
Post-Radiation Fault Analysis of a High Reliability
FPGA Linux SoC

Andrew Elbert Wilson
andrew.e.wilson@byu.edu
Brigham Young University

Provo, Utah, USA

Nathan Baker
nathangarybaker@byu.edu
Brigham Young University

Provo, Utah, USA

Ethan Campbell
ecampbell@byu.edu

Brigham Young University
Provo, Utah, USA

Jackson Sahleen
jsahleen@byu.edu

Brigham Young University
Provo, Utah, USA

Michael Wirthlin
wirthlin@byu.edu

Brigham Young University
Provo, Utah, USA

ABSTRACT
FPGAs are increasingly being used in space and other harsh radia-
tion environments. However, SRAM-based FPGAs are susceptible to
radiation in these environments and experience upsets within the
configuration memory (CRAM), causing design failure. The effects
of CRAM upsets can be mitigated using triple-modular redundancy
and configuration scrubbing. This work investigates the reliability
of a soft RISC-V SoC system executing the Linux operating system
mitigated by TMR and configuration scrubbing. In particular, this
paper analyzes the failures of this triplicated system observed at a
high-energy neutron radiation experiment. Using a bitstream fault
analysis tool, the failures of this system caused by CRAM upsets
are traced back to the affected FPGA resource and design logic.
This fault analysis identifies the interconnect and I/O as the most
vulnerable FPGA resources and the DDR controller logic as the
design logic most likely to cause a failure. By identifying the FPGA
resources and design logic causing failures in this TMR system, ad-
ditional design enhancements are proposed to create a more reliable
design for harsh radiation environments.

CCS CONCEPTS
• Computer systems organization → Redundancy; Embedded
systems; •Hardware→ Reconfigurable logic and FPGAs; Fault
tolerance; Test-pattern generation and fault simulation.

KEYWORDS
FPGA, TMR, RISC-V, soft processor, radiation testing, fault injection,
fault analysis, reliability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’23, February 12–14, 2023, Monterey, CA, USA.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9417-8/23/02. . . $15.00
https://doi.org/10.1145/3543622.3573191

ACM Reference Format:
Andrew Elbert Wilson, Nathan Baker, Ethan Campbell, Jackson Sahleen,
and Michael Wirthlin. 2023. Post-Radiation Fault Analysis of a High Re-
liability FPGA Linux SoC. In Proceedings of the 2023 ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA ’23), Febru-
ary 12–14, 2023, Monterey, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543622.3573191

1 INTRODUCTION
SRAM FPGAs are increasingly being used in space vehicles to pro-
vide high-performance computing, high-bandwidth I/O processing,
and in-system reconfigurability [1]. Many satellites perform high-
fidelity sensor functions such as capturing high-resolution images
that require a large amount of raw computation. The sensors on
these systems generate a large amount of data requiring the on-
board processing of high bandwidth data streams. FPGAs provide
an ideal platform for many on-board satellite processing systems
and offer the ability of dynamic reconfiguration to support updates
and additional features.

SRAM FPGAs, however, are sensitive to the ionizing radiation
found in space and other high-radiation environments [2]. Ionizing
radiation causes upsets within the configuration memory (CRAM),
internal block memory, flip-flops, and other internal FPGA state.
Such upsets can often cause the design operating in the FPGA to
fail. FPGAs used in such environments must employ some form
of single-event upset (SEU) mitigation technique such as triple-
modular redundancy (TMR) and/or configuration scrubbing [3].

A fault tolerant processor-based system running Linux was cre-
ated with these SEU mitigation techniques to demonstrate the im-
provements in reliability. This system includes a RISC-V processor
(VexRiscv), DDR controller, ethernet controller, UART, and other
I/O. The improvement in reliability provided by these techniques
was measured by operating the system in a high-energy neutron
beam. The TMR system was found to have a 14× improvement in
mean-neutron fluence to failure (MFTF) than the non-TMR system.

Although a 14× improvement in MFTF demonstrates that the
SEU mitigation techniques do indeed improve reliability, the overall
improvement is disappointing. A previous study of a "Bare Metal"
VexRiscv processor demonstrated a 25× improvement in MFTF
using the same TMR and scrubbing techniques [4, 5]. The purpose
of this paper is to carefully identify and analyze the failures that
occurred in this VexRiscv TMR Linux system and determine why

https://orcid.org/0000-0003-3421-5766
https://orcid.org/0000-0001-8364-2970
https://orcid.org/0000-0002-5208-1805
https://orcid.org/0000-0001-6583-2869
https://orcid.org/0000-0003-0328-6713
https://doi.org/10.1145/3543622.3573191
https://doi.org/10.1145/3543622.3573191

FPGA ’23, February 12–14, 2023, Monterey, CA, USA. Andrew Elbert Wilson, Nathan Baker, Ethan Campbell, Jackson Sahleen, & Michael Wirthlin

its improvement in reliability is so much lower than that of the
previous "Bare Metal" system.

To perform this analysis, this paper introduces a methodology for
identifying the source of CRAM upset induced failures at the FPGA
device level and at the design level. This methodology is applied to
the VexRiscv TMR Linux system and identifies the DDR controller
as the most vulnerable portion of the design. The results from this
analysis are used to propose a number of additional SEU mitigation
techniques specific for this design to improve its reliability in harsh
radiation environments.

This paper is organized as follows. Section 2 will summarize the
Xilinx Artix-7 RISC-V Linux system used for this system. Section 3
will describe the neutron radiation test performed on this system
at the Los Alamos Neutron Science Center (LANSCE), and Section
4 will discuss the post-radiation fault injection experiments that
were performed to reproduce the failures seen at the radiation
beam. Section 5 will provide an overview of the Bitstream Fault
Analysis Tool used to analyze the CRAM faults from the radiation
test. Section 6 analyzes the faults in the RISC-V system and provides
a summary of the most vulnerable regions. Section 7 proposes
improvements in the design that address the problems identified in
the fault analysis.

2 RELIABLE RISC-V LINUX SYSTEM
Highly reliable applications implemented within FPGA systems
lack ASIC processors to provide software interfaces and therefore,
utilize soft processors [6]. The European Space Agency is explor-
ing the use of FPGA-implemented soft processors to replace ASIC
processors [7]. With existing motivation for use of the RISC-V in-
struction set architecture (ISA) in space applications [8, 9] (i.e. open
license and integration with open source tools and libraries), re-
cent works have examined the effectiveness of reliable processors
implementing this ISA [7, 10, 11].

Within space processor systems, many spacecraft including mi-
crosatellite and CubeSat missions use embedded Linux for sys-
tem critical functions [12] The Linux operation system is widely
adopted, includes a huge catalogue of existing software, and imple-
ments industry standards such as POSIX. Software can be developed
and debugged on local desktops. Compared to RTOS and stand-
alone applications, the Linux kernel requires more computational
power, often utilizing external DDR interfaces and local caches.

These complex soft processor Linux systems are susceptible to
failures induced by SEUs. TMR mitigation can be necessary to
prevent these critical failures within these systems. This paper
investigates the single-point failures found within a TMR soft RISC-
V Linux System on Chip (SoC). The SoC is implemented on a Xilinx
series 7 SRAM-based FPGA utilizing a high-speed DDR3 memory
controller. Fine-grain TMR is applied to the design, and external
CRAM scrubbing is used as a repair mechanism.

