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Abstract. The task of succinctly and insightfully discussing themes in the differ-
ences between several (three ormore) groups in naturalistic, ethnographic research
faces a number of constraints. The number of all possible pairs is a quadratic func-
tion of the number of groups, and prior order and stand-out subsets may not exist
to narrow that number down. We define and compare methods for guiding this
task during Epistemic Network Analysis.
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1 Introduction

It is a common task in naturalistic, ethnographic research to model and discuss the
differences between multiple groups. Our focus in this paper is on the case where one
has three or more (ie, g ≥ 3) groups, as this presents a number of challenges when (i)
the number of groups continues to increase, (ii) there is no meaningful prior order in
which to guide one’s comparison, and (iii) there is no clear subset of the data one can
justify giving narrowed attention to. Generally, this task amounts to identifying themes
of difference: imagine considering what it is that makes any two groups different from
one another, then succinctly summing up what you find. Actually approaching the task
exhaustively like this quickly becomes too burdensomewithout someway to guide one’s
analytic focus. For example, to compare 15 groups this way one would need to consider
105 distinct pairs.

To get at this task, we first summarize existing approaches to structuring themes of
difference throughout the past three years of ICQE. Second, we define and compare a
number of dimensionality reduction techniques usable in Epistemic Network Analysis
(ENA), namely Singular Value Decomposition (SVD), Linear Discriminant Analysis
(LDA), and amethod we define here,Multi-ClassMeans Rotation (MCMR). And finally
we illustrate our approach using a wellknown dataset in our community, Nephrotex,
showing how one might choose among these methods and arrive at a story structured
around a succinct number of themes of difference.
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One of the strengths of multiclass methods is that they provide a reduced number of
axes aroundwhich one can discuss the differences of their groups: to compare 15 groups,
one would only need 4 (at least) to 14 (at most) axes. Axes provide themes of difference
in terms of spectra, and structuring one’s telling of the story around these spectra may
help alleviate the complexity inherent in telling stories that move over multiple group
difference. However, as we show, the existing approach (SVD) fails to identify trends
that actually discriminate between multiple groups; LDA and MCMR both overcome
this, balancing between discrimination and ENA goodness of fit scores differently.

2 Theory and Prior Literature

2.1 Multiclass Comparisons at ICQE

In the past three years of ICQE, data structured into multiple groups (that is, g ≥ 3) has
been approached in numerousways. Generally, these boil down to comparing each group
to the collective rest, comparing all possible pairs, justifying some focus, or discussing
general trends instead. In each case, these strategies impose limitations when the number
of groups continues to grow, and these limitations differ when one’s groups have vs. don’t
have a pre-existing sense of order.

In some cases, groups in the data have pre-existing ordinality that often aligns with
the passage of time, such as weeks in a course or stages in an intervention, and so there
may be better reason to talk about them in one order or another [1–14]. In other cases,
the groups in the data have no sense of ordinality, such as schools or countries, and so
the order in which one ought to discuss and compare them depends on one’s storytelling
substance, constraints, goals, and commitments [10–22].

Researchers approached these cases in one of six ways (Fig. 1):

1. Punt the Ball—One can forego discussing group differences and instead describe
each group in its own right without direct or inferred comparisons [15].

2. OneAgainst theRest—One can describe howeach individual group in turn compared
to all other groups together, perhaps after interpreting the grand mean of all groups
[10, 11, 16–19].

3. All Pairs—One can describe each possible difference in each possible pairing of
two groups [20]. In the ordinal case, one can also describe the differences of each
adjacent pair of groups [6, 14].

4. General Trend—One can interpret possible meanings of the four plotted quadrants
and use those to discuss overall trends in differences [14]. In the ordinal case, one
can also fit or justify an overall temporal trend, then describe features of that trend
[5, 7, 8, 12, 13].

5. Justified Focus—One can describe only a subset of possible pairings and provide a
rationale for one’s focus on that subset [11–13, 21, 22].

6. Play the Tape—One can, in the ordinal case only, describe the empirical qualities of
individual groups in early-to-late order, perhaps running through this order multiple
times to focus on the changes in particular qualities [1–5, 10]
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With the exception of a few that used sequential pairwise means rotations (which
only considered two groups at a time), most used an SVD projection to guide and/or
illustrate these descriptions.

