assess the physical indoor
106 environment, can be driven by IEQ factors [22]. For instance, the thermal environment and
107 acoustic environment were reported to have significant effects on overall comfort in certain
108 seasons [34].

109 Furthermore, gender and Body Mass Index (BMI) can result in different IEQ perceptions that may
110 affect cognitive functioning and perceived comfort [5], [35]. However, the findings of previous
111 studies are inconsistent. For instance, women were reported to be more susceptible to temperature
112 fluctuations [36], whereas another study found men to be more sensitive to temperature sensations
113 in hot environments [28]. Additionally, while certain studies have suggested a limited impact of
114 BMI on thermal sensation [37], the majority of previous research indicates that individuals with
115 higher BMI tend to perceive environmental conditions as comparatively warmer than those with
116 lower BMI [35].

117 The current body of research on interaction effects primarily focuses on two domains of IEQ,
118 namely thermal and visual, thermal and acoustic, thermal and IAQ, and acoustic and visual [5].
119 However, the findings from these studies have been inconclusive and contradictory [5], [38].
120 Interactions involving three and more IEQ factors have not been explored comprehensively by
121 utilizing both objective and subjective indicators of cognitive performance and comfort.
122 Additionally, the moderation effect of individual differences (e.g., gender and BMI) on IEQ effects
123 is unknown for most of the previously explored interactions. Essential physical environmental
124 factors such as temperature, lighting color, and noise level have not been experimentally examined
125 in terms of their combined effects on occupants' cognitive functioning and perceived comfort, to
126 the best of our knowledge [5]. Built on this motivation, this study aims to investigate the cross-
127 dimensional effects of background noise, air temperature, lighting CCT, gender, and BMI on
128 cognitive functioning and perceived comfort. The main research questions of this study are:

- 129 • What are the interactive effects of air temperature, background noise, lighting CCT,
130 gender, and BMI on attention and creativity as cognitive performance indicators?
- 131 • What are the interactive effects of air temperature, background noise, lighting CCT,
132 gender, and BMI on the acoustic, thermal, and visual comfort of occupants?

133 **METHODOLOGY**

134 To examine the potential interaction effects of noise, lighting color, and temperature on various
135 indicators of cognitive performance and perceived comfort, an experimental study was devised
136 involving human subjects within a controlled environment. A mixed-design approach was
137 employed to assess the potential interplay of different IEQ factors on attention, creativity, and
138 comfort. Furthermore, to gain a deeper understanding of the relationships between objective
139 cognitive performance and subjective perceived comfort, a correlation analysis was conducted.

140 **Participants**

141 Prospective participants were initially evaluated through a survey and subsequently excluded if
142 they met any of the following criteria: visual impairment, color blindness, pregnancy, heart-related
143 illnesses, wrist/hand injuries, or extreme sensitivity to fluctuating levels of lighting color,
144 temperature, and noise. Participants' demographic information, along with their height and weight,
145 was collected during this initial screening process. Eligible individuals were invited to participate
146 in the experiment.

147 A total of 52 young adults (Avg=22.92, SD=3.64 years old) participated in the study, comprising
148 an equal number of male and female college students who were all over 18 years of age.
149 Participants' BMI (Avg=24.13, SD=5.41 kg/m²) was categorized as healthy (n=39) or
150 overweight/obese (n=13) if their BMI fell into ranges of [18.5-24.9] or [>25], respectively [32].
151 The sample size was determined based on a power analysis conducted using G*Power 3.1.9.7
152 software [39] and deemed to be adequate for achieving 80% power to detect within-between
153 interactions in a factorial Analysis of Variance (ANOVA) test, with an effect size of $f=0.17$ and a
154 significance level of $\alpha=0.05$. As young students in university, participants might have different
155 cognitive functioning and comfort perceptions regarding IEQ factors compared to the other
156 demographic groups. Therefore, generalization of the results to larger populations should be
157 carried out with caution [40].

158 **Experimental Design**

159 An experimental study approach in a controlled environment was chosen to ensure identical test
160 conditions for participants in each experimental group. A 2 (temperature levels) \times 2 (noise levels)
161 \times 2 (lighting CCT levels) mixed-subjects design was implemented, where the lighting CCT and
162 noise level were within-subject factors, and the temperature was a between-subject factor. In each
163 of the experimental groups, the temperature was kept constant, while the four within-subject
164 measures differed in either noise level or lighting CCT. The order of the four environmental
165 conditions across the participants of each group was randomized using a Latin square design [41].
166 The simultaneous examination of objective cognitive performance metrics and subjective comfort
167 within the context of varying acoustic, thermal, and visual conditions represent a pioneering
168 approach in this field of study. However, it is important to acknowledge that certain limitations
169 were encountered in experimental design. IEQ factors are not limited to temperature, lighting
170 color, and noise level [42]. However, considering more than three factors involves statistical
171 complexities and requires much larger sample sizes, which can be facilitated by allocating proper
172 incentives in future studies.

173 **Experimental Conditions**

174 To emulate the acoustic environment of an open-plan office, we chose to incorporate background
175 speech noise levels of 50 dB and 65 dB. These particular noise levels were selected based on prior
176 research that has demonstrated their efficacy in inducing performance hindrance and discomfort,
177 respectively [43]–[45]. To minimize ambient noise during the study, the Bose QuietComfort 35
178 headphones were employed for provisioning both noise conditions [46]. To generate the
179 background noise, crowd-talking noise was selected, which was produced by the Soundjay
180 platform [47], [48]. Decibel levels were measured with a BAFX digital sound meter [49]. To
181 replicate the thermal environment found in office settings, temperatures of 25°C (77°F) and 20°C
182 (68°F) were chosen, as representatives of warm and cool indoor thermal conditions, respectively.
183 These temperature setpoints fall within the range reported in previous studies conducted in
184 California [50], while the recommended and actual cooling and heating setpoints vary with respect
185 to geographical location, climatic condition, and building properties [51]–[54]. For thermal
186 comfort purposes, the American Society of Heating, Refrigerating and Air-Conditioning Engineers
187 (ASHRAE) recommends that temperature could range between 19 and 28 °C [55], [56]. Moreover,
188 the California Department of General Services recommends winter setpoints no higher than 20 °C
189 and summer setpoints no lower than 25.6 °C, except in cases where specific job requirements may
190 pose health and safety risks [57]. Similarly, the Occupational Safety and Health Administration

191 (OSHA) suggests temperature control in the range of 20-24°C, along with humidity control
 192 between 20% and 60% [58]. Furthermore, the Pacific Energy Center considers the comfort zone
 193 to be within the range of 20-27°C in California [59]. The chosen setpoints have also been explored
 194 as thresholds for defining overly cold (<20 °C) or excessively warm (>25.6 °C) conditions in
 195 educational settings in California [60]. Additionally, previous research indicates that adjusting the
 196 cooling setpoint to 25 °C and the heating setpoint to 20 °C can yield significant energy-saving
 197 benefits without compromising satisfaction levels [61]. Taking into account the existing literature
 198 and guidelines, we chose temperatures of 25°C and 20°C to realistically replicate the indoor
 199 environmental stressors while ensuring they fall within realistic ranges. Pro1 Model T771 was
 200 used to set the thermal set points [62]. Participants were asked to wear single-layer clothing. IAQ
 201 factors including CO₂ level, Particulate Matter (PM) 2.5, and Total Volatile Organic Compounds
 202 (TVOC) were collected via the Awair Omni sensor [63]. The descriptive statistics of these factors
 203 across cool and warm thermal settings is provided in **Table 1**. The significance of IAQ factors
 204 across two thermal settings was tested and the results of covariate analysis are provided in the
 205 Appendix C. Also relative humidity was within the 36%-41% range across all the environmental
 206 conditions. Regarding lighting CCT, 2700 K and 6500 K were chosen as two common
 207 representatives of warm and cool lighting colors, respectively [64]. To prepare lighting CCT
 208 conditions, four floor lamps equipped with Torkase 10W Smart Light Bulbs were utilized [65].

209 **Table 1.** The average and standard deviation of IAQ factors in the cool and warm thermal
 210 settings

Thermal Settings	IAQ factors		
	CO ₂ (ppm)	PM 2.5 (µg/m ³)	TVOCs (ppb)
Cool	740 (±88)	0.77 (±16)	227 (±100)
Warm	813 (±110)	1.44 (±45)	528 (±365)

211 The experiment took place in a student office in Los Angeles, having a North American
 212 Mediterranean climate, where there were no additional environmental stimuli other than the
 213 defined environmental setpoints. The room had no natural daylight. Apart from the controlled
 214 environmental conditions, the eye-level illuminance level was 225 lux (±10). **Figure 1** depicts a
 215 sample view of the experimental setting. Although the experimental setting enabled us to control
 216 the variables and monitor the effects of interventions carefully, it represents one type of office
 217 space, and additional caution should be taken while generalizing to the various types of offices
 218 (e.g., shared offices with windows, private offices, etc.) [5].

219

220

Figure 1. Experimental setting

221 Measurements

222 Cognitive performance tests include the Stroop test, continuous performance test (CPT), and
223 remote associates test (RAT) to assess selective attention, sustained attention, and creativity. The
224 range of Estimated Marginal Mean (EMM) for the accuracy of cognitive performance indicators
225 was [0-1] (0: the lowest accuracy, 1: the highest accuracy). The perceived environmental comfort
226 involved acoustic comfort, thermal comfort, visual comfort, and overall comfort, all assessed by
227 the subjective votes of participants.

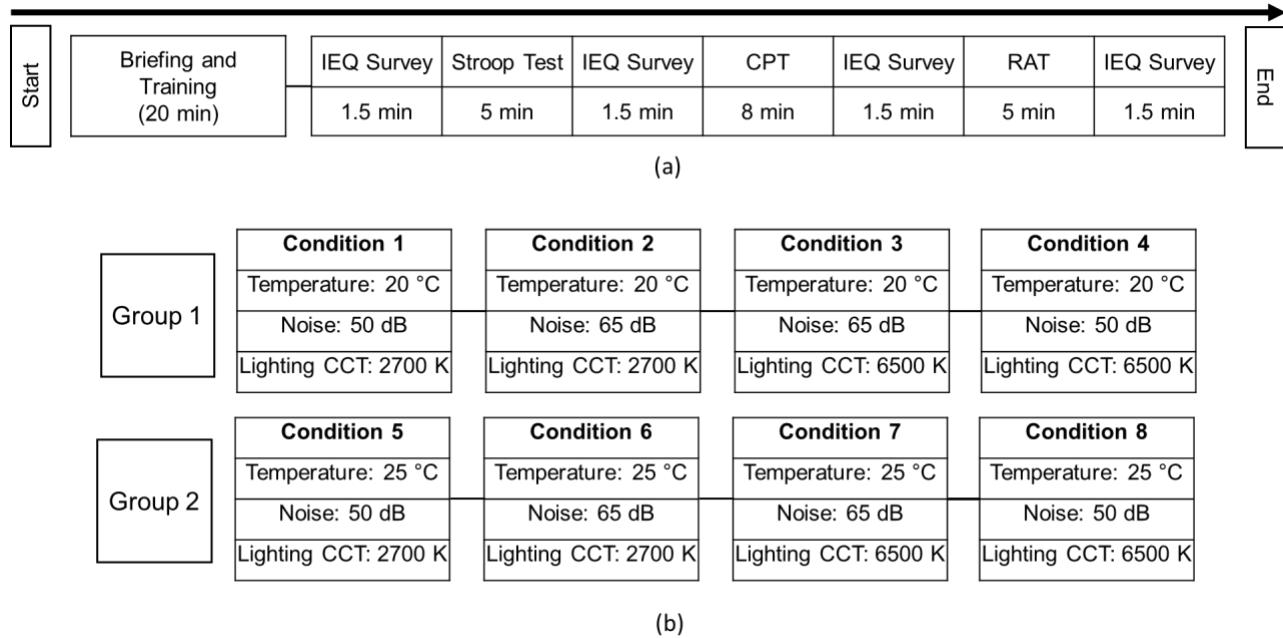
228 Cognitive performance tests

229 **Stroop Test:** The Stroop test is a well-established measure of selective attention, representing an
230 individual's capacity to overcome a previously learned response [66]. During the test, participants
231 were presented with 120 colored words, including the names of four colors (red, green, blue, and
232 yellow), in either a consistent or inconsistent ink color. For instance, the word "blue" might be
233 printed in green ink. Half of the 120 trials displayed color words in a consistent ink color, while
234 the other half presented color words in an inconsistent ink color. Each word was presented on the
235 screen for one second, followed by a blank screen for another second before the next colored word
236 appeared. Participants were required to press the corresponding color-labeled keystroke based on
237 the ink color they perceived, indicating the ink, not the color associated with the nature of the
238 word. Colored pieces of paper covered each number key to facilitate this association. The incorrect
239 response was defined as either failing to respond within two seconds or pressing the wrong key.
240 To prevent any learning effect across subsequent experimental conditions of the test, the order of
241 the trials was randomized [67].