2.1 Linux on Litex VexRiscv
The SoC system created for this experiment is based on the LiteX
SoC framework for FPGAs [13]. This framework generates complex
SoC systems using a library of processor cores, common IP I/O
building blocks, and software code for control of the hardware. The
LiteX framework is device independent and supports a variety of

FPGA vendors and families to facilitate rapid development of SoC
systems that can be targeted to a large variety of FPGA devices. In
addition, LiteX maintains a large set of board support packages for
quickly developing SoC systems for over 143 FPGA-based develop-
ment boards.

The SoC system developed for this project is based on the VexRiscv
processor, a 32-bit RISC-V processor supporting the RISC-V ISA
and multiple ISA extensions [14]. The VexRiscv processor is im-
plemented with the SpinalHDL language [15]. This processor is
reported to have a maximum performance of 1.38 DMIPS/MHz and
2.57 CoreMark/MHz on Xilinx Artix 7 FPGAs [14] implemented
with a configuration with a maximum frequency of 151 MHz and
utilization of 2021 LUTs and 1541 FFs.

The SoC system used in this project targets the Digilent Nexys
Video development board that includes the Xilinx’s XC7A200T-
1SBG484C FPGA. This board was chosen because of its low cost,
DDR3 memory, Ethernet, and SD-card support. The SoC system is
configured with Ethernet, serial communication, DDR3 memory
controller, and HDMI video output IP cores (see Figure 1). The
VexRiscv configuration for this SoC includes 4 kilobytes of Icache
and Dcache and a Wishbone system bus. The implemented design
consumes about 7% of the FPGA and operates at 111 MHz (see
Table 1).

Figure 1: VexRiscv System Architecture.

The SoC system used in this project runs Linux and relies on
the "Linux on Litex-Vexriscv" [16] project that facilitates the rapid
deployment of a Buildroot-based Linux RISC-V SoC. The Linux
system provides a full Ethernet software stack, file system, and
drivers for the I/O devices in the system. The system is configured
to continuously execute the Dhrystone benchmark after booting
and publish the results of the benchmark over the UART.

2.2 TMR Litex VexRiscv System
When placed in a harsh radiation environment such as space, the
SoC system described above will experience failures as ionizing
radiation upsets the state of the CRAM, block RAM, and other
internal state. SEUs can cause functional failures in the design
within the FPGA by corrupting the state and circuit configuration,
potentially leading to a critical failure of the system. To operate
this system reliably in such an environment, single-event upset
mitigation techniques must be applied [3]. This section will describe

Post-Radiation Fault Analysis of a High Reliability
FPGA Linux SoC FPGA ’23, February 12–14, 2023, Monterey, CA, USA.

the approach used to improve the reliability of the SoC system
described above.

A variety of approaches for improving the reliability of soft
processors within an FPGA have been proposed and demonstrated.
Other works have explored TMRmitigation targeting different ISAs
such as the LEON processor [17–21] and the Picoblaze [22, 23]. One
work applied doublemodular redundancy to a RISC-V processor and
verified the mitigation through fault injection on a Xilinx FPGA [24]
Xilinx also offers a Microblaze TMR subsystem for use within their
FPGAs [25]. The approach used in this work to mitigate the effects
of SEUs is to apply triple modular redundancy and configuration
scrubbing.

TMR is an effective mitigation technique capable of masking
single point failures within an FPGA soft processor and other FPGA
logic [26]. As shown in Figure 2, triple modular redundancy is
implemented by triplicating all resources of a design and inserting
majority voters (usually triplicated voters). Any single failure in
the logic or the voter will be masked by the downstream voters.
Although TMR provides additional reliability through redundancy,
this mitigation technique results in greater power consumption,
higher resource utilization, and slower maximum frequency.

Figure 2: Triple Modular Redundancy and Majority Voting.

There are a variety of approaches for applying TMR to FPGA
systems. One work utilized the Mentor Precision Hi-Rel tool to
apply fine-grain TMR to the RISC-V Rocket Chip and through fault
injection observed a reduction in sensitive bits of up to 11.5× [7].
Another work used Cadence’s EDA flow to apply fine-grain TMR
to same processor and achieved a 3× reduction in the cross-section
during heavy-ion testing [10]. Other work implemented a TMR
VexRiscv processor with Synplify’s TMR tools and demostrated a
1.5× improvement in the mean time to failure (MTTF) with JTAG
fault injection [11].

The approach used in this project performs triplication and voter
insertion at the post-synthesis netlist level. In particular, the Spy-
DrNet TMR tool was used to apply TMR to the post synthesis
netlist [27]. This Python-based tool performs fine-grained TMR on
the FPGA primitives at the netlist level by triplicating all FFs, LUTs,
BRAMs, and DSPs, and inserting triplicated voters between these
primitives. The tool’s input is a vendor-independent Electronic
Design Interchange Format (EDIF) file that can be exported from
Xilinx Vivado. The generated TMR EDIF file can be imported back
into Xilinx Vivado as a post-synthesis file, and placed and routed
in the final design (see Figure 3).

Figure 3: TMR with triplicated voters.

Using the SpyDrNet TMR tools, the original non-mitgated design
is triplicated and implemented in the same FPGAdevice as described
above. The FPGA resource utilization of both the non-mitigated
and TMR mitigated designs are summarized in Table 1. Although
the design is triplicated, the LUT utilization is greater than 3× as
additional LUTs are used for the inserted triplicated voters. The
maximum frequency (fMax) decreases as the design’s critical path
increases due to the voter and feedback paths. Figure 4 compares
the place and routed floorplan of each design.

Table 1: VexRiscv SoC Design Utilization for Non-TMR and
TMR Designs.

Design LUT LUTRAM FF BRAM FMAX
Unmitigated 9131(6.8%) 521(1.1%) 7641(2.8%) 36(9.9%) 111.6MHz

TMR 37846(28.1%) 1611(3.5%) 22905(8.5%) 108(29.6%) 91.4MHz
Cost Ratio 4.14× 3.1× 3× 3× 0.81 ×

Figure 4: Unmitigated (left) vs TMR (right) FPGA floorplans.

3 HIGH ENERGY NEUTRON RADIATION TEST
High energy radiation testing is often performed to induce single-
event effects (SEE) and measure the impact of these effects on
complex systems [28]. Such testing is often called "accelerated"
testing since the flux of the high energy particles is much higher
than the flux of radiation in an actual environment (i.e., ground level
radiation or radiation in a specific orbit). The failures observed at a
radiation test can be used to measure the benefits of SEE mitigation
techniques and to estimate the failure rate of the system in a relevant
radiation environment [29].

The non-TMR and TMR versions of the VexRiscv system were
tested at the Los Alamos Neutron Science Center (LANSCE) [30]
in September of 2021. This facility provides a high energy neutron
beam that provides a wide spectrum of neutron energies (up to 800
MeV) that closely matches the energy spectrum of neutrons found
on earth (called terrestrial neutrons). This facility is often used
to measure the failure rate of electronic circuits due to terrestrial

FPGA ’23, February 12–14, 2023, Monterey, CA, USA. Andrew Elbert Wilson, Nathan Baker, Ethan Campbell, Jackson Sahleen, & Michael Wirthlin

neutrons. This section will describe the organization of this neutron
test and the improvements in mean fluence to failure of the TMR
VexRiscv system over the conventional unmitigated version.

