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ABSTRACT

In this manuscript, we address the problem of studying layer
structure in X-ray Fluorescence (XRF) elemental maps of
paintings through the incorporation of reflectance imaging
spectral data in the visible or near IR range. We propose a
conceptually flexible approach, which involves an initial clus-
tering step for the visible hyperspectral reflectance data (RIS)
and the formation of a synthetic surface XRF image. Con-
sidering the difference of the full and synthetic surface XRF
images, surface and subsurface correlated features are then
identified. Results are demonstrated on real and simulated
data.

Index Terms— XRF, RIS, Hyperspectral imaging, Data
Fusion, Cultural Heritage Science

1. INTRODUCTION

Characterization of materials in the layers of painted artworks
is necessary for several applications. First and foremost, these
data are used to inform the preservation of the artwork. Addi-
tionally, this information can also inform studies of the artist’s
style and the visualization of discarded and overpainted fea-
tures. Traditional approaches to this problem often involve
the investigation of paint cross-sections which is damaging
to the artwork. To avoid physical sampling, point analysis
by a variety of chemical analytical techniques is instead em-
ployed. However, these techniques provide only local infor-
mation and do not give access to information across the entire
work of art. In order to acquire this sort information, imag-
ing spectroscopy is now commonly being employed. While
this addresses the aforementioned issues, the interpretation of
the acquired images, especially identifying surface and sub-
surface features is still an open question.

Visible reflectance imaging spectroscopy (RIS) is a non-
destructive and non-invasive technique in which one illumi-
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Fig. 1. Proposed framework. The input is co-registered XRF
and visible reflectance (RIS) data cubes. RIS data is clustered
into K pigment mixtures and the surface XRF is estimated by
calculating the mean XRF response across all clusters. The
subsurface XRF signal is estimated by subtracting the surface
XRF from the total XRF signal.

nates an object with broadband light source and reflected light
images are taken at discrete wavelengths. At each pixel, the
reflectance spectrum has a characteristic shape dependent on
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Fig. 2. Typical X-ray distribution map. Cu-Ka X-ray image
showing both surface (bright pixels) and subsurface (darker
pixels) features.

the material composition of the underlying pigments. In par-
ticular, many commonly used pigments have distinctive ab-
sorption features in the visible range which allow them to be
unambiguously identified. However, for visible wavelength
ranges up to ~800 nm the penetration depth is relatively low.
This means that virtually all of the reflected light is coming
from the surface of the painting with penetration depths de-
pendent both on the impinging wavelength and material.

Another modality routinely used for chemical imaging of
works of art is X-ray fluorescence (XRF) which relies on the
fact that a material excited by high energy X-rays will flu-
oresce at energies which are characteristic for specific ele-
ments contained in the material. By using a fitting routine,
the fluorescence spectra can be mapped into a series of im-
ages where the corresponding intensity values are related to
the local concentration of different atomic species [1]. An ex-
ample of a Cu-K X-ray map can be seen in figure 2. Typically,
XRF measurements are not depth resolved so when imaging
layered structures with hidden features one observes a super-
position of images as demonstrated in figures 1 and 2. While
depth resolved confocal XRF can be employed to resolve fea-
tures in a sublayer [2], it is a technically complex method,
costly, and requires both a much higher total X-ray dose and
longer acquisition times typically associated with synchrotron
sources. Confocal XRF is thus not feasible for large paintings
or routine applications in cultural heritage.

The key insight to this work is that light penetrates into a
material structure with a depth dependant on wavelength. Itis
safe to assume that for visible wavelength in most paint sys-
tems, we see very little reflectance from deep buried layers.
Conversely, X-rays, associated with XRF, penetrate through
the entire layered structure of a painting with ease. We seek
to use this diversity in penetration depths to isolate the portion

of the XRF signal which is closely associated with the surface
of the painting.

2. RELATED WORK

XRF has been used in cultural heritage since the 1950s [3]. In
recent years, developments in sensor technology have made
XRF much more portable and accessible for Cultural heritage
scientists and conservators to use [3]. XRF elemental maps
can reveal hidden layers and under paintings [4] due to the
penetration depth of the imaging technique. Similarly, hyper-
spectral imaging has become a workhorse technique for iden-
tifying surface layer pigments as well as identifying repairs
[5,6,7].

In the field of cultural heritage science, many works of
art are investigated by using both RIS and XRF. Combined
RIS and XRF have been used to study the connection be-
tween stylistic changes and materiality in Late Rembrandts
[8], study the composition of many illuminated manuscripts
[9, 2], and to identify hidden or obscured text [10]. Cur-
rently, both techniques are being employed for the highly pub-
licized Operation Nightwatch [11] to study and analyze mate-
rials used in the Nightwatch by Rembrandt. These modalities
are also employed in other disciplines such as Geo-science,
where recent work used them to study sediment cores [12].
While both RIS and XRF are often independently analyzed
using quantitative techniques, the fusion of the data is typi-
cally qualitative and, with a few exceptions [7], performed by
simply comparing the resulting images by eye. While some
preliminary work has been done to investigate more quantita-
tive fusion [13] this problem remains unsolved.

