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Abstract

Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially
vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel
anomaly detection algorithms in the presence of a knowledgeable adversary need to be
developed. However, this research is still in its infancy due to limited attack data availability and
test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability
of existing detection algorithms and provide a basis for novel sensor-based cyber-attack
detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment
of existing systems and detection algorithms for practitioners and researchers alike. Stealthy
attacks are characterized by malicious injections into the CPS through input, output, or both,
which produce bounded changes in the detection residue. By using the SAGE framework, we
generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection,
and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical
principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we
assume limited information asymmetries between attackers and defenders (e.g., insider
knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in
practice and allow understanding of the maximum conceivable damage. We propose an efficient
solution procedure for the novel SAGE optimization problem. The SAGE framework is
illustrated in three case studies. Those case studies serve as modeling guidelines for the
development of novel attack detection algorithms and comprehensive cyber-physical risk
assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while
only changing the input control signals minimally. This avoids detection and keeps the cost of
an attack low. This highlights the need for more advanced detection algorithms and novel
research in cyber-physical security.
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1. Introduction

Cyber-physical attacks are a category of cyber-attacks that also adversely affect the physical space. CPS
are characterized by the interaction of physical assets and computational capabilities with information
transfer. The rapid digitalization and utilization of CPS lead to the widespread use of sensors, networked
devices, and data acquisition systems. Since CPS are deployed for high-value and safety-critical
systems, the security of those systems is essential. Any successful attack leads to severe economic loss,

equipment damage, or even loss of human life. We find that the limited attack data availability in cyber-



physical systems hinders the research on cyber-physical attack detection methods. To develop effective
cyber-physical attack detection methods, it is essential to understand the attacker’s capabilities and
methods. Existing methods to generate an attack utilize random perturbations, which do not integrate
the system topology and objectives of an attacker. We find that detection methods using existing types
of attack data are not robust to stealthy attacks. This motivates us to develop a general-purpose
framework for generating stealthy attacks. Stealthy attacks are characterized by malicious injections
into the CPS through input, output, or both, which produce bounded changes in the detection residue.
While stealthy, adversarial attacks have received some attention in the computer vision community,
we are the first to holistically integrate the requirements and topology of CPS for the design of stealthy
attacks. Attacks in the CPS domain require stealthy attacks beyond image data and the consideration of
a wide range of system inputs, models, and tasks (Li et al. 2020).

Therefore, the scope of this paper is to propose a general-purpose optimization framework to find the
best strategy to attack CPS and show the implications of such worst-case attacks on existing detection
methods. Our framework provides a steppingstone to develop more effective attack detection methods
in the future, that are robust to stealthy, worst-case attacks. Worst-case perturbations are defined in
terms of the limited information asymmetry between attackers and defenders: While the attacker might
not know the specific detection model and its associated parameters, all other data and system
information is assumed to be known to the attacker (i.e., insider attacker). This allows us to understand
the maximal conceivable damage (i.e., worst-case detection performance) to a CPS for a given system
setup and detection strategy.

By formulating a novel optimization problem, the “Stealthy Attack GEneration” (SAGE) framework
considers the three main objectives of an attacker (maximize damage, avoid detection, and minimize
attack cost) as well as the physical laws in CPS. By applying small, worst-case perturbations to the
system input variables, the SAGE attack will lead to unexpected and malicious misbehavior of the
system output, while staying undetected by the systems detection algorithms.

To show the generality of our approach, we generate stealthy attacks and validate the SAGE framework
on two data modalities: functional curves and image data. For functional curves, we utilize a hot rolling

process simulated in MATLAB Simulink. In this setting, we evaluate the performance of seven off-the-



shelf supervised machine learning models to detect SAGE attacks. In the image case studies, we use
the SAGE methods to attack two state-of-the-art methods for image anomaly detection by using a large
steel surface defect dataset.

The results provide a case for the severe consequences of stealthy attacks in CPS. This research is
intended to serve as a cornerstone for the development of more robust and effective detection algorithms
for CPS attacks. Furthermore, by evaluating existing systems and detection models, SAGE can be
utilized for the cyber-risk assessment of CPS for practitioners and researchers alike.

The contributions of our SAGE framework are as follows:

e We introduce a comprehensive and general-purpose framework for reliability generating
stealthy, worst-case attacks on cyber-physical systems Our model formulation is intuitive
and easy to understand, which allows the adaptation to a wide range of cyber-physical
systems. We find that many detection methods are unable to detect stealthy SAGE attacks,
even when the attacker is oblivious to the specific defense used.

e  Our results highlight the need for more comprehensive detection methods: our SAGE
framework provides researchers with a common baseline of attack generation, a description
of attack techniques, and common evaluation pitfalls, so that future detection methods can
avoid falling vulnerable to these same attack procedures.

The remaining parts of this paper are organized as follows: In Section 2, we provide a review of related
literature to highlight the necessity of this research. Section 3 presents the mathematical descriptions of
CPS, formulates the optimization problem, and proposes an algorithm for solving this problem. In
Section 4, we illustrate the methodology with three case studies, which serve as guiding examples for
the modeling of stealthy attacks. Finally, Section 5 concludes this paper.

2. Literature Review

Due to the rise of the industrial internet of things (IloT) and smart manufacturing, CPS have been
increasingly exploited by cyber-attacks (Ervural et al. 2018). CPS have grown from stand-alone systems
with little security protection to highly interconnected systems that can be easily targeted by attackers
over the internet. Attacks like the computer worm “Stuxnet” attacking Siemens industrial software in

2010, or the phishing attack on a German steel mill leading to severe equipment damage in 2014, are



some of the most prominent examples of the vulnerability of CPS to cyber-physical attacks. Even
though the field of information technology is developing new methodologies for cyber security, the
unique characteristics of CPS require specific attention (Zhang et al. 2019).

In general, an attack on a CPS is conducted via three steps. The first step of an attacker is to gain
knowledge of the system by identifying the network topology, software, critical targets, and monitoring
schemes against cyber-attacks (Han et al. 2014). Then, the attacker needs to bypass the first line of
defense consisting of the firewall and an intrusion prevention system. After that, the attacker has full
access to the CPS to achieve the goal by perturbing the control systems and making as much damage
as possible while staying undetected. This paper focuses on modeling the last step of a CPS attack,
which is how to perturb the system inputs to make maximum damage to the system response and stay
undetected with minimum cost.

2.1 Attacks on Cyber-physical Systems

In the attack domain, attacks on cyber-physical systems can be classified into three main methods:

disclosure, disruption, and deception attacks as visualized in Figure 1.
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Figure 1: Attack strategies in CPS

Disclosure attacks occur when sensitive or confidential information is exposed to the attacker.
Disruption attacks aim at disrupting the physical processes in a CPS. Deception attacks aim to deceive
the defender of a system to accept a specific incorrect version of reality (e.g., sensor measurements),
causing the defender to act in a way that benefits the attacker (e.g., not raising an alarm). This paper
focuses on deception attacks, which can be further classified into five major subtypes of attacks:
e Replay attack: The attacker injects a sequence of normal control input into the system using

previously recorded sensor data, while actually conducting malicious actions (Murakami et al.