3.1 CRAM Scrubbing
To prevent the accumulation of CRAM upsets within the FPGA
during the radiation test, a CRAM repair technique called "CRAM
scrubbing" is used [31]. Configuration scrubbing involves repeat-
edly reading the contents of the configuration memory, comparing
the memory against a golden copy of the bitstream, and report-
ing and repairing any errors that are observed. For Xilinx FPGAs,
configuration data can be read and written without affecting the
operation of the FPGA. All of the CRAM upsets that occur during
this radiation test are logged for post-radiation fault analysis (see
Section 4).

Configuration scrubbing is especially important when applying
TMR to a system. A TMR system will only tolerate a single fault
in the system – additional accumulated faults that affect the other
TMR copies will cause the system to fail1. TMR systems that include
a repair mechanism (configuration scrubbing in this case) provide
significantly higher reliability than non-TMR systems. A fault in
one copy of the TMR system due to a configuration upset can
be repaired through configuration scrubbing before another fault
occurs in the system.

For this work, configuration scrubbing is performed over JTAG
utilizing an external JTAG controller called the "JTAGConfiguration
Manager" or JCM [32]. The JCM is an embedded Linux system
that provides high-speed JTAG sequences for FPGA configuration,
configuration scrubbing, and fault injection. The JCM is connected
to the JTAGport of the Nexys Video board and accessible to a remote
host over Ethernet. The JCM can perform a scrub of the entire
bitstream for the device in about 3.3 seconds. After the completion
of a complete scrub of the device (called a scrub cycle), the JCM
provides a timestamp of the cycle and reports the specific address(es)
of all upset configuration bits.

3.2 Test Organization
The radiation experiment was performed within the ICE house
beam line (Target 4, 30 degree right at the Weapons Neutron Re-
search (WNR) facility) within the Los Alamos Neutron Science
Center (LANSCE) at the Los Alamos National Laboratory (LANL).
The Nexys Video board was placed in the neutron radiation beam
path with the Artix 7 FPGA centered with the beam as shown in
Figure 5. The FPGA board is placed at a normal angle of incidence
and operates at room temperature. A collimator with a diameter
of 2 inches was placed within the beam to limit exposure of the
high-energy radiation to other board components.

The VexRiscv system operating on the Nexys Video board must
operate remotely without any human interaction for safety reasons.
This system can boot Linux image over Ethernet or the SD card.
The SD card proved to be more convenient and was used through-
out testing. After booting, the Linux OS performs a continuous
Dhrystone utilizing the processor cache and DDR3 memory. The
1An often overlooked property of systems employing TMR is that a TMR system
without a repair mechanism actually reduces the mean-time to failure of the system.
Such TMR systems without repair provide improved reliability of the system early in
the mission life but in the long run, fail sooner than a non-TMR system.

Figure 5: Nexys Video Board in LANSCE Neutron Radiation
Beam Line (Laser Crosshairs Mark the Neutron Beam Cen-
tered on the Artix 7 FPGA).

Dhrystone results are published over the UART serial communi-
cation. The experiment is controlled with a remote host computer
(NUC) connected to the system via Ethernet. The NUC logs the
UART output of the system to ensure that the system is operating
correctly. The NUC also controls the JCM JTAG interface for con-
figuring the device and performing/logging the scrubbing process.
The organization of the test setup is shown in Figure 6.

An experiment run begins by configuring the FPGA device with
the design under test. The NUC carefully logs the boot process and
subsequent execution process of the system. Any failures observed
during the boot process or during the system execution are recog-
nized by the NUC. The experiment involves performing as many
runs as possible during the allotted test time. The reliability of the
system is measured in terms of "fluence to failure" or total amount
of neutron fluence (neutrons/cm2) divided by the number of system
failures. A related metric is the sensitive cross section, 𝜎 , which is
the inverse of fluence to failure (in units cm2).

Five days of radiation test time were scheduled for the experi-
ment (August 31-September 4, 2021). With the facility operating
for 24 hours a day, 120 hours were available to complete the ex-
periment. Only a single board was used for the experiment, so the
beam testing time was divided between the non-mitigated system
and the TMR mitigated system. One-fourth of the time (30 hours)
was scheduled for testing the non-TMR system and three-fourths of
the time (90 hours) were scheduled for the TMR design. More time
is needed for the mitigated TMR design since much more neutron
fluence will be needed for each system failure.

3.3 Test Results
The results from the experiment are summarized in the bottom two
rows of Table 2. 76 system failures were observed on the non-TMR
system and 27 failures were observed in the TMR system. The mean
fluence to failure is 4.79 × 108 𝑛/𝑐𝑚2 for the non-TMR system and
7.07 × 109 𝑛/𝑐𝑚2 for the TMR system. In a terrestrial environment,
the non-TMR system will have a mean-time to failure (MTTF) of

Post-Radiation Fault Analysis of a High Reliability
FPGA Linux SoC FPGA ’23, February 12–14, 2023, Monterey, CA, USA.

Table 2: Neutron Radiation Test Data

Design LUT Normalized Fluence (n/cm2) Observed Failures Cross Section +95% Confidence Reduction MWBFUtilization Utilization CRAM Upsets (cm2) -95% Confidence
VexRiscv 2261 (0.7%) 1.00× 7.08 × 109* 3473* 422* 5.09 × 10-10 5.59 × 10-10 1× 1×Unmitigated 4.60 × 10-10

VexRiscv 10002 (3.0%) 4.42× 5.38 × 1010* 21783* 30* 1.99 × 10-11 2.84 × 10-11 25.57× 23.80×TMR 1.34 × 10-11

Linux-VexRiscv 9131 (6.78%) 4.04× 3.64 × 1010 11908 76 1.78 × 10-9 2.26 × 10-9 1× 1×Unmitigated 1.30 × 10-9

Linux-VexRiscv 37846 (28.12%) 16.74× 1.91 × 1011 59014 27 1.21 × 10-10 3.26 × 10-10 14.76× 12.07×TMR 2.73 × 10-11

* Results from related work with multiple processor implementations on Xilinx Kintex UltraScale+[4].

Figure 6: VexRiscv Linux System Test Diagram

4,554 years and the TMR system MTTF is estimated at 67,210 years.
The overall improvement in MTTF of the TMR system over the non-
TMR system is 14.7×. If the slower clock rate of the TMR system
is considered, the TMR system has a "mean work between failure"
(MWBF) improvement of 12.1×.

The top two rows of Table 2 summarize the results of another
work performed with the same VexRiscv processor in a "standalone"
arrangement (i.e., processor only without DDR and other periph-
erals) [33]. For this previous experiment, the standalone TMR pro-
cessor achieved an MTTF improvement of 25.6× over its non-TMR
baseline design. This 25.6× improvement of the standalone system
is much greater than the 14.8× improvement of the Linux VexRiscv
system. The reduction in improvement provided by TMR in this
system vs. the standalone counterpart is the primary motivation
for the fault analysis described in the remainder of this paper.

4 POST RADIATION FAULT INJECTION
Although the single-event mitigation methods employed did im-
prove the reliability of the system, the overall reliability improve-
ment over the non-TMR system was disappointing. Several post-
radiation fault injection approaches were employed to understand
how the TMR system failed so that future improvements in the
system can be made. The post-radiation fault injection approaches
performed on this system include "playback" fault injection and
"correlated" fault injection. Both of these approaches are described
below.

