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Abstract

Understanding and predicting ecological dynamics in the presence of

noise remains a substantial and important challenge. This is partic-

ularly true in light of the poor quality of much ecological data and

the imprecision of many ecological models. As a first approach to this

problem, we focus here on a simple system expressed as a discrete

time model with 2-cycle behavior, reflecting alternating high and low

population sizes. Such dynamics naturally arise in ecological systems

with overcompensatory density dependence. We ask how the amount

of detail included in the population estimates a↵ects the ability to

forecast the likelihood of changes in the phase of oscillation, meaning

whether high populations occur in odd or in even years. We adjust

the level of detail by converting continuous population levels to sim-

ple, coarse-grained descriptions using two state and four state models.

We also consider a cubic noisy overcompensatory model with three
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parameters. The focus on phase changes is what distinguishes the ques-

tion we are asking and the methods we use from more standard time

series approaches. Obviously, adding observation states improves the

ability to forecast phase shifts. In particular, the four state model and

cubic model outperform the two state model because they include a

transition state, through which the dynamics typically pass during a

phase change. Nonetheless, at high noise levels the improvement in

forecast skill is relatively modest. Additionally, the frequency of phase

changes depends strongly on the noise level, and is much less a↵ected

by the parameter determining amplitude in the population model, so

phase shift frequencies could possibly be used to infer noise levels.

Keywords: discrete-state models, phase change, two-cycle variable, alternate
bearing, mutual information, forecast skill

1 Introduction

One of the great challenges in understanding complex systems is mod-
eling and prediction in the absence of a clear understanding of underlying
mechanism. Although the full behavior of a complex system is typically high
dimensional and very challenging to model, there are often relatively regular
features of the dynamics that are amenable to study. For example, many com-
plex systems exhibit relatively regular oscillations that appear as an emergent
phenomenon and may or may not be central to the functioning of the system.
Examples in animal physiology include the beating of the heart or brain waves.
In ecology, examples include masting, insect outbreaks and predator-prey oscil-
lations. In all these cases, the oscillation is at least somewhat unpredictable
both due to environmental influences and because it emerges from complex
interactions which, by themselves, may not produce regular oscillations.

The simplest such oscillation is a noisy, discrete time two-cycle, a ubiquitous
feature of ecological time series (May, 1976). In ecology, discreteness in time
is often the product of seasonality (White and Hastings, 2020), and two-cycles
naturally result from over-compensatory dynamics (meaning that when the
population in year t is large, the population in year t+1 can actually get smaller
rather than just increasing more slowly). Models in the class of quadratic
maps with period doubling and noise, such as the noisy logistic and Ricker
maps, display such oscillations for some ranges of parameters. These models
are extremely important in dynamical systems theory and ecology. However,
each such model makes assumptions about the dynamical mechanisms yielding
oscillations. In this paper we take a di↵erent approach that is, as far a possible,
agnostic about dynamical mechanism and seeks to build models directly from
time series data with as few assumptions as possible.

Understanding the dynamics of a system is crucial for predicting future
states and guiding decisions. Building a dynamical model and forecasting the
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probable events involves using time series data and analysis. Time series anal-
ysis is widely used in many fields; however, ecology poses unique challenges as
the accuracy and precision of obtained data is usually poor due to practical
limits on how often and how completely natural populations can be censused,
and how long it takes for some ecological dynamics (e.g. multi-year or even
multi-decade cycles) to be captured in data (Bence, 1995; Ives et al, 2010).
In addition, the ubiquitous influence of stochasticity on ecological dynamics,
and complex feedbacks between stochastic and deterministic ecological pro-
cesses, makes inference from ecological time series data particularly challenging
(Sugihara et al, 1990; Turchin and Taylor, 1992; Ives et al, 2003).

Time series analysis has been employed to answer a wide range of questions
in ecology (Powell and Steele, 1995; Auger-Méthé et al, 2021) and other disci-
plines, such as epidemiology, meteorology, and economics, in which temporal
dynamics are of interest. For instance, time series data have been analyzed
to identify populations of conservation concern (Fagan, 2001), to estimate the
strength or form of density dependent regulation (Sibly et al, 2007), and for
inferring demographic rates (Gross et al, 2005). Methods for analyzing time
series can be crudely separated into linear approaches like ARMA models and
nonlinear approaches based on state space models (see the superb review in
Auger-Méthé et al, 2021). State space models are hierarchical models based
on the idea of a potentially noisy observation process of a noisy underlying
dynamic, with the overall approach geared to making inferences about the
underlying process from the observations, and hence allowing prediction of the
future.

Which of these methods is best depends on the question being asked. For
example, the dimension of an ecological community (i.e. the number of inter-
acting species or populations) can be estimated from the number of time
lags in the best-fit ARMA model; precise estimates of the ARMA’s param-
eters are not needed (Abbott et al, 2009). In contrast, ecological forecasting
requires both a model that is well supported by data and good parameter esti-
mates (Dietze, 2017). Questions about density dependence or interaction rates
require a model that not only captures the statistical patterns in the time
series data but also models the biological mechanisms responsible for those
patterns (Turchin and Taylor, 1992). Features of the data also influence which
approach is best: because measurement error and process error propagate dif-
ferently through time, time series with di↵erent types and strengths of error
must be treated di↵erently (Ives et al, 2003).