2017).



o False data injection attack: The attacker compromises sensor readings in such a way that
undetected errors are introduced into the calculation of state variables and values (Ahmed et al.
2020).

e Zero dynamics attack: The attacker alters the control output in a way that is consistent with the
transmitted control input according to the dynamics of the system (Shim et al. 2022).

o Covert attack: The attacker disguises the manipulation of control actions by injecting expected
sensor measurements calculated based on the system knowledge (Li et al. 2020).

o Stealthy/Adversarial attack: The attacker adds small perturbations to the normal data input. In this
way, the detection algorithm in the system will not detect the added perturbation. However, the
composed input (normal input + perturbation) will cause a malicious system output and the system
output can be precisely determined by the selection of appropriate perturbation by the attacker (Li
et al. 2020).

Some of those attack subtypes are highly related and not mutually exclusive. However, stealthy attacks
are the hardest ones to detect. They do not solely alter or disguise sensor readings. On the contrary,
stealthy attacks add small perturbations to the system control variables. Since those perturbations are
so small that there is no need to disguise them. They appear to be caused by the system’s natural
variability. On the other hand, they will have a detrimental effect on the system outputs. However, the
effect on the system output could lead detection algorithms to raise an alarm. Therefore, we will assume
that they are disgusted by false data injection or replay attacks or are not monitored.

We note that there are some existing tools for attack generation in CPS (Jeon et al. 2019, Zhang et al.

2021). Those methods carefully design attacks for certain subclasses of cyber-physical systems. With

our stealthy attack generation framework, we extend this literature by providing a general-purpose

modeling framework, which intuitively integrates all objectives and constraints of an attacker to a CPS
and proposes a comprehensive optimization framework to solve this — in general — nonconvex problem
to global optimality.

Furthermore, there exist several testbeds and datasets (Conti et al. 2021) for security research in cyber-

physical systems in various fields such as electric grids (Hahn et al. 2013) or water treatment plants

(Goh et al. 2016). However, those testbeds and datasets might not be well suited for a particular



application scenario such as a particular manufacturing system. Therefore, we see the SAGE framework
as an extension to a much wider range of systems, which allows vulnerability assessment and robust
attack detection development based only on the historic data and the system configuration of the CPS
at hand.

2.2 Machine Learning Methods for CPS Attack Detection

In recent years, multiple detection algorithms have been developed by utilizing machine learning
classifiers for the defense against cyber-attacks (Pasqualetti et al. 2013, Guan et al. 2017, Wu et al.
2019, Yang et al. 2019, Li et al. 2020). Those algorithms have achieved state-of-the-art detection
performance on existing types of attack generation schemes such as false data injection, replay, zero
dynamics, and even covert attacks. However, those supervised learning techniques require strong
assumptions and can be considered as the best-case scenario for the defender of the system: historical
training data needs to be available with labels of in-control (e.g., no attack) and attack conditions.
Additionally, the current attack needs to come from the same generative process as the historical attacks.
2.3 Adversarial Machine Learning and Cyber-physical Security

A large array of prior work has addressed the problem of generating adversarial examples for neural
network image classifiers (Akhtar et al. 2018). However, the literature on adversarial data has mainly
focused on the image domain, and limited efforts have been made to generalize the concepts to a wide
range of data modalities and system models (Zizzo et al. 2019).

Existing works on cyber-physical adversarial attacks are overly specific to one particular system setup
or neglect if those attacks are realizable according to the physical laws of the system (Feng et al. 2017,
Zizzo et al. 2020). Several methods assume that only a subset of the sensors can be compromised, which
tremendously limits the action space for the attacker (Li et al. 2020).

Contrary to adversarial images, the attack generation scheme in CPS needs to consider all three
objectives of an attack (e.g., maximize damage, minimize detection, minimize attack cost) and also
consider the system model and the physical laws of the system.

2.4 State-Estimation-based Attacks and Defenses for CPS

There is a large body of work in state-estimation techniques for cyber-physical intrusion detection in

various safety-critical CPS, such as industrial control systems (Inayat et al. 2022) or power grids (Ashok



et al. 2016, Guo et al. 2018, Jin et al. 2018). Mo et al. (2012) introduced a framework to generate
integrity attacks by formalizing the adversary’s strategy as a constrained control problem. However,
this method does not consider the physical laws of the system, nor the attack cost. Furthermore, a wide
variety of methods have been proposed to attack a CPS by perturbing the state estimation (Kosut et al.
2011, Kim et al. 2014). In a response to those types of threats, robust state estimation techniques have

become widespread in practice, nullifying this type of attack scheme (Ding et al. 2020).

In a nutshell, it is essential to investigate the modeling of stealthy attacks for designing more resilient
systems and detection algorithms. We will demonstrate that if an attacker knows the current
configuration of a CPS, most existing detection algorithms have vulnerabilities and can be bypassed by
attackers. Given this fact, the existing attack and detection algorithms are based on too strong
assumptions, which may not mimic the behavior of a knowledgeable attacker. Therefore, an effective
detection algorithm requires the defenders to first change perspective and “think like a hacker” to
identify the weaknesses of a system. By proposing the SAGE framework, we aim to provide a holistic
modeling framework that can serve as a stepping stone for the development of more robust attack

detection algorithms.

3. SAGE Methodology

This section first describes the system model used to model the dynamics of CPS. Afterward, the SAGE
framework is introduced, which considers the main objectives of an attacker consisting of maximizing
the damage to the system while staying undetected and keeping the cost of an attack low. Finally, an
efficient solution procedure for the nonconvex SAGE formulation is derived.