4.1 Playback Fault Injection
The first approach for fault analysis was to "playback" the CRAM
faults observed at the radiation test. The goal of this fault injection
approach is to see how many of the 27 radiation-induced failures
observed at the radiation test can be reproduced in the lab by
injecting the same CRAM upsets logged during the radiation test.

The JCM scrubbing hardware was modified to "playback" all the
CRAM faults seen at the test. This fault injection is operated by
iterating through each sensitive scrub cycle from the radiation test
and injecting all CRAM faults of the cycle into the system. After
injecting the faults, the fault injection system pauses to allow the
faults to propagate through the system. If no failure in the system is
observed, the CRAM bits are repaired and the fault injection moves
on to the next cycle in the list. If a failure in the system is observed,
then the corresponding CRAM bits within the cycle are tagged,
the FPGA system is reset and reconfigured, and the fault injection
continues with the next scrub cycle in the list.

The JCM logged 32,658 scrub cycles with CRAM upsets during
the radiation test of the TMR Linux VexRiscv design. Within these
scrub cycles, 59,014 configuration bits had upset for an average
of 1.8 configuration upsets per sensitive scrub cycle. Performing a
full playback of all 32,658 cycles in the sensitive cycle list requires
115.2 hours to complete or 12.7 seconds per cycle. The playback was
performed three times on three different boards (over 350 hours)
for a total of nine complete playback events. The playback fault
injection identified 22 cycles within the playback list that caused
the system to fail. These can be further catagorized as follows:

• 17 failed every time on all three boards,
• 4 failed on some but not all of the boards, and
• 1 failed on all boards but with less than 100% probability.

The 22 sensitive scrub cycles found through playback fault in-
jection are fewer than the 27 failures that were observed during
the radiation test. This is not surprising as it is likely that failures
in the FPGA system at the radiation test were caused by upsets
within the CRAM as well as state elements that are not captured
during the scrubbing process. For example, upsets within flip-flops
that are not triplicated may cause system failures but will not be
observed with configuration scrubbing. Other state registers that
may cause failures and not available within the CRAM scrubbing
include Dynamic Reconfiguration Port or DRP bits, internal FPGA
state not accessible by the user, and BRAM bits.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA. Andrew Elbert Wilson, Nathan Baker, Ethan Campbell, Jackson Sahleen, & Michael Wirthlin

4.2 Correlated Fault Injection
The next step was to correlate these sensitive scrub cycles found
with playback with the actual failure events within the radiation
test. This was done by comparing the timestamp of each scrub
cycle with the timestamp of the failure log. Those scrub cycles that
were found within a 60 second window of a system failure were
tagged as causing the given failure. Of the 22 sensitive scrub cycles
identified by the playback fault injection, 15 of them were found
within a 60 second window of one of the 27 test failures.

The playback fault injection described above identified sets of
configuration bits that when upset together as a group, cause the
system to fail. Although this is useful, we are more interested in
identifying the specific individual bits within the scrub cycle that
caused the system to fail. To find these individual bits, each bit
within a sensitive cycle was upset by itself within the system to
observe the system behavior. From this test, 14 individual bits within
the 15 cycles were identified. For one of the cycles, no individual
bit upset caused the system to fail. This cycle contained two bits
and the system would only fail when both of the bits were upsets.
This surprising result suggests that there are cases when a TMR
system can fail due to two simultaneous upsets. This is concerning
as it is not uncommon for more than one upset to occur with one
ionizing particle [34].

5 BITSTREAM FAULT ANALYSIS TOOL
In the radiation experiments described in the previous section, we
identified a number of CRAM bits that are known to cause the
design to fail when upset. To help us understand why the design
failed, we seek to understand which resources within the original
design are associated with these bits. A related work used targeted
fault injection to perform fault analysis on soft LEON3 proces-
sor components such as registers, pipelined logic, and caches [35].
Other works have used simulation-based fault analysis of a RISC-V
processor to categorize the different failure modes [36, 37]. This
work utilizes sensitive CRAM bits collected from radiation testing
and fault injection to perform fault analysis on the routed digital
design.

A tool named "Bitstream Fault Analysis Tool" or BFAT was cre-
ated to identify the design resources associated with specific bits
in the bitstream [38]. This tool was used to identify the cause of
the radiation-induced system failures for each of the 15 sensitive
configuration bits. A brief overview of the steps involved in using
the BFAT tool is shown in Figure 7. The inputs to the tool include
a list of bit addresses of interest, the original design checkpoint
file, and the original bitstream. Each bit in the bit address list is
specified by its frame address, word number, and bit number. The
design checkpoint file (or .dcp file) contains the details of the im-
plementation of the design including its placement, routing, and
the design names associated with all of the resources used by the
design.

Each of the steps of this flow will be described using an ex-
ample with a single configuration bit chosen from the radiation
test. The specific configuration bit used for this example occurs
at frame address 0x402785, word 100, and bit 15 (defined as the
tuple [0x402785, 100, 15]). The original value of the bit in the
bitstream is ’0’ and a radiation induced upset changed it to a ’1’.

Figure 7: Bitstream Fault Analysis Tool Flow

This upset occurred alone during scrub cycle #2094 on September
3, 2021 at 03:37 am and led to failure of the SoC Linux system. The
JCM log file entry associated with this upset is shown below:

Cycle 2094 - 1 upsets (2021-09-03 03:37:04)
00402785(10040) 100 00008000

The first step of the BFAT flow is to take this bit address and
determine the FPGA device resource associated with the bit. This
is done by querying the Project XRAY database file for the device.
Project XRAY has created a database of bitstream definitions for a
variety of devices including the device used in this experiment [39].
The project XRAY database indicates that this particular bit refer-
ences a tile named "INT_R_X79Y149". This tile is an interconnect tile
(specifically an "INT_R" style) and is located at tile coordinates [79,
149] (see Figure 8). Within this tile, this bit controls the behavior
of the interconnect output port named "SW6BEG2" in the lower left
corner of the tile. In particular, it enables the input port "WW2END2"
(located in the upper right corner of the tile) to drive the "SW6BEG2"
output signal.

Figure 8: Tile INT_R_X79Y149 and Affected Ports.

The second step in the BFAT flow is to correlate the affected de-
vice resource with the design function as seen from the designer’s
perspective. The design resource associated with the device re-
source is determined by querying the design checkpoint file to
determine the name(s) given to the affected device resource by the
synthesis and implementation tools. These design names provide
very useful information about the resource including the location
within the hierarchy of the design, the netname, or logic name. For

Post-Radiation Fault Analysis of a High Reliability
FPGA Linux SoC FPGA ’23, February 12–14, 2023, Monterey, CA, USA.

the current example, the BFAT tool queries the design database
to determine which nets, if any, are hooked up to the "WW2END2"
and "SW6BEG2" ports of the "INT_R_X79Y149" tile. For this design,
there is a unique net hooked up to each of the two ports. The signal
named "ISERDESE2_15_n_4" is hooked up to the "SW6BEG2" port
and another signal2 is hooked up to the "WW2END2" port. The first
signal is an input coming directly from the ISERDES I/O port and
is associated with the DDR interface. The second signal is used for
the interconnect switch for the memory devices within the SoC.