In this paper, we emphasize a di↵erent, less explored question. A simple
qualitative feature is the phase of the oscillation, which for a two-cycle is
whether the high value occurs at an even or odd time step. A change in phase
is a feature that is easy to detect even with very crude data. Thus, here we
explore how much information, and what types of information, from noisy
time series data should be modeled for forecasting phase shifts in ecological
oscillators.
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While it is appealing to describe real world data with a specific model
that incorporates mechanistic dynamics, it is often the case that the detailed
mechanisms are either unknown or the data too limited to decide between
competing models. In this situation, it is preferable to introduce the simplest
possible model to capture the salient features of the data without imputing
additional features of a system that are not observed. When large observation
error precludes precise estimates of population size, the data may nonetheless
provide reliable information about the phase of oscillation and the probability
of phase shifts, if it can reliably distinguish between a small number of discrete
states. In the language of state space models, we use a very crude observation
process to coarse grain the system into two, three, or four possible states at
each time. We then consider several simple predictive models that are easily
inferred from time series data using this approach.

Discrete time two-cycle oscillations in a single real variable can be described
by an amplitude and a phase of oscillation, where the phase takes two possible
values (high population size at even or odd times). Noise causes both the
amplitude and phase variables to fluctuate in time as can be seen in Fig. 1A,
which is a time series generated from a noisy Ricker map. If, as is often the
case, the intrinsic oscillation is stable and the noise is uncorrelated or weakly
correlated in time, then the amplitude variable fluctuates on short time scales.
On the other hand, for weak to moderate noise strength, phase changes are
rare and di�cult to predict. Changes in the phase of oscillation of a system
can have a dramatic e↵ect on both the system and its environment. The data
representations and dynamical models that we discuss are primarily designed
to model and predict phase changes. Conversely, we also determine inferences
about underlying dynamics that can be made from the frequency of such phase
shifts.

One particular example of phase shifts of this kind occurs for nut produc-
tion of individual trees in a pistachio orchard (Lyles et al, 2009; Rosenstock
et al, 2011). These individual trees typically alternate between years with high
and low pistachio yield, but not perfectly. Thus there is an oscillator, but phase
shifts do occur as stochasticity plays a large role (Lyles et al, 2009). The phe-
nomenon of alternate, but not perfectly alternate, bearing in cultivated trees is
very common and widespread (Monselise and Goldschmidt, 1982). This alter-
nate bearing behavior is not restricted to domesticated trees, but also occurs
in oaks (Crawley and Long, 1995) and others, where the generated pulse in
resources can be important to many species so phase shifts have a large impact.
Although the actual amount of production is best described by a continuous
variable, the presence of definite highs and lows suggests that even discretized
data may contain useful information for predicting changes in phase.

The first step in constructing models of a continuous state two-cycle time
series is to transform the data by taking a first di↵erence of states through time
multiplied by an alternating sign. This transformation is illustrated in Fig. 1A,
which shows the raw time series, and Fig. 1B, which shows the alternating sign
first di↵erence. The sign of the resulting “two-cycle variable” reflects the phase
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of oscillation while its absolute value is the amplitude. As is seen in Fig. 1B,
this transformation makes clear the bistability of the system and shows that
noisy two-cycle systems are yet another example of the broad class of bistable
systems, such as those produced by the Allee e↵ect in ecology (Courchamp
et al, 1999). Changes in phase are barrier crossing events and are typically
accompanied by excursions through a transition state. Here the transition state
is identified with small values of the amplitude.

Most of the models we discuss are discrete state Markov processes. After
transforming the data as just described, the next step in constructing such a
model is to bin the continuous-state two-cycle variable data to create a data
set with a discrete number of states. We propose that the bins should defined
so as to maximize the mutual information between the full time series data
and the discrete state representation. We therefore use bins that, at minimum,
capture the phase of oscillation (i.e., two bins that correspond to population
peaks at odd or even time steps). With three or more bins, we can also capture
information about whether the population is in a transition state. Using mutual
information to define basins of attraction for the two metastable phases of
oscillation and a transition state may be more broadly applied to modeling
other classes of bistable systems.

As this paper is quite complex, we provide a brief outline. In section 2,
we describe how we bin the data to reduce continuous-state data to a small
number of discrete states. The purpose of this binning procedure is to consider
how much we can predict from crude observations containing di↵ering amounts
of information about the underlying process. Section 3 provides a description
of the di↵erent models we use to describe dynamics through time with a small
number of discrete states. Section 4 presents the two ways we measure how well
the reduced models describe the underlying dynamics: forecast skill and mutual
information. Section 5 both presents our results and provides a discussion. Our
conclusions are summarized in section 6.

2 Data and Representations

2.1 Synthetic data

Our goal is to analyze noisy two-cycle dynamics. We do this using a proto-
typical over-compensatory ecological model, the noisy Ricker map, to generate
the data (example time series in Fig. 1A). Ricker dynamics can describe the
intraspecific density dependence and short-period oscillations in populations.
The noisy Ricker map is given by,

Xt+1 = Xt exp [r(1�Xt)] exp (�r⇣t) (1)

where Xt is the Ricker variable at time t representing population size, r is the
population growth parameter, �r is the noise strength, and ⇣t is normal random
variable with zero mean and unit standard deviation. Here, we study the data
generated from simulations with growth parameter values r = 2.1, 2.2, and 2.3,
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all of which fall in the two-cycle regime, and noise values �r = 0.11 � 0.2 in
increments of 0.01. Here, the observed data, X is a continuous-state variable
with period-2 oscillations around X = 1.

The time series of such a two-cycle system has oscillations between a high
and a low states, and has two possible phases of oscillation: high state at even
times or high state at odd times. We refer to these as “+” and “�” phases.
The system has symmetry with respect to these two phases of oscillation. In
the absence of noise, the system chooses one of the phases depending on the
initial condition of the oscillation and the phase persist indefinitely breaking
the symmetry between the phases. In presence of noise, the phase of oscillation
changes at random times as shown in Fig. 1A. In the absence of any symmetry
breaking environmental force, the system retains a statistical symmetry with
respect to the two phases of oscillation. Here, we discuss both continuous and
discrete data representations of noisy two-cycle oscillations and focus on the
phase of oscillation and its dynamics.