3.1 System Modeling

This section describes the model used to characterize the system dynamics of CPS. For a general CPS,
the process outputs Y, at time ¢ can be in a format of multiple functional curves, images, structured
point clouds, or categorical variables. We assume that the effect of the inputs on the outputs can have a

hybrid or nonlinear relationship, which allows more realistic modeling of complex CPS. The system



model can be obtained with the best fit to the historical data from a variety of potential models like
linear regression, gaussian process model, or neural networks, and is represented as

Y =0g1(u, 01) + g,(x,02) + € (1)
where g;(+,0;), i = 1,2 are some general functions (e.g., linear, nonlinear, varying with time) with
parameter vector 8;, representing the effect of the control variables u; and the process variables x; (not
controllable but observable) on the system output Y, respectively. € is the matrix containing the
modeling error where every entry is a zero mean additive Gaussian noise with variance 2. As deep
learning approaches are increasingly integrated into CPS, model (1) aims to unify a wide variety of
models to model stealthy attacks in nonlinear settings. This general formulation also allows for the
hybrid settings of linearized and nonlinear perception pipelines that are fused in a deterministic or
stochastic manner.
3.2 Stealthy Attack GEneration (SAGE) formulation
This subsection will first discuss the threat model, which is a structured representation of all the
information and assumptions that affect the security of a CPS. Afterward, the SAGE attack formulation
and solution procedures are presented.
3.2.1 Threat model
To model the worst-case scenario for a defender, we assume that the attacker knows the system
configuration in a gray box setting. In particular, it is assumed that the attacker has bypassed the first
line of defense (i.e., the firewall) and has full access to the system. Thus, the attacker can inject control
actions at any point and time. It is assumed that an attacker has an intention to negatively affect the
system output. Examples of such damage to the system include a reduction in the production rate,
production quality, system efficiency, equipment degradation, or failure. We assume that the attacker
has full knowledge of the system model. In the white box setting, the attacker directly knows the model
gi and its parameters ;. In the gray box setting, the attacker estimates a surrogate model for g; based
on historical data. For the detection algorithm used in the CPS system, we assume a black-box or gray-
box setting: (i) If the attacker does not know the systems detection algorithm (black box), they can
generically minimize the difference in distribution between normal and attack data as illustrated in the

steel rolling case study in Section 4.1. (ii) In the gray box setting, we assume that the attacker knows



the detection algorithm, but not the specific detection model parameters. In this setting, an attacker can
only estimate the detection model parameters based on historical data. The attacker does not know the
specific out-of-control or attack data utilized during model training by the defender. We assume that all
the systems control and process variables are being monitored. The system output measurements are
either (i) disguised through false data injection or covert attacks, (ii) not monitored, or (iii) monitored
far downstream in a multi-stage (manufacturing) system, which already would have caused severe
upstream damage until its detection.

We note that this threat model restricts the attackers’ capabilities as little as possible. Therefore, it is
extremely stealthy and hard to detect.

3.2.2 Attackers optimization problem — “Think like a hacker”

Based on the threat model, which summarizes the attackers' capabilities, we will “think like a hacker”
(Esteves et al. 2017) and define three key attacker’s objectives when generating stealthy attacks on a
CPS:

1.  Maximize Damage: The goal of an attacker is to cause damage to physical components such as
machines, equipment, parts, assemblies, and products in CPS. Thus, the cyber attacker can
cause severe damage to CPS by increasing the wear, breakage, scrap, or any other changes to
the original design.

il.  Avoid Detection: An attacker aims to manipulate CPS in such a way that the altered control
actions stay undetected. Most equipment has some hard-wired safety modes that will shut down
the machines once they reach a safety-relevant operating condition. Therefore, staying
undetected will directly contribute to the first objective to maximize damage.

iii.  Minimize Attack Cost: Attacking all control actions might be costly or complicated because
different sensing data are saved in different databases or governed by different operating
systems or security protocols. Therefore, the attacker will want to keep the cost of an attack
low by identifying very few control actions that have the biggest impact on the system outputs.

iv.  Physical limits: Any changes to the system need to adhere to the physical limits of the CPS.



Consequently, the attacker’s optimization problem is formulated as Equation 2, which exploits the CPS
system model and the weaknesses of the detection algorithm while considering the physical constraints

of the system.

min — || (g:(uf, 02) + 92 i€, 82)) — d (g1 (i, 81) + 92 =1, 62) )|, (22)
s.t.
If @i = Fd|, <& (2b)
C(uf) < e, (2¢)
lphut)ll, < e, (2d)

where d(-) denotes a damage function corresponding to some undesirable outputs of a system given the
in-control and attack-control actions, respectively. Furthermore, u# are the perturbed control inputs by
the attacker, which should be close to the normal or in-control control inputs u}¢. The process variables,
which are not controllable, are denoted by x’tC. The distances are denoted in terms of the £,-norm to
allow for flexible modeling requirements. &; denotes the maximal allowable distance (i.e., decision
boundary) between some general detection or monitoring function f(-) applied to uf and ul’; ¢,
denotes the maximal allowable cost of an attack strategy u#, and 5 denotes the maximal allowable
range from the physical laws modeled by a general function ph(-) of the attack.

The detailed explanation of each term in Equation 2 is as follows:

o The objective function (2a) incorporates the first objective of the attacker, which is to maximize the
damage to the system. This is equivalent to minimizing the negative difference between the damage
function d(*) for the in-control and the attacker’s control actions respectively. If only the system
output deviation is of concern, d(+) reduces to the identity function. In cases where the state space
has significant asymmetries, the d(-) functions can be defined as a (binary) mapping to a dangerous
state. Note, that the process variables will cancel in this formulation since those are not controllable
and therefore should be kept at their in-control values during the attack.

e The 1% constraint (2b) term corresponds to the second objective of the attacker, which is to avoid
detection. A detection algorithm is represented by a general function f(*). By ensuring the £,,-norm
distance between the output of the detection function f(-) applied to both attackers and in-control
control actions falls below the detection threshold &, the attacker can avoid detection.

e The 2™ constraint (2c) term corresponds to the last objective of an attacker, which is to minimize
the attack cost. This term considers how costly it is to attack a particular control action. The

executed changes to the control variables should be within the attacker’s (computational) budget
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&,. Examples of increased attack costs could be cases in which different control subsystems are
secured by different mechanisms (e.g., firewalls) with different levels of security or the
computational effort to execute changes to control variables is high.

o The last constraint (2d) term ensures that the physical limits of the CPS are met via a physics
function ph(-). The function ph(-) maps the attacker’s actions to the physical constraints. Control
actions can only change within physical limits &5 (e.g., the magnitude of change in consecutive time
steps should be small). This term requires physical knowledge of the process, which can be obtained
from domain experts or prior research findings.

The system model in Equation (1) is known in advance or at least the predictions are accessible in a

black box manner. The functions f(-) and ph(-) are also known in advance. In Table 1, several common

monitoring statistics and physical constraints are introduced as guiding examples for the choice of f(-)

and ph(-). If the monitoring scheme or physical constraints are not known, the functions can be chosen

as the identity and variance function by default as introduced in the steel rolling case study in Section

4.1. To further enhance this strategy, a distributional distance such as the Kullback-Leibler or

Wasserstein could be selected as the monitoring function f(-). Without knowing any particular details

about the applied detection model, this approach is still able to fool common machine learning

classifiers as illustrated in the case study.