242 **CPT:** CPT is a type of assessment that measures an individual's sustained attention and
243 concentration [13]. In our study, a version of the CPT was used that consisted of 16 stimuli created
244 by combining four shapes (star, circle, square, and triangle) with four colors (yellow, red, white,
245 and blue). Participants were shown a total of 320 stimuli on the screen, each appearing for 0.3
246 seconds and followed by a one-second inter-stimulus interval before the next stimulus was
247 presented. Participants were instructed to press the "Enter" keystroke only if they saw a "red star,"
248 which was the designated target stimulus. If a participant failed to respond within the allotted time
249 or pressed the keystroke when a non-target stimulus appeared, the response was marked as
250 incorrect. The target stimulus, color-conjunctive distractors (red non-star), shape-conjunctive
251 distractors (non-red star), and non-conjunctive distractors (non-red and non-star) accounted for

252 30%, 17.5%, 17.5%, and 35% of all trials, respectively. To minimize any potential learning effect,
253 the order of stimulus presentation was randomized [67].

254 **RAT:** Remote association is a link between one item in a list or series and another item that does
255 not adjoin it [13]. In the present study, the RAT was used to measure creativity by assessing an
256 individual's ability to make connections between words that are not directly adjacent to each other
257 [10], [68]. Participants were presented with three words on the screen and asked to generate a
258 fourth word that was conceptually related to the other three cues, such as the words "cream,"
259 "skate," and "water" being linked by the word "ice." The word bank used in the study was compiled
260 from previously published research [69]. Ten trials were conducted without time constraints, and
261 each set of words had a single correct answer. Accuracy scores were calculated based on the
262 number of correct answers obtained out of ten trials for each experimental condition. There were
263 no identical triplets among all the word sets presented to each participant.


264 **Environmental Comfort Votes:** Four surveys were conducted to solicit participants' subjective
265 evaluations of their comfort levels pertaining to noise, temperature, lighting color, and overall
266 environmental conditions. To accurately quantify participants' comfort levels, a five-point Likert
267 scale was utilized, which is widely employed in IEQ studies [70]. The scale ranged from one to
268 five, indicating "very uncomfortable," "slightly uncomfortable," "neither uncomfortable nor
269 comfortable," "slightly comfortable," and "very comfortable," respectively. The questions
270 included in the surveys were selected based on prior scientific publications [71]–[73] and
271 guidelines [7]. For each IEQ comfort domain, the average of corresponding votes collected in the
272 four surveys was considered for analysis.

273 **Procedure**

274 Upon arrival at the study location, participants were presented with informed consent and
275 subsequently gave their consent to participate in the experiment. The Institutional Review Board
276 (IRB) of the University of Southern California approved the study, and all relevant guidelines and
277 regulations were adhered to throughout the entire experimental procedure. Participants were given
278 the option to withdraw from the experiment at any point.

279 The experimental session commenced with a briefing on the experiment, including instructions on
280 the tasks to be performed. Subsequently, participants underwent a training session to familiarize
281 themselves with the computer tasks and clarify any questions or issues before beginning the
282 experiment. Four combinations of noise and light conditions were presented to participants for
283 each thermal condition (between-subject factor), as illustrated in **Figure 2**. Participants completed
284 three computer-based tasks in a predetermined sequence for each experimental condition (**Figure**
285 **2**). The sequence of tasks was standardized, starting with the Stroop test, followed by the CPT,
286 and concluding with the RAT. The Psychopy software version 2022.2.4 [74] was employed to
287 administer all tests, and participants' performance was evaluated based on their accuracy. At the
288 beginning of each condition, participants were asked to rate their perceived comfort (IEQ survey)
289 regarding the acoustic, thermal, visual, and overall. The entire experiment's duration was
290 approximately 135 minutes. As a typical experimental study, the duration of exposure to
291 environmental stressors was short, which might be significantly less than the real working/studying
292 hours of young adults and office workers [75]. Additionally, it should be noted that the exposure
293 duration time might affect the IEQ interaction effects on occupants' cognitive functioning and
294 perceived comfort [31], while some studies reported that the effect of IEQ factors on cognitive

295 functioning has some lagged effects [75]. The experiments were conducted using HP Pavilion
296 Desktop TP01 [76].

297
298 **Figure 2.** An overview of experimental design: **(a)** procedure, **(b)** environmental conditions
299 **Analysis**

300 The statistical analysis employed a repeated-measures analysis of covariance (ANCOVA) to
301 investigate the research questions. A 2 (noise level: 50 dB or 65 dB) \times 2 (lighting CCT: 2700 K or
302 6500 K) \times 2 (temperature: 20°C or 25°C) was designed. To examine the potential impact of gender
303 (female or male) and BMI status (healthy or overweight/obese), additional analyses were
304 conducted by including these variables as between-subject factors in conjunction with temperature.
305 The dependent variables in the repeated measures ANCOVA included both objective performance
306 indicators (accuracy) and subjective comfort ratings regarding IEQ factors. The significance level
307 was set at 0.05, and the marginal significance level was set at 0.10. For selective attention, four
308 participants were removed from the analysis since their scores in the first condition were
309 considered outliers, more likely because of insufficient dedicated attention in the training session
310 of the experiment and, thus, failure to perform properly as the experiment started. Additionally,
311 bivariate correlation analysis was conducted to explore correlations between subjectively
312 perceived comfort votes and objective cognitive performance indicators. The significance level for
313 correlation analysis was set at 0.05. All the data analysis was conducted using the SPSS 28
314 software [77].

315 **RESULTS AND DISCUSSION**

316 This section outlines the results of the statistical analysis, including the main and interaction effects
317 of noise level, lighting CCT, temperature, gender, and BMI on each dependent variable (i.e.,
318 selective attention, sustained attention, creativity, acoustic comfort, thermal comfort, visual
319 comfort, and overall comfort). The significance of the examined effects exhibits variation across
320 all the variables under investigation. Notably, the findings related to the three-way interactions
321 contribute novelty to the existing literature. Concerning two-way interactions, the current study's

322 outcomes both replicate certain earlier investigations and contradict others, thus aligning with the
 323 prevailing inconsistencies found in prior scholarly works. The descriptive statistics, including the
 324 mean and standard deviation of the cognitive performance indicators and comfort votes, are
 325 presented in Appendix A.

326 **Cognitive functions**

327 **Selective attention**

328 The results show no significant main effect of lighting CCT, temperature, noise, gender, or BMI
 329 on participants' selective attention assessed by the response accuracy in the Stroop test. However,
 330 the significance of interaction effects was considerable (**Table 2**).

331 **Table 2.** Effects of IEQ factors and individual differences on selective attention

Tests of Within-Subjects Contrasts				
Effect	df	F	p	η^2
Noise	1,46	0.056	0.814	0.001
Noise × Temperature [†]	1,46	2.875	0.097	0.059
Lighting CCT	1,46	0.243	0.624	0.005
Lighting CCT × Temperature [†]	1,46	3.390	0.072	0.069
Noise × Lighting CCT	1,46	0.131	0.719	0.003
Noise × Lighting CCT × Temperature	1,46	0.459	0.501	0.010
Noise × Gender	1,44	0.838	0.365	0.019
Noise × Temperature × Gender	1,44	0.010	0.922	0.000
Lighting CCT × Gender	1,44	0.004	0.951	0.000
Lighting CCT × Temperature × Gender	1,44	2.178	0.147	0.047
Noise × Lighting CCT × Gender *	1,44	6.351	0.015	0.126
Noise × Lighting CCT × Temperature × Gender	1,44	1.121	0.296	0.025
Noise × BMI	1,44	0.009	0.926	0.000
Noise × Temperature × BMI	1,44	0.441	0.510	0.010
Lighting CCT × BMI	1,44	0.022	0.881	0.001
Lighting CCT × Temperature × BMI	1,44	0.076	0.784	0.002
Noise × Lighting CCT × BMI	1,44	0.182	0.672	0.004
Noise × Lighting CCT × Temperature × BMI *	1,44	5.466	0.024	0.110
Tests of Between-Subjects Effects				
Effect	df	F	p	η^2
Temperature	1,46	0.691	0.410	0.015
Gender	1,44	0.657	0.422	0.015
Temperature × Gender	1,44	0.138	0.712	0.003
BMI	1,44	0.441	0.510	0.010
Temperature × BMI	1,44	1.156	0.288	0.026

332

333

*: p < 0.05, [†]: 0.05 < p < 0.10

With regard to selective attention, a marginally significant interaction effect was observed between noise and temperature ($F_{1,46} = 2.875, p = 0.097, \eta_p^2 = 0.059$), indicating that the impact of temperature on selective attention scores was moderated by the level of noise (Table 2). Specifically, under high noise conditions, the average selective attention score was lower in the warm temperature compared to the cool temperature ($M_{65\text{dB},25^\circ\text{C}}=0.925$ vs. $M_{65\text{dB},20^\circ\text{C}}=0.941$), while under low noise conditions, the lowering effect of higher temperature was relatively minimal ($M_{50\text{dB},25^\circ\text{C}}=0.931$ vs. $M_{50\text{dB},20^\circ\text{C}}=0.933$) (Figure 3a). Clinical research provided evidence of significant activation in the cingulate cortex and dorsolateral prefrontal cortex while doing attention-involving tasks [78]. Given that high noise levels and high temperatures can impair cognitive functioning and decrease attention by reducing the prefrontal cortex's ability to process information [79], [80], the observed interaction between noise and temperature is explainable from a physiological perspective. As reviewed by Hygge and Knez, there exists evidence suggesting an interaction between noise and temperature within the range of [20°C-30°C] and acoustic conditions spanning [37dB-85dB]. This suggests that, in the context of attentional tasks, a moderate rise in temperature can potentially counterbalance an increased noise level. However, Hygge and Knez could not identify any evidence for the interplay between noise and elevated temperatures beyond the aforementioned parameters [16]. Given that temperatures exceeding 30°C and noise levels surpassing 85dB are atypical scenarios in office environments, the absence of studies addressing this noise and temperature interaction within these environmental conditions can be reasonably understood.

