




sides of the page. This manuscript has been analyzed and im-

aged by XRF and RIS as shown in figure 1. Since by its na-

ture, a manuscript allows easy access to the rear of the page,

features on the backside can easily be compared to the results

obtained through visual inspection. While having access to

the rear helps with verification, will only use measurements

made from a single side. Confocal XRF data was also ob-

tained for this manuscript [2] thus providing a ground truth

comparison with a different technique.

To assess the performance of the algorithm we also run it

on a simulated dataset, produced from real reflectance curves

for pigments clustered out of the Book of Tides dataset. We

split the reflectance curves into 15 clusters and select an ex-

ample cluster for red, beige, white, and green regions in figure

3 showing the ICIP logo. The respective clusters contain sev-

eral hundred pixels, each with their own reflectance spectra,

which we assign pixel-wise to the image. Following this, we

assign each color in the image to a mean XRF response and

generate a top layer XRF signal as a realization of a Poisson

distribution around this mean value. Lastly, we add a simu-

lated second image to the rear which is also realization of a

Poisson random variable.

4. ALGORITHMIC DETAILS

To gain information about the XRF from the RIS, we first

must map the data sets into a space where they are compa-

rable. Conceptually, we should expect to be able to do this

because a painting is made from physical materials, i.e., dif-

ferent paints and glazes, with a given spatial distribution and

chemical structure. We expect XRF elemental map intensity

and RIS data to both be functions of the physical pigment dis-

tribution. Thus, if we can successfully cluster a hyperspectral

signal, such that the clusters represent the pigment concentra-

tion, we should also expect these clusters to be correlated in

some way with XRF signal intensity. This is despite the fact

that the reflectance signals mix in a nonlinear fashion based

on the absorption and scattering properties of the pigments,

fillers, and binding media [17]. Fundamentally, in this work

we aim to identify portions of XRF intensity which are best

related to RIS reflectance data. To do so, it is not necessary

to find a physical nonlinear mapping. Instead, it is assumed

that the reflectance signal R(pipipi) is continuous such that given

2 two mixtures of pigments p1, p2p1, p2p1, p2, if ||R(p1p1p1) − R(p2p2p2)|| is

small then ||p2p2p2 − p1p1p1|| is small as well. With this assump-

tion, it is justified to cluster the reflectance data into K groups

which are spectrally most similar to one another to find pixels

which have the most similar surface pigment concentrations.

Regions with similar surface pigment concentrations should

have similar surface contributions to the XRF signal. In this

work we cluster the spectra using an K-means algorithm. The

example in figure 4 uses K=500. Once the initial clustering

step has been performed we can make a prediction for the

XRF response for each constituent cluster. Given sufficiently

large clusters, statistically independent layers, and assuming

that the subsurface image is sparse, the mean XRF response

should provide a sensible estimate the surface XRF signal for

those pixels. We can then form an image of a predicted sur-

face distribution by replacing each cluster of pixels in image

with the mean XRF response as seen in figure 4. This allows

us to estimate the surface contribution of the XRF signal as

X̂surface =
∑

k

ECk
[Xtot] ICk

(1)

Where k is the cluster index and Ck is the kth cluster, and ICk

is the indicator function on cluster Ck. High frequency error

can be introduced both by slight misregistrations as well as

from hard cluster boundaries. To account for this we consider

the solutions to multiple K-means clusters which have their

XRF intensities slightly varied by shifting the XRF signal by

single pixels relative to the reflectance cluster and different

initial seeds. We estimate the surface pixel value as

Xi
surface = min

l

{

X̂
l,i
surface

}

(2)

where X̂
l,i
surface is the surface estimate for the ith pixel given

by the lth clustering seed. We have found that this routine pro-

duces results with fewer errors at the boundaries than using a

single estimate. The example in figure 4 uses 13 different

clustering seeds and shifts. Finally, the subsurface intensity is

estimated as

Xi
subsurface = min(Xi

tot −Xi
surface, 0). (3)

The threshold of 0 is physically motivated from the fact that

XRF elemental intensity is strictly positive.

5. RESULTS

The results on the simulated data are shown in figure 3. In this

simulation it is qualitatively observed that the reconstructed

surface estimate matches with the true surface XRF signal on

average. Due to the fact that this is a simulation there are no

uncorrelated surface effects or other sources of error so the

shifting routine can be skipped. The resulting delayering is

very close to the original image. You can see some resid-

ual signal remaining particularly in the regions of strong XRF

signal in the green areas. The overall PSNR for the surface

and subsurface is good at 24.4 and 35.9 respectively. The

subsurface performance is aided in the fact that the physical

threshold makes the pixel values match exactly where the im-

age is 0.

The delayering results for the complete dataset is shown

in figure 4 in which our proposed method is compared to the

previously acquired confocal XRF measurements made on the

same area and visible images from the front and back of the

page (see [2] for complete results and conditions of acquisi-

tion). In figure 4A, the total overlapping XRF signal for the
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