The final step in the BFAT flow is to determine how the individual
CRAM upset modifies the design and possibly causes a system
failure. This is done bymodeling the device resources and describing
how the device behavior changes. In this example, BFAT determines
that this CRAM upset will cause a short between the two nets at
the two specified ports of the design. This short is demonstrated
in Figure 9. In this example, the "ISERDESE2_15_n_4" signal is
represented by the yellow line and the other net is represented by
the blue line. The red line indicates the short caused by the upset
of the given CRAM bit. The BFAT tool can model a variety of faults
including opens and shorts in the interconnect, changes in logic
within the CLB tiles, and other device-specific failure modes.

Figure 9: Tile INT_R_X79Y149 with Short Between the Ports
"WW2END2" and "SW6BEG2" on the Linux SoC design.

A short between these two nets will cause incorrect values to be
propagated on the "ISERDESE2_15_n_4" design net (i.e., "SW6BEG2"
output port). This particular net is not triplicated as it is a signal
coming directly from one of the non-triplicated DDR inputs. Be-
cause the signal is not triplicated, faults on this net will not be
resolved with voting and the incorrect data will be propagated
throughout the system. For this design, a short on this net crashes
the Linux system.

2The netname associated with this signal is too long to include in the body of the text.
The actual netname of this signal within the design is:
"VexRiscvLitexSmpCluster_Cc1_Iw32Is4096Iy1_Dw32Ds4096Dy1_ITs4DTs4_
Ldw128_Ood/dBusNonCoherent_bmb_cmd_s2mPipe_m2sPipe_rData_fragment_
address_TMR_0[14]"

5.1 Radiation-Induced Failure Bitstream
Analysis

Each of the 15 sensitive CRAM bits (or set of bits in one case) were
analyzed with the BFAT tool to determine how these CRAM upsets
caused the design to fail. Of these 15 upsets, 11 occurred within
interconnect tiles, 2 within look-up tables within a CLB tile, and
2 upsets could not be characterized. Upsets in the look-up tables
changed the logic function within the circuit. Of the 11 interconnect
faults, 4 caused an "open" in the design net and 7 caused a "short"
between two signals.

The results from the BFAT analysis were also used to investigate
why the TMR SEU mitigation approach failed to protect the design
in each of these cases. The design resources affected by each CRAM
fault were analyzed by hand to understand the failure. In three
cases, a single CRAM upset caused two signals from different TMR
domains to short. If two signals from two different TMR "domains"
are shorted, the TMR voting will fail and produce the wrong result
for the given signal, as demonstrated in a related work [40]. Since
TMR can only protect faults in one TMR domain at a time, such
faults may break the TMR system. Such a fault is similar to a two-
bit upset that occurs in a word of data protected by Single-Error
Correction, Double Error Detection (SECDED) error correction
code.

In the other thirteen cases, upsets occurred in regions of the
design that were not triplicated and thus were "single point failures"
(SPF). Single-point failures occur when the design cannot triplicate
a given resource. Such resources usually include I/O pins, clock
buffers, and other special purpose resources such as clock managers
or PLLs. In this design, two of the failures occurred in the global
clock buffer driving the primary global clock. In the other eleven
cases, the failures occurred in the interconnect associated with the
I/O pins of the DDR interface.

5.2 Fault Analysis on Larger CRAM Sample Set
The fault analysis of the failures observed at the radiation test
experiment was helpful in determining vulnerable areas of the
design. However, the small number of faults that we were able to
analyze does not provide sufficient statistical confidence into the
causes of the system failure. To improve our understanding of the
sources of failure in the design, a much larger set of sensitive faults
were identified and analyzed using the BFAT tool. The purpose of
identifying more faults is to provide more statistical confidence as
to the source of the sensitive areas of the design. This information
will guide efforts to improve the design through additional SEU
mitigation methods.

A more thorough fault injection experiment was performed to
identify at least 100 sensitive CRAM bits within the design. Since
this particular design requires on average 2,370 fault injections to
observe one failure, this fault injection campaign would require
over 237,000 injections to obtain the target 100 sensitive CRAM
bits. With one injection taking on average 12.7 seconds, this fault
injection campaign took over 34 days of continuous fault injection.
At the completion of this more thorough fault injection experiment,
106 sensitive CRAM bits were identified.

The BFAT tool was used to analyze each of the 106 failures in
order to identify the FPGA resources causing the failure as well as

FPGA ’23, February 12–14, 2023, Monterey, CA, USA. Andrew Elbert Wilson, Nathan Baker, Ethan Campbell, Jackson Sahleen, & Michael Wirthlin

the design functionality that is failing. The FPGA device resources
that caused the design to fail are summarized in Table 3. As shown
in this table, the most significant source of failures are faults within
the interconnect resources. Over 70% of design failures were caused
by upsets within the interconnect resources. Of the 75 sensitive
interconnect faults, 57% of them were caused by "opens" in a net
and 43% due to "shorts".

Resource Occurrences Estimated Bits

Interconnect 75 (70.8%) 17,669
I/O Pin 19 (17.9%) 4,467
Clocking 6 (5.7%) 1,422
CLB 4 (3.8%) 948

Undefined 2 (1.8%) 449

Total 106 24,956
Table 3: FPGA Device Resources Causing Design Failure.

The next most common failure mode occurred within configura-
tion bits associated with the I/O resources. Faults within the I/O will
cause system failures as the I/O resources are not triplicated [41].
Examples of sensitive CRAM bits that cause system failure within
the I/O include: the OLOGIC "CLKDIV" bit, OLOGIC "IN USE" bit,
OCLK "IOI_LEAF_GCLK3", and OSERDES "DATA_RATE_TQ" bit.
Faults in the clocking resources (CLB, PLL, etc.) and CLBs made up
the smallest portion of system failures.

6 RISC-V LINUX DESIGN FAULT ANALYSIS
While it is interesting to see which FPGA device resources cause the
system to fail, we are more interested in determining which logical
circuits in the original design are causing the system to fail. This
information is needed to identify design-specific vulnerabilities so
reliability improvements can be made. This section will describe
how the FPGA device resources identified in the previous section
cause design-specific system failures.

Using the BFAT tool, 104 of the 106 FPGA device faults described
above were correlated to specific design logic described in the orig-
inal RTL system and are summarized in Table 4. The most sensitive
part of the design is the DDR controller interface, which comprises
almost 80% of all system failures. The global clock network is the
next most sensitive part of the design, causing 17% of the system fail-
ures. The rest of the failures were identified with the constant logic,
the reset circuit, and a miscellaneous logic in the design. The cause
of these failures will be described in the following sub-sections.

Design Function Occurrences

DDR Interface 81 (77.9%)
Global Clock 19 (18.3%)
Constant Logic 2 (2.1%)
Reset Circuit 1 (1.0%)
Misc. Circuitry 1 (1.0%)

Total 104
Table 4: Design Resources Causing System Failure.

6.1 DDR Interface
Not surprisingly, the most vulnerable portion of this design is the
DDR interface. Since the I/O pins associatedwith theDDR interfaces
are not triplicated, any faults within these I/O will likely cause a
system failure. Of the 93 I/O pins used for this design, 48 (52%)
of them are associated with the DDR interface. Although some
single-point failures in the DDR I/O interface were expected, we
were surprised at the extent at which the DDR interface failed. The
failures associated with the DDR take on a disproportionate impact
when compared to its relative use of I/O pins. Like all other parts
of the design, the DDR controller logic was triplicated, and we
only expected failures when faults occur within the I/O pins of the
device.