Each of these approaches impose limitations when g grows and one lacks a sense
of ordinality. All Pairs approaches are prohibitively dense, as there are up to (g2 − g)/2
possible pairs, which is too great a burden on one’s page length and reader’s attention
to fully describe. One Against the Rest approaches are less dense as they require only g
steps, and in some cases this may be appropriate, but in others this may lead to redundant
descriptions of similar groups or not lead to clear insights about common patterns of
difference among groups. Justified Focus approaches solve these issues, but only when
one is fortunate enough to have data with immediately clear stand-out patterns. And
while General Trend approaches exist in the ordinal case, authors have relied on SVD
rotations to infer these trends in the non-ordinal case: as we show in our results below,
SVD is ill-suited for this task, as it aims to maximize overall variance, not between
group variance, and thus can fail to show differences that otherwise exist in the data. In
theory, a General Trend approach could describe the themes of differences between all
possible pairs of non-ordinal groups in as few as �log2 g� axes, each axis dividing the
groups in two in roughly orthogonal ways. At most, one would need g − 1 axes, which
would amount to a One Against the Rest approach but dropping one axis, as it would
be redundant with the rest. The method we propose achieves this lower bound in our
worked example below, while capturing differences failed to be seen by SVD.

2.2 Singular Value Decomposition, Linear Discriminant Analysis, & Means
Rotation

Let us consider two dimensionality reduction techniques commonly used in quantitative
ethnography, Singular Value Decomposition (SVD) and Means Rotation (MR), as well
as a related technique, Linear Discriminant Analysis (LDA). All three seek to find
an axis of a high dimensional space that maximizes some aspect of variance: SVD
maximizes overall variance, MRmaximizes between-group variance of two groups, and
LDA maximizes between-group variance while minimizing within-group variance (put
another way, LDA maximizes effect size) [23, 24].

The calculations for SVD and LDA are closely related. Where X is one’s high
dimensional data, Scov is the covariance matrix of X, x is the mean vector of X, Sb is
the between-group scatter matrix of X given g groups, x(i) is the mean vector of group i
within X, and ni is the sample size of the ith group, we first compute.

Scov = 1

n − 1

(
(X − x)T (X − x)

)

Sb =
g∑

i=1

n
(
x(i) − x

)(
x(i) − x

)T

then, in SVD, one finds the eigenvalues and eigenvectors of Scov and uses those vectors
with the highest eigenvalues to determine the axes of one’s lower dimensional embed-
ding; in LDA one does the same, instead finding the eigenvalues and eigenvectors of



Multiclass Rotations in Epistemic Network Analysis 61

Fig. 1. Illustrations of the approaches taken in the past three years of ICQE for exploring themes
of differences among three or more groups

Scov−1Sb. Note, SVD is guaranteed to find orthogonal axes in all cases, while LDA only
guarantees this when Scov is symmetric. A number of approaches have been proposed
to address this and related limitations of LDA [24–35]. For the sake of demonstration,
we consider a simple approach, discussed in the section below.

For MR, given two groups j and k, one instead takes x(k) − x(j) as the x-axis and the
first dimension of an SVD of the remaining dimensions as the y-axis.

In essence, each technique highlights different features of the data. SVD finds the
dimensions that highlight the greatest overall differences between units in one’s higher
dimensional embedding, a useful task when one seeks to understand the major turns of
one’s global structure quickly. LDA maximizes the discrimination (effect size) between
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groups in one’s data, a useful task when one seeks to design automated classifiers. And
MR gives an easily interpretable x-axis for non-technical readers: the x-axis (in most
cases) runs through the two group means. Moreover, MR can be generalized through a
regression framework, which allows one to moderate this projection for possible con-
flations or hierarchical effects often seen in nested data (eg., students within classes
within schools within districts) [36]. However, MR is limited to the g = 2 case, and
so unlike SVD and LDA, MR (as it currently stands) is not appropriate for modeling
g ≥ 3 groups simultaneously. As we show in the proposed method below, MR can be
reformulated using the same framework as SVD and LDA, allowing it to be generalized
to the multiclass case.