While the analysis presented in this study uses simulated Ricker data with
2 ⇥ 105 time steps as the observed data, the methods and models developed
are suitable for any noisy two-cycle oscillations. For the rest of the study, we
assume that the dynamics of the observed data is unknown, so we use the time
series data only and we pretend not to know that they were generated from
the noisy Ricker map.

2.2 Continuous state representation: two-cycle variable

The observed two cycle oscillatory data shown in Fig. 1A have varying
amplitude and also display changes in the phase of oscillation. Both of these
features can be identified in the behavior of the first di↵erence with alternating
sign, which we refer to as the two-cycle variable, Mt,

Mt = (�1)t+1(Xt+1 �Xt), (2)

as shown in Fig. 1B. The sign of the two-cycle variable is the phase of oscillation
and its absolute value is the amplitude of oscillation. The phase of oscillation
is displayed in Figs. 1A and B with the positive (“+”) phase shaded grey.

First di↵erences of time series are used in many prediction models (Box and
Jenkins, 1976). In this study, we include the alternating sign along with the
first di↵erence in the two-cycle variable to retrieve the information about the
phase of oscillation. This representation also ensures the symmetry of the two-
cycle variable around zero in the long-time limit for any two-cycle oscillator
without a bias toward one phase.

The two-cycle variable is a continuous-state variable just like observed time
series data, but the transformation is not invertible because the initial condi-
tion is required to recover the observed data. While this representation results
in a loss of information, the two-cycle variable makes the amplitude and phase
of oscillation more manifest. Changes in the phase of oscillation are a salient
feature of noisy two-cycle oscillators that are a primary interest of this study.
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Fig. 1 Representations of noisy two-cycle data, emphasizing the phase of oscillation. (A)
Observed time series. The grey highlighted region has a positive phase of oscillation and the
white region has a negative phase of oscillation, as determined by which year has the high
value of the oscillator. (B) The two-cycle variable, M is obtained from the observed data
using Eq. (2). (C) The two-cycle variable is re-plotted highlighting two discrete bins used
in the two-state representation. The two-cycle variable is symmetric around zero. (D) The
two-state representation, ✓, is obtained by assigning all the positive (negative) two-cycle
variables as 1 (-1). (E) The two-cycle variable is re-plotted highlighting the three bins used
in the three-state representation, with the central green interval representing the transition
state. (F) The three-state representation, �, is obtained by assigning all two-cycle variables
in the interval around zero (green) as 0 and the rest of the positive (negative) two-cycle
variables as 1 (-1).

2.3 Discrete state representations

Discrete state representations lump the continuous two-cycle variable into
a small number of bins. These representations are useful when small fluctu-
ations are not relevant or cannot be observed or the signal-to-noise ratio is
low in the observed data. The discrete state representation of the data helps
in understanding the essential information required for the problem. As we
are interested in studying and predicting the phase changes in two-cycle oscil-
lations, the data can minimally be represented as two states to retain the
information about whether the system is in the positive or negative phase
of oscillation. Here, we discuss two-state, three-state and four-state variables
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where the corresponding bins are chosen to maximize the information about
the two-cycle dynamics.

1. Two-state variable: The two-state variable, ✓t is the phase of
oscillation and is defined as,

✓t = sign(Mt). (3)

✓t takes the values, +1 and �1, corresponding to the positive and negative
phases of oscillation, respectively. This data representation (see Fig. 1D) loses
all the information about the amplitude of oscillation.

2. Three-state variable: The time-series of the two-cycle variable in
Fig. 1B clearly shows that the system changes its phase of oscillation when the
two-cycle variable is close to zero. Hence, to better predict the phase of two-
cycle oscillations, a transition state where the system is likely to change its
phase of oscillations is included in the three-state representation. The three-
state representation, �t is defined as,

�t =

(
sign(Mt), if |Mt| � w

0, otherwise.
(4)

The transition state (�t = 0) is identified as the interval where the amplitude
is smaller than a cut-o↵ w. We use mutual information to set w as described
below in Sec. 5.2.
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Fig. 2 Illustrations of discrete data representations of the two-cycle oscillator. (A) The
two-cycle variable M is divided into two bins to separate the two phases of oscillation. (B) M
is divided into three bins to separate the data into small (transition state around zero) and
large amplitude oscillations (two phases of oscillations). The width of the transition state is
calculated by maximizing mutual information between M and the three-state representation.
(C) The transition state in the three-state representation is further divided into two bins
symmetric around zero to form four states in total. Here, the data are separated by the two
phases of oscillation as well as amplitude of the oscillation (small or large).
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3. Four-state variable: Due to the symmetry of the two-cycle variable
around zero it is useful to define a four-state variable that divides the transition
state into two bins with positive and negative phase, respectively (see Fig. 2C).
The four-state variable ⌧ takes values in {+1,�1, 0+, 0�} and is defined from
the three-state variable, � and the two-state variable, ✓,

⌧t =

8
><

>:

�t, if �t = ±1

0+, if �t = 0 and ✓t = 1

0�, if �t = 0 and ✓t = �1.

(5)

These four states give the information about the phase of oscillation as well
as whether the system is in the transition state.

3 Dynamical Models

In this section, we discuss simple dynamical models for analyzing noisy
two-cycle time series data and build probabilistic forecasting tools. The data
representations studied in Sec. 2 have di↵erent states, so each requires a
di↵erent model to represent its dynamics. All the data representations and cor-
responding dynamics discussed in this work are shown in Fig. 3. All the models
studied have Markovian dynamics. More accurate predictions can potentially
be obtained using non-Markovian models with the same data representations
at the expense of introducing more model parameters. The trade-o↵ between
richer data representations versus non-Markovian models is an interesting topic
that deserves further study but is beyond the scope of this work.