The DDR related system failures were analyzed and broken
down based on the device resources causing the failure. Of the
81 failures associated with the DDR interface, 64 (79%) of these
failures occurred within the FPGA interconnect, 14 occurred within
the I/O resources, and 3 occurred within a CLB. This surprising
result suggests that it is the interconnect associated with the DDR
interface that causes the bulk of the DDR system failures rather
than the I/O.

To understand why the interconnect is so sensitive, we carefully
reviewed each interconnect fault within the design. After manually
inspecting each interconnect fault within the implemented design
we realized that failures due to these interconnect faults occur in
untriplicated regions of the net tree. Although the net attached to
an untriplicated I/O signal may be triplicated, the actual routing
associated with this net may not branch into triplicated nets for
some distance from the I/O pin. Figure 10 demonstrates this condi-
tion with an untriplicated input pin and a net associated with that
pin that does not split into three nets for some distance. The trunk
of the signal net remains a single-point failure (highlighted as red
in the figure) and any faults within this trunk will cause a failure
within the system. If the distance between the source of the net
and the split in the net is long, then a large number of interconnect
resources are vulnerable to single point failures.

Figure 10: Vulnerable Segments of Signal Trunk Originating
from an Untriplicated I/O.

The "ISERDESE2_15_n_4" signal described in the previous sec-
tion is a good example of this condition. The routing of this signal
within the device is shown in Figure 11. This signal begins at the I/O
and is driven by an ISERDES I/O resource. The signal proceeds as a
single trunk for a relatively long distance before it splits into three
distinct triplicated branches. Although this signal is triplicated, the

Post-Radiation Fault Analysis of a High Reliability
FPGA Linux SoC FPGA ’23, February 12–14, 2023, Monterey, CA, USA.

relatively long distance between the trunk and the branches ex-
poses a relatively large single point failure for the design. The short
in the net caused by an upset in bit [0x402785,100,16] physically
occurs in this vulnerable region of the signal.

Figure 11: Routing of "ISERDESE2_15_n_4" Signal and Location
of Interconnect Short.

This situation of vulnerable net trunks also occurs with out-
put signals. For output signals, a reduction voter is added to the
netlist to reduce an internal triplicated signal to a single signal
input to an output I/O resource. If the voter associated with this
output is placed at a relatively far distance from the I/O pin, the
corresponding net will be very sensitive to CRAM upsets. Of the
64 DDR interconnect faults identified within the design, 36 (56%)
occurred on untriplicated input I/O signals and 28 (44%) occurred
on untriplicated output I/O signals.

The reliability of the DDR interface can be significantly improved
bymanual placement and routing of the triplicated I/O net resources.
For input signals, the reliability can be improved by routing the
signal such that the branches for the triplicated signals are located as
close to the input I/O pin as possible. For outputs, the reliability can
be improved by placing the reduction voter as close to the output
I/O pin as possible. It is likely that most of the interconnect faults
associated with the DDR interface can be removed by applying
these techniques.

6.2 Global Clock Network
The next largest design component contributing to the design fail-
ures is the global clock network. Like the DDR interconnect prob-
lem, the presence of such a large clock vulnerabiltiy caught us
by surprise. The SpyDrNet TMR tools triplicated the global clock
buffer, and the implementation tools accepted this triplication ap-
proach. We recognized that there would be a small untriplicated
trunk of the clock tree but were surprised by the large number of
clock related faults. As with the DDR interconnect problem, the
problem with the clock network was carefully reviewed using the
BFAT tool.

The results of the BFAT fault analysis quickly identified the prob-
lem with the clock network – the clock network was not actually
triplicated in the design implementation. During the implemen-
tation phase, the triplicated global buffers were replaced with a
single global buffer and the three independent clock nets were com-
bined into a single net. This optimization went unnoticed during

the design process and was only recognized well after the radiation
test when the results were analyzed. Not surprisingly, the lack of a
triplicated global clock resulted in a relatively large component of
the system failures at the radiation test.

To address this problem, a manual triplicated clocking network
must be created. One approach is to create three synchronous clock
signals using amixed-mode clockmanager (MMCME2) as suggested
by Figure 12. In this example, three global buffers are used for three
different synchronous global clocks. Although the MMCM and
input clock signal can be upset, the overall vulnerability of the
clock network will be significantly reduced.

Figure 12: Clock Manager with Triplicated, Synchronous
Clocks.

6.3 Other Vulnerable Logic
Four additional faults were found in other areas of the design out-
side of the DDR interface and global clock network. Although their
contribution to the overall failure rate of the system is small, they
present interesting failure modes that are worth discussion. These
failures occur in constant logic signals, the reset circuit, and in a
CLB within the triplicated region of the system.

Yet another surprising result from the BFAT analysis was the fact
that two failures were due to faults with the "GLOBAL_LOGIC0" and
"GLOBAL_LOGIC1" constant signals. Constant signals are some-
times added to the design netlist to provide a constant value within
the design at certain device resource inputs. A local constant signal
is then added to make sure the input receives the proper value as
needed by the implemented design. These signals were not trip-
licated, so faults in these local constant nets cause failures in the
system as the constant input will be incorrect for all three copies of
the resource. These failures can be addressed by triplicating these
global signals after the implementation phase of the design flow.

One CRAM fault occurred within the I/O pin associated with the
global reset signal. Because this pin is not triplicated, nothing can
be done to improve the reliability of this part of the circuit.

An interesting failure was found within a CLB resource of a
triplicated part of the logic. In this case, a slice within the CLB
generated the value for two copies of the same signal (i.e., two of
the three triplicated signals). The configuration bit associated with
the "NOCLKINV" resource of the slice was changed causing the
slice to invert the phase of the clock. Since this fault caused two
of the three copies of the signal to change, the TMR voters will
choose the incorrect signal and the system will fail. As suggested

FPGA ’23, February 12–14, 2023, Monterey, CA, USA. Andrew Elbert Wilson, Nathan Baker, Ethan Campbell, Jackson Sahleen, & Michael Wirthlin

in a related work [42], this problem could be avoided by making
sure that no two copies of the same signal are computed within the
same slice.

7 IMPROVING RISC-V SYSTEM RELIABILITY
The primary purpose of this work is to carefully analyze and under-
stand all failures of the TMR SoC system observed in the radiation
experiment. Once the cause of these failures is understood, design
changes can be made to improve to overall system reliability. This
section will summarize the changes that will be made to this design
based on the fault analysis described in this paper. In addition, an
estimated improvement in system reliability will be given.

The most important design change that will be made to im-
prove reliability is to reduce the vulnerability of the interconnect
resources. The two primary contributors to interconnect-induced
failures were the signals associated with top-level ports and the
global clock network. As described above, the interconnect signals
associated with the top-level ports can be protected from failure
by manually controlling the routing and placement of voters. For
output I/O signals, this design change will involve placing the re-
duction voters as close to the output I/O resource as possible. For
input I/O signals, this will involve forcing the triplicated branches
from the signal trunk to split much closer to the I/O signal. Both of
these steps will be done manually, but in the future, tools may be
developed to automate this process.