A similar problem has been investigated for the purpose of
computationally delayering the X-radiography images [14].
In this work, a joint dictionary approach based on sparsity is
employed to accomplish the separation. While the results are
impressive, the problem addressed in this manuscript funda-
mentally differs, as all measurements are made from the sur-
face layer of a painting. A similar one sided problem has been
investigated as part of guided XRF super-resolution algorithm
[15]. In this, an RGB image is used to help interpolate XRFF
data. This paper split the XRF signal into a portion which
is correlated with the RGB and a portion which is unrelated.
This splitting suffered from the fact that RGB images typi-
cally do not contain enough information for robust pigment
identification because many pigment combinations are visu-
ally identical. Furthermore, a dictionary approach implicitly
assumes a linear mixing model for pigments, which is non-
physical and can lead to poor results. Some newer work has
used a Neural Network to find the nonlinear mapping [16]
however, this approach requires information from both sides.

3. DATA SETS

To test our approach, we consider a page from a 15th/16th
century Book of Tides with decoration and writing on both
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sides of the page. This manuscript has been analyzed and im-
aged by XRF and RIS as shown in figure 1. Since by its na-
ture, a manuscript allows easy access to the rear of the page,
features on the backside can easily be compared to the results
obtained through visual inspection. While having access to
the rear helps with verification, will only use measurements
made from a single side. Confocal XRF data was also ob-
tained for this manuscript [2] thus providing a ground truth
comparison with a different technique.

To assess the performance of the algorithm we also run it
on a simulated dataset, produced from real reflectance curves
for pigments clustered out of the Book of Tides dataset. We
split the reflectance curves into 15 clusters and select an ex-
ample cluster for red, beige, white, and green regions in figure
3 showing the ICIP logo. The respective clusters contain sev-
eral hundred pixels, each with their own reflectance spectra,
which we assign pixel-wise to the image. Following this, we
assign each color in the image to a mean XRF response and
generate a top layer XRF signal as a realization of a Poisson
distribution around this mean value. Lastly, we add a simu-
lated second image to the rear which is also realization of a
Poisson random variable.

4. ALGORITHMIC DETAILS

To gain information about the XRF from the RIS, we first
must map the data sets into a space where they are compa-
rable. Conceptually, we should expect to be able to do this
because a painting is made from physical materials, i.e., dif-
ferent paints and glazes, with a given spatial distribution and
chemical structure. We expect XRF elemental map intensity
and RIS data to both be functions of the physical pigment dis-
tribution. Thus, if we can successfully cluster a hyperspectral
signal, such that the clusters represent the pigment concentra-
tion, we should also expect these clusters to be correlated in
some way with XRF signal intensity. This is despite the fact
that the reflectance signals mix in a nonlinear fashion based
on the absorption and scattering properties of the pigments,
fillers, and binding media [17]. Fundamentally, in this work
we aim to identify portions of XRF intensity which are best
related to RIS reflectance data. To do so, it is not necessary
to find a physical nonlinear mapping. Instead, it is assumed
that the reflectance signal R(p;) is continuous such that given
2 two mixtures of pigments py,pe, if ||R(p1) — R(p2)|| is
small then ||p2 — p1]|| is small as well. With this assump-
tion, it is justified to cluster the reflectance data into K groups
which are spectrally most similar to one another to find pixels
which have the most similar surface pigment concentrations.
Regions with similar surface pigment concentrations should
have similar surface contributions to the XRF signal. In this
work we cluster the spectra using an K-means algorithm. The
example in figure 4 uses K=500. Once the initial clustering
step has been performed we can make a prediction for the
XRF response for each constituent cluster. Given sufficiently

large clusters, statistically independent layers, and assuming
that the subsurface image is sparse, the mean XRF response
should provide a sensible estimate the surface XRF signal for
those pixels. We can then form an image of a predicted sur-
face distribution by replacing each cluster of pixels in image
with the mean XRF response as seen in figure 4. This allows
us to estimate the surface contribution of the XRF signal as

Xsurface = ZECk [Xtot] ]ICk (1)
k

Where £ is the cluster index and CY, is the kyj, cluster, and I,
is the indicator function on cluster C'. High frequency error
can be introduced both by slight misregistrations as well as
from hard cluster boundaries. To account for this we consider
the solutions to multiple K-means clusters which have their
XRF intensities slightly varied by shifting the XRF signal by
single pixels relative to the reflectance cluster and different
initial seeds. We estimate the surface pixel value as

. . ol
;urface = HlllIl {Xsirface} (2)

where X"

sur face is the surface estimate for the 7, pixel given

by the [*" clustering seed. We have found that this routine pro-
duces results with fewer errors at the boundaries than using a
single estimate. The example in figure 4 uses 13 different
clustering seeds and shifts. Finally, the subsurface intensity is
estimated as

. = min(thot - X;urfacev O) 3)

subsur face

The threshold of 0 is physically motivated from the fact that
XRF elemental intensity is strictly positive.