Table 1: Modeling examples for monitoring function f(-) and physical constraint ph(-)

Monitoring Scheme JiQ) Physical Constraint ph(")
X-bar & S Charts Identity + Variance Smooth changes over time ufy, —uf,q
Hotelling T? Control Chart T? statistic Sparse changes over time ”uLAj t—Ufie ||1
Kernel Methods (e.g., SVM or | Corresponding Kernel Limited variation patterns ||u§4j ¢ —ufy el
PCA) function ||| denotes the nuclear norm
Gradient Boosting Weighted sum of weak Piecewise constant changes | Fused lasso penalty (Tibshirani
learners et al. 2005)
Neural Network Architectures | Inverse network function | Variables within physically

a4 12 . .
uji +||. with appropriate
via back-propagation possible limits ” bt ”2

Lagrange multiplier 1,

It should be pointed out that the SAGE attack is designed for patient adversaries, who have collected
historic data about the process, or insider attackers. Therefore, the SAGE attacker is an expert of the
CPS to be attacked. Thus, it is reasonable to assume that the system model g;(-) and g,(-), the
monitoring function f(-), and physical limits ph(-) are known in advance before conducting the
optimization for stealthy attack control actions. This assumption is reasonable since CPS use industry-

wide standards in terms of control systems and even detection algorithms. This assumption does not
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artificially limit the capabilities of an attacker. It rather leads to extremely stealthy attacks, which may
be considered the worst-case scenario for the defender. However, if a defender constantly changes the
monitoring algorithm or even the system setup, SAGE attacks may not be able to simultaneously fulfill
their four objectives. Also, in cases when the detection model that monitors the system is not fully
characterized, this attack framework might not lead to stealthy attacks. Another limitation is the possibly
nonconvex formulation, which has an optimality guarantee only under certain conditions as discussed
in the next section.
Using the Karush-Kuhn-Tucker (KKT) conditions, we can reformulate Equation 2 to alleviate the
burden of explicitly computing inequality constraints as follows:
min = | (., 00) + 92xt%,02)) = d (91, 00) + 92,0 )

| f Q) = F@D, + A0t + Asllp@d] ()
where 44, 1, and 13 denote the Lagrange multipliers that correspond to the constraints (2b), (2¢) and
(2d), respectively.
The global minimum of the original constrained optimization problem (Equation 2) corresponds to a
saddle point in the Lagrangian function (Equation 3), provided that the necessary regularity conditions
of stationarity, primal feasibility, dual feasibility, and complementary slackness are satisfied. For a more
detailed explanation of this widely used approach, interested readers are referred to (Ben-Tal et al.
2001). We note that for nonconvex optimization problems, the Lagrange multipliers 1;, 4, and 1; may
not be unique. Therefore, we resort simultaneously solving for the optimal solution and the appropriate
Lagrange multipliers by utilizing the Branch-and-Reduce framework introduced in Subsection 3.2.3.
3.2.3 Solution Procedure
The SAGE problem formulation is an inherently nonconvex and NP-hard problem. To make the SAGE
framework applicable to a wide range of general nonconvex functions, the Branch-And-Reduce
Optimization Navigator (BARON) algorithm is utilized to solve the nonconvex formulation to global

optimum (Liu et al. 2019).
The output dimension of the nonconvex constraint functions is denoted by m,, m, and ms, respectively,

and X denotes a set of constraints for the search space. For example, X could denote the 6¢ limits of
the attacked control variables, because any attack outside of those limits can very easily be detected.

The standard Lagrangian subproblem of Equation 2 is given in Equation 3. However, for the dual

12



approach to yield any computational advantage, the so-called Lagrangian subproblem must be much
easier to solve than the primal problem.
For simplicity of the problem presented in the remaining paper, we use the following notations to
replace the related terms in Equation 2:

x =uf € R,
01@) = = [|d (g uf, 02) + 2(x1€, 0)) — d (910,01 + 92 (&, 0)) | < R" > R
0, () = || = fFP)||,, < &2: R" > R™,
03(x) = C(uf) < &,: R* > R™z,
0,(x) = ||ph(u‘t4)||p < g5:R" » R™s

Then, Equation 2 can be defined as the Lagrangian subproblem:

;reljf, U'(x, (A, 41,42, 43)) = ;g)f({—lom (%) — 2102(x) — A,05(x) — 2304(x)}, 4)
where (Ao, A1, 15, 43) < 0. The additional dual variable 1, homogenizes the problem and allows us to
reformulate the SAGE attack into a unified BARON range-reduction problem. The constraints
£1,& and &3 enter the Lagrangian subproblem as 4,&;, 1, ¢,, and Az&5, respectively. Therefore, they
are constants that do not alter the optimal solution and only need to be considered in the Lagrangian
master problem (Equation 3). Assume that b is an upper bound on the optimal objective function value
of Equation 2 and consider the following range-reduction problem:

h* = x,uo,i?iz,ug{h(u"’ul’uz’u3)|01 (x) < up < by,

0,(x) Su; <€,03(x) Suy < 65,0,(x) Sug < €3,

x € X}, Q)

where h is assumed to be some semi-continuous functions. Then, Equation 5 can be restated as

h* = inf  h(ug, uq,uy, usz)
X,Ug,Up,U2,U3

S.t.

—Ao(01(x) —up) — A1(02(x) —uy) — 22(03(x) —up) — A3(04(x) —u3) <0
(A9, A1,15,143) <0

(u()' Uq, Uy, u3) =< (bOI €1, €&, 83)

x€eX (6)

However, the computational complexity of Equation 6 is the same as Equation 4. Therefore, we lower

bound h* with the optimal value of the following problem.
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hL = ll’lf h(uo, Uq, Uy, u3)
X ,Ug,Uq,U2,U3

s.t.
Aoup + Aiuy + Au, + A3ug
+xl££ {—=2001(x) = 4105(x) — A;03(x) — A30,(x)} <0
Aoy 1,42, 13) <0

(o, Uy, Uz, uz) < (bo, &1, €3, €3) (7)
This domain reduction problem can be leveraged for efficiently solving the SAGE attack by restricting
h(ug, uq, Uy, Usz) to aguy + a;uq + ayu, + aszus, where (aq, a4, a,, az) = 0 and (ag, a4, a,, az) # 0.
Using Fenchel-Rockafellar duality, the BARON algorithm derived in (Tawarmalani 2001) can be
applied to iteratively obtain lower and upper bounds on the range-reduction problem of the SAGE attack

formulation.