2.3 Epistemic Network Analysis Rotations

In this paper, we assume familiarity with Epistemic Network Analysis (ENA) [23, 37–
40]. Still, some ground clearing is worthwhile about how ENA rotates high dimensional
data.

The general process of ENA involves three steps: we construct a high dimensional
model of the connections between qualitative codes; we reduce the dimensionality of that
space while highlighting features of interest; and we project a network into that space as
a way to illustrate its dynamics [11, 23, 38, 40]. Let X represent this high dimensional
space, where Xij corresponds to the ith unit’s connection strength between the jth pair
of qualitative codes.

In whatever rotation method one chooses in the ENA tool (rENA or WebENA [38–
40]), the rotation amounts to reducing the dimensionality of X by finding a pair of
vectors, vx and vy, such that Xvx and Xvy are the dimensions that most highlight one’s
features of interest. Because these dimensions are taken as the x- and y-axis of the ENA
plot and the distances between plotted points must be uniformly interpretable (as in a
rigid body rotation), we have the further requirements that vx and vy be orthogonal to
one another and have equal length. In a case where one’s underlying dimensionality
reduction technique does not produce orthogonal axes (as with LDA), we can instead
take as our y-axis an approximation found by rejecting vy from vx and re-normalizing
[36]. Put another way, when vx and vy are not exactly orthogonal, we identify the plane
they exist in, rotate that plane such that vx aligns with our x-axis, and plot the result.

For the sake of demonstration, this is the technique we use for ensuring our proposed
methods conform to ENA’s rigid body requirements.

3 Methods

3.1 Proposed Method: Multiclass Rotations

To date, the only linear projection used (that we are aware of) for simultaneously com-
paring g ≥ 3 groups in an ENA context is SVD. And by default, this is the behavior of
WebENA except when g = 2 exactly, where MR is used instead [39].

We consider two alternatives to those methods, LDA and a multiclass generalization
of MR (MCMR), which together we think of as members of a more general class of
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possiblemulticlass rotations: rotations of anENAspace designed to highlight differences
among g ≥ 3 groups when ordinality is not guaranteed. Moreover, the process of these
two approaches is identical to SVD rotations, except LDA considers the eigenvalues and
eigenvectors of Scov−1Sb and MCMR considers that of just Sb. That is, SVD maximizes
overall variance, LDA maximizes between-group variance while minimizing within-
group variance, MCMR only maximizes between-group variance, and none of the these
approaches is more or less conceptually complex than the other.

We claim that MCMR generalizes MR: the two are identical along the x-axis when
g = 2. Let us sketch a proof: Let j and k be our two groups and S(j)

cov and S(k)
cov be

their covariance matrices such that S(j)
cov + S(k)

cov = Scov. MCMR’s generalized eigen-
value problem is Sbv = λv, where λ is an eigenvalue and v is an eigenvector. This is
equivalent to an LDA eigenvector problem Sbv = λScovv when the covariance matrix
is proportional to the identity matrix, ie. when the columns of X are exactly indepen-
dent. In such a case, it is known that the solution of LDA is proportional to the vector(
S(j)
cov + S(k)

cov

)−1(
x(k) − x(j)

)
∝ x¯(k) − x¯(j). That is, MCMR is a special case of LDA

which, when g = 2, reduces exactly to the definition of MR.
Whereas a generalization of MR based on a regression framework adds the ability

to control one’s projection in any way one can a regression [36], this generalization of
MR based on an eigenvector framework adds the ability to explore differences between
g ≥ 3 groups even when ordinality is not guaranteed.

The question is, which of these two multiclass rotations is better (and when), what
are the features of that difference, and what can these features tell us about telling stories
around themes of difference between non-ordinal groups?

3.2 Data

To illustrate the task of telling a story of multiclass difference, we turn to Nephrotex
[41]. We choose this dataset because (i) the ICQE community is familiar with it and (ii)
it has a manageable number of multiple groups. Nephrotex was implemented across g
= 5 schools (Iowa, KSU, Pitt, Rowan, and UW) during 2014 and 2015, and Nephro-
tex outcomes have been reported related to professional thinking [41], entrepreneurial
mindsets [42], and complex collaborative thinking [43].