3.1 Two-state dynamics

The model of two-state dynamics is designed for a two-state system that
takes values {±1}. The model parameters are transition probabilities. As the
model has 2 states, there are 4 transition probabilities: P✓(1 ! 1), P✓(1 ! �1),
P✓(�1 ! 1), P✓(�1 ! �1) where P✓(a!b) is the transition probability from
state ✓ = a to ✓ = b.

The two states of the two-state variable have Z2 symmetry giving rise to
conditions, P✓(1 ! 1) = P✓(�1 ! �1) and P✓(1 ! �1) = P✓(�1 ! 1) along
with a normalization condition: P✓(1 ! 1) + P✓(1 ! �1) = 1. Without any
loss of generality, we can choose the transition probability P✓(1 ! �1), which
measures the probability of the system to change its phase of oscillation, as
the single parameter of the model.

3.2 Three-state dynamics

The model of three-state dynamics is developed for calculating transition
probabilities between the three states {0,±1}. In the study of two-cycle oscil-
lations, states ±1 correspond to the two phases of oscillation and state 0
corresponds to the transition state between the two phases of oscillation.
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Fig. 3 Representations and dynamical models of noisy two-cycle data. Left: Data represen-
tations obtained from the observed data are shown in the order discussed in Sec. 2. Two-cycle
variable is obtained from the observed data. Two-state and three-state variables are obtained
from the two-cycle variable and are used to define the four-state variable. Right: Dynamical
models developed to study and forecast noisy two-cycle data are discussed in Sec. 3. Data
represented as the two-cycle variable are modeled with cubic dynamics. Two-state, three-
state and four-state dynamics are developed using transitions between the discrete states of
the two-state, three-state and four-states variables respectively.

There are nine transition probabilities between the three states. As the two-
cycle variable is symmetric around zero, there are four symmetry conditions
and two normalization conditions, leaving three independent probabilities.
Our choice of independent transition probabilities that completely specify the
dynamics are P�(1 ! 1), P�(1 ! 0), P�(0 ! 1).

3.3 Four-state dynamics

The model of four-state dynamics is used to predict the phase of oscillation
even when the system is in the transition state. There are 16 transition prob-
abilities among the four states, {±1, 0+, 0�}. Due to symmetry around zero,
there are 8 symmetry relations and 2 normalization conditions, leaving 6 inde-
pendent transition probabilities, which we choose as, P⌧ (1 ! 1), P⌧ (1 ! 0+),
P⌧ (1 ! 0�), P⌧ (0+ ! 1), P⌧ (0+ ! 0+), P⌧ (0+!0�).
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3.4 Cubic model

The dynamics of the two-cycle variable, M , can be developed with a transi-
tion kernel PM (M ! M

0). However, inferring this kernel from the data would
not be tractable. So, we have chosen to represent the kernal by a three param-
eter cubic model that satisfies the required properties of M . The cubic model
is a bistable continuous-state discrete-time model with Z2 symmetry. In the
absence of noise it is given by,

Mt+1 = aMt � b
2
M

3
t (6)

where a, b are parameters of the model and Mt is the two-cycle variable at time
t. The bifurcation diagram as a function of a when b = 1 is shown in Fig. 4A
with di↵erent initial conditions (top figure, positive initial value M0 > 0 and
bottom figure, negative initial value M0 < 0). The region of interest for b = 1
is 1 < a < 2 where the system has two stable fixed points, ±

p
a� 1 and an

unstable fixed point, 0. With additive noise, the cubic model is written as,

Mt+1 = (aMt � b
2
M

3
t ) + �⇣t (7)

where � is the noise strength and ⇣t is a normally distributed random variable
with zero mean and unit standard deviation. The histogram of the noisy cubic
model is shown in blue in Fig. 4B.

-0.8 0 0.8
0

0.01
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M

M

M

a

a

 �    �b = 1, � = 0 Data: Ricker map

(�  � )


Inferred cubic model

(�   �   � )


r = 2.3, �r = 0.13

a = 1.15, b = 0.34, � = 0.09

(A) (B)

Fig. 4 The cubic model is developed to model the dynamics of the continuous-state
two-cycle variable of a noisy two-cycle oscillator. (A) The bifurcation diagram of the deter-
ministic cubic model is plotted with positive (Mt=0 > 0, top plot) and negative initial values
(bottom plot) as a function of parameter a. (B) The histograms of the two-cycle variable of
an observed time-series data generated from the Ricker map (red) and the inferred stochastic
cubic model (blue). The inferred cubic model captures relevant properties of the two-cycle
data.

The parameters of the noisy cubic model, {a, b,�}, can be inferred from
the observed noisy two-cycle data by maximizing the likelihood function. The
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likelihood function is,

L(a, b,�; Mt+1,Mt) / P (Mt ! Mt+1; a, b,�)P (Mt; a, b,�) (8)

where P (Mt ! Mt+1; a, b,�) is the transition kernel of the cubic model, which
can be written as a normal distribution from Eq.(7),

P (Mt+1; Mt, a, b,�) =
1

�
p
2⇡

exp
h
�(aMt � b

2
M

3
t �Mt+1)2

2�2

i
, (9)

and P (Mt; a, b,�) is the stationary probability density, which is the fixed point
of the dynamical equation,

P (Mt+1; a, b,�) =

Z
P (Mt+1; Mt, a, b,�)P (Mt; a, b,�)dMt. (10)

Using results from Noble et al (2017), the solution for the stationary
distribution to fourth order in M is,

P (Mt; a, b,�) = A(a, b,�) exp
h2(a� 1)M2

t � b
2
M

4
t

2�2

i
(11)

where the normalization constant A(a, b,�) is,

A(a, b,�) =
2b exp(�)

(⇡
p
a� 1)

⇥
I 1

4
() + I� 1

4
()

⇤ (12)

with

 =
(a� 1)2

4b2�2
(13)

and In() is the modified Bessel function of the first kind.
Using Eq.(8), Eq.(9) and Eq.(11), the likelihood function is written as,

L(a, b,�; Mt+1,Mt) =
A(a, b,�)

�
p
2⇡

exp
h2(a� 1)M2

t � b
2
M

4
t � (aMt � b

2
M

3
t �Mt+1)2

2�2

i
.