Branch- and Reduce (BARON) algorithm to solve the SAGE attack

While not converged:
(0) Initialize: Set K = 0,ud = ap, ud = &, ul = 5, ud = &
(1) Solve the relaxed dual of Equation 5:
h = max (Ag+ag)by+ A +a)e + Ay +ay)e, + (A3 +az)e; —z

U, U1, U U3
s.t. z > Aouf + uf + Luk + Luk k=0, ,K—1
(Ao, Al, /12, 13) < —(Clo. aq, ay, Cl3)
Let the solution be (1, A%, 2, 2%)
(2) Solve the Lagrangian subproblem:

inf  U'(x, A%, 25,25, 28) = —max  AKuy + Au +25u, + A5,
X,Ug,Up,Uz,U3 X,Ug,U1,Uz, U3

s.t.  0.(x) <y
02(x) <uy
03(x) <u,
04(x) S ug
x€X
Let the solution be (xX, ul, ul, uf, uf).
(3) Augment and solve the relaxed primal problem:

hE = min  aguy + a;uy + au, + azus
Ug,Up,U2, U3

s.to Aug + Auy + A%u, + Ay
+infl'(x, QAN <0k=1,..,K
XE.
(1o, Uy, Uz, uz) < (by, &1, &3, €3)
4) Termination check:
If R — hf < tolerance

In step 2 of the algorithm, (19, 41,45, A3) < 0 implies that uf = f(x),uf = g, (x%), uf = g,(x"),
and uX = g;(x¥). Furthermore, the relaxations of the BARON framework enjoy quadratic
convergence properties and are an efficient procedure for obtaining global optima to nonlinear programs
(Tawarmalani et al. 2004). In particular, the theorem for optimality-based range reduction

(Tawarmalani 2001) applies to the derived BARON algorithm for solving the SAGE attack:
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Theorem 1 (Tawarmalani 2001). Suppose the Lagrangian subproblem in Equation 5 is solved for
certain dual multipliers (A9, A;,45,43) < 0. Then, for each i such that (1%,15,25,25) # 0, the cuts

g;', (x) = (by — infl(x, A9, A1, A3, 43) /AL, p = 0,1,2,3) do not chop off any optimal solution of the
X

initial Equation 4.

This theorem implies that the solution will eventually converge to a global optimum due to the quadratic
convergence of the BARON algorithm. For a detailed discussion, related proofs, and generalizations
we refer interested readers to (Tawarmalani 2001).

The BARON algorithm to solve the SAGE formulation is also available as commercial software
(Sahinidis 1996). For readers interested in generating a SAGE attack with no in-depth optimization
knowledge or no commercial nonlinear solver licenses, we recommend solving the SAGE formulation
using efficient and widely used algorithms such as stochastic gradient descent (SGD). In the literature,
several convergence guarantees are provided for SGD algorithms in the nonconvex setting (Nguyen et
al. 2018). When using SGD on common software platforms, a few best practices should be considered.
The attacks should be initialized with historic, in-control data. This will lead to much faster
convergence. Furthermore, choosing upper and lower bounds within the physical limits of the data (e.g.,
image pixel values from 0 to 255, control variables within 60 limits) will reduce the probability of
detection and drastically reduce the solution space of the problem. The choice of Lagrange multipliers
of the SAGE formulation is crucial to the efficacy of the attack. Binary search can be adapted to find
the optimal set of parameters for any arbitrary choice of algorithm. The binary search should consider
the three main objectives of the attacker and tune the hyperparameters A;,1 = 1,2,3 until the Attack
Effectivity (AE), Average Perturbation (AP), and Attack Cost (AC) are within prescribed limits. The
attack effectivity can either be computed by the first SAGE term or by an attack-specific metric
considering the attacked system model. Similarly, the average perturbation can be derived from terms
(2b) and (2d) or the defender’s monitoring algorithm. The attack cost is directly calculated from the
third SAGE term.

4. Case Studies

In this section, we use three case studies to illustrate and validate the SAGE methodology proposed in

Section 3. Those case studies are intended as modeling guidelines for the application to other CPS. We
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will demonstrate how to use the proposed framework for two data modalities: functional curve and
image data. All the case studies follow the same SAGE framework proposed in Equation 2. However,
the formulations need to be adapted to the specific case. To summarize the procedure, we provide a
pseudo-code with the respective inputs and outputs of each case study. The case studies are intended to

serve as guiding examples for the generation of stealthy attacks in a wide range of systems.
Pseudo-Code SAGE Attack procedure

Inputs:
. Historic data of normal (in-control) control actions: Section 4.1: ul¢; Section 4.2: yf”ginal, Section 4.3: Hfriginal, goriginal
e System model (g; and g, with parameters 6, and 6, in Eq. 2): Section 4.1: By, 8;; Section 4.2: 635”; Section 4.3: 9NN, gLIME
e Detection function or statistic (f in Eq. 2): Section 4.1: Multivariate EWMA statistic, Section 4.2 and 4.3: Identity function
. Cost function: C in Eq. 2 and Section 4.1-4.3
. Damage function (d in Eq. 2): Sections 4.1-4.3: Identity function
. Physical constraint function (ph in Eq. 2): Section 4.1: Temporal consistency uf — uf_;; Section 4.2: Temporal consistency
y&1 — y#; Section 4.3: Spatial-temporal consistency vec(y? 9" — y#) -D -vec(ym9met — yiA)T
. Reference value or historic data of system output (: Section 4.1: Ytref ; Section 4.2: 6,; Section 4.3: ytgrig inal
. Threshold values: Detection threshold &;, Attack cost limit &, Physical limit &3
Outputs: Attackers control actions (uf in Eq. 2): Section 4.1: u#; Section 4.2: y#; Section 4.3: y#
SAGE Attack procedure:
1. Specify the objective function in the format of Eq. 2
2. Solve for the attacker’s control action utilizing the Branch-and-Reduce framework introduced in Section 3.2.3
3. Deploy the attacker’s control actions to the cyber-physical system

4.1 Case Study with Functional Curve Data — Hot Steel Rolling Process

To show the vulnerability of common CPS to stealthy attacks, a MATLAB Simulink testbed
(MathWorks 2022) for one-stage plate rolling is used to illustrate the devasting effect of small but
worst-case perturbations on functional curves in CPS. The testbed models a two-axis rolling mill. In a
rolling process, steel rollers are used to press sheet metal to a specific thickness and add strength via
strain hardening to improve surface finish. The four control inputs to this system are the roller gap and
roller force in x-direction and y-direction, respectively. The testbed uses a Multiple Input Multiple
Output (MIMO) LQG regulator to control the horizontal and vertical thickness of a steel plate in a hot
steel rolling mill. For further details on the testbed setup, interested readers are referred to the
corresponding Simulink documentation (MathWorks 2022). The only modification to the testbed is the
addition of four “import” blocks to link the attacker’s control signals generated from the SAGE
formulation to the simulated CPS as shown in Figure 2. The import blocks allow us to verify the
accuracy of the system model. We will report the actual output signal obtained from the simulation after

injecting the attackers' control actions. This is more accurate and realistic than simply plugging the
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attacker’s control actions back into a data-driven system model, which is only an approximation of the

true system dynamics.

Attacker inserts control actions
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Figure 2: SAGE attack to a hot rolling process

The monitoring of multivariate signals via multi-variate control charts is a standard practice in the
industry and also in some recent research papers. Therefore, we use the first case study to illustrate the
potential of SAGE to deceive a very popular detection model based on a multivariate exponentially
weighted moving average (MEWMA) control chart.