Nephrotex is a virtual internship designed to synchronously guide student groups
through authentic biomedical engineering experiences. This provides students an edu-
cational task in which they can come to practice and understand the roles as engineers.
This task has been designed with deliberate difficulties— problems to be overcome—to
help guide students’ learning and help them develop the skills necessary to achieve their
goals. Nephrotex is also a collaborative environment where students are expected and
encouraged to work together, and participants often ask each other for help in response
to the data they encounter. As we show in the results below, on average, the discourse
between the five sites differed in how students talked about these facets of the internship
experience.
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3.3 Evaluation

For our task of using one or more ENA plots to illustrate themes of difference, such plots
need to be useful in a number of senses: they need to illustrate discrimination between
one’s groups (where there are differences), and the network embedding needs to aid
interpretation of the space in trustworthy ways. So, to compare the usefulness of SVD,
LDA, and MCMR, we will consider the discrimination between sites (Kruskal-Wallis
H), the variance explained along the relevant axes (R2), and the co-registration Pearson
correlation of the network embedding along the relevant axes (r). Finally, we will use
the best of these approaches to demonstrate how one might use it when closing the
interpretive loop.

4 Results

4.1 Comparing Approaches

Table 1 summarizes the evaluation results for eachmethod. SVD is designed tomaximize
variance explained, so naturally it outperforms the others along this metric. Moreover,
it is worth noting that LDA explains only a small amount of variance. This suggests
to us that LDA is too eager to minimize the variance within groups, and we see the
results of this in the coregistration metrics: LDA is the only one that does not have a
near-perfect score, scoring 10 percentage points lower than SVD and MCMR. Finally,
SVD underperforms on discrimination between groups; LDA and MCMR have an H
score more than 8 times that of SVD.

Because our goal is to tell a story about group differences, and because this task
demands the ability to discriminate between groups, it is clear that LDA and MCMR
are more appropriate models than SVD. However, the choice between LDA andMCMR
depends on one’s commitments: if one values fit of the network embedding higher, then
MCMR wins out; if one values discrimination higher, then it’s LDA; and if one values
discrimination so long as network fit does not fall below some threshold, then it depends
on where that threshold is set. Because, on inspection, MCMR and LDA were both able
to discriminate between any pair of groups within their first three axes, and because we
value network fit highly, we chose to explore and compare patterns in the Nephrotex
dataset using MCMR.

Table 1. Statistical Evaluations

Model R2 r H

SVD .2830 .9964 8.201

LDA .0685 .8921 74.22

MCMR .1178 .9946 69.76
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4.2 Quantitative Results

With g = 5 groups, the MCMR algorithm may produce up to g − 1 = 4 axes.
However, we focus on just the first three axes of the rotation (Fig. 3), ie. those that

highlight the most between group variance. We do this because, altogether, these suffice
to show how any one school was different from any other school. Along all three axes,
there were significant differences between at least one pair of groups (p1 < .0001,H1 >

69, p2 < .0001,H2 > 26, p3 < .0001,H3 > 24, g= 5) and each had a high co-registration
Pearson correlation which suggests strong goodnesses of fit between the visualizations
and original models (r1 > .99, r2 > .96, r3 > .96).

Figure 3 illustrates these axes. At a glance, the first MCMR axis discriminates
between Pitt vs. Rowan vs. the rest in terms of client requests vs. technical constraints.
The second discriminates between UW vs. Pitt and Iowa in terms of talk demonstrating
the work of engineers vs. collaboration with one another within the virtual internship.
And the third discriminates between KSU vs. the rest in terms of data-driven design vs.
the affordances of the virtual platform. This suffices to show the differences between
any pair of groups, and it achieves the theoretical lower bound of �log2 g� = 3 axes.
These features of the data amount to a minimum number of themes of difference along
which we might organize our qualitative account.