5. RESULTS

The results on the simulated data are shown in figure 3. In this
simulation it is qualitatively observed that the reconstructed
surface estimate matches with the true surface XRF signal on
average. Due to the fact that this is a simulation there are no
uncorrelated surface effects or other sources of error so the
shifting routine can be skipped. The resulting delayering is
very close to the original image. You can see some resid-
ual signal remaining particularly in the regions of strong XRF
signal in the green areas. The overall PSNR for the surface
and subsurface is good at 24.4 and 35.9 respectively. The
subsurface performance is aided in the fact that the physical
threshold makes the pixel values match exactly where the im-
age is 0.

The delayering results for the complete dataset is shown
in figure 4 in which our proposed method is compared to the
previously acquired confocal XRF measurements made on the
same area and visible images from the front and back of the
page (see [2] for complete results and conditions of acquisi-
tion). In figure 4A, the total overlapping XRF signal for the
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Fig. 3. We generate a simulated RIS image by reassigning pixels from the Book of Tides RIS data cube to an image of the
ICIP logo and simulate an XRF by assigning each cluster a mean XRF value and adding a subsurface image. A) shows an RGB
reconstruction of the simulated RIS data cube, B) examples of two green reflectance curves located at 2 different pixels. The
curves have similar shapes but also contain slight differences in intensity and noise. C) shows the simulated XRF signal under
Poisson noise, D) a surface XRF estimate with K=5 clusters obtained by computing the average for each cluster, E) a subsurface

XRF estimate.

element Cu is observed. Our prediction for the top layer and
bottom layer are shown respectively in figure 4B and C. In
comparison with the previously acquired confocal XRF im-
age of the same area (figure 4F) it is found that our result com-
pares surprisingly well with this complex and costly method.
Likewise, compared to the visible images (figures 4D and E),
our algorithm may be seen to faithfully reconstruct the copper
signal coming from the front and back of the page.

F) Confocal

-

C) Residual

Fig. 4. Recovery of signal from an illuminated manuscript
which is obscured by surface level features. A) Total Cu K
XRF signal, B) estimate of Cu top layer, C) estimate of Cu
bottom. D and E show visible feature of Front and Rear of
manuscript. F) Cu map produced by confocal scan of same
area.
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6. DISCUSSION

In this paper, we discussed the problem of virtually delay-
ering XRF elemental maps through the incorporation of RIS
data. The problem of interpreting XRF data in layered media
is of interest to cultural heritage scientists because it can al-
low for easier analysis of layering structure and the imaging
of underpaintings. We proposed an approach which uses an
initial clustering step and the identification of a cluster-wise
response dictionary which can then be used to estimate the
surface image. We demonstrated the results in simulation and
on a 15th century manuscript.

Our approach is computationally simple and easy to im-
plement and provides the end user with an easy to interpret
delayering result with few parameters. This serves as an proof
of concept that information of the surface XRF intensities can
be gained by examining clusters in registered RIS data cubes.
However, the method only can detect correlations between
the XRF signal and the RIS signal so in situations where
there is surface signal which is not correlated to RIS spec-
tra the method fails. The occurs in the case of a thick layer of
paint with thickness variations visible in the XRF signal. Fur-
thermore, the method is sensitive to misregistration between
the XRF and the RIS data. Which can be a difficult prob-
lem in and of itself due to contrast and resolution differences
between the two measurements.

This method provides an easy to implement and effective
way to estimate delayering for cultural applications involving
2 layered paintings. However, we use a very brute force clus-
tering algorithm and ignore the underlying distributions of the
XRF measurements. Several frameworks can more directly
handle this sort of statistical prior such as Gaussian Mixture
model or a neural network with an appropriate cost function.
We intend to follow this work up by estimating the distribu-
tion of the XRF signals given for each RIS cluster and use
these distributions to make inferences about layer structure.

Authorized licensed use limited to: Northwestern University. Downloaded on August 18,2023 at 20:24:05 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

7. REFERENCES

Matthias Alfeld and Koen Janssens, “Strategies for
processing mega-pixel x-ray fluorescence hyperspectral
data: a case study on a version of caravaggio’s painting
supper at emmaus,” J. Anal. At. Spectrom., vol. 30, pp.
777-789, 2015.

“Combined 1d, 2d and 3d micro-xrf techniques for the
analysis of illuminated manuscripts,” J. Anal. At. Spec-
trom., , no. 31, 2016.

