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Abstract 

Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially 

vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel 

anomaly detection algorithms in the presence of a knowledgeable adversary need to be 

developed. However, this research is still in its infancy due to limited attack data availability and 

test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability 

of existing detection algorithms and provide a basis for novel sensor-based cyber-attack 

detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment 

of existing systems and detection algorithms for practitioners and researchers alike. Stealthy 

attacks are characterized by malicious injections into the CPS through input, output, or both, 

which produce bounded changes in the detection residue. By using the SAGE framework, we 

generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, 

and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical 

principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we 

assume limited information asymmetries between attackers and defenders (e.g., insider 

knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in 

practice and allow understanding of the maximum conceivable damage. We propose an efficient 

solution procedure for the novel SAGE optimization problem. The SAGE framework is 

illustrated in three case studies. Those case studies serve as modeling guidelines for the 

development of novel attack detection algorithms and comprehensive cyber-physical risk 

assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while 

only changing the input control signals minimally. This avoids detection and keeps the cost of 

an attack low. This highlights the need for more advanced detection algorithms and novel 

research in cyber-physical security.  

Keywords: Cyber Security; Cyber-Physical Systems; Sensor-based Attack Detection; Stealthy 

Attack Generation; Anomaly Detection; Critical Infrastructures; Risk Management;  

1. Introduction  

Cyber-physical attacks are a category of cyber-attacks that also adversely affect the physical space. CPS 

are characterized by the interaction of physical assets and computational capabilities with information 

transfer. The rapid digitalization and utilization of CPS lead to the widespread use of sensors, networked 

devices, and data acquisition systems. Since CPS are deployed for high-value and safety-critical 

systems, the security of those systems is essential. Any successful attack leads to severe economic loss, 

equipment damage, or even loss of human life. We find that the limited attack data availability in cyber-
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physical systems hinders the research on cyber-physical attack detection methods. To develop effective 

cyber-physical attack detection methods, it is essential to understand the attacker’s capabilities and 

methods. Existing methods to generate an attack utilize random perturbations, which do not integrate 

the system topology and objectives of an attacker. We find that detection methods using existing types 

of attack data are not robust to stealthy attacks. This motivates us to develop a general-purpose 

framework for generating stealthy attacks. Stealthy attacks are characterized by malicious injections 

into the CPS through input, output, or both, which produce bounded changes in the detection residue.   

 While stealthy, adversarial attacks have received some attention in the computer vision community, 

we are the first to holistically integrate the requirements and topology of CPS for the design of stealthy 

attacks. Attacks in the CPS domain require stealthy attacks beyond image data and the consideration of 

a wide range of system inputs, models, and tasks (Li et al. 2020).  

Therefore, the scope of this paper is to propose a general-purpose optimization framework to find the 

best strategy to attack CPS and show the implications of such worst-case attacks on existing detection 

methods. Our framework provides a steppingstone to develop more effective attack detection methods 

in the future, that are robust to stealthy, worst-case attacks. Worst-case perturbations are defined in 

terms of the limited information asymmetry between attackers and defenders: While the attacker might 

not know the specific detection model and its associated parameters, all other data and system 

information is assumed to be known to the attacker (i.e., insider attacker). This allows us to understand 

the maximal conceivable damage (i.e., worst-case detection performance) to a CPS for a given system 

setup and detection strategy. 

By formulating a novel optimization problem, the “Stealthy Attack GEneration” (SAGE) framework 

considers the three main objectives of an attacker (maximize damage, avoid detection, and minimize 

attack cost) as well as the physical laws in CPS. By applying small, worst-case perturbations to the 

system input variables, the SAGE attack will lead to unexpected and malicious misbehavior of the 

system output, while staying undetected by the systems detection algorithms.  

To show the generality of our approach, we generate stealthy attacks and validate the SAGE framework 

on two data modalities: functional curves and image data. For functional curves, we utilize a hot rolling 

process simulated in MATLAB Simulink. In this setting, we evaluate the performance of seven off-the-
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shelf supervised machine learning models to detect SAGE attacks. In the image case studies, we use 

the SAGE methods to attack two state-of-the-art methods for image anomaly detection by using a large 

steel surface defect dataset.   