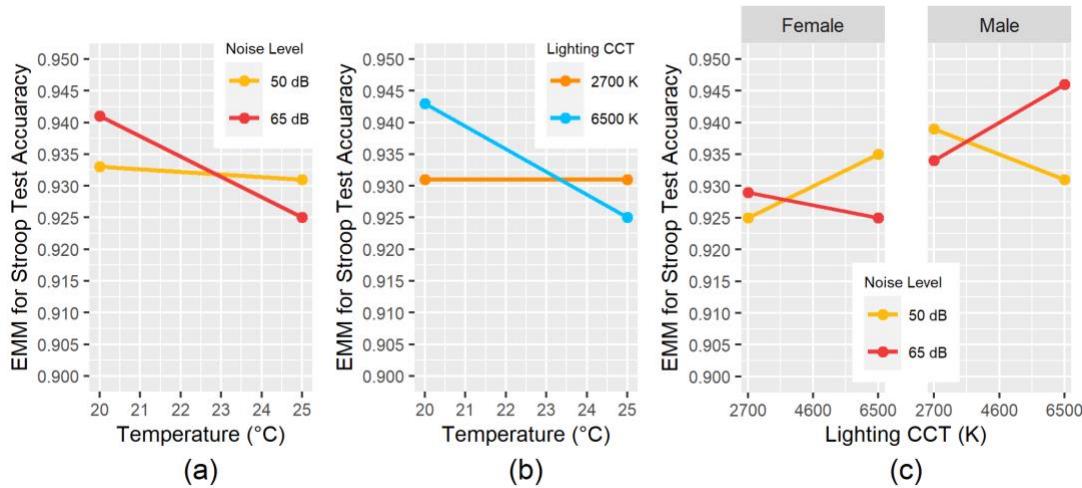


Figure 3. Effects of IEQ factors and individual differences on Stroop test response accuracy: (a) noise \times temperature interaction, (b) lighting CCT and temperature interaction, (c) lighting CCT \times noise \times gender interaction

Furthermore, a marginally significant lighting CCT \times temperature interaction effect ($F_{1,46} = 3.390, p = 0.072, \eta_p^2 = 0.069$) was found (Table 2). In the 6500 K lighting condition, the warm temperature led to a noticeably lower selective attention score ($M_{6500\text{K},25^\circ\text{C}}=0.925$) compared to the cool temperature ($M_{6500\text{K},20^\circ\text{C}}=0.943$), whereas, in the 2700 K lighting condition, the temperature had no effect on selective attention scores ($M_{2700\text{K},25^\circ\text{C}}=0.931$ vs. $M_{2700\text{K},20^\circ\text{C}}=0.931$) (Figure 3b). This reveals some evidence of the lighting CCT effect, such that participants performed better under the cool lighting (6500 K) condition. This is aligned with previous studies indicating that high CCT enhances attention [81].

366 When considering gender as a between-subject factor, a significant lighting CCT \times noise \times gender
367 three-way interaction effect was observed ($F_{1,44} = 6.351$, $p = 0.015$, $\eta_p^2 = 0.126$) (**Table 2**).
368 The impact of lighting CCT and noise varied for these two gender groups. Specifically, among
369 male participants, higher CCT led to better performance when exposed to high levels of noise
370 ($M_{2700K,65dB, male} = 0.934$ vs. $M_{6500K,65dB, male} = 0.946$), while among female participants, higher CCT
371 resulted in poorer performance in the same acoustic environment compared to the condition with
372 lower CCT ($M_{2700K,65dB, female} = 0.929$ vs. $M_{6500K,65dB, female} = 0.925$). Conversely, under low noise
373 conditions, higher CCT led to higher scores among females ($M_{6500K,50dB, female} = 0.925$ vs.
374 $M_{2700K,50dB, female} = 0.935$) but lower scores among male participants compared to the condition with
375 lower CCT ($M_{6500K,50dB, male} = 0.939$ vs. $M_{2700K,50dB, female} = 0.931$) (**Figure 3c**). These findings are
376 consistent with previous research emphasizing the influential role of lighting CCT on cognitive
377 processes. Specifically, exposure to cooler CCT light has been associated with improvements in
378 attentional performance [14], with possible differences observed between genders [82].
379 Additionally, another study reported that CCT levels affected the attention of females. For female
380 subjects, the performance metrics were lower for the 6500 K subgroup than those within the 2700
381 or 4300 K subgroups [64], whereas, in our study, noise moderated the interaction effect between
382 lighting CCT and gender. Finally, given the complex nature of our experiment design, an
383 inscrutable four-way interaction between noise, lighting, temperature, and BMI ($F_{1,44} = 5.466$,
384 $p = 0.024$, $\eta_p^2 = 0.110$) was noted (**Table 2**).

385 **Sustained attention**

386 No significant main effect of lighting CCT, temperature, noise, gender, or BMI was found on
387 participants' sustained attention assessed by the continuous performance test. Based on
388 neuroscientific studies, the connections between the motor cortex, occipital lobes, and the
389 cerebellum were primarily predictors of better sustained attention [83]. While some of the authors
390 reported that the lighting condition did not impact performance on the sustained attention task [84],
391 some others reported improvements under higher CCT values or blue-enriched lights, which was
392 associated with several mechanisms, including lowering alpha-band activity, increasing melatonin
393 suppression, and/or restoring diminished attentional resources in a three-week study [85]. The later
394 study explored the effect of lighting CCT on sustained attention in a relatively long period using
395 6500K and 17000K lighting conditions. Given the absence of such an effect in the conducted study,
396 it can be inferred that sustained attention is more likely to be affected by cool lighting CCT when
397 occupants are under prolonged lighting exposure. On the other hand, another experiment pointed
398 out that medium levels of lighting CCT (e.g., 4300 K) could benefit sustained attention more while
399 assessing under nine lighting conditions, each continued for 4.3 min [86]. This effect was observed
400 comparing 4300K, 3300K, and 5300K in three different lighting brightness conditions (300lx, 500
401 lx, and 750lx). While different lighting CCT conditions can solely drive the significance of their
402 effect on sustained attention, it can also be deduced that the lighting brightness may moderate the
403 effect of lighting CCT on sustained attention. Additionally, the absence of temperature's effect on
404 sustained attention can be related to exposure duration since increased temperatures only tended
405 to increase errors in the performance of sustained mental tasks that continued for 60 min or
406 longer [87], [88].

407 **Creativity**

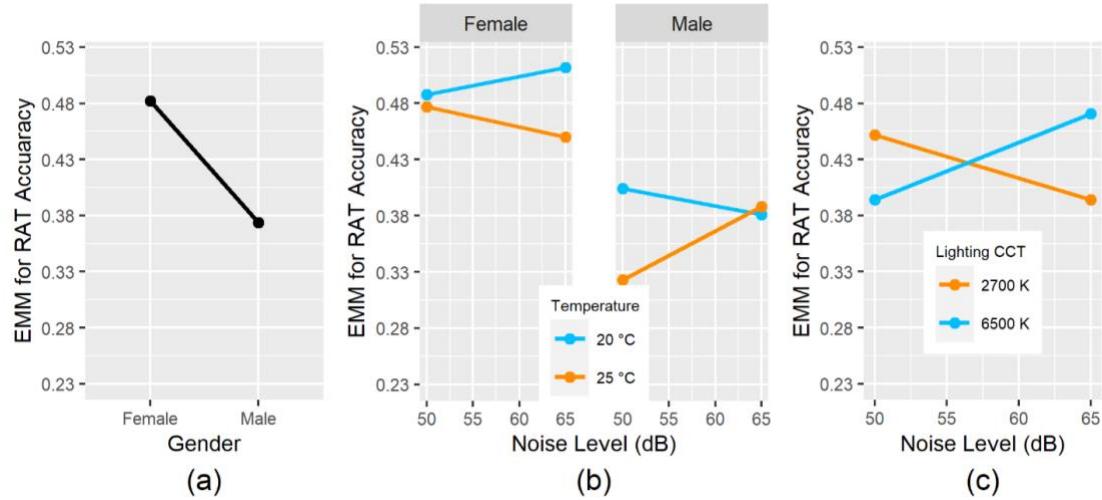
408 **Table 3** summarizes the statistical parameters concerning all the possible main and interaction
409 effects of IE factors, gender, and BMI on creativity assessed by RAT.

410

Table 3. Effects of IEQ factors and individual differences on RAT response accuracy

Tests of Within-Subjects Contrasts				
Source	df	F	p	η^2
Noise	1,50	0.257	0.614	0.005
Noise × Temperature	1,50	0.257	0.614	0.005
Lighting CCT	1,50	0.302	0.585	0.006
Lighting CCT × Temperature	1,50	0.302	0.585	0.006
Noise × Lighting CCT **	1,50	10.868	0.002	0.179
Noise × Lighting CCT × Temperature	1,50	0.719	0.401	0.014
Noise × Gender	1,48	0.384	0.539	0.008
Noise × Temperature × Gender †	1,48	3.453	0.069	0.067
Lighting CCT × Gender	1,48	0.428	0.516	0.009
Lighting CCT × Temperature × Gender	1,48	0.761	0.387	0.016
Noise × Lighting CCT × Gender	1,48	0.317	0.576	0.007
Noise × Lighting CCT × Temperature × Gender	1,48	1.267	0.266	0.026
Noise × BMI	1,48	1.850	0.180	0.037
Noise × Temperature × BMI	1,48	0.016	0.899	0.000
Lighting CCT × BMI	1,48	0.862	0.358	0.018
Lighting CCT × Temperature × BMI	1,48	2.001	0.164	0.040
Noise × Lighting CCT × BMI	1,48	1.256	0.268	0.025
Noise × Lighting CCT × Temperature × BMI *	1,48	8.090	0.007	0.144
Tests of Between-Subjects Effects				
Effect	df	F	p	η^2
Temperature	1,50	0.356	0.553	0.007
Gender †	1,48	3.167	0.081	0.062
Temperature × Gender	1,48	0.000	1.000	0.000
BMI	1,48	0.056	0.813	0.001
Temperature × BMI	1,48	0.155	0.696	0.003

411


412

**: p < 0.01, *: p < 0.05, †: 0.05 < p < 0.10

413 A marginally significant main effect of gender was found on participants' creativity assessed by
 414 RAT ($F_{1,48} = 3.167$, $p = 0.081$, $\eta^2_p = 0.062$) (Table 3); on average, such that female
 415 participants got higher scores ($M_{\text{female}}=0.482$) than male participants ($M_{\text{male}}=0.374$) (Figure 4a).
 416 The impact of gender on remote association skills is moderated by a marginally significant noise
 417 × temperature × gender interaction effect ($F_{1,48} = 3.453$, $p = 0.069$, $\eta^2_p = 0.067$) (Table 3), as
 418 shown in Figure 4b. Specifically, in the cool temperature, exposure to the high noise level had a
 419 positive effect on female participants' creativity ($M_{65\text{dB},20^\circ\text{C,female}}=0.512$) compared to low noise
 420 levels ($M_{50\text{dB},20^\circ\text{C,female}}=0.488$), while male participants were less creative while being exposed to
 421 high noise level ($M_{65\text{dB},20^\circ\text{C,male}}=0.381$ vs. $M_{50\text{dB},20^\circ\text{C,male}}=0.404$). Conversely, in the warm
 422 temperature, low noise level had a positive effect on female participants' creativity compared to
 423 high noise level ($M_{50\text{dB},25^\circ\text{C,female}}=0.477$ vs. $M_{65\text{dB},25^\circ\text{C,female}}=0.477$), whereas male participants
 424 performed better in the high noise level ($M_{65\text{dB},25^\circ\text{C,male}}=0.388$) compared to the low noise level

425 (M_{50dB,25°C,male}=0.323). Prior studies have documented an interaction effect between noise and
 426 temperature on a creativity test [89]. However, our study extends these findings by demonstrating
 427 that the interaction effect between noise and temperature on creativity is subject to gender
 428 moderation. Furthermore, our results indicated that females performed better in the creativity test.

429 Regarding the main effect of noise, our analysis revealed that an environment with a noise level
 430 of 65 dB exhibited superior performance compared to 50 dB, on average (M_{65dB}=0.433 vs.
 431 M_{50dB}=0.423) (**Table 3**). Previous research has documented that higher levels of noise can induce
 432 distraction, leading to an elevated construal level and abstract processing, thereby enhancing
 433 creativity [1]. However, contrasting results were found in another study [67], where under white
 434 noise conditions, there was no significant difference in creativity between 65 dB and 45 dB. This
 435 discrepancy could be attributed to the nature of the noise type and its specific impact on
 436 participants' cognitive functions [23]. Many studies reported that some noise types, such as white
 437 noise, might facilitate cognitive abilities via stochastic resonance based on internal neural noise (a
 438 fundamental mechanism that contributes to moderate brain arousal) [90], [91]. However, some
 439 other noise types, such as crowd talking or traffic noise, could be more disturbing [92] and thus
 440 may hinder creativity capabilities.