The interconnect associated with the global clock will be pro-
tected by creating three clock signals with a clock generator as
suggested in Figure 12. This step will require manual manipulation
of the netlist to insert global clock buffers and attach the tripli-
cated global clocks. It will not be possible to completely eliminate
interconnect failures as there will be at least one programmable
interconnect associated with the non-triplicated portion of both
the top-level I/O and the global clock network. We estimate that
we can reduce the failures associated with the interconnect by 90%
(or 75 failures down to 7). Further, we estimate that the failures of
the global clocking can be reduced from six to one.

Because there is only a single I/O pin for the top-level ports,
we are not able to reduce the system failures associated with I/O
failures. It is possible to tolerate temporary failures in the DDR
data I/O signals if the system implemented a full 72-bit ECC inter-
face. Using ECC, temporary single-bit errors in the data would be
corrected. Unfortunately, the DDR3 interface on the Nexys Video
board is only 16 bits wide, preventing any efficient implementation
of ECC.

No easy solution is available for preventing the CLB failures
identified in this system. Three of the four CLB related failures
occured within the "reduction" voters for output I/O signals. Such
single voters will remain single-point failures in the design. The
fourth CLB failure is related to the corruption of two CLB clocks
by a single bit. This failure could be prevented by making sure
that the logic associated with two different TMR domains is not
mapped within the same CLB slice. We will not be able to address
the failures associated with the "Undefined" failures as we do not
know their cause.

By implementing a number of design protection measures, we
anticipate that we could reduce the 106 CRAM-related failures

down to 23 (see Table 5). This would result in a 4.6 × reduction in
failure rate of the system. Such enhancements in the reliability of
the system would improve the failure rate of the TMR system to
68× the reliability of the non-TMR system. This would increase the
MTTF of the TMR system from an estimated 4,554 years for the
non-triplicated design, to 67,210 years for the initial TMR design,
and to 309,168 years for the estimated improved design.

Device Resource Observed Estimated
Failures Failures

Interconnect 75 8
I/O Pin 19 19
Clocking 6 1
CLB 4 3

Undefined 2 2
Total 106 23

Table 5: Estimated Reduction in System Failures with Design
Improvements.

8 CONCLUSION
This work measured the neutron cross section of a TMR soft RISC-V
SoC at LANSCE, and the observed improvement of MTTF was lack-
ing compared to other published results. The BFAT tool performed
a fault analysis on observed sensitive CRAM bits and identified
several single point failures in the routed digital design. This work
proposed several methods to potentially achieve a 4.6 × improve-
ment of the TMRmitigation by targeting single point failures within
the DDR interface, global clock network, and other vulnerable logic.
Future work will use the results of this fault analysis and implement
these improvements within the soft RISC-V SoC. Further radiation
testing and fault injection will be used to validate this additional
mitigation.

9 ACKNOWLEDGMENTS
This work was supported by the I/UCRC Program of the National
Science Foundation under Grant No. 1738550. The authors are as-
sociated with the BYU site of the NSF Center for Space, High-
performance, and Resilient Computing (SHREC).

REFERENCES
[1] M. Hamblen, “NASA Mars rover Perseverance launches on time Thursday

to find evidence of life on Red Planet,” Retrieved December 26, 2022 from
https://www.fierceelectronics.com/electronics/nasa-mars-rover-perseverance-
launches-thursday-to-find-evidence-life-red-planet, Jul 2020.

[2] P. Graham, M. Caffrey, J. Zimmerman, D. Eric Johnson, P. Sundararajan, and
C. Patterson, “Consequences and categories of SRAM FPGA configuration SEUs,”
Proc. 5th Annu. Int. Conf. Military Aerosp. Program. Logic Devices, 01 2003.

[3] H. Quinn, P. S. Graham, K. Morgan, J. Krone, M. P. Caffrey, and M. J. Wirthlin, “An
introduction to radiation-induced failure modes and related mitigation methods
for Xilinx SRAM FPGAs.” in ERSA, 2008, pp. 139–145.

[4] A. E. Wilson, M. Wirthlin, and N. Baker, “Neutron radiation testing of multiple
TMR soft processors on SRAM-based FPGAs,” Accepted to IEEE Transactions on
Nuclear Science 2023, August 2022.

[5] A. E. Wilson and M. Wirthlin, “Fault injection of TMR open source RISC-V
processors using dynamic partial reconfiguration on SRAM-based FPGAs,” in
2021 IEEE Space Computing Conference (SCC), 2021, pp. 1–8.

[6] C. Brewer, N. Franconi, R. Ripley, A. Geist, T. Wise, S. Sabogal, G. Crum, S. Hey-
ward, and C. Wilson, “NASA SpaceCube intelligent multi-purpose system for

https://www.fierceelectronics.com/electronics/nasa-mars-rover-perseverance-launches-thursday-to-find-evidence-life-red-planet
https://www.fierceelectronics.com/electronics/nasa-mars-rover-perseverance-launches-thursday-to-find-evidence-life-red-planet

Post-Radiation Fault Analysis of a High Reliability
FPGA Linux SoC FPGA ’23, February 12–14, 2023, Monterey, CA, USA.

enabling remote sensing, communication, and navigation in mission architec-
tures,” in Small Satellite Conference 2020, no. SSC20-VI-07, 2020.

[7] L. A. Aranda, N. J. Wessman, L. Santos, A. Sánchez-Macián, J. Andersson,
R. Weigand, and J. A. Maestro, “Analysis of the critical bits of a RISC-V pro-
cessor implemented in an SRAM-based FPGA for space applications,” Electronics
(Switzerland), vol. 9, no. 1, 2020.

[8] S. D. Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi, “The case
for RISC-V in space,” in International Conference on Applications in Electronics
Pervading Industry, Environment and Society. Springer, 2018, pp. 319–325.

[9] S. Di Mascio, A. Menicucci, E. Gill, G. Furano, and C. Monteleone, “Leveraging the
openness and modularity of RISC-V in space,” Journal of Aerospace Information
Systems, vol. 16, no. 11, pp. 454–472, 2019.

[10] A. B. de Oliveira, L. A. Tambara, F. Benevenuti, L. A. C. Benites, N. Added, V. A. P.
Aguiar, N. H. Medina, M. A. G. Silveira, and F. L. Kastensmidt, “Evaluating
soft core RISC-V processor in SRAM-based FPGA under radiation effects,” IEEE
Transactions on Nuclear Science, vol. 67, no. 7, pp. 1503–1510, 2020.

[11] F. Minnella, “Protection and characterization of an open source soft core against
radiation effects.” Ph.D. dissertation, Polytech. Turin, 2018.

[12] H. Leppinen, “Current use of Linux in spacecraft flight software,” IEEE Aerospace
and Electronic Systems Magazine, vol. 32, no. 10, pp. 4–13, 2017.

[13] F. Kermarrec, S. Bourdeauducq, H. Badier, and J.-C. Le Lann, “Litex: an open-
source SoC builder and library based on Migen Python DSL,” in OSDA 2019,
colocated with DATE 2019 Design Automation and Test in Europe, 2019.

[14] SpinalHDL, “VexRiscv,” Retrieved December 26, 2022 from https://github.com/
SpinalHDL/VexRiscv.

[15] SpinalHDL, “SpinalHDL,” Retrieved December 26, 2022 from https://github.com/
SpinalHDL/SpinalHDL.

[16] LiteX-Hub, “Linux on LiteX VexRiscv,” Retrieved February 3, 2022 from https:
//github.com/litex-hub/linux-on-litex-vexriscv.