The results provide a case for the severe consequences of stealthy attacks in CPS. This research is 

intended to serve as a cornerstone for the development of more robust and effective detection algorithms 

for CPS attacks. Furthermore, by evaluating existing systems and detection models, SAGE can be 

utilized for the cyber-risk assessment of CPS for practitioners and researchers alike.  

The contributions of our SAGE framework are as follows: 

• We introduce a comprehensive and general-purpose framework for reliability generating 

stealthy, worst-case attacks on cyber-physical systems Our model formulation is intuitive 

and easy to understand, which allows the adaptation to a wide range of cyber-physical 

systems. We find that many detection methods are unable to detect stealthy SAGE attacks, 

even when the attacker is oblivious to the specific defense used. 

• Our results highlight the need for more comprehensive detection methods: our SAGE 

framework provides researchers with a common baseline of attack generation, a description 

of attack techniques, and common evaluation pitfalls, so that future detection methods can 

avoid falling vulnerable to these same attack procedures.  

The remaining parts of this paper are organized as follows: In Section 2, we provide a review of related 

literature to highlight the necessity of this research. Section 3 presents the mathematical descriptions of 

CPS, formulates the optimization problem, and proposes an algorithm for solving this problem. In 

Section 4, we illustrate the methodology with three case studies, which serve as guiding examples for 

the modeling of stealthy attacks. Finally, Section 5 concludes this paper.   

2. Literature Review  

Due to the rise of the industrial internet of things (IIoT) and smart manufacturing, CPS have been 

increasingly exploited by cyber-attacks (Ervural et al. 2018). CPS have grown from stand-alone systems 

with little security protection to highly interconnected systems that can be easily targeted by attackers 

over the internet. Attacks like the computer worm “Stuxnet” attacking Siemens industrial software in 

2010, or the phishing attack on a German steel mill leading to severe equipment damage in 2014, are 
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some of the most prominent examples of the vulnerability of CPS to cyber-physical attacks. Even 

though the field of information technology is developing new methodologies for cyber security, the 

unique characteristics of CPS require specific attention (Zhang et al. 2019).  

In general, an attack on a CPS is conducted via three steps. The first step of an attacker is to gain 

knowledge of the system by identifying the network topology, software, critical targets, and monitoring 

schemes against cyber-attacks (Han et al. 2014). Then, the attacker needs to bypass the first line of 

defense consisting of the firewall and an intrusion prevention system. After that, the attacker has full 

access to the CPS to achieve the goal by perturbing the control systems and making as much damage 

as possible while staying undetected. This paper focuses on modeling the last step of a CPS attack, 

which is how to perturb the system inputs to make maximum damage to the system response and stay 

undetected with minimum cost. 

2.1 Attacks on Cyber-physical Systems 

In the attack domain, attacks on cyber-physical systems can be classified into three main methods: 

disclosure, disruption, and deception attacks as visualized in Figure 1. 

Figure 1: Attack strategies in CPS 

Disclosure attacks occur when sensitive or confidential information is exposed to the attacker. 

Disruption attacks aim at disrupting the physical processes in a CPS. Deception attacks aim to deceive 

the defender of a system to accept a specific incorrect version of reality (e.g., sensor measurements), 

causing the defender to act in a way that benefits the attacker (e.g., not raising an alarm). This paper 

focuses on deception attacks, which can be further classified into five major subtypes of attacks: 

• Replay attack: The attacker injects a sequence of normal control input into the system using 

previously recorded sensor data, while actually conducting malicious actions (Murakami et al. 

2017). 
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• False data injection attack: The attacker compromises sensor readings in such a way that 

undetected errors are introduced into the calculation of state variables and values (Ahmed et al. 

2020).  

• Zero dynamics attack: The attacker alters the control output in a way that is consistent with the 

transmitted control input according to the dynamics of the system (Shim et al. 2022). 

• Covert attack: The attacker disguises the manipulation of control actions by injecting expected 

sensor measurements calculated based on the system knowledge (Li et al. 2020). 

• Stealthy/Adversarial attack: The attacker adds small perturbations to the normal data input. In this 

way, the detection algorithm in the system will not detect the added perturbation. However, the 

composed input (normal input + perturbation) will cause a malicious system output and the system 

output can be precisely determined by the selection of appropriate perturbation by the attacker (Li 

et al. 2020). 