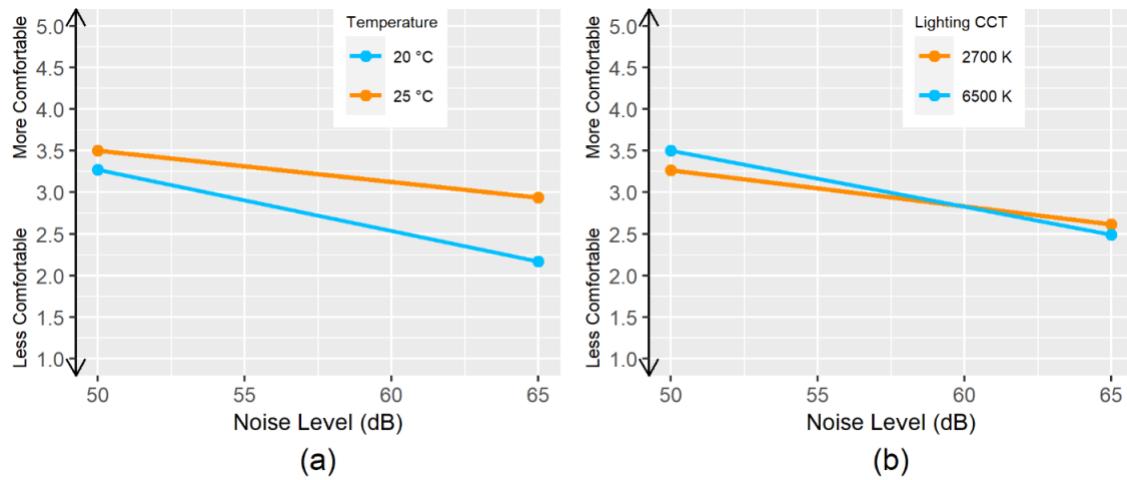
441
 442 **Figure 4.** Effects of IEQ factors and individual differences on RAT response accuracy: **(a)** effect
 443 of gender, **(b)** gender \times noise \times temperature interaction effect, **(c)** noise \times lighting CCT
 444 interaction effect

445 Furthermore, a significant noise \times lighting CCT interaction effect ($F_{1,50} = 10.868$, $p = 0.002$,
 446 $\eta_p^2 = 0.179$) (**Table 3**) was noted, as also shown in **Figure 4c**. This indicates that in high lighting
 447 CCT conditions, participants scored higher on creativity tasks when exposed to the high noise level
 448 (M_{65dB,6500K}=0.471) compared to the low noise level (M_{50dB,6500K}=0.394). Conversely, in low
 449 lighting CCT conditions, participants scored higher on creativity tasks when exposed to the low
 450 noise level (M_{50dB,2700K}=0.452) compared to the high noise level (M_{65dB,2700K}=0.394). This is a
 451 novel finding, and no related support was found in previous literature. Creativity, being a complex
 452 cognitive ability, can engage various regions of the brain. For example, verbal creativity primarily
 453 relies on the left hemisphere and involves specific areas such as the left middle frontal gyrus,
 454 insula, and cerebellum [93]. Given the complexity of creativity, it is hard to link IEQ variations to
 455 the changes in specific parts of the brain while doing creativity-involved tasks. Finally, there was

456 an inscrutable four-way interaction between noise, lighting CCT, temperature, and BMI ($F_{1,48} =$
 457 8.090 , $p = 0.007$, $\eta_p^2 = 0.144$) (**Table 3**).

458 Environmental Comfort

459 The participants' subjective votes for perceived comfort regarding thermal, acoustic, and visual
 460 aspects of the environment were examined under varying noise, lighting CCT, temperature,
 461 gender, and BMI levels. The descriptive statistics for each dependent variable in each experimental
 462 condition are provided in Appendix B. All the main and significant effects are summarized in
 463 **Table 4**.

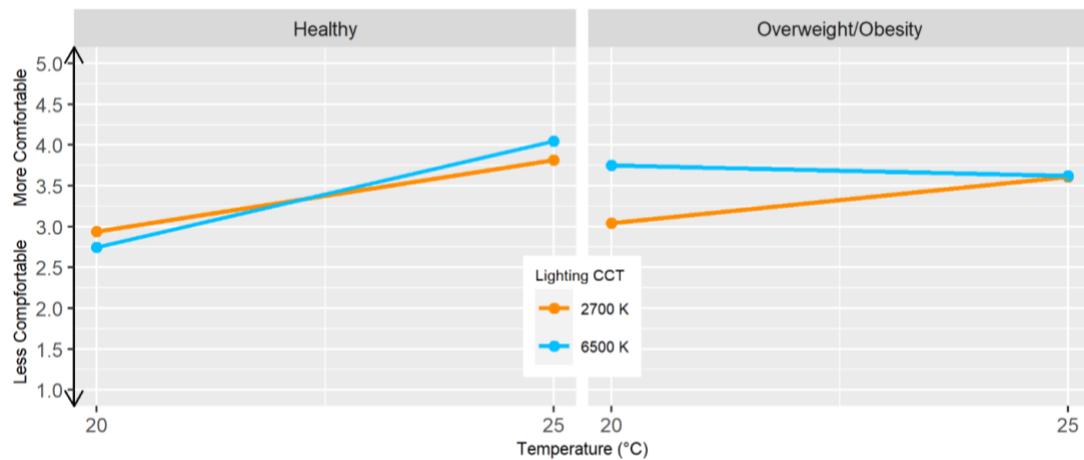

464 **Table 4.** Effects of IEQ factors and individual differences on perceived comfort

Tests of Within-Subjects Contrasts														
Dependent Variable	Acoustic Comfort				Thermal Comfort				Visual Comfort			Overall Comfort		
Effects/Statistical Parameters	df	F	sig.	η^2	F	p	η^2	F	p	η^2	F	p	η^2	
Noise	1,50	47.916	<.001 ***	0.489	0.111	0.740	0.002	0.193	0.662	0.004	10.486	0.002 **	0.173	
Noise × Temperature	1,50	5.140	0.028 *	0.093	0.045	0.833	0.001	1.209	0.277	0.024	0.300	0.586	0.006	
Lighting CCT	1,50	0.338	0.564	0.007	0.715	0.402	0.014	3.731	0.059 †	0.069	0.673	0.416	0.013	
Lighting CCT × Temperature	1,50	1.181	0.282	0.023	0.512	0.478	0.010	0.213	0.647	0.004	0.419	0.520	0.008	
Noise × Lighting CCT	1,50	7.013	0.011 **	0.123	0.189	0.665	0.004	0.035	0.853	0.001	3.864	0.055 †	0.072	
Noise × Lighting CCT × Temperature	1,50	5.936	0.018 *	0.106	0.021	0.885	0.000	0.993	0.324	0.019	1.328	0.255	0.026	
Noise × Gender	1,48	0.000	0.984	0.000	0.008	0.929	0.000	1.224	0.274	0.025	0.022	0.884	0.000	
Noise × Temperature × Gender	1,48	0.327	0.570	0.007	0.321	0.573	0.007	1.392	0.244	0.028	0.194	0.662	0.004	
Lighting CCT × Gender	1,48	2.921	0.094 †	0.057	1.215	0.276	0.025	9.142	0.004 **	0.160	3.928	0.053 †	0.076	
Lighting CCT × Temperature × Gender	1,48	0.006	0.939	0.000	0.449	0.506	0.009	0.115	0.736	0.002	0.095	0.759	0.002	
Noise × Lighting CCT × Gender	1,48	0.438	0.511	0.009	0.007	0.932	0.000	0.136	0.714	0.003	0.220	0.641	0.005	
Noise × Lighting CCT × Temperature × Gender	1,48	0.273	0.604	0.006	0.007	0.932	0.000	0.456	0.503	0.009	0.542	0.465	0.011	
Noise × BMI	1,48	0.372	0.545	0.008	0.039	0.845	0.001	0.241	0.625	0.005	0.710	0.404	0.015	
Noise × Temperature × BMI	1,48	1.338	0.253	0.027	1.133	0.292	0.023	3.594	0.064 †	0.070	0.812	0.372	0.017	
Lighting CCT × BMI	1,48	1.701	0.198	0.034	1.981	0.166	0.040	0.108	0.744	0.002	0.534	0.468	0.011	
Lighting CCT × Temperature × BMI	1,48	0.540	0.466	0.011	5.173	0.027 *	0.097	1.670	0.202	0.034	1.561	0.218	0.031	
Noise × Lighting CCT × BMI	1,48	0.105	0.747	0.002	0.277	0.601	0.006	3.099	0.085 †	0.061	3.546	0.066 †	0.069	
Noise × Lighting CCT × Temperature × BMI	1,48	0.001	0.969	0.000	0.986	0.326	0.020	1.404	0.242	0.028	1.055	0.309	0.022	
Tests of Between-Subjects Effects														
Dependent Variable	Acoustic Comfort				Thermal Comfort				Visual Comfort			Overall Comfort		
Effects/Statistical Parameters	df	F	p	η^2	F	p	η^2	F	p	η^2	F	p	η^2	
Temperature	1,50	3.601	0.064 †	0.067	10.305	0.002 **	0.171	0.804	0.374	0.016	3.576	0.064 †	0.067	
Gender	1,48	3.819	0.057 †	0.074	0.093	0.761	0.002	0.302	0.585	0.006	0.203	0.655	0.004	
Temperature × Gender	1,48	0.193	0.662	0.004	1.077	0.305	0.022	2.237	0.141	0.045	1.401	0.242	0.028	
BMI	1,48	0.840	0.364	0.017	0.144	0.706	0.003	0.017	0.896	0.000	0.602	0.442	0.012	
Temperature × BMI	1,48	0.053	0.819	0.001	1.891	0.176	0.038	1.898	0.175	0.038	0.302	0.585	0.006	

465 466 ***: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$, †: $0.05 < p < 0.10$

467 **Acoustic comfort**

468 As summarized in **Table 4**, noise had a main effect ($F_{1,50} = 47.916, p = < 0.001, \eta_p^2 = 0.489$)
 469 on acoustic comfort, such that participants were more comfortable at the lower noise level
 470 ($M_{50\text{dB}}=3.382$) compared to the high noise level ($M_{65\text{dB}}=2.553$). The anticipation of increased
 471 comfort levels in response to reduced ambient noise amidst crowd conversation has been
 472 substantiated and fortified by prior research findings [23], [34]. Nevertheless, it is important to
 473 acknowledge that the sound type can potentially alter the observed outcomes. This is exemplified
 474 by the scenario wherein a musical auditory setting, despite exhibiting similar SPL as a noisy
 475 environment, actually elicits a greater sense of acoustic comfort [32]. Additionally, the marginally
 476 significant effect of temperature ($F_{1,50} = 3.601, p = 0.064, \eta_p^2 = 0.067$) was observed in a way
 477 that the warm temperature led to higher comfort rates ($M_{25^\circ\text{C}}=3.216$) compared to the cool
 478 temperature ($M_{20^\circ\text{C}}=2.719$), which is in line with the findings of another study [34]. Additionally,
 479 a significant noise \times temperature interaction ($F_{1,50} = 5.140, p = 0.028, \eta_p^2 = 0.093$) was noted,
 480 which qualified their main effects. As depicted in **Figure 5a**, this effect indicates that in the high
 481 noise level, warm temperature led to a considerable drop in acoustic comfort compared to the cool
 482 temperature ($M_{65\text{dB},25^\circ\text{C}}=2.938$ vs. $M_{65\text{dB},20^\circ\text{C}}=2.168$), whereas the temperature was less likely to
 483 affect the acoustic comfort rates when they were exposed to low noise level ($M_{50\text{dB},25^\circ\text{C}}=3.495$ vs.
 484 $M_{50\text{dB},20^\circ\text{C}}=3.269$). While the interaction effect of noise and temperature on acoustic comfort has
 485 been reported in several studies [22], some of the studies limited this effect only to specific types
 486 of noises [28] or reported it as slight or none [32], [94].