(14)
Given pairs of two-cycle variables (Mt,Mt+1), the parameters (a, b,�) can be
estimated by maximizing the likelihood function.

The cubic model is inferred from the two-cycle variable from the observed
data to obtain the parameters a, b,�. The histogram of the two-cycle data is
compared with the inferred cubic model in Fig. 4B. The cubic model captures
the dynamics of the two-cycle observed data well but overestimates the proba-
bility of two-cycle variable being near zero and underestimates the probability
of being near the peaks of the distribution.
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4 Analytical tools

In this section, we discuss mutual information and forecast skill as they are
used to analyze the data representations and calculate prediction quality of
the dynamical models. In Sec. 4.1, we introduce mutual information which is
used for two purposes in this work: 1) to set the width of the transition state
for the three and four state representations and 2) to assess the quality of
the representations in capturing the information present in the time series. In
Sec. 4.2, we introduce forecast skill and Brier score, and discuss the analytical
calculations of the Brier Score for the dynamical models.

4.1 Mutual Information

Mutual information is the amount of information shared between two ran-
dom variables (Cover and Thomas, 2005). Mutual information is measured
between two variables and is symmetric, I(A,B) = I(B,A). The mutual
information between two continuous variable such as Mt and Mt+1 is given by,

I(Mt,Mt+1) =

Z 1

�1
dm1

Z 1

�1
dm2PMt,Mt+1(m1,m2) log2

⇣
PMt,Mt+1(m1,m2)

PMt(m1)PMt+1(m2)

⌘

(15)
where PMt and PMt+1 are marginal probability densities, and PMt,Mt+1 is the
joint probability density. The mutual information between discrete variables
such as �t and �t+1 is given as,

I(�t,�t+1) =
X

d1

X

d2

P�t,�t+1(d1, d2) log2

⇣
P�t,�t+1(d1, d2)

P�t(d1)P�t+1(d2)

⌘
(16)

where, in this case, d1 and d2 take the discrete values {�1, 0,+1}, P�t,�t+1

is the joint probability mass function of �t and �t+1, and P�t , P�t+1 are the
marginal probability mass functions. The mutual information between a dis-
crete and continuous variable can be written in a similar way with an integral
and sum over the domain of variables.

4.2 Forecast skill

Forecast skill measures the ability of a model to predict the probability of
an event (Hamill and Juras, 2006). We use the Brier score to characterize the
ability of the dynamical models discussed in Sec. 3 to predict the observed data
one time step in the future. The Brier score, B is defined as the mean squared
error in a probabilistic prediction, P̃t, of a binary observable, Ot 2 {0, 1} at
time t, averaged over many times,

B =
1

T

TX

t=1

(P̃t �Ot)
2
. (17)
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For example, in weather forecasting, where the concept of forecast skill origi-
nated, a binary observable might be rain (Ot = 1) or no rain (Ot = 0) and P̃t

the probabilistic forecast (e.g. 20% chance of rain).
The Brier forecast skill, F compares the Brier score of the probabilistic

prediction to a simple reference forecast,

F = 1�
B

Bref
(18)

where Bref is the Brier score of the reference forecast (e.g. the overall clima-
tological probability of rain). Reference forecasts relevant for our study are
introduced at the end of this subsection. Forecast skill is 1 for a perfect forecast,
greater than zero for a forecast that improves on the reference, and negative
for forecast with less skill than the reference.

Here, we present forecast skill results for the event that the system changes
its phase of oscillation at time t+1 given the two-cycle variable Mt as shown in
Fig. 5 where Dt is any of the representations discussed in Sec. 2 and Fig. 3 and
D̃t+1 the corresponding model prediction. The forecast skill results exclude
the three-state model since the three-state variable does not have information
about the phase of oscillation when the system is in the transition state, �t = 0.
For every Dt except the three-state variable, we calculate the probability P̃t

that the system changes its phase of oscillation using its dynamics with inferred
parameters (discussed in Sec. 3). The predicted probability of a phase change
for each model is given by,

P̃t = Pr(sign(MtD̃t+1) = �1). (19)

Note that in the four state model, we interpret ⌧ = 0± as being a small,
non-zero numbers with signs corresponding to superscript.
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Fig. 5 The forecast skill of a model is obtained from the conditional probabilities of Mt+1

on Mt and of D̃t+1 on Mt. The properties of the Ricker time series data (on which M is
based) are obtained as a function of noise and the growth parameter r.



Springer Nature 2021 LATEX template

Modeling noisy two-cycle oscillations 15

Brier Score calculation:
The forecast skill is measured by calculating the Brier score between the cal-
culated probability and observed data using Eq. (17) over many times t. The
forecast event is whether the system changes its phase of oscillation at time
t + 1. The time series data used to infer the parameters (discussed in Sec. 3)
is analyzed to calculate the forecast skill.

For the two-state dynamics, the predicted probability for phase change P̃t

is the same as the model parameter, P✓(1 ! �1). As O
2
t = Ot and hOi =

P✓(1 ! �1), the Brier score for the two-state dynamics is,

B✓ = P✓(1 ! �1)
⇥
1� P✓(1 ! �1)

⇤
. (20)

In the case of four-state dynamics, there are two predicted probabili-
ties depending on whether the system is in the transition state or not. The
predicted probabilities are given by,

P̃t =

8
>><

>>:

Q0 ⌘ 1�
h
P⌧ (0+ ! 0+) + P⌧ (0+ ! 1)

i
, if ⌧t = 0±

Q1 ⌘ 1�
h
P⌧ (1 ! 0+) + P⌧ (1 ! 1)

i
, if ⌧t = ±1.