Marco Ferretti, X-ray Fluorescence Applications for the
Study and Conservation of Cultural Heritage, pp. 285—
296, 12 2000.

Matthias Alfeld, Wout De Nolf, Simone Cagno, Karen
Appel, D. Peter Siddons, Anthony Kuczewski, Koen
Janssens, Joris Dik, Karen Trentelman, Marc Walton,
and Andrea Sartorius, “Revealing hidden paint layers in
oil paintings by means of scanning macro-xrf: a mock-
up study based on rembrandt’s “an old man in military
costume,” J. Anal. At. Spectrom., vol. 40, no. 51, pp.
432-444,2013.

Kathryn A. Dooley, Damon M. Conover, Lisha Dem-
ing Glinsman, and John K. Delaney, “Complementary
standoff chemical imaging to map and identify artist ma-
terials in an early italian renaissance panel painting,”
Angewandte Chemie International Edition, vol. 53, no.
50, pp. 13775-13779, 2014.

M. Alfeld and L. de Viguerie, ‘“Recent developments
in spectroscopic imaging techniques for historical paint-
ings - a review,” Spectrochimica Acta Part B: Atomic
Spectroscopy, vol. 136, pp. 81 — 105, 2017.

Matthias Alfeld, Silvia Pedetti, Philippe Martinez, and
Philippe Walter, “Joint data treatment for vis—nir re-
flectance imaging spectroscopy and xrf imaging ac-
quired in the theban necropolis in egypt by data fusion
and t-sne,” Comptes Rendus Physique, vol. 19, no. 7,
pp- 625 — 635, 2018, Physics and arts / Physique et arts.

Kathryn A. Dooley, E. Melanie Gifford, Annelies
van Loon, Petria Noble, Jason G. Zeibel, Damon M.
Conover, Matthias Alfeld, Geert Van der Snickt, Stijn
Legrand, Koen Janssens, Joris Dik, and John K. De-
laney, “Separating two painting campaigns in saul and
david, attributed to rembrandt, using macroscale re-
flectance and xrf imaging spectroscopies and microscale
paint analysis.,” Heritage Science, vol. 6, no. 46, 2018.

Aurélie Mounier and Floréal Daniel, “Hyperspectral
imaging for the study of two thirteenth-century italian
miniatures from the marcadé collection, treasury of the
saint-andre cathedral in bordeaux, france,” Studies in
Conservation, vol. 60, no. supl, pp. S200-S209, 2015.

3462

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

E. Pouyet, S. Devine, T. Grafakos, R. Kieckhefer, J. Sal-
vant, L. Smieska, A. Woll, A. Katsaggelos, O. Cos-
sairt, and M. Walton, “Revealing the biography of a
hidden medieval manuscript using synchrotron and con-

ventional imaging techniques,” Analytica Chimica Acta,
vol. 982, pp. 20 — 30, 2017.

“Rijks museum: Operation nightwatch,” Accessed:
2021-01-11.

William Rapuc, Kévin Jacq, Anne-Lise Develle, Pierre
Sabatier, Bernard Fanget, Yves Perrette, Didier Coquin,
Maxime Debret, Bruno Wilhelm, and Fabien Arnaud,
“Xrf and hyperspectral analyses as an automatic way to
detect flood events in sediment cores,” Sedimentary Ge-
ology, vol. 409, pp. 105776, 2020.

Luis de Almeida Nieto, “XRF and RIS for semi-
quantitative sub-surface layer detection and composition
analysis of easel paintings,” M.S. thesis, TU Delft, the
Netherlands, 2020.

N. Deligiannis, J. F. C. Mota, B. Cornelis, M. R. D. Ro-
drigues, and I. Daubechies, “X-ray image separation
via coupled dictionary learning,” in 2016 IEEE Inter-
national Conference on Image Processing (ICIP), 2016,
pp. 3533-3537.

Q. Dai, E. Pouyet, O. Cossairt, M. Walton, and A. K.
Katsaggelos, “Spatial-spectral representation for x-ray
fluorescence image super-resolution,” [EEE Transac-

tions on Computational Imaging, vol. 3, no. 3, pp. 432—
444, 2017.

Wei Pu, Barak Sober, Nathan Daly, Zahra Sabet-
sarvestani, Catherine Higgitt, Ingrid Daubechies, and
Miguel R.D. Rodrigues, “Image separation with side in-
formation: A connected auto-encoders based approach,”
Arxiv, vol. 3, no. 3, pp. 432444, 2017.

H. Liang, “Advances in multispectral and hyperspectral
imaging for archaeology and art conservation,” Appl.
Phys. A, vol. 106, pp. 309-3230, 2012.

Authorized licensed use limited to: Northwestern University. Downloaded on August 18,2023 at 20:24:05 UTC from IEEE Xplore. Restrictions apply.