487
 488 **Figure 4.** Interaction effects of IEQ factors on acoustic comfort: **(a)** noise \times temperature
 489 interaction, **(b)** noise \times lighting CCT interaction

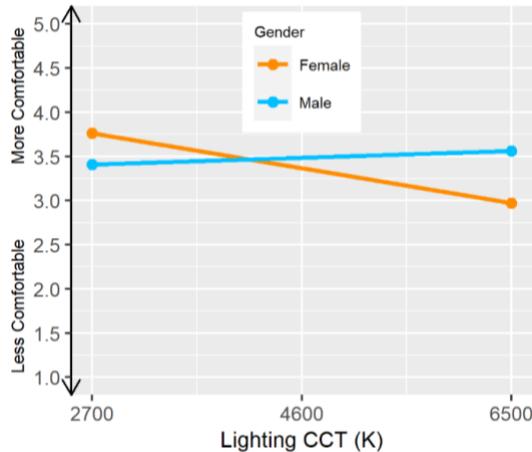
490 Additionally, the main effect of noise was moderated by its significant interaction with lighting
 491 ($F_{1,50} = 7.013, p = 0.011, \eta_p^2 = 0.123$) in **Table 4**, as also illustrated in **Figure 5b**. During
 492 exposure to the low noise level, participants were more likely to be satisfied with higher lighting
 493 CCT compared to lower lighting CCT ($M_{50\text{dB},6500\text{K}}=3.500$ vs. $M_{50\text{dB},2700\text{K}}=3.264$), whereas when
 494 participants were exposed to the high noise level, higher comfort rates were more likely associated
 495 with lower lighting CCT compared to higher lighting CCT ($M_{65\text{dB},6500\text{K}}=2.615$ vs.
 496 $M_{65\text{dB},2700\text{K}}=2.490$). While the related comfort studies are limited, some studies found that lighting
 497 CCT had no influence on noise annoyance in a medium brightness condition, while the interaction
 498 between lighting CCT and noise level affected noise annoyance [95]. Moreover, it was noted that

499 gender had a marginally significant effect ($F_{1,48} = 3.819, p = 0.057, \eta_p^2 = 0.074$) (**Table 4**) on
 500 acoustic comfort in a way that females were more comfortable with the acoustic environment than
 501 males ($M_{\text{female}}=3.219$ vs. $M_{\text{male}}=2.716$), regardless of the noise level. Finally, given the complex
 502 nature of our experiment design, there was also an inscrutable significant interaction effect of noise
 503 \times lighting CCT \times temperature ($F_{1,50} = 5.936, p = 0.018, \eta_p^2 = 0.106$) (**Table 4**).

504 Thermal comfort

505 The temperature had a main effect on thermal comfort ($F_{1,50} = 10.305, p = 0.002, \eta_p^2 = 0.171$),
 506 such that participants were more comfortable with the warm temperature ($M_{25^\circ\text{C}}=3.846$) compared
 507 to the cool temperature ($M_{20^\circ\text{C}}=2.969$). However, no significant interaction effect of temperature
 508 and noise on thermal comfort was found in our study. The combined effects of acoustic and thermal
 509 conditions on human perception have not been clearly understood yet. Previous studies have
 510 indicated that human perception of thermal comfort tends to be in a neutral range when considering
 511 temperature and noise. These studies found that thermal sensation remained unchanged despite
 512 variations in noise levels (ranging from 45 to 65 dB) and temperatures (ranging from 18°C to
 513 30°C), even when the relative humidity and type of noise were altered [28]. In contrast, the effect
 514 of noise on thermal comfort was reported in some of the earlier studies. For instance, under four
 515 temperatures within [19°C-28°C] and five noise levels within [46.6 dB-95.5dB], thermal comfort
 516 and discomfort significantly decreased and increased respectively with increasing the noise level.
 517 It can be inferred that higher levels of noise, such as 95.5 dB, can disturb the neutral zone of
 518 perceived thermal comfort and thus cause additional discomfort. In this regard, Nagano and
 519 Horikoshi relied on the fact that thermal comfort, as a wide connotation, also includes
 520 physiological and psychological aspects, and different noise levels could have different effects on
 521 subjects' emotions and could further affect thermal comfort [23], [29]. While experimental
 522 conditions can be influenced by factors like climate conditions, regional preferences, and building
 523 operational constraints, these varying conditions across relevant studies complicate comparisons
 524 between them. Furthermore, it is important to acknowledge that the interplay between noise and
 525 temperature might also be contingent on the specific type of noise.

526


527 **Figure 5.** Interaction effects of IEQ factors on thermal comfort

528 Additionally, a significant interaction effect between temperature \times lighting CCT \times BMI ($F_{1,48} =$
 529 $5.173, p = 0.027, \eta_p^2 = 0.097$) (**Table 4**) was observed such that the BMI status of participants
 530 affected the interaction effect between lighting CCT and temperature. As presented in **Figure 6**,

531 among participants with overweight/obese BMI, it was less likely that lighting CCT changed the
532 perceived thermal comfort in the warm temperature ($M_{25^\circ\text{C},2700\text{K},\text{overweight/obese}}=3.607$ vs.
533 $M_{25^\circ\text{C},6500\text{K},\text{overweight/obese}}=3.625$). However, during exposure to the cool temperature, higher thermal
534 comfort rates were more likely to be associated with higher lighting CCT compared to lower
535 lighting CCT ($M_{20^\circ\text{C},6500\text{K},\text{overweight/obese}}=3.750$ vs. $M_{20^\circ\text{C},2700\text{K},\text{overweight/obese}}=3.042$). In contrast,
536 higher lighting CCT had the opposite effect on participants with healthy BMI. In fact, participants
537 with healthy BMI were more likely to have higher thermal comfort rates in the warm temperature
538 when they were exposed to higher lighting CCT ($M_{25^\circ\text{C},6500\text{K},\text{healthy}}=4.046$ vs.
539 $M_{25^\circ\text{C},2700\text{K},\text{healthy}}=3.816$), while in cool temperature, lower CCT values resulted in higher comfort
540 rates on average ($M_{20^\circ\text{C},2700\text{K},\text{healthy}}=2.938$ vs. $M_{20^\circ\text{C},6500\text{K},\text{healthy}}=2.744$). Although anecdotal
541 evidence suggests that lighting CCT can affect thermal comfort, the significance of the temperature
542 \times lighting CCT interaction was not proved in our study, probably because the designed conditions
543 were not too far from comfort ranges [96]. Accordingly, Luo et al. argued that a large inter-
544 individual variation exists in the color-temperature association, and the temperature \times lighting
545 CCT interaction depends on exposure time as well, which can contradict previous findings [96].
546 Additionally, while thermal perception was reported to be more sensitive to CCT changes in warm
547 environments [97], our results controvert this prior finding, at least for overweight/obese
548 participants. While previous IEQ interaction studies have not included BMI in thermal comfort
549 analysis, and even though no main effect of BMI on thermal comfort was found, the BMI status
550 of participants affected the interaction effect between lighting CCT and temperature. While in a
551 cool environment, healthy participants were less comfortable with 6500 K lighting, under the same
552 lighting condition, the thermal comfort of overweight participants was much higher, which is
553 aligned with most BMI-thermal studies [98]. With respect to gender, females were reported to be
554 more susceptible to temperature fluctuations and are generally more dissatisfied than males in
555 relation to the thermal environment [36]. This is in line with our findings, where women felt less
556 comfortable with the thermal environment on average ($M_{\text{female}}=3.365$ vs. $M_{\text{male}}=3.450$); however,
557 our findings did not confirm the significance of this gender-based variation.

558 **Visual Comfort**

559 Lighting CCT had a marginally significant effect on visual comfort assessed by comfort votes
560 regarding lighting color ($F_{1,50} = 3.731$, $p = 0.059$, $\eta_p^2 = 0.069$) (**Table 4**). On average,
561 participants were more comfortable with 2700 K lighting ($M_{2700\text{K}}=3.589$) compared to 6500 K
562 lighting ($M_{6500\text{K}}=3.267$). This is in contrast with previous research where visual comfort did not
563 significantly differ between 2700 K and 5700 K CCTs [31]. While the significance of
564 temperature's interaction with lighting CCT's effect on visual comfort was not identified, some
565 earlier studies found this kind of effect [22], [33]. For instance, at 19 °C, daylight tinted by the
566 blue glazing was evaluated as less comfortable than by the orange glazing [99]. Additionally, it
567 was noted that gender moderated the effect of lighting on visual comfort ($F_{1,48} = 9.142$, $p =$
568 0.004 , $\eta_p^2 = 0.160$) (**Table 4**) such that variations in lighting color was more likely to affect
569 females' visual comfort ($M_{2700\text{K},\text{female}}=3.764$ vs. $M_{6500\text{K},\text{female}}=2.971$) than male's
570 ($M_{2700\text{K},\text{male}}=3.413$ vs. $M_{6500\text{K},\text{male}}=3.563$) (**Figure 7**). However, no earlier evidence was found in
571 support of this interaction effect.

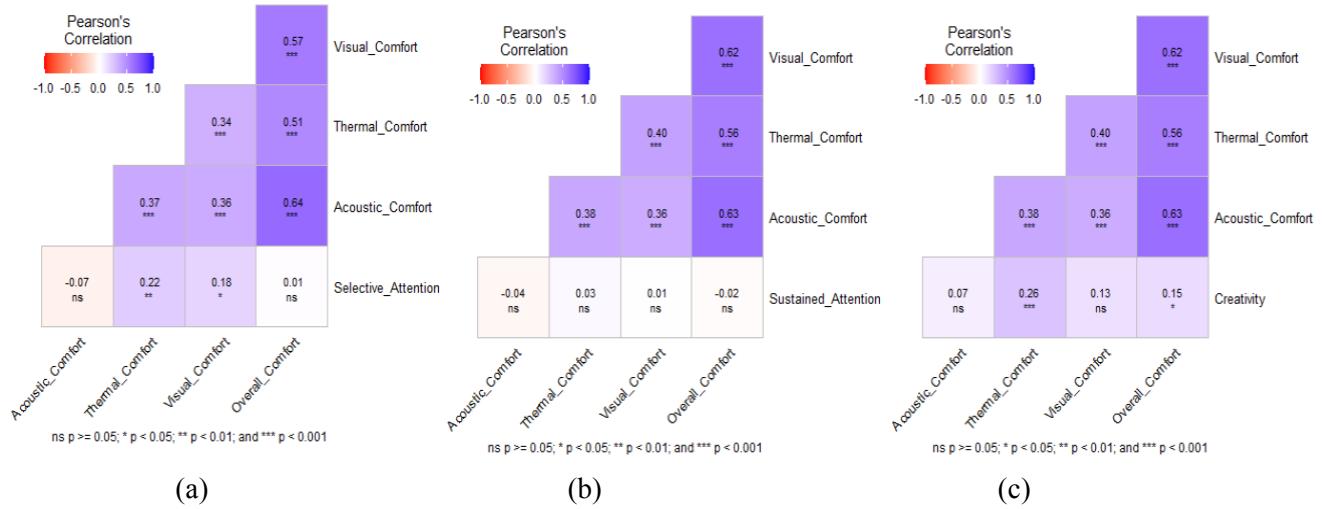
572

573

Figure 6. Interaction effects of IEQ factors on visual comfort

574

575 Overall comfort


576 Noise had a main effect on overall comfort votes ($F_{1,50} = 10.486, p = 0.002, \eta_p^2 = 0.173$)
 577 (Table 4), such that participants were more comfortable with the low noise level ($M_{50dB}=3.668$)
 578 compared to the high noise level ($M_{65dB}=3.356$). Additionally, the temperature had a marginally
 579 significant effect on overall comfort ($F_{1,50} = 3.576, p = 0.064, \eta_p^2 = 0.067$) (Table 4) in a way
 580 that participants found 25°C more comfortable ($M_{25^\circ C}=3.784$) than 20 °C ($M_{20^\circ C}=3.240$). The
 581 influential effects of noise level and temperature on overall perceived comfort were reported in
 582 previous studies [34]. The significance of lighting CCT effect on overall IEQ comfort was not
 583 identified, which is in line with earlier studies where no significant relationship between CCTs and
 584 overall comfort was found [64].