Fig. 2. ENA plots for all three models, showing the grand mean of connection strengths and
confidence intervals for each school
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Fig. 3. First three axes of the MCMR rotation

4.3 Qualitative Description

One of the goals of Nephrotex as a virtual internship is for students to practice meeting
stakeholder needs as an engineer (Fig. 3b). Throughout the internship’s activities, stu-
dents work together and with mentors, and as they do, they verbalize their understanding
of the relationships between stakeholder needs and various engineering decisions. Along
these lines, groups at UW, more often than Iowa or Pitt, discussed (1) hitting the design
requirements of the virtual internship (eg., “I have submitted my surfactant data to Alex
twice and both times he has told me that some of my data is incorrect”) and (2) using
performance data to inform their design choices (eg., “I agree with [student] in saying
that steric hindering was the best option. It provided the most categories scoring in the
higher ranges.”).

Notably, the internship purposefully presented the students with tensions between
stakeholder needs and constraints on the design space, and teams engaged with this
balancing act in different ways (Fig. 3a). At Rowan, more so than other sites, this
discourse centered around the requests of the internship’s stakeholders as presented to
students, as well as how students imagined future stakeholders’ needs (eg., “I found
our reliability at least meets the required and preferred standard of both consultants”).
On the other hand, at Iowa, KSU, or UW, groups talked more about the burdens of
technical constraints themselves (eg., “Cost was also a factor in my previous decision,
otherwise the steric hindering surfactant would have been my top choice [goes on to
list specific prices for choices in Nephrotex]”). Pitt, having much more variance in its
implementation than the other schools, spanned this spectrum.

Finally, while setting parameter thresholds for their design in order to achieve their
designgoals, in response to data, andwithin the hard boundaries set by the internship tool,
students often asked one another for help (Fig. 3c). This occurred least at KSU, where
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conversations favored more general discussions of the affordances of the Nephrotex
platform (eg., “The biological surfactant could be a good option if we could lower its
cost or improve its reliability”).

5 Discussion

In this work, we explore the use of three rotations for simultaneously comparing g ≥
3 groups, SVD, LDA, and MCMR, seeking to understand the contexts in which each
approach might best serve a research project based on data structure and goals. Using
data from Nephrotex, which consists of a number of comparable groups, we applied all
three approaches, choosing MCMR as the best fit for the further exploration. We then
shared the visualizations of the dataset with the MCMR rotation applied across three
axes, and illustrated how these visualizations can be used to tell stories of non-ordinal
themes of differences among multiple groups simultaneously.

We see two main takeaways for this discussion: MCMR and LDA’s improvement
over SVD, and the role of multiclass rotations in illustrating themes of difference.

First, this work illustrated how MCMR and LDA approaches improved upon SVD
in terms of discrimination between groups in the data. Yes, all three can be used to
produce a set of axes that could guide an approach to storytelling organized around
general trends in the data, but SVD may fail to identify trends that actually discrimi-
nate between groups. MCMR and LDA overcome this. The choice between these two
depends on one’s commitments. When one prioritizes network embedding, they should
choose MCMR. And when one prioritizes discrimination between groups, and lower
coregistration Pearson correlations are acceptable, LDA may be more appropriate.

And second, this work showcased how models generated using a multiclass rotation
can help to tell an ethnographic story of differences between several schools’ use of
Nephrotex. We considered the first three axes of the MCMR rotation: this allowed us
to illustrate the differences between any pair of schools in the fewest number of axes.
Moreover, these axes illustrate the structure of one’s themes of difference by providing
a set of spectra identifying different aspects of the data. This modeling process helps
to alleviate the complexity inherent in telling stories that move over multiple groups.
Exhaustively exploring all possible pairs of groups, exploring all possible ways to com-
pare one group against the rest, and being fortunate enough to see readily clear stand-out
patterns—these are unreasonable asks of researchers as the number of groups grows.
Instead, a well-chosen ENA rotation can more directly illustrate a minimum number of
spectra around which one can structure their qualitative account.

In future work, the authors hope to explore the pros and cons of MCMR and LDA
approaches across more diverse datasets and context, with the goal of offering a roadmap
for future QE scholars for well-reasoned choice between available rotations.
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