4.1.1 Attack on Multivariate-EWMA Chart

A multivariate exponentially weighted moving average (MEWMA) control chart is commonly used to
monitor CPS. We first calculate Z; = AX; + (1 — A)Z;_,, where Z, is the i-th observation vector, Z,
is the vector of variable values from historic data, A is the diag (44, 45, ... 4,), which is a diagonal matrix
with A4, 4,, ... 4, € (0,1] on the main diagonal, and p is the number of control variables. Then the test
statistics of the MEWMA is given by T? = Z] 2;} Z;. The alarm will be triggered whenever T7 is
above the 1-a=95% quantile of its empirical distribution under normal conditions, and « is the desired
Type-1 error rate. We incorporate this test statics directly into the framework by minimizing the

monitoring static on the attacker’s control to avoid detection.

. 2 2
min —[[V; = Bo = Xy Byufell, + AlITZ @i, +Azlluf -t || + 25 ). ©)
t
where Yzef = [Yy, Yy ] denotes the engineering specification of quality response and is a constant value

in this case. The four control variables are denoted by u = [Xforce, Xgap» Yforces ygap]. In this setting,

d(gl (uy) + 9» (xt)) =d(g,(u;) + By) = Y:ef and d(+) reduces to the identity function (i.e., d(*) =
1d(+)). Since the system response, in this case, is measured in terms of x- and y-axis thickness variation,

the goal would be to have no variation so Y:ef = 0. In this case, ulC is chosen as historic data of the
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same length as the attack to mimic a replay attack. Furthermore, the cost function is chosen as

-1
C (uf}t)={02' ;Z:j _ 2'2 . This represents the fact that the roll gap (j = 1,3) is easy to attack while the

roller force (j = 2,4) requires more effort because they are protected through different security
protocols. The monitoring statistic f () is set to the MEWMA monitoring statistic T{.

The optimization problem was solved using the proposed BARON algorithm for the SAGE formulation
in Section 3.3.2. For better visualization, only 150-time steps of the attack are visualized in the

following figures. The attack avoids detection by the MEWMA chart as visualized in Figure 3.

14
ucL=12.72

Figure 3: Attackers’ control actions (red) and in-control data (black) are both within the control limits
of the MEWMA chart
On the other hand, the attack leads to maximal damage to the system response, which is far away

from the normal system response (Figure 4).

X axis variation
y axis variation

d & N o N &2 o o

50 100 150

Figure 4: System response after an attack (red) and in-control system response (black)

4.1.2 SAGE attack performance evaluation and comparison with other methods
To show that small perturbations of the control variables can lead to a large change in the system

response, the Attack Effectivity (AE) and Average Perturbation (AP) are computed as follows.
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where n denotes the length of the attack, g ic is the in-control standard deviation of control variable j,
J

oy is the in-control standard deviation of the system responses, and Y4 is the resulting system response

to the attack. Those metrics essentially measure the absolute distance between in-control and attack in

terms of the number of in-control standard deviations. The results are summarized in Table 2 showing

the small perturbation levels of the attacks while achieving very effective attacks.

Table 2: Attack Effectivity and Average Perturbation of SAGE attacks

AE AP
MEWMA Attack | 11.024 | 0.123

To further evaluate the effectiveness of the proposed SAGE attack, seven machine learning techniques
commonly used in literature for cyber-attack detection algorithms in CPS are evaluated for their
effectiveness to detect stealthy attacks (Table 5). The hyperparameters of the respective methods were
tuned via grid search to achieve the best possible detection results. In particular, a Support Vector
Machine (SVM), k Nearest Neighbor (kNN), Random Forest (RF), Bagging, Gradient Boosting
Machine (GBM), Decision Tree (DT), and a Deep Neural Network (DNN) were used to classify the
presence of an attack. The labels for those supervised machine learning methods are obtained as follows:
The normal operating conditions are labeled as no attack, and the generated attack signals obtained via
our SAGE framework are labeled as an attack. This shows the potential of our method: using our
stealthy attack framework, sophisticated attacks can be generated, which can be utilized for supervised

learning approaches.

We note that the proposed SAGE attacks were not aware of those detection algorithms when we
formalized the SAGE optimization problem. In particular, those detection functions were not
considered as a detection function f(-) during the optimization of the attack. We simply enforce the
MEWMA, which will incapacitate most of the detection methods. Note that not even distributional
distances such as Kullback-Leibler or Wasserstein distances had to be utilized to fool those detection

methods.
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The results in Table 3 show that if the SAGE attack considers the MEWMA statistic, which ensures
that the attack and in-control data are similar in terms of their first two distribution moments (mean and
(co)variance), none of those six methods can achieve satisfactory detection performance. While the
DNN performs the best, its detection accuracy of 54.79% is not sufficient for reliable and fast attack
detection. Note that a random coin flip (i.e., attack, no attack) at each time point would result in a 50%
accuracy.

Table 3: Detection results of different machine learning methods (bold marks best-performing)

Method MEWMA Attack
Accuracy | Precision | Recall | F1-Score
SVM 48.28% 50.50% | 47.64% | 49.03%
kNN 47.89% 49.75% | 46.89% | 48.28%
RF 48.58% 49.53% | 48.61% | 49.07%
Bagging | 48.49% 51.04% | 46.89% | 48.88%
GBM 51.84% 52.11% | 51.83% | 51.97%
DT 52.08% 52.36% | 51.81% | 52.08%
DNN 54.79% | 54.05% | 55.56% | 54.79%

This example shows how flexible the SAGE formulation can be adjusted to make the existing detection
algorithms not effective even if the detection algorithm such as the machine learning classifiers are not
known a priori.

4.2 Case Study with Image Data

In this subsection, we will provide a generalization of the SAGE attack to learning-enabled CPS
utilizing two state-of-the-art anomaly detection algorithms. Another goal of this case study is to
illustrate the potential of the SAGE framework on other data formats, in particular image data. We
provide a case for the severe consequences of small but intentional perturbations to control variables
on image responses in CPS. Therefore, we will attack both the smooth spare decomposition (SSD)
method (Yan et al. 2017), which is a benchmark image denoising and anomaly detection algorithm in
the field of manufacturing, and a Convolutional Neural Network in combination with Local
Interpretable Model-Agnostic Explanations (Ribeiro et al. 2016), which is a state-of-the-art method in
the field of classification and object detection.

The dataset used for both attacks is the Northeastern University (NEU) surface defect database (Song
et al. 2013), which contains six typical surface defects of hot-rolled steel strips. The dataset includes

1,800 grayscale images, with 300 samples of each of the six different surface defects (i.e., rolled-in
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scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In) and scratches (Sc)).

4.2.1 SAGE Attack on Smooth-Sparse-Decomposition

Firstly, we attack the SSD method (Yan et al. 2017), which decomposes an image into three
components: A smooth image background, sparse anomalous regions, and random noise, as illustrated

in Figure 5.