585 Correlation between cognitive performance and perceived comfort

586 As presented in **Figure 8**, it can be inferred that cognitive performance indicators are positively
 587 correlated with perceived comfort votes. As depicted in **Figure 8a**, selective attention is
 588 significantly correlated with thermal comfort ($r=0.22, N=192, p=0.003$) and visual comfort
 589 ($r=0.18, N=192, p=0.011$), and thus, selective attention improved while participants were more
 590 comfortable with their thermal and visual environment. The correlation of selective attention with
 591 acoustic comfort and overall comfort is extremely low and can be considered as having no
 592 correlation. Sustained attention had no correlation with perceived comfort votes, as illustrated in
 593 **Figure 8b**. Additionally, thermal comfort has a significant correlation ($r=0.26, N=208, p < 0.001$)
 594 with creativity, such that participants' creativity scores were higher when they felt more thermally
 595 comfortable (**Figure 8c**). While the correlation of acoustic comfort and visual comfort with
 596 creativity was slightly correlated, overall comfort was significantly correlated with creativity
 597 ($r=0.15, N=208, p=0.026$), which was likely driven by the thermal environment.

598

599

Figure 7. Correlations between cognitive performance indicators and perceived IEQ comfort: **(a)** selective attention, **(b)** sustained attention, **(c)** creativity

In relation to cognitive functioning, it is noteworthy that selective attention and creativity demonstrated the strongest correlation with thermal comfort among the various domains of comfort examined in this study, followed closely by visual comfort. Studying brain activity can shed light on these results, as previous research demonstrated that the relative power of electroencephalogram (EEG) signals have a significant correlation with thermal comfort and with the performance of neurobehavioral tests [100]. Likewise, suggestions have been provided for improving cognitive functioning through the improvement of IEQ comfort [101]. Our findings are compatible with other studies that indicated correlations between subjective IEQ comfort votes and perceived functioning [102]. However, observing no significant correlations between acoustic comfort and cognitive functions was unexpected, given that overall comfort was significantly affected by the acoustic conditions. Overall, cognitive functioning can be correlated with IEQ comfort, and thus further consideration should be given to improve IEQ comfort where enhancement in cognitive functioning is crucial.

CONCLUSIONS

Improvements in IEQ in the work/study spaces are likely to yield continuing benefits to young adults' cognitive performance and comfort. A mixed-design experimental study was employed to understand the interaction effects between temperature, lighting color, and noise on selective attention, sustained attention, creativity, acoustic comfort, thermal comfort, visual comfort, and overall IEQ comfort of young adults in open plan offices in the North American Mediterranean climate. The explored environmental conditions included 20 °C and 25 °C as representatives of cool and warm temperatures, 2700 K and 6500 K as representatives of warm and cool lighting colors, as well as 50 dB and 65 dB crowd-talking noises as low and high noise levels. Through the integration of gender and BMI, the effect of individual differences was investigated as well. The results showed that temperature interacted with the noise level and lighting CCT's main effects on selective attention. In regard to sustained attention, no significant main or interaction effect of IEQ factors was noted. Creativity was influenced by gender and its interaction with noise level as well

629 as the interaction between noise level and lighting CCT. Temperature's main effect and its
630 interaction with noise level on acoustic comfort were found to be significant. Additionally, the
631 temperature, in conjunction with lighting CCT and BMI, affected thermal comfort. Moreover, the
632 interaction between gender and lighting was found influential on visual comfort. Finally, noise
633 level and temperature affected the overall comfort. The correlations between objective
634 performance indicators and subjective comfort votes reflected the importance of IEQ comfort in
635 cognitive functioning.

636 The study findings can have implications for building designers, researchers, facility managers, as
637 well as the developers of IEQ monitoring and control systems. To boost selective attention
638 capabilities in cool thermal settings, a higher noise level and a cooler lighting color are preferable.
639 However, in warm thermal settings, a lower noise level and a warmer lighting color can improve
640 selective attention capabilities. The creativity abilities of female office workers in cool and warm
641 thermal settings can be enhanced by utilizing higher and lower noise levels, respectively, while
642 the creativity of male office workers can be improved with lower and higher noise levels in cool
643 and warm thermal settings. To improve acoustic comfort while setting the temperature to a warmer
644 setpoint, the utilization of a lower noise level is more desirable. Additionally, when the noise level
645 is lower in indoor environments, cool lighting color can enhance the perceived acoustic comfort.
646 Achieving optimal thermal comfort requires personalized approaches that take into account
647 individual physiological differences. For participants with healthy BMI, warm lighting color can
648 improve perceived thermal comfort in warm thermal settings, while cool lighting color is
649 preferable in cool thermal settings. On the other hand, cool lighting color is more desirable for
650 participants with overweight/obesity BMI status while working in cool thermal settings. To
651 improve visual comfort, cool and warm lighting colors are preferable for male and female office
652 workers, respectively. Overall perceived comfort can be boosted with lower noise levels and
653 warmer thermal settings. In summary, specific combinations of noise level and lighting color were
654 identified to optimize selective attention, creativity, acoustic comfort, thermal comfort, visual
655 comfort, and overall perceived comfort in different thermal settings. The findings underscore the
656 importance of tailoring environmental factors to individual differences to enhance cognitive
657 performance and perceived comfort in office settings. It should be noted that the variations in
658 individual differences, IEQ factors, and cognitive task types necessitate more human-centered
659 approaches that can address personalized IEQ preferences across different times, locations, and
660 cognitive tasks.

661 According to the literature, most people can maintain high performance for a short time under
662 unpleasant environmental conditions when trying to do their best [87], and a significant change in
663 performance may be identified if the investigated range of environmental stressors spans beyond
664 near-optimum ranges [18]. However, in our study, the explored conditions affected the cognitive
665 performance through their interactions rather than their individual main effects. While anecdotally
666 we know that study participants have stayed in the Northern American Mediterranean climate
667 somewhere between 4 months to 2 years, we have not collected the data about duration of
668 residency. Future studies should consider this parameter to ensure that the participants fully
669 climatized to the local climate. Additionally, the absence of main effects of IEQ factors on
670 cognitive performance metrics could be related to the counteracting effects of the individual IEQ
671 factors on each other. Coping mechanisms of occupants' psychophysiological systems and
672 adaptive capability would be another reason for these results. For instance, Razmjou argued that
673 in low-demand tasks, a deficit of mental performance in high temperatures could be offset by heat-
674 related stimulated arousal [103], [104]. However, exposure duration, the existence of other IEQ

675 factors, as well as task type and worker demographics might affect the studied outcomes; therefore,
676 future studies should explore these variables more in-depth. Moreover, while gender and body
677 mass index (BMI) were accounted for in our analysis, it is important to recognize that a multitude
678 of other factors, including age and ethnicity, may also exert an influence on the response to
679 environmental stressors [5]. Future studies should seek to clarify the precise nature and underlying
680 mechanism behind observed effects. Cognitive functioning and human psychophysiology are still
681 untapped research venues in the IEQ realm that could lead to new breakthroughs in multi-domain
682 studies integrating architectural design, civil engineering, building science, public health, and
683 psychology. Therefore, given that many of our findings are novel, they need to be replicated in
684 further studies.

685 ACKNOWLEDGMENTS

686 The results reported herein correspond to the specific aims of grant numbers CMMI-1763134 and
687 IIS-2204942 from the US National Science Foundation. Any findings, opinions, conclusions, or
688 recommendations presented in this study are those of the authors and do not reflect the views of
689 the National Science Foundation necessarily.

690 REFERENCES

- 691 [1] H.-H. Choi, J. J. G. van Merriënboer, and F. Paas, "Effects of the Physical Environment on Cognitive
692 Load and Learning: Towards a New Model of Cognitive Load," *Educ Psychol Rev*, vol. 26, no. 2, pp.
693 225–244, Jun. 2014, doi: 10.1007/s10648-014-9262-6.
- 694 [2] "Press: Benefits of green building | U.S. Green Building Council."
695 <https://www.usgbc.org/press/benefits-of-green-building> (accessed May 12, 2023).
- 696 [3] M. Schweiker *et al.*, "Review of multi-domain approaches to indoor environmental perception and
697 behaviour," *Building and Environment*, vol. 176, no. February, p. 106804, 2020, doi:
698 10.1016/j.buildenv.2020.106804.
- 699 [4] T. Q. Thach *et al.*, "Associations of perceived indoor environmental quality with stress in the
700 workplace," *Indoor Air*, vol. 30, no. 6, pp. 1166–1177, 2020, doi: 10.1111/ina.12696.
- 701 [5] Y. Zhao and D. Li, "Multi-domain indoor environmental quality in buildings: A review of their
702 interaction and combined effects on occupant satisfaction," *Building and Environment*, vol. 228, p.
703 109844, Jan. 2023, doi: 10.1016/j.buildenv.2022.109844.
- 704 [6] L. Xiong *et al.*, "Impact of indoor physical environment on learning efficiency in different types of
705 tasks: A 3 × 4 × 3 full factorial design analysis," *International Journal of Environmental Research
706 and Public Health*, vol. 15, no. 6, 2018, doi: 10.3390/ijerph15061256.
- 707 [7] ASHRAE, "Interactions Affecting the Achievement of Acceptable Indoor Environments: ASHRAE
708 Guideline 10," 2011.
- 709 [8] G. G. Fisher, M. Chacon, and D. S. Chaffee, "Chapter 2 - Theories of Cognitive Aging and Work," in
710 *Work Across the Lifespan*, B. B. Baltes, C. W. Rudolph, and H. Zacher, Eds., Academic Press, 2019,
711 pp. 17–45. doi: 10.1016/B978-0-12-812756-8.00002-5.
- 712 [9] P. S. Koekkoek, G. E. H. M. Rutten, and G. J. Biessels, "Cognitive disorders in diabetic patients," in
713 *Handbook of Clinical Neurology*, Elsevier, 2014, pp. 145–166. doi: 10.1016/B978-0-444-53480-
714 4.00011-4.
- 715 [10] C.-L. Wu, S.-Y. Huang, P.-Z. Chen, and H.-C. Chen, "A Systematic Review of Creativity-Related
716 Studies Applying the Remote Associates Test From 2000 to 2019," *Frontiers in Psychology*, vol. 11,
717 2020, Accessed: Mar. 30, 2023. [Online]. Available:
718 <https://www.frontiersin.org/articles/10.3389/fpsyg.2020.573432>
- 719 [11] M. Jackson, *Distracted: The Erosion of Attention and the Coming Dark Age*. Prometheus Books,
720 2010.

721 [12] G. G. Fisher, D. S. Chaffee, L. E. Tetrick, D. B. Davalos, and G. G. Potter, "Cognitive functioning,
722 aging, and work: A review and recommendations for research and practice.," *Journal of*
723 *Occupational Health Psychology*, vol. 22, no. 3, pp. 314–336, Jul. 2017, doi: 10.1037/ocp0000086.

724 [13] "APA Dictionary of Psychology." <https://dictionary.apa.org> (accessed Apr. 03, 2023).

725 [14] R. Golmohammadi, H. Yousefi, N. S. Khotbesara, A. Nasrolahi, and N. Kurd, "Effects of Light on
726 Attention and Reaction Time: A Systematic Review," *Journal of Research in Health Sciences*, vol. 21,
727 no. 4, 2021, doi: 10.34172/jrhs.2021.66.

728 [15] Z. Mohebian, S. Farhang Dehghan, and H. Dehghan, "Evaluation of the Combined Effects of Heat
729 and Lighting on the Level of Attention and Reaction Time: Climate Chamber Experiments in Iran,"
730 *Scientific World Journal*, vol. 2018, 2018, doi: 10.1155/2018/5171582.

731 [16] S. Hygge and I. Knez, "Effects of noise, heat and indoor lighting on cognitive performance and self-
732 reported affect," *Journal of Environmental Psychology*, vol. 21, no. 3, pp. 291–299, 2001, doi:
733 10.1006/jenvp.2001.0222.

734 [17] R. Kocaoğlu, "The Effects of correlated color temperature on sustained attention and mood of
735 university students in learning environments," Thesis, Bilkent University, 2015. Accessed: May 12,
736 2023. [Online]. Available: <http://repository.bilkent.edu.tr/handle/11693/30065>

737 [18] C. Wang *et al.*, "How indoor environmental quality affects occupants' cognitive functions: A
738 systematic review," *Building and Environment*, vol. 193, no. September 2020, p. 107647, 2021, doi:
739 10.1016/j.buildenv.2021.107647.