(21)

Using the probability, P⌧ (0+) that the system is in the transition state
⌧ = 0+, the Brier score for four-state dynamics is,

B⌧ =
⇥
2P⌧ (0

+)
⇤
Q0(1�Q0) +

⇥
1� 2P⌧ (0

+)
⇤
Q1(1�Q1). (22)

For the cubic model, the predicted probability of phase change is a function
of Mt and the inferred parameters {a, b, �}, which follows from the normal
distribution in Eq. (7),

P̃t =
1

2
erfc

� ↵
p
2�

�
, (23)

where
↵ = a|Mt|� b

2
|Mt|

3
, (24)

and erfc is the complementary error function.
The Brier score for the cubic model does not have a analytical form and

must be calculated numerically using the above expressions for the predicted
probability in Eq. (17).

Along with the dynamical models, a reference forecast is needed, as shown
in Eq. (18), to measure forecast skill. As the probability of the system to
change its phase of oscillation is close to zero (see Fig. 6) in the range of
�r = [0.11, 0.2], one of the simple reference probabilities for phase change is,
P̃ref = 0. So, the reference Brier score in this case is,

B0 = hOi = P✓(1 ! �1). (25)

We will also consider the predictions of the two-state model as a reference for
the more complex representations, as described below.
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5 Results

The results discussed in this section are obtained using synthetic data
generated from noisy Ricker maps as the observed time series. Although the
underlying dynamics is known in this study, we treat the two-cycle time series
data as though the true dynamics is unknown, as would be the case with
real-world data. In Sec. 5.1, we present dynamical properties of the data by
studying the changes in the phase of oscillation. In Sec. 5.2, we calculate the
width of the transition states for the three-state and four-state variables using
mutual information. Finally, in Sec. 5.3, we compare the prediction quality
of the dynamical models using mutual information and forecast skill under
various conditions.

5.1 Dynamical properties: phase changes

In the presence of noise, two-cycle oscillators change their phase of oscilla-
tion at random times. Using the two-cycle or two-state representation of the
given time series data, the binary observable, Ot,

Ot =
1� sign(MtMt+1)

2
=

1� ✓t✓t+1

2
(26)

is one if the system changes phase from time t to t+1 and zero otherwise. The
probability of the system to change its phase of oscillation is estimated from
the average over a long time series,

hOi =
1

T

TX

t

Ot=1. (27)
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Fig. 6 Phase changes in a noisy two-cycle oscillator. (A)Probability of phase changes,
P = hOi, as a function of noise, �r is plotted for two-cycle data obtained from the noisy
Ricker map (see Eq. (1)) with growth parameter r. In the low noise limit, phase changes are
very rare and the probability approaches zero. (B) The data is re-plotted with rescaled axes
suggested by Eq. (28) with �r as noise and P as probability of phase changes. The trend of
the plot is linear as expected, with log(k) as the slope and H as the y-intercept.
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The probability of phase change is measured as a function of noise and
growth parameter for the noisy Ricker map data in the two-cycle regime and
shown in Fig. 6A. At high noise, phase changes are random and the phase
change probability approaches 1/2. In the low noise limit, phase changes are
very rare and the probability of phase change approaches zero. In this work,
except for this plot, we analyze the time series data in the intermediate noise
range �r 2 [0.11, 0.2].

The phase changes in noisy two-cycle oscillatory systems can be related to
the state changes in bistable systems such as barrier crossing in the presence of
thermal noise. Using results from the Kramer’s reaction-rate theory (Hänggi
et al, 1990; Kramers, 1940), the probability for phase change has the form,

Probability = k exp
h
�H

�2

i
(28)

where �
2 is the variance of the noise, H is the barrier potential and k is a

proportionality constant. The probability of phase changes shown in Fig. 6A
is re-plotted in Fig. 6B to demonstrate how well the above equation obtained
from the theory of bistable systems explains the dynamical property of phase
changes in two-cycle oscillations.

The barrier potential, H can be calculated approximately using the cubic
model as,

H =
(a� 1)2

2b2
(29)

where a, b are the parameters of the cubic model. Equations (28) and (29)
follow from the idea that the transition probability is proportional to the ratio
of the maximum to minimum stationary state probabilities, which, in the cubic
model are obtained from Eq. (11). The linear trend in Fig. 6B is expected to
have H as the y-intercept and log(k) as the slope.

5.2 The transition state

The three-state and four-state representation of the observed data require
setting the width of the transition state. The objective in choosing the width
is to minimize the loss of predictive information about the future due to the
coarse-graining involved in the going from the continuous variable, Mt, to the
discrete variable �t. Here, we use mutual information to set the width of the
transition state.

Since we have assumed both the data and the models are Markovian, we
only consider mutual information between two consecutive time steps. The
width parameter of the three-state representation, w, is thus calculated by
minimizing the di↵erence between the mutual information of successive two-
cycle variables I(Mt,Mt+1) and the mutual information of successive three-
state variables I(�t,�t+1) as shown in Fig. 7. This is equivalent to maximizing
I(�t,�t+1), but we present the results in terms of this di↵erence for ease of
interpretation.
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Fig. 7 The width parameter, w, for the three-state representation is calculated using mutual
information. Pairs of two-cycle variables (Mt,Mt+1) are obtained from the observed data and
their mutual information I(Mt,Mt+1) is calculated. Pairs of three-state variables (�t,�t+1)
are calculated directly from (Mt,Mt+1) (not from three-state dynamics) and the loss of
mutual information, I(Mt,Mt+1)� I(�t,�t+1) is minimized as a function of width, w.