Image = Background +  Anomaly + Noise
(Smooth) (Sparse) (Small)

Figure 5: Decomposition of the image into the background, anomaly, and noise (Yan et al. 2017)
The goal of the attack is to add small perturbations to the image, which are indistinguishable from the
original image for the human eye. To make this perceived image loss more objective, we measure the
distance between normal and attacked images in terms of a L,-norm perturbation, which is a standard
procedure in computer vision.

However, those perturbed attack images should lead to a bad system response. In this case, the system
response is the anomaly region. We want to change the anomaly region as much as possible. When
decomposing the image into background, anomaly, and noise via SSD, we want to detect the anomalies
in different regions than where they actually are. This means, when the operators try to fix the problem,
they will draw a wrong conclusion regarding the root cause of the anomalies and make the damage even
worse by taking the wrong actions. In this circumstance, the SAGE attack formulation reduces to the

following optimization problem.

mip = 100 = 65O + Ml =y, +2 e -yl + sl -2, ()
t

where y# denotes the image that the attacker will inject into the system at time ¢, 8, denotes the fixed

and known anomaly region of the normal image, 855P is a function of y# and denotes the extracted

anomaly region from the attacker’s image via the SSD method. The goal of the attacker is to maximize

the damage by letting 85°? be as far away as possible from the ground truth anomaly 6. Furthermore,

to avoid being detected, the attackers’ image y# should be close to the original image before the attack
original

y: in terms of a L,-norm perturbation. The computational cost increases with the number of

pixels attacked in an image. Therefore, the cost function is chosen as the [, -norm to induce sparsity and
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attack as few pixels as possible. Since the monitoring of a process usually consists of streaming data
from each time step ¢, the added perturbations in consecutive time steps should not be too different since
this might be physically impossible. Furthermore, extreme changes over time might alert appropriate
detection algorithms and lead to detection. This behavior is enforced by the 3™ and the last terms in the
formulation (Equation 11).

The SAGE attack on SSD (Equation 11) was solved using the BARON framework introduced in Section
3.2.3. As shown in Figure 6, the image before and after the attack is almost indistinguishable to the

human eye.

Difference
Original vs Attacked Image

Original Image Attacked Image
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Figure 6: Images before and after the attack of exemplary steel surface defect
On the other hand, the outputs of the SSD algorithm before and after the attack are significantly different
(Figure 7). After the attack, the false alarm rate has increased significantly since many regions are now
identified incorrectly as surface defects. This effect cannot be achieved by simply adding random noise

to the images since the SSD method inherently decomposes the pictures in a smooth, sparse, and noise

component.
Anomalies Original Image Anomalies Attacked Image
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Figure 7: Exemplary recovered anomaly using SSD from the original and the attacked images
To show the generality of the SAGE formulation in attacking multiple classes of anomalies, the entire
data set of 1,800 images is selected and the following metrics are defined corresponding to the

objectives of the attacker.
Y 1>0(|egriginal_0é |)

e Attack effectivity: AE = 150(62)
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e Average Pixel Perturbation: APP = S

where n and m denote the height and width of the image, respectively. In this case study, the images
have the size n = m = 200. The larger the attack effectivity (AE), the more damage the attacker can
do to the anomaly region; and the smaller the average pixel perturbation (APP), the closer the attacked
image will be to the original image. Note that the APP is scaled by 255 to account for the range of the
pixel intensity values from 0 to 255. The averaged results of those metrics for the 1,800 images are

shown in Table 4.

Table 4: Attack effectivity and Average Pixel Perturbation of SAGE attack applied to SSD

AEE APP
SAGE Attack | 40.534% | 0.0482

As we can see from the results of the surface defects, after applying small but intentional perturbations
via the SAGE framework, the SSD algorithm can be fooled by falsely adding and/or deleting anomaly
regions, while generating an attack image that is virtually indistinguishable for the human eye. This
case study shows the generality of the SAGE framework when applied to image data even for
sophisticated anomaly detection algorithms like SSD, which utilizes advanced optimization techniques.
Therefore, our proposed framework can easily be adapted for other image anomaly detection methods
as long as the parameters of the detection algorithms are explicitly known or at least predictions from

the detection algorithm can be accessed in a black box manner.

4.2.2 SAGE Attack on CNN-LIME

This case study will use the SAGE strategy to attack a CNN-LIME (Ribeiro et al. 2016). Local
Interpretable Model-Agnostic Explanations (LIME) explain the prediction of any classifier by treating
it as a black box model and learning an interpretable model locally around the prediction. LIME finds
the region of an image that leads to the classification of that image to a particular class. Given this fact,
it is related to object detection algorithms that locate objects of interest in an image by predicting a
boundary around the object. Based on previous research, object detection algorithms are much more
difficult to attack (Xie et al. 2017). Therefore, attacking CNN-LIME will demonstrate the immense

capabilities of the proposed SAGE formulation in attacking a wide range of algorithms.
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4.2.2.1 Development of a CNN-LIME model based on the NEU surface detection datasets
In the modeling efforts, transfer learning with weights from the MobileNet is utilized to obtain a good
classification model. A 99.9% model accuracy is achieved by initializing the CNN architecture with
those weights and fine-tuning it on the NEU surface detection dataset. These accuracy results utilizing
transfer learning outperform recently published results from (He et al. 2019) on a ResNet50 trained
from scratch on the dataset (99.67% accuracy). Therefore, the results can be considered state-of-the-art
performance on the NEU dataset. Afterward, the LIME algorithm is utilized to explain the predictions
of the CNN model and identify the anomaly regions in the images. Let the CNN model be denoted by
f:R% - R, where f(y) is the probability that an image y belongs to a certain class. Furthermore, I, (z)
denotes the proximity measure or locality between an image z to y. Lastly, L(f, g, Il,) measures how
unfaithful g is in approximating f in the locality defined by II,. To ensure both interpretability and
local fidelity, the explanation produced by LIME is obtained by balancing L(f, g,I1,) and Q(g), which
is a measure of complexity (as opposed to interpretability) of the explanation g via the following
optimization problem.