740 [19] L. Lan, S. Hadji, L. Xia, and Z. Lian, "The effects of light illuminance and correlated color
741 temperature on mood and creativity," *Building Simulation*, vol. 14, no. 3, pp. 463–475, 2021, doi:
742 10.1007/s12273-020-0652-z.

743 [20] P. M. Bluyssen, M. Aries, and P. van Dommelen, "Comfort of workers in office buildings: The
744 European HOPE project," *Building and Environment*, vol. 46, no. 1, pp. 280–288, Jan. 2011, doi:
745 10.1016/j.buildenv.2010.07.024.

746 [21] W. L. Paul and P. A. Taylor, "A comparison of occupant comfort and satisfaction between a green
747 building and a conventional building," *Building and Environment*, vol. 43, no. 11, pp. 1858–1870,
748 Nov. 2008, doi: 10.1016/j.buildenv.2007.11.006.

749 [22] W. Yang and H. J. Moon, "Combined effects of acoustic, thermal, and illumination conditions on
750 the comfort of discrete senses and overall indoor environment," *Building and Environment*, vol.
751 148, no. December 2018, pp. 623–633, 2019, doi: 10.1016/j.buildenv.2018.11.040.

752 [23] H. Guan, S. Hu, G. Liu, and L. Zhang, "The combined effects of temperature and noise on the
753 comfort perceptions of young people with a normal Body Mass Index," *Sustainable Cities and*
754 *Society*, vol. 54, p. 101993, Mar. 2020, doi: 10.1016/j.scs.2019.101993.

755 [24] D. Tiller, L. Wang, A. Musser, and M. Radik, "AB-10-017: Combined effects of noise and
756 temperature on human comfort and performance (1128-RP)," *Faculty Publications in Architectural*
757 *Engineering*, Jan. 2010, [Online]. Available: <https://digitalcommons.unl.edu/archengfacpub/40>

758 [25] Z. Wang, J. Wang, Y. He, Y. Liu, B. Lin, and T. Hong, "Dimension analysis of subjective thermal
759 comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning,"
760 *Journal of Building Engineering*, vol. 29, p. 101120, May 2020, doi: 10.1016/j.jobe.2019.101120.

761 [26] Y. He, X. Wang, N. Li, M. He, and D. He, "Heating chair assisted by leg-warmer: A potential way to
762 achieve better thermal comfort and greater energy conservation in winter," *Energy and Buildings*,
763 vol. 158, pp. 1106–1116, Jan. 2018, doi: 10.1016/j.enbuild.2017.11.006.

764 [27] J. Kim, Y. Zhou, S. Schiavon, P. Raftery, and G. Brager, "Personal comfort models: Predicting
765 individuals' thermal preference using occupant heating and cooling behavior and machine
766 learning," *Building and Environment*, vol. 129, pp. 96–106, Feb. 2018, doi:
767 10.1016/j.buildenv.2017.12.011.

768 [28] W. Yang, H. J. Moon, and M.-J. Kim, "Combined effects of short-term noise exposure and
769 hygrothermal conditions on indoor environmental perceptions," *Indoor and Built Environment*, vol.
770 27, no. 8, pp. 1119–1133, Oct. 2018, doi: 10.1177/1420326X17703774.

771 [29] K. Nagano and T. Horikoshi, "New comfort index during combined conditions of moderate low
772 ambient temperature and traffic noise," *Energy and Buildings*, vol. 37, no. 3, pp. 287–294, Mar.
773 2005, doi: 10.1016/j.enbuild.2004.08.001.

774 [30] A. Omidvar and A. Brambilla, "A novel theoretical method for predicting the effects of lighting
775 colour temperature on physiological responses and indoor thermal perception," *Building and
776 Environment*, vol. 203, no. June, p. 108062, 2021, doi: 10.1016/j.buildenv.2021.108062.

777 [31] W. Luo, R. Kramer, M. Kompier, K. Smolders, Y. de Kort, and W. van Marken Lichtenbelt, "Effects of
778 correlated color temperature of light on thermal comfort, thermophysiology and cognitive
779 performance," *Building and Environment*, vol. 231, p. 109944, Mar. 2023, doi:
780 10.1016/j.buildenv.2022.109944.

781 [32] H. Guan, S. Hu, M. Lu, M. He, Z. Mao, and G. Liu, "People's subjective and physiological responses
782 to the combined thermal-acoustic environments," *Building and Environment*, vol. 172, no.
783 February, p. 106709, 2020, doi: 10.1016/j.buildenv.2020.106709.

784 [33] T. C. Greene and P. A. Bell, "Additional considerations concerning the effects of 'warm' and 'cool'
785 wall colours on energy conservation," *Ergonomics*, vol. 23, no. 10, pp. 949–954, Nov. 1980, doi:
786 10.1080/00140138008924804.

787 [34] Y. Jin, H. Jin, and J. Kang, "Combined effects of the thermal-acoustic environment on subjective
788 evaluations in urban squares," *Building and Environment*, vol. 168, p. 106517, Jan. 2020, doi:
789 10.1016/j.buildenv.2019.106517.

790 [35] G. Majewski, Ł. J. Orman, M. Telejko, N. Radek, J. Pietraszek, and A. Dudek, "Assessment of
791 Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor
792 Environment," *Energies*, vol. 13, no. 8, Art. no. 8, Jan. 2020, doi: 10.3390/en13081973.

793 [36] N. Morresi *et al.*, "Sensing Physiological and Environmental Quantities to Measure Human Thermal
794 Comfort Through Machine Learning Techniques," *IEEE Sensors Journal*, vol. 21, no. 10, pp. 12322–
795 12337, May 2021, doi: 10.1109/JSEN.2021.3064707.

796 [37] W. Guo *et al.*, "A study of subtropical park thermal comfort and its influential factors during
797 summer," *Journal of Thermal Biology*, vol. 109, p. 103304, Oct. 2022, doi:
798 10.1016/j.jtherbio.2022.103304.

799 [38] A. Liebl, J. Haller, B. Jödicke, H. Baumgartner, S. Schlittmeier, and J. Hellbrück, "Combined effects
800 of acoustic and visual distraction on cognitive performance and well-being," *Applied Ergonomics*,
801 vol. 43, no. 2, pp. 424–434, Mar. 2012, doi: 10.1016/j.apergo.2011.06.017.

802 [39] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, "G*Power 3: a flexible statistical power analysis
803 program for the social, behavioral, and biomedical sciences," *Behav Res Methods*, vol. 39, no. 2,
804 pp. 175–191, May 2007, doi: 10.3758/bf03193146.

805 [40] Y. Geng, W. Ji, B. Lin, and Y. Zhu, "The impact of thermal environment on occupant IEQ perception
806 and productivity," *Building and Environment*, vol. 121, pp. 158–167, Aug. 2017, doi:
807 10.1016/j.buildenv.2017.05.022.

808 [41] J. V. Bradley, "Complete Counterbalancing of Immediate Sequential Effects in a Latin Square
809 Design," *Journal of the American Statistical Association*, vol. 53, no. 282, pp. 525–528, 1958, doi:
810 10.2307/2281872.

811 [42] T.-Q. Thach *et al.*, "Associations of perceived indoor environmental quality with stress in the
812 workplace," *Indoor Air*, vol. 30, no. 6, pp. 1166–1177, 2020, doi: 10.1111/ina.12696.

813 [43] S. Banbury and D. C. Berry, "Disruption of office-related tasks by speech and office noise," *British
814 Journal of Psychology*, vol. 89, no. 3, pp. 499–517, 1998, doi: 10.1111/j.2044-8295.1998.tb02699.x.

815 [44] N. Venetjoki, A. Kaarlela-Tuomaala, E. Keskinen, and V. Hongisto, "The effect of speech and speech
816 intelligibility on task performance," *Ergonomics*, vol. 49, no. 11, pp. 1068–1091, Sep. 2006, doi:
817 10.1080/00140130600679142.

818 [45] A. Kaarlela-Tuomaala, R. Helenius, E. Keskinen, and V. Hongisto, "Effects of acoustic environment
819 on work in private office rooms and open-plan offices – longitudinal study during relocation,"
820 *Ergonomics*, vol. 52, no. 11, pp. 1423–1444, Nov. 2009, doi: 10.1080/00140130903154579.

821 [46] "QuietComfort 35 wireless headphones - Bose Product Support."
822 https://www.bose.com/en_us/support/products/bose_headphones_support/bose_around_ear_h
823 eadphones_support/quietcomfort-35-wireless.html (accessed May 12, 2023).

824 [47] G. V. Portnova, A. V. Maslennikova, N. V. Zakharova, and O. V. Martynova, "The Deficit of
825 Multimodal Perception of Congruent and Non-Congruent Fearful Expressions in Patients with
826 Schizophrenia: The ERP Study," *Brain Sciences*, vol. 11, no. 1, Art. no. 1, Jan. 2021, doi:
827 10.3390/brainsci11010096.

828 [48] "Ambient Wav Mp3 Sound Effects - Download." <https://www.soundjay.com/ambient-sounds.html>
829 (accessed Apr. 04, 2023).

830 [49] "BAFX Products® Advanced - Decibel Meter / Sound Level Reader - W/ Battery!," *BAFX Products*.
831 <https://bafxpro.com/products/bafx-products-decibel-meter-sound-level-reader-w-battery-advanced-sound-meter> (accessed May 12, 2023).

833 [50] K. Tsuzuki, E. Arens, F. Bauman, and D. Wyon, "Individual thermal comfort control with desk-
834 mounted and floor-mounted task/ambient conditioning (TAC) systems," Aug. 1999, Accessed: Jul.
835 02, 2023. [Online]. Available: <https://escholarship.org/uc/item/06j3k53n>

836 [51] D. Sánchez-García, C. Rubio-Bellido, J. J. M. del Río, and A. Pérez-Fargallo, "Towards the
837 quantification of energy demand and consumption through the adaptive comfort approach in
838 mixed mode office buildings considering climate change," *Energy and Buildings*, vol. 187, pp. 173–
839 185, Mar. 2019, doi: 10.1016/j.enbuild.2019.02.002.

840 [52] Z. Wang and T. Hong, "Learning occupants' indoor comfort temperature through a Bayesian
841 inference approach for office buildings in United States," *Renewable and Sustainable Energy
842 Reviews*, vol. 119, p. 109593, Mar. 2020, doi: 10.1016/j.rser.2019.109593.

843 [53] H. Wang and Q. Chen, "Impact of climate change heating and cooling energy use in buildings in the
844 United States," *Energy and Buildings*, vol. 82, pp. 428–436, Oct. 2014, doi:
845 10.1016/j.enbuild.2014.07.034.

846 [54] I. Korolija, L. Marjanovic-Halburd, Y. Zhang, and V. I. Hanby, "UK office buildings archetypal model
847 as methodological approach in development of regression models for predicting building energy
848 consumption from heating and cooling demands," *Energy and Buildings*, vol. 60, pp. 152–162, May
849 2013, doi: 10.1016/j.enbuild.2012.12.032.

850 [55] "Thermal Environmental Conditions for Human Occupancy (ANSI/ASHRAE Addendum d to
851 ANSI/ASHRAE Standard 55-2017)." Jul. 31, 2020. [Online]. Available:
852 https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2017_d_20200731.pdf

853 [56] "ASHRAE Technical FAQ (ID 92)." Accessed: Jul. 13, 2023. [Online]. Available:
854 <https://www.ashrae.org/File%20Library/Technical%20Resources/Technical%20FAQs/TC-02.01-FAQ-92.pdf>

855 [57] "STANDARD OPERATING EFFICIENCY PROCEDURES."
856 <https://www.dgs.ca.gov/Resources/SAM/TOC/1800/1805-3> (accessed Jul. 02, 2023).

857 [58] "Reiteration of Existing OSHA Policy on Indoor Air Quality: Office Temperature/Humidity and
858 Environmental Tobacco Smoke | Occupational Safety and Health Administration."
859 <https://www.osha.gov/laws-regulations/standardinterpretations/2003-02-24> (accessed Jul. 02, 2023).

862 [59] "The Pacific Energy Center's Guide to: California Climate Zones and Bioclimatic Design," The Pacific
863 Energy Center, Oct. 2006.