Some of those attack subtypes are highly related and not mutually exclusive. However, stealthy attacks 

are the hardest ones to detect. They do not solely alter or disguise sensor readings. On the contrary, 

stealthy attacks add small perturbations to the system control variables. Since those perturbations are 

so small that there is no need to disguise them. They appear to be caused by the system’s natural 

variability. On the other hand, they will have a detrimental effect on the system outputs. However, the 

effect on the system output could lead detection algorithms to raise an alarm.  Therefore, we will assume 

that they are disgusted by false data injection or replay attacks or are not monitored. 

We note that there are some existing tools for attack generation in CPS (Jeon et al. 2019, Zhang et al. 

2021). Those methods carefully design attacks for certain subclasses of cyber-physical systems. With 

our stealthy attack generation framework, we extend this literature by providing a general-purpose 

modeling framework, which intuitively integrates all objectives and constraints of an attacker to a CPS 

and proposes a comprehensive optimization framework to solve this – in general – nonconvex problem 

to global optimality.  

Furthermore, there exist several testbeds and datasets (Conti et al. 2021) for security research in cyber-

physical systems in various fields such as electric grids (Hahn et al. 2013) or water treatment plants 

(Goh et al. 2016). However, those testbeds and datasets might not be well suited for a particular 
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application scenario such as a particular manufacturing system. Therefore, we see the SAGE framework 

as an extension to a much wider range of systems, which allows vulnerability assessment and robust 

attack detection development based only on the historic data and the system configuration of the CPS 

at hand.  

2.2 Machine Learning Methods for CPS Attack Detection 

In recent years, multiple detection algorithms have been developed by utilizing machine learning 

classifiers for the defense against cyber-attacks (Pasqualetti et al. 2013, Guan et al. 2017, Wu et al. 

2019, Yang et al. 2019, Li et al. 2020). Those algorithms have achieved state-of-the-art detection 

performance on existing types of attack generation schemes such as false data injection, replay, zero 

dynamics, and even covert attacks. However, those supervised learning techniques require strong 

assumptions and can be considered as the best-case scenario for the defender of the system: historical 

training data needs to be available with labels of in-control (e.g., no attack) and attack conditions. 

Additionally, the current attack needs to come from the same generative process as the historical attacks.  

2.3 Adversarial Machine Learning and Cyber-physical Security  

A large array of prior work has addressed the problem of generating adversarial examples for neural 

network image classifiers (Akhtar et al. 2018). However, the literature on adversarial data has mainly 

focused on the image domain, and limited efforts have been made to generalize the concepts to a wide 

range of data modalities and system models (Zizzo et al. 2019).  

Existing works on cyber-physical adversarial attacks are overly specific to one particular system setup 

or neglect if those attacks are realizable according to the physical laws of the system (Feng et al. 2017, 

Zizzo et al. 2020). Several methods assume that only a subset of the sensors can be compromised, which 

tremendously limits the action space for the attacker (Li et al. 2020).  

Contrary to adversarial images, the attack generation scheme in CPS needs to consider all three 

objectives of an attack (e.g., maximize damage, minimize detection, minimize attack cost) and also 

consider the system model and the physical laws of the system. 

2.4 State-Estimation-based Attacks and Defenses for CPS 

There is a large body of work in state-estimation techniques for cyber-physical intrusion detection in 

various safety-critical CPS, such as industrial control systems (Inayat et al. 2022) or power grids (Ashok 



7 

 

et al. 2016, Guo et al. 2018, Jin et al. 2018). Mo et al. (2012) introduced a framework to generate 

integrity attacks by formalizing the adversary’s strategy as a constrained control problem. However, 

this method does not consider the physical laws of the system, nor the attack cost. Furthermore, a wide 

variety of methods have been proposed to attack a CPS by perturbing the state estimation (Kosut et al. 

2011, Kim et al. 2014). In a response to those types of threats, robust state estimation techniques have 

become widespread in practice, nullifying this type of attack scheme (Ding et al. 2020).  