§(y) = argmingL(f, g, 1) + Q(g) (12)
LIME has achieved state-of-the-art explanatory performance of CNN classification results on critical
applications such as tumor classification. Interested readers are referred to the results in (Ribeiro et al.
2016) for further details and links to the corresponding code repository.
4.2.2.2 SAGE attack on the CNN-LIME

The SAGE attack for the CNN-LIME is formalized as the following:

.. 2 L. P
n;Ln _ ||0¢t)rlgmal _ BCNN(}’?)”F—Aonfongmal _ ELIME(y?)”i + Al’lnygrlgmal _ y?HZ
t

.. .. 2 ..
+/11,2 ||Vec(y9rlgznal . y{l) ‘D - Vec(ygrlglnal _ }’f)T ||F +Azl|y?rlgmal _ yqu'l (13)

L L

where @ denotes the predicted class probabilities and § is the explanation produced by LIME for the
class predictions. “Maximizing damage” in this setting consists of two parts: firstly, the attacker aims
to misclassify the anomaly images, and secondly the attacker aims to change the explanatory region
away from the original one to make the attacker's malicious class prediction seems legitimate. To avoid

detection, we minimize the L,-norm perturbation between the original and the attacker’s image y3.
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Furthermore, the changes in the image should be smooth to preserve the spatial dependencies to avoid

detection. Therefore, the smoothness penalty 4, ”Vec(y?”gmal - y‘t‘l) D -vec(y?”gmal -

2
y‘t“)T ”F is applied, where D is the second-order smoother that applies to the vectorized difference

between the original and the attacker’s image. Additionally, the increase in computational cost with
each attacked pixel is penalized via a L{-norm sparsity constraint. Similar to the image attack on the
SSD algorithm, the attacker’s image can hardly be distinguished from the original one as shown in

Figure 8.

Difference
Original vs Attacked Image

Original Image Attacked Image

Figure 8: Original image (left), added perturbations (middle), and attackers’ image (right) of
exemplary surface defect

In this attack formulation, the goal is to misclassify a given true process anomaly class as any of the
remaining five class labels. From the results in Table 7, we can see that the correct class patches (Pa)
are identified with very high confidence (99.6%) before the attack. After the attack, the probability of
the correct class reduces to 0.8%, and the class inclusion (In) was chosen with the highest confidence
(69.5%). It can also be observed that the exemplary classification result changes significantly among
different faulty patterns in the NEU data sets as shown in Table 5.

Table 5: Exemplary Classification Results before and after the attack (highest-class probability bold)

Class Label RS PS Cr Pa In Sc
Before Attack 0.001 0.000 0.002 0.996 0.001 0.001
After Attack 0.041 0.107 0.021 0.0836 0.6954 0.052

Any other process anomaly class can be attacked similarly as summarized for the 1,800 images in the
dataset in Table 8. If the attacker not only wants to misclassify the anomalies but also assigns the picture

to a specific prescribed class, the first penalty term in Equation 12 can be adjusted accordingly.
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The second term of the 1* objective of the attack (i.e., maximize damage) was to change the explanatory
region derived via LIME as far as possible from the original one to avoid any suspicion and justify the
differently classified anomaly after the SAGE attack on the image. Figure 9 shows an example of the

severe change in the explanatory region after the attack.

Explanatory Region Explanatory Region

Original Image Attacked Image
e LEAY
s 7

, & pE
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Figure 9: Original explanatory region computed via LIME (left) and attacked explanatory region
(right) of exemplary surface defect
The small pixels around the identified regions after the attack coincided with the inclusion anomaly,
which has the highest-class probability after the attack. This will avoid detection by the defender while
leading to wrong conclusions about the underlying process anomaly.
The SAGE attack on CNN-LIME was applied to the entire dataset of 1,800 images. The evaluation

metrics for those attacks are as follows:
The change of classification is denoted as the Ratio of Attacked to Clean correct class Accuracy

. Aly.
(RACA) as follows: RACA = 1_ Zicartack L(Efgg';;)l , where L() denotes the accuracy loss of a single
N Yieoriginal L(Y; ¢

picture y; with true class ¥; and n is the number of image samples. Note, a smaller score (RACA)
indicates a better attack. The change in the LIME explanatory region is denoted by the attack effectivity
(AE) as defined earlier. The attacker’s perturbation to the input image is denoted by the average pixel
perturbation (APP) as defined earlier. The averaged results for the entire dataset are reported in Table
6.

Table 6: Average Attack Metrics of the SAGE Attack applied to CNN-LIME

RACA for CNN | AE for LIME APP
SAGE Attack 22.495% 69.534% 0.0716

The results show the significant effectiveness of the general SAGE attack on a large number of image

classification results computed via CNN-LIME. We note that the SSD algorithm is much more
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vulnerable to perturbations than CNN-LIME. The SSD attacks exploit very few weak spots in the image
and change the pixel value significantly to destroy the smoothness of the background. The CNN-LIME
attack has a slightly higher APP of 0.0716. To both change, the classification result and explanatory
region, a much larger number of pixels need to be attacked. However, the SAGE formulation can exploit
the weaknesses of both SSD and CNN-LIME very effectively. Because of this fact, the SAGE attack
provides an effective generalization for existing adversarial example generation schemes in the setting
of a black-box attack.

Even in the case of black-box attacks, where the detection algorithm is not known to the attacker, the
proposed SAGE framework can cause severe damage to a system while staying undetected by
commonly used machine-learning classifiers. This provides a strong case for the generality and
effectiveness of the proposed framework. SAGE can not only exploit weaknesses of particular
algorithms through its flexible formulation but also make replay non-essential for effective attacks by

mimicking normal operating conditions.

5. Conclusion

We have introduced SAGE as a holistic framework for attack generation in CPS, which incorporates
the three main objectives of an attacker (maximize damage, avoid detection, and minimize the attack
cost) and the physical constraints of the CPS. This research is intended as a stepping stone for
researchers to develop new research methodologies for cyber-physical attack detection.

The results of this paper make a case that by solving the proposed optimization problem, SAGE attacks
can have devastating effects on CPS while staying undetected by system monitoring algorithms. This
directly highlights the urgent need for further research in the detection methodology that studies the
stealthy and adversarial behavior of cyber-physical attacks. By proposing an efficient algorithm with
convergence guarantees for solving this nonconvex optimization problem, we provide a comprehensive
modeling platform for stealthy attacks on CPS. We compare our SAGE framework with several main-
streams attack detection techniques, which did not utilize stealthy attacks as their input data. We show
that the performance deteriorates significantly under worst-case, stealthy attacks.

The SAGE framework can also be used to evaluate newly developed detection algorithms: By plugging
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the detection function back into the second objective of the attacker (avoid detection), the robustness of
cyber-physical attack detection algorithms can be evaluated: If the detection performance degrades
below a certain threshold (e.g., 50% corresponding to a random guess), it is an indication that the
proposed algorithm is not robust towards stealthy attacks. As an intermediate sanity check, we suggest
black-box attacks for a given system as illustrated in the hot-steel rolling case study: In this setting, we
did not directly specify the detection algorithm during the SAGE attack generation. The attack data was
just regularized to mimic the normal operating conditions in terms of the EWMA statistic. Newly
developed detection schemes should have state-of-the-art performance on such types of benchmark
attacks.

The limitations of the proposed framework are settings, in which a large number of detection methods
are used to monitor the systems: In this setting, it becomes hard to find a globally optimal solution, that
maximizes damage, avoids detection, keeps the attack cost low and stays within the physical limits of
the system. However, in this setting, the false-alarm rate also might be inflated under normal operating
conditions. Furthermore, SAGE currently is not able to dynamically adjust to changes in the detection

method. Our future work will address those two limitations.
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