864 [60] W. R. Chan *et al.*, "Ventilation rates in California classrooms: Why many recent HVAC retrofits are
865 not delivering sufficient ventilation," *Building and Environment*, vol. 167, p. 106426, Jan. 2020, doi:
866 10.1016/j.buildenv.2019.106426.

867 [61] T. Hoyt, E. Arens, and H. Zhang, "Extending air temperature setpoints: Simulated energy savings
868 and design considerations for new and retrofit buildings," *Building and Environment*, vol. 88, pp.
869 89–96, Jun. 2015, doi: 10.1016/j.buildenv.2014.09.010.

870 [62] "Pro1 IAQ Thermostats - Non Programmable | Programmable | Wireless," *Pro1 IAQ Thermostats*
871 *Logo*. <https://pro1iaq.com/> (accessed Apr. 04, 2023).

872 [63] "Awair Omni Enterprise Essentials." Awair. Accessed: Jul. 13, 2023. [Online]. Available:
873 <https://blog.getawair.com/hubfs/Enterprise%20Essentials.pdf>

874 [64] R.-H. Huang, L. Lee, Y.-A. Chiu, and Y. Sun, "Effects of correlated color temperature on focused and
875 sustained attention under white LED desk lighting," *Color Research & Application*, vol. 40, no. 3,
876 pp. 281–286, 2015, doi: 10.1002/col.21885.

877 [65] "Torkase Smart Light Bulbs Work with Alexa Google, 10W 2700K Warm White to 6500K Daylight
878 Dimmable, WiFi LED Bulb, Voice App Group Control, Time Schedule, 2.4Ghz Only, No Hub
879 Required, 4 Pack - - Amazon.com." <https://www.amazon.com/Torkase-Smart-Light-Bulbs-Google/dp/B08Q825LQN> (accessed May 12, 2023).

880 [66] F. Scarpina and S. Tagini, "The Stroop Color and Word Test," *Frontiers in Psychology*, vol. 8, 2017,
881 Accessed: Apr. 05, 2023. [Online]. Available:
882 <https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00557>

883 [67] M. Awada, B. Becerik-Gerber, G. Lucas, and S. Roll, "Cognitive performance, creativity and stress
884 levels of neurotypical young adults under different white noise levels," *Scientific Reports*, vol. 12,
885 no. 1, p. 14566, Aug. 2022, doi: 10.1038/s41598-022-18862-w.

886 [68] M. T. Mednick, S. A. Mednick, and E. V. Mednick, "Incubation of creative performance and specific
887 associative priming," *The Journal of Abnormal and Social Psychology*, vol. 69, pp. 84–88, 1964, doi:
888 10.1037/h0045994.

889 [69] P. Molaison, "Collection of RAT items | What word relates to all three? | Remote Associates Test
890 of Creativity." <http://www.remote-associates-test.com> (accessed May 12, 2023).

891 [70] S. S. Korsavi, A. Montazami, and D. Mumovic, "The impact of indoor environment quality (IEQ) on
892 school children's overall comfort in the UK; a regression approach," *Building and Environment*, vol.
893 185, p. 107309, Nov. 2020, doi: 10.1016/j.buildenv.2020.107309.

894 [71] S. Leder, G. R. Newsham, J. A. Veitch, S. Mancini, and K. E. Charles, "Effects of office environment
895 on employee satisfaction: A new analysis," *Building Research and Information*, vol. 44, no. 1, pp.
896 34–50, 2016, doi: 10.1080/09613218.2014.1003176.

897 [72] A. Jamrozik *et al.*, "A novel methodology to realistically monitor office occupant reactions and
898 environmental conditions using a living lab," *Building and Environment*, vol. 130, no. October 2017,
899 pp. 190–199, 2018, doi: 10.1016/j.buildenv.2017.12.024.

900 [73] H. Tang, X. Liu, Y. Geng, B. Lin, and Y. Ding, "Assessing the perception of overall indoor
901 environmental quality: Model validation and interpretation," *Energy and Buildings*, vol. 259, p.
902 111870, 2022, doi: 10.1016/j.enbuild.2022.111870.

903 [74] "Releases · psychopy/psychopy," *GitHub*. <https://github.com/psychopy/psychopy/releases>
904 (accessed May 12, 2023).

905 [75] S. Lamb and K. C. S. Kwok, "A longitudinal investigation of work environment stressors on the
906 performance and wellbeing of office workers," *Applied Ergonomics*, vol. 52, pp. 104–111, Jan.
907 2016, doi: 10.1016/j.apergo.2015.07.010.

909 [76] "HP Pavilion Desktop TP01-0155t." <https://www.hp.com/us-en/shop/pdp/hp-pavilion-desktop-tp01-0155t> (accessed May 12, 2023).

910 [77] "IBM SPSS Statistics for Windows." IBM Corp, Armonk, NY: IBM Corp, 2021.

911 [78] C. M. MacLeod and P. A. MacDonald, "Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention," *Trends in Cognitive Sciences*, vol. 4, no. 10, pp. 383–391, Oct. 2000, doi: 10.1016/S1364-6613(00)01530-8.

912 [79] Y. Zhang *et al.*, "Environmental noise degrades hippocampus-related learning and memory," *Proceedings of the National Academy of Sciences*, vol. 118, no. 1, p. e2017841117, Jan. 2021, doi: 10.1073/pnas.2017841117.

913 [80] İ. Erkan, "Cognitive response and how it is affected by changes in temperature," *Building Research & Information*, vol. 49, no. 4, pp. 399–416, May 2021, doi: 10.1080/09613218.2020.1800439.

914 [81] C. Liu *et al.*, "How correlated color temperature (CCT) affects undergraduates: A psychological and physiological evaluation," *Journal of Building Engineering*, vol. 45, p. 103573, Jan. 2022, doi: 10.1016/j.jobe.2021.103573.

915 [82] L. Hartstein, M. Durniak, R. Karlicek, and N. Berthier, "A comparison of the effects of correlated colour temperature and gender on cognitive task performance," *Lighting Research & Technology*, vol. 50, no. 7, pp. 1057–1069, Nov. 2018, doi: 10.1177/1477153517721728.

916 [83] M. D. Rosenberg *et al.*, "A neuromarker of sustained attention from whole-brain functional connectivity," *Nat Neurosci*, vol. 19, no. 1, pp. 165–171, Jan. 2016, doi: 10.1038/nn.4179.

917 [84] L. E. Hartstein, M. K. LeBourgeois, and N. E. Berthier, "Light correlated color temperature and task switching performance in preschool-age children: Preliminary insights," *PLOS ONE*, vol. 13, no. 8, p. e0202973, Aug. 2018, doi: 10.1371/journal.pone.0202973.

918 [85] M. Motamedzadeh, R. Golmohammadi, R. Kazemi, and R. Heidarimoghadam, "The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study," *Physiology & Behavior*, vol. 177, pp. 208–214, Aug. 2017, doi: 10.1016/j.physbeh.2017.05.008.

919 [86] X. Fu, D. Feng, X. Jiang, and T. Wu, "The Effect of Correlated Color Temperature and Illumination Level of LED Lighting on Visual Comfort during Sustained Attention Activities," *Sustainability*, vol. 15, no. 4, Art. no. 4, Jan. 2023, doi: 10.3390/su15043826.

920 [87] L. Lan, Z. Lian, L. Pan, and Q. Ye, "Neurobehavioral approach for evaluation of office workers' productivity: The effects of room temperature," *Building and Environment*, vol. 44, no. 8, pp. 1578–1588, Aug. 2009, doi: 10.1016/j.buildenv.2008.10.004.

921 [88] H. G. Lorsch, "The impact of the indoor environment on occupant productivity-Part 2: Effects of temperature," *Ashrae Transactions*, vol. 100, pp. 895–901, 1994.

922 [89] D. P. Wyon, R. Kok, M. I. Lewis, and G. B. Meese, "Combined noise and heat stress effects on human performance," *Indoor climate*, pp. 857–881, 1978.

923 [90] D. E. Broadbent, "The effects of noise on behaviour," in *Perception and communication*, Elmsford, NY, US: Pergamon Press, 1958, pp. 81–107. doi: 10.1037/10037-005.

924 [91] E. Othman *et al.*, "Low intensity white noise improves performance in auditory working memory task: An fMRI study," *Heliyon*, vol. 5, no. 9, p. e02444, Sep. 2019, doi: 10.1016/j.heliyon.2019.e02444.

925 [92] "Combined effects of the thermal-acoustic environment on subjective evaluations in urban squares - ScienceDirect." <https://www.sciencedirect.com.libproxy1.usc.edu/science/article/pii/S0360132319307292> (accessed Apr. 13, 2023).

926 [93] R. Khalil, B. Godde, and A. A. Karim, "The Link Between Creativity, Cognition, and Creative Drives and Underlying Neural Mechanisms," *Front Neural Circuits*, vol. 13, p. 18, Mar. 2019, doi: 10.3389/fncir.2019.00018.

956 [94] X. Sun, H. Wu, and Y. Wu, "Probability mass functions forecasting of occupants' sensation votes
957 under the effects of temperature, illuminance, and sound level based on ANN," *Journal of Building*
958 *Engineering*, vol. 43, no. June, 2021, doi: 10.1016/j.jobe.2021.102882.

959 [95] H. Ma and W. Nie, "Influence of visual factors on noise annoyance evaluation caused by road
960 traffic noise in indoor environment," *INTERNOISE 2014 - 43rd International Congress on Noise*
961 *Control Engineering: Improving the World Through Noise Control*, Jan. 2014.

962 [96] L. Bellia, F. R. d'Ambrosio Alfano, F. Fragliasso, B. I. Palella, and G. Riccio, "On the interaction
963 between lighting and thermal comfort: An integrated approach to IEQ," *Energy and Buildings*, vol.
964 231, p. 110570, Jan. 2021, doi: 10.1016/j.enbuild.2020.110570.

965 [97] A. Omidvar and A. Brambilla, "A novel theoretical method for predicting the effects of lighting
966 colour temperature on physiological responses and indoor thermal perception," *Building and*
967 *Environment*, vol. 203, p. 108062, Oct. 2021, doi: 10.1016/j.buildenv.2021.108062.

968 [98] R. F. Rupp, J. Kim, R. De Dear, and E. Ghisi, "Associations of occupant demographics, thermal
969 history and obesity variables with their thermal comfort in air-conditioned and mixed-mode
970 ventilation office buildings," *Building and Environment*, vol. 135, pp. 1–9, May 2018, doi:
971 10.1016/j.buildenv.2018.02.049.

972 [99] G. Chinazzo, J. Wienold, and M. Andersen, "Effect of Indoor Temperature and Glazing with
973 Saturated Color on Visual Perception of Daylight," *LEUKOS*, vol. 17, no. 2, pp. 183–204, Apr. 2021,
974 doi: 10.1080/15502724.2020.1726182.

975 [100] X. Lang, P. Wargocki, and W. Liu, "Investigating the relation between electroencephalogram,
976 thermal comfort, and cognitive performance in neutral to hot indoor environment," *Indoor Air*, vol.
977 32, no. 1, p. e12941, 2022, doi: 10.1111/ina.12941.

978 [101] "The impact of indoor air temperature on the executive functions of human brain and the
979 physiological responses of body." <https://hpp.tbzmed.ac.ir/Article/hpp-21346> (accessed May 07,
980 2023).

981 [102] M. S. Andargie and E. Azar, "An applied framework to evaluate the impact of indoor office
982 environmental factors on occupants' comfort and working conditions," *Sustainable Cities and*
983 *Society*, vol. 46, p. 101447, Apr. 2019, doi: 10.1016/j.scs.2019.101447.

984 [103] "Neurobehavioral approach for evaluation of office workers' productivity: The effects of room
985 temperature," *Building and Environment*, vol. 44, no. 8, pp. 1578–1588, Aug. 2009, doi:
986 10.1016/j.buildenv.2008.10.004.

987 [104] S. Razmjou, "Mental workload in heat: toward a framework for analyses of stress states," *Aviat*
988 *Space Environ Med*, vol. 67, no. 6, pp. 530–538, Jun. 1996.

989