 

In a nutshell, it is essential to investigate the modeling of stealthy attacks for designing more resilient 

systems and detection algorithms. We will demonstrate that if an attacker knows the current 

configuration of a CPS, most existing detection algorithms have vulnerabilities and can be bypassed by 

attackers. Given this fact, the existing attack and detection algorithms are based on too strong 

assumptions, which may not mimic the behavior of a knowledgeable attacker. Therefore, an effective 

detection algorithm requires the defenders to first change perspective and “think like a hacker” to 

identify the weaknesses of a system. By proposing the SAGE framework, we aim to provide a holistic 

modeling framework that can serve as a stepping stone for the development of more robust attack 

detection algorithms.  

 

3. SAGE Methodology 

This section first describes the system model used to model the dynamics of CPS. Afterward, the SAGE 

framework is introduced, which considers the main objectives of an attacker consisting of maximizing 

the damage to the system while staying undetected and keeping the cost of an attack low. Finally, an 

efficient solution procedure for the nonconvex SAGE formulation is derived. 

3.1 System Modeling  

This section describes the model used to characterize the system dynamics of CPS. For a general CPS, 

the process outputs 𝒀𝑡 at time t can be in a format of multiple functional curves, images, structured 

point clouds, or categorical variables. We assume that the effect of the inputs on the outputs can have a 

hybrid or nonlinear relationship, which allows more realistic modeling of complex CPS. The system 



8 

 

model can be obtained with the best fit to the historical data from a variety of potential models like 

linear regression, gaussian process model, or neural networks, and is represented as  

𝒀𝑡 = 𝑔1(𝒖𝑡 , 𝜽𝟏) + 𝑔2(𝒙𝑡 , 𝜽𝟐) + 𝜺                             (1) 

where 𝑔𝑖(∙, 𝜽𝒊), 𝑖 = 1, 2 are some general functions (e.g., linear, nonlinear, varying with time) with 

parameter vector 𝜽𝒊, representing the effect of the control variables 𝒖𝑡  and the process variables 𝒙𝑡 (not 

controllable but observable) on the system output 𝒀𝑡, respectively. 𝜺 is the matrix containing the 

modeling error where every entry is a zero mean additive Gaussian noise with variance 𝝈2. As deep 

learning approaches are increasingly integrated into CPS, model (1) aims to unify a wide variety of 

models to model stealthy attacks in nonlinear settings. This general formulation also allows for the 

hybrid settings of linearized and nonlinear perception pipelines that are fused in a deterministic or 

stochastic manner.  

3.2 Stealthy Attack GEneration (SAGE) formulation  

This subsection will first discuss the threat model, which is a structured representation of all the 

information and assumptions that affect the security of a CPS. Afterward, the SAGE attack formulation 

and solution procedures are presented.   

3.2.1 Threat model  

To model the worst-case scenario for a defender, we assume that the attacker knows the system 

configuration in a gray box setting. In particular, it is assumed that the attacker has bypassed the first 

line of defense (i.e., the firewall) and has full access to the system.  Thus, the attacker can inject control 

actions at any point and time. It is assumed that an attacker has an intention to negatively affect the 

system output. Examples of such damage to the system include a reduction in the production rate, 

production quality, system efficiency, equipment degradation, or failure. We assume that the attacker 

has full knowledge of the system model. In the white box setting, the attacker directly knows the model 

𝑔𝑖 and its parameters 𝜽𝒊. In the gray box setting, the attacker estimates a surrogate model for 𝑔𝑖 based 

on historical data. For the detection algorithm used in the CPS system, we assume a black-box or gray-

box setting: (i) If the attacker does not know the systems detection algorithm (black box), they can 

generically minimize the difference in distribution between normal and attack data as illustrated in the 

steel rolling case study in Section 4.1. (ii) In the gray box setting, we assume that the attacker knows 
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the detection algorithm, but not the specific detection model parameters. In this setting, an attacker can 

only estimate the detection model parameters based on historical data. The attacker does not know the 

specific out-of-control or attack data utilized during model training by the defender. We assume that all 

the systems control and process variables are being monitored. The system output measurements are 

either (i) disguised through false data injection or covert attacks, (ii) not monitored, or (iii) monitored 

far downstream in a multi-stage (manufacturing) system, which already would have caused severe 

upstream damage until its detection. 

We note that this threat model restricts the attackers’ capabilities as little as possible. Therefore, it is 

extremely stealthy and hard to detect.  