[17] M. J. Wirthlin, A. M. Keller, C. McCloskey, P. Ridd, D. Lee, and J. Draper, “SEU
mitigation and validation of the LEON3 soft processor using triple modular redun-
dancy for space processing,” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2016, pp. 205–214.

[18] A. Lindoso, L. Entrena, M. García-Valderas, and L. Parra, “A hybrid fault-tolerant
LEON3 soft core processor implemented in low-end SRAM FPGA,” IEEE Transac-
tions on Nuclear Science, vol. 64, no. 1, pp. 374–381, Jan 2017.

[19] M. Psarakis, A. Vavousis, C. Bolchini, and A. Miele, “Design and implementation
of a self-healing processor on SRAM-based FPGAs,” in 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Oct 2014, pp. 165–170.

[20] A. M. Keller and M. J. Wirthlin, “Benefits of complementary SEU mitigation for
the LEON3 soft processor on SRAM-based FPGAs,” IEEE Transactions on Nuclear
Science, vol. 64, no. 1, pp. 519–528, Jan 2017.

[21] N. H. Rollins, “Hardware and software fault-tolerance of softcore processors im-
plemented in SRAM-based FPGAs,” Ph.D. dissertation, Brigham Young University,
Provo, UT, USA, 2012, aAI3506158.

[22] C. Hong, K. Benkrid, X. Iturbe, and A. Ebrahim, “Design and implementation
of fault-tolerant soft processors on FPGAs,” in 22nd International Conference on
Field Programmable Logic and Applications (FPL), Aug 2012, pp. 683–686.

[23] I. M. Safarulla and K. Manilal, “Design of soft error tolerance technique for FPGA
based soft core processors,” in 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies, May 2014, pp. 1036–1040.

[24] S. Shukla and K. C. Ray, “A low-overhead reconfigurable RISC-V quad-core
processor architecture for fault-tolerant applications,” IEEE Access, vol. 10, pp.
44 136–44 146, 2022.

[25] Microblaze Triple Modular Redundancy (TMR) Subsystem v1.0, Retrieved De-
cember 26, 2022 from https://www.xilinx.com/support/documentation/ip_

documentation/tmr\/v1_0/pg268-tmr.pdf, Xilinx, 2018.
[26] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi,

“Improving the robustness of a softcore processor against SEUs by using TMR
and partial reconfiguration,” in 2010 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, May 2010, pp. 47–54.

[27] D. Skouson, A. Keller, and M. Wirthlin, “Netlist analysis and transformations
using SpyDrNet,” in Proceedings of the Python in Science Conference, 2020.

[28] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions on Nuclear
Science, vol. 61, no. 2, pp. 766–786, April 2014.

[29] D. S. Lee, M. Wirthlin, G. Swift, and A. C. Le, “Single-event characterization
of the 28 nm Xilinx Kintex-7 field-programmable gate array under heavy ion
irradiation,” in 2014 IEEE Radiation Effects Data Workshop (REDW), 2014, pp. 1–5.

[30] P. Lisowski, C. Bowman, G. Russell, and S. Wender, “The Los Alamos national
laboratory spallation neutron sources,” Nuclear Science and Engineering, vol. 106,
no. 2, pp. 208–218, 1990.

[31] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M. Friendlich,
H. Kim, and A. Phan, “Effectiveness of internal vs. external SEU scrubbing mitiga-
tion strategies in a Xilinx FPGA: Design, test, and analysis,” in 2007 9th European
Conference on Radiation and Its Effects on Components and Systems, 2007, pp.
459–466.

[32] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed FPGA configuration and
testing through JTAG,” in 2016 IEEE AUTOTESTCON, Sep. 2016, pp. 218–225.

[33] A. E. Wilson, S. Larsen, C. Wilson, C. Thurlow, and M. Wirthlin, “Neutron radi-
ation testing of a TMR VexRiscv soft processor on SRAM-based FPGAs,” IEEE
Transactions on Nuclear Science, vol. 68, no. 5, pp. 1054–1060, 2021.

[34] J. A. Perez-Celis, “Statistical method for extracting radiation-induced multi-cell
upsets and anomalies in SRAM-Based FPGAs,” Ph.D. dissertation, Brigham Young
University, Provo, UT, USA, 2021.

[35] M. Rebaudengo, M. Sonza Reorda, and M. Violante, “Analysis of SEU effects in
a pipelined processor,” in Proceedings of the Eighth IEEE International On-Line
Testing Workshop (IOLTW 2002), 2002, pp. 112–116.

[36] M. Barbirotta, A. Mastrandrea, F. Menichelli, F. Vigli, L. Blasi, A. Cheikh, S. Sor-
dillo, F. Di Gennaro, and M. Olivieri, “Fault resilience analysis of a RISC-V mi-
croprocessor design through a dedicated UVM environment,” in 2020 IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2020, pp. 1–6.

[37] M. Barbirotta, A. Cheikh, A. Mastrandrea, F. Menichelli, andM. Olivieri, “Analysis
of a fault tolerant edge-computing microarchitecture exploiting vector accelera-
tion,” in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics
(PRIME), 2022, pp. 237–240.

[38] BYUCCL, “Bitstream fault analysis tool,” Retrieved December 26, 2022 from
https://github.com/byuccl/bfat.

[39] F4PGA, “Project X-Ray,” Retrieved September 9, 2022 from https://github.com/
f4pga/prjxray.

[40] L. Sterpone and L. Boragno, “Analysis of radiation-induced cross domain errors
in TMR architectures on SRAM-based FPGAs,” in 2017 IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS), 2017, pp. 174–
179.

[41] M. J. Cannon, A. M. Keller, C. A. Thurlow, A. Pérez-Celis, and M. J. Wirthlin,
“Improving the reliability of TMR with nontriplicated I/O on SRAM FPGAs,” IEEE
Transactions on Nuclear Science, vol. 67, no. 1, pp. 312–320, 2020.

[42] M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow, A. Pérez-Celis, and
M. J. Wirthlin, “Strategies for removing commonmode failures from TMR designs
deployed on SRAM FPGAs,” IEEE Transactions on Nuclear Science, vol. 66, no. 1,
pp. 207–215, 2019.

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://github.com/litex-hub/linux-on-litex-vexriscv
https://github.com/litex-hub/linux-on-litex-vexriscv
https://www.xilinx.com/support/documentation/ip_documentation/tmr\/v1_0/pg268-tmr.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tmr\/v1_0/pg268-tmr.pdf
https://github.com/byuccl/bfat
https://github.com/f4pga/prjxray
https://github.com/f4pga/prjxray

	Abstract
	1 Introduction
	2 Reliable RISC-V Linux System
	2.1 Linux on Litex VexRiscv
	2.2 TMR Litex VexRiscv System

	3 High Energy Neutron Radiation Test
	3.1 CRAM Scrubbing
	3.2 Test Organization
	3.3 Test Results

	4 Post Radiation Fault Injection
	4.1 Playback Fault Injection
	4.2 Correlated Fault Injection

	5 Bitstream Fault Analysis Tool
	5.1 Radiation-Induced Failure Bitstream Analysis
	5.2 Fault Analysis on Larger CRAM Sample Set

	6 RISC-V Linux Design Fault Analysis
	6.1 DDR Interface
	6.2 Global Clock Network
	6.3 Other Vulnerable Logic

	7 Improving RISC-V System Reliability
	8 Conclusion
	9 Acknowledgments
	References