The mutual information di↵erence I(Mt,Mt+1)� I(�t,�t+1) as a function
of width w are shown Fig. 8A for Ricker time-series data with growth param-
eter r = 2.2 and various values of noise �r. For a given noise �r, the width
corresponding to the minimum information loss is chosen as the width of the
transition state. The resulting values of the width of the transition state are
shown in Fig. 8B as a function of �r for r = 2.1, 2.2 and 2.3. For any given
observed time series data, calculation of the width of the transition state by
minimizing the information loss completes the definition of the three-state
representation.

Since the two and three-state representations are identical when width is
zero, Fig. 8A also shows the loss in mutual information due to represent-
ing Mt with the two-state variable, ✓t. The results show that the three-state
representation contains at least 0.2 bits more information than the two-state
representation for the noise values shown here.

The two-cycle variable Mt is course-grained into three bins by the three-
state representation and these bin are superimposed on histograms of M in
Fig. 8C for three values of noise. As noise increases, transitions between the
phase of oscillations increase and the probability of being in the transition
state, plotted in Fig. 8D, increases. At high noise, the histogram approaches
a pure quartic potential and the probability of being in the transition state
saturates to 1/3.

In the very low noise limit the joint distribution of Mt and Mt+1 is con-
centrated in the two regions, Mt ⇡ Mt+1 ⇡ ±(a+ � a

�) where a
+ and a

� are
the two fixed points of the deterministic two-cycle Ricker map and the map is
nearly deterministic. Thus, the mutual information I(�t,�t+1) is near one bit
for w < (a+ � a

�) since the system is almost always in the one of the states
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Fig. 8 Calculation of width w of the transition state in the three-state representation using
mutual information. (A) Loss of mutual information (bits), I(Mt,Mt+1) � I(�t,�t+1) is
calculated as function of width with observed data from the noisy Ricker map with r = 2.2
and various noise values. (B) The width that minimizes the information loss is plotted for
noisy Ricker data as function of noise �r for several values of the growth parameter r. (C)
The distributions of M are shown for r = 2.2 by highlighting the three states of � where the
green (middle) bin corresponds to the transition state (� = 0). (D) The probability of being
in the transition state is plotted and has an increasing trend as expected from the increase
in phase changes with noise.

�t = ±1 state and almost always �t+1 = ��t. Similarly, the mutual informa-
tion is near zero for w > (a+ � a

�). Furthermore, I(�t,�t+1) increases as w

approaches (a+�a
�) from below so that w % (a+�a

�) as �r ! 0. Although
the width of the transition state increases as the noise decreases, the station-
ary probability of being in the transition state goes to zero, P (� = 0) ! 0 as
�r ! 0. The weak noise limits are shown as arrows in Fig. 9.

It should be noted that the bins defining the two-state, three-state and four-
state representations have implicit properties that have been set by symmetry.
For example, in the two-state representation there is a hidden parameter that
sets the value of M separating ✓ = +1 and ✓ = �1. Symmetry arguments
show this parameter is zero but the mutual information method yields the
same result and could be used more generally when no symmetry argument is
available.
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Fig. 9 In the low noise limit, the width of � approaches the di↵erence between the stable
fixed points of oscillation. The low noise limits of the width are shown as arrows on the
y-axis.

5.3 Prediction quality

In the following two subsections we assess the predictive ability of the
dynamical models introduced above using mutual information and forecast
skill.

5.3.1 Mutual Information results

In this subsection, we study the amount of information the model predic-
tions share with the observed data. The strategy is shown in Fig. 10A. First,
pairs of two-cycle variables Mt and Mt+1 are obtained from the observed data.
Next, the two-cycle variable at the initial time Mt is represented as Dt Here
Dt is either Mt itself for the cubic model, or, for the discrete state models, ✓t,
�t or ⌧t for the two-state, three-state or four-state models, respectively. The
subsequent value, D̃t+1 is obtained from the corresponding models with the
inferred parameters and then the mutual information is calculated between
Mt+1 and D̃t+1.

Mutual information results are shown in Fig. 10B for the cubic, two-state,
three-state and four-state models. Mutual information is highest for the cubic
model, which is the representation that retains full information from Mt, and
decreases as the number of discrete states decreases as more information is
lost by representing Mt as Dt. Mutual information decreases roughly linearly
as a noise increases.

In the limit of low noise, all the models converge to one bit of mutual
information. The oscillator can be in one of two states so the information
content of its state is one bit. Furthermore, all models incorporate the property
that no phase changes occur at zero noise so the predictions are perfect.
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Fig. 10 Mutual information method and results. (A) The top row shows the two-cycle
variables Mt and Mt+1 obtained from the observed data. Mt is represented as Dt which
can be any of the data representations discussed in Sec. 2. Using the models discussed
in Sec. 3, corresponding realizations of D̃t+1 are calculated. (B) The mutual information
I(Mt+1, D̃t+1) between Mt+1 and D̃t+1. The results shown here are obtained from the data
generated from the Ricker map with r = 2.3. The more fine-grained models contain more
information about the underlying data and all models deteriorate with increasing noise.

5.3.2 Forecast skill results

In this section we study the ability of the dynamical models to predict
changes in the phase of oscillation. We use forecast skill with respect to two
reference models to quantify this ability. The first reference model is the sim-
ple no-noise assumption that phase changes do not occur. The second, more
accurate, reference model is that phase changes occur at an average rate inde-
pendent of the current state. This reference is none other than the transition
probability from the two-state model.