3.2.2 Attackers optimization problem – “Think like a hacker” 

Based on the threat model, which summarizes the attackers' capabilities, we will “think like a hacker” 

(Esteves et al. 2017) and define three key attacker’s objectives when generating stealthy attacks on a 

CPS: 

i. Maximize Damage: The goal of an attacker is to cause damage to physical components such as 

machines, equipment, parts, assemblies, and products in CPS. Thus, the cyber attacker can 

cause severe damage to CPS by increasing the wear, breakage, scrap, or any other changes to 

the original design. 

ii. Avoid Detection: An attacker aims to manipulate CPS in such a way that the altered control 

actions stay undetected. Most equipment has some hard-wired safety modes that will shut down 

the machines once they reach a safety-relevant operating condition. Therefore, staying 

undetected will directly contribute to the first objective to maximize damage.  

iii. Minimize Attack Cost: Attacking all control actions might be costly or complicated because 

different sensing data are saved in different databases or governed by different operating 

systems or security protocols. Therefore, the attacker will want to keep the cost of an attack 

low by identifying very few control actions that have the biggest impact on the system outputs. 

iv. Physical limits: Any changes to the system need to adhere to the physical limits of the CPS. 
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Consequently, the attacker’s optimization problem is formulated as Equation 2, which exploits the CPS 

system model and the weaknesses of the detection algorithm while considering the physical constraints 

of the system.  

min
𝑢𝑡

𝐴
−‖𝑑 (𝑔1(𝒖𝑡

𝐴, 𝜽𝟏) + 𝑔2(𝑥𝑡
𝐼𝐶 , 𝜽𝟐)) − 𝑑 (𝑔1(𝑢𝑡

𝐼𝐶 , 𝜽𝟏) + 𝑔2(𝑥𝑡
𝐼𝐶 , 𝜽𝟐))‖𝑝                        (2a) 

𝑠. 𝑡. 

‖𝑓(𝒖𝑡
𝐼𝐶) − 𝑓(𝒖𝑡

𝐴)‖
𝑝

≤ 𝜀1    (2b) 

                                   𝐶(𝒖𝑡
𝐴) ≤ 𝜀2,                     (2c) 

 ‖𝑝ℎ(𝒖𝑡
𝐴)‖

𝑝
≤ 𝜀3,      (2d) 

where 𝑑(∙) denotes a damage function corresponding to some undesirable outputs of a system given the 

in-control and attack-control actions, respectively. Furthermore, 𝒖𝑡
𝐴 are the perturbed control inputs by 

the attacker, which should be close to the normal or in-control control inputs 𝒖𝑡
𝐼𝐶 . The process variables, 

which are not controllable, are denoted by 𝒙𝑡
𝐼𝐶. The distances are denoted in terms of the ℓ𝑝-norm to 

allow for flexible modeling requirements. 𝜀1 denotes the maximal allowable distance (i.e., decision 

boundary) between some general detection or monitoring function 𝑓(∙) applied to 𝒖𝑡
𝐴 and 𝒖𝑡

𝐼𝐶; 𝜀2 

denotes the maximal allowable cost of an attack strategy 𝒖𝑡
𝐴, and 𝜀3 denotes the maximal allowable 

range from the physical laws modeled by a general function 𝑝ℎ(∙) of the attack.  

The detailed explanation of each term in Equation 2 is as follows:  

• The objective function (2a) incorporates the first objective of the attacker, which is to maximize the 

damage to the system. This is equivalent to minimizing the negative difference between the damage 

function 𝑑(∙)  for the in-control and the attacker’s control actions respectively. If only the system 

output deviation is of concern, 𝑑(∙) reduces to the identity function. In cases where the state space 

has significant asymmetries, the 𝑑(∙) functions can be defined as a (binary) mapping to a dangerous 

state. Note, that the process variables will cancel in this formulation since those are not controllable 

and therefore should be kept at their in-control values during the attack. 

• The 1st constraint (2b) term corresponds to the second objective of the attacker, which is to avoid 

detection.  A detection algorithm is represented by a general function 𝑓(∙). By ensuring the ℓ𝑝-norm 

distance between the output of the detection function 𝑓(∙) applied to both attackers and in-control 

control actions falls below the detection threshold 𝜀1, the attacker can avoid detection. 