The forecast skill relative to the no-noise reference is shown in Fig. 11A.
Using Eqs. (17), (20), and (25), one sees that the forecast skill of the two-
state model is the same as the probability of the system changing its phase
of oscillation, which is small even for intermediate noise. The addition of the
transition state in the four-state model increases the forecast skill as shown in
the plot. The cubic model does a much better job of predicting phase changes
at low noise because it is sensitive to the rare situations that M is close to zero
when transitions can occur. However, for higher noise the cubic model and the
four-state model perform similarly.

A more accurate choice of reference is the two-state model with P✓(1 ! �1)
(see Sec. 3) as the reference probability for change in phase of oscillations.
Results for the cubic and four-state models are shown in Fig. 11B and, again,
the cubic model does much better at low noise because it detects the very
small values of M associated with transitions. while the transition state of the
four-state representation is quite wide here. On the other hand, as noise gets
larger, being in the transition state is a good predictor of an immediate phase
change and knowing the exact value of M is less helpful. The four-state model
improves with noise over the range studied here because it becomes more likely
that a phase change occurs following a single visit to the transition state.
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Fig. 11 Forecast skill results. (A) Forecast skill for predicting a change in the phase of
oscillation for the cubic, four-state, and two-state models where the reference probability of
change in phase of oscillation is 0. (B) Forecast skill for the cubic and four-state models with
the two-state model as the reference. Note that all of the models have positive forecast skill.

In the high noise limit, phase changes occur with probability 1/2 and, rela-
tive to the two-state reference, the more complicated models have no improved
forecast skill. In the low noise limit, the no-noise, two-state and four-state
models all have Brier scores of the form P✓(1 ! �1)(1 + ✏) with ✏ depending
on the model but, in all cases, ✏ ! 0. Thus, none of these models have forecast
skill relative to the other. The proof follows from Eqs. (20), (22) and the fact
that P✓(1 ! �1), Q0 and Q1 all vanish in the low noise limit.

The transition state plays an important role in the forecast skill measure-
ment as most of the changes in phase of oscillation happen when the system
is in the transition state. Forecast skill results shown in Fig. 11B with the
two-state dynamics as reference are shown as solid lines in Fig. 12 along with
the results obtained by conditioning on �t (that is, conditioning on whether
or not the system is in the transition state). The forecast skill measured when
the two-cycle variable Mt is in the transition state, �t = 0 is shown as dashed
lines and when Mt is not in the transition state, �t = ±1 is shown as dotted
lines. The accuracy of prediction increases when the system is in the transi-
tion state for both cubic and four-state dynamics. This result confirms that
the forecast skill about change in phase of oscillations can be improved with
the information of transition state.

6 Conclusions

Any e↵ort at ecological modeling should begin with a clear understanding
of the question being asked. Here we use the idea of asking what information
can be gleaned from a focus on phase shifts in the relatively common two-
cycle oscillations in ecology using only crude data. By a phase shift, we mean
a change in the expected alternation of high and low states, so the following
high or low states occur at a di↵erent time than expected. Although there is a
long literature on time series analysis in ecology, much of this has been focused
on fitting data that is relatively high resolution.
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Fig. 12 Forecast skill is measured with the two-state model as the reference for predicting
a change in the phase of oscillation. The solid lines are the same as shown in Fig. 11B.
For solid lines, the state Dt is observed and Dt+1 is predicted. The same measurement
of forecast skill is obtained by conditioning on the observed �t and is shown as dashed
and dotted lines for the cubic and four-state model. The dashed forecast skill is measured
when the observed Dt is present in the transition-state of the three-state model (Condition:
�t = 0 or ⌧t = 0+, 0�). The dotted forecast skill is obtained when Dt is not present in the
transition-state (Condition: �t = ±1).

Yet much ecological data is rather crude, so methods and approaches that
use only coarsely binned data can have advantages. For example, another typ-
ical limitation is that high resolution time series are short while very long time
series that can be obtained from di↵erent kinds of historical records which of
necessity produce very rough estimates, such as high or low abundance.

Even if the actual observations may be crude, the underlying system being
observed will typically have continuous states. So a key question is how much
is lost by using only a coarse grained representation with a small number
of states to describe the system. One challenge is to be able to predict the
likelihood and occurrence of future phase shifts.

We consider how much information is lost when relying on a discrete state
representation, relative to having knowledge of the full system, using mutual
information (Cover and Thomas (2005)) and forecast skill. In many ways this
view is completely within the standard state space approach used in time
series analysis (e.g. Auger-Méthé et al (2021)) where there is an underlying
process and an observation process and inferences must be made using only
the observation. What is di↵erent here is our focus is on phase shifts and on
systems where the observation process leads to a very small number of states.

An intriguing outcome of our study is the possibility of inferring process
from pattern: what does knowing the frequency of phase shifts tell us about
the underlying dynamics. Here, the result illustrated in Fig. 6A, where the
relationship between noise level and frequency of phase shifts is only slightly
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a↵ected by the growth parameter of the Ricker model, suggests that noise level
might be estimated by frequency of phase shifts.

We have limited our study to Markovian models. It would be interesting
to see to what extent forecast skill is improved by adding some history to the
model. For example, especially in the low noise regime, the system must visit
the transition state for several time steps before a phase change occurs so a
model with history may perform better than a Markov model, though at the
expense of more parameters that need to be inferred. In addition, the role of
observation noise is an important topic for future study and would help decide
between models. Intuitively, the performance advantage of the more complex
models is expected to disappear as observation noise increases. Finally, the
symmetry between the two phases of oscillation can be broken, either explicitly
or via state dependent noise. The same can models can be applied but with
more parameters and di↵erent criteria for coarse-graining into discrete states.

The paper as a whole focuses on a very simple system, a single oscillator.
However, even for this system, we have shown how a focus on phase shifts for
a noisy cyclic system can provide new insights. This is in the spirit of the idea
that studying cyclic systems provides much more information than studying
systems that approach an equilibrium. The obvious steps of considering more
complex systems will have to wait for future research.
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