• The 2nd constraint (2c) term corresponds to the last objective of an attacker, which is to minimize 

the attack cost. This term considers how costly it is to attack a particular control action. The 

executed changes to the control variables should be within the attacker’s (computational) budget 
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𝜀2. Examples of increased attack costs could be cases in which different control subsystems are 

secured by different mechanisms (e.g., firewalls) with different levels of security or the 

computational effort to execute changes to control variables is high. 

• The last constraint (2d) term ensures that the physical limits of the CPS are met via a physics 

function 𝑝ℎ(∙). The function 𝑝ℎ(∙) maps the attacker’s actions to the physical constraints. Control 

actions can only change within physical limits 𝜀3 (e.g., the magnitude of change in consecutive time 

steps should be small). This term requires physical knowledge of the process, which can be obtained 

from domain experts or prior research findings.  

The system model in Equation (1) is known in advance or at least the predictions are accessible in a 

black box manner. The functions 𝑓(∙) and 𝑝ℎ(∙) are also known in advance. In Table 1, several common 

monitoring statistics and physical constraints are introduced as guiding examples for the choice of 𝑓(∙) 

and 𝑝ℎ(∙). If the monitoring scheme or physical constraints are not known, the functions can be chosen 

as the identity and variance function by default as introduced in the steel rolling case study in Section 

4.1. To further enhance this strategy, a distributional distance such as the Kullback-Leibler or 

Wasserstein could be selected as the monitoring function 𝑓(∙). Without knowing any particular details 

about the applied detection model, this approach is still able to fool common machine learning 

classifiers as illustrated in the case study.  

Table 1: Modeling examples for monitoring function 𝑓(∙) and physical constraint 𝑝ℎ(∙) 
Monitoring Scheme 𝑓(∙) Physical Constraint 𝑝ℎ(∙) 

X-bar & S Charts Identity + Variance Smooth changes over time 𝑢𝑖𝑗,𝑡
𝐴 − 𝑢𝑖𝑗,𝑡−1

𝐴  

Hotelling T2 Control Chart T2 statistic Sparse changes over time ‖𝑢𝑖𝑗,𝑡
𝐴 − 𝑢𝑖𝑗,𝑡−1

𝐴 ‖
1
 

Kernel Methods (e.g., SVM or 

PCA) 

Corresponding Kernel 

function 

Limited variation patterns ‖𝑢𝑖𝑗,𝑡
𝐴 − 𝑢𝑖𝑗,𝑡−1

𝐴 ‖
∗
 

‖∙‖∗ denotes the nuclear norm 

Gradient Boosting Weighted sum of weak 

learners 

Piecewise constant changes Fused lasso penalty (Tibshirani 

et al. 2005) 

Neural Network Architectures Inverse network function 

via back-propagation  

Variables within physically 

possible limits 
‖𝑢𝑖𝑗,𝑡

𝐴 ‖
2

2
 with appropriate 

Lagrange multiplier 𝜆2 

It should be pointed out that the SAGE attack is designed for patient adversaries, who have collected 

historic data about the process, or insider attackers. Therefore, the SAGE attacker is an expert of the 

CPS to be attacked. Thus, it is reasonable to assume that the system model 𝑔1(∙) and 𝑔2(∙), the 

monitoring function 𝑓(∙), and physical limits 𝑝ℎ(∙) are known in advance before conducting the 

optimization for stealthy attack control actions. This assumption is reasonable since CPS use industry-

wide standards in terms of control systems and even detection algorithms. This assumption does not 
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artificially limit the capabilities of an attacker. It rather leads to extremely stealthy attacks, which may 

be considered the worst-case scenario for the defender. However, if a defender constantly changes the 

monitoring algorithm or even the system setup, SAGE attacks may not be able to simultaneously fulfill 

their four objectives. Also, in cases when the detection model that monitors the system is not fully 

characterized, this attack framework might not lead to stealthy attacks. Another limitation is the possibly 

nonconvex formulation, which has an optimality guarantee only under certain conditions as discussed 

in the next section.  

Using the Karush-Kuhn-Tucker (KKT) conditions, we can reformulate Equation 2 to alleviate the 

burden of explicitly computing inequality constraints as follows:  

min
𝑢𝑡

𝐴
−‖𝑑 (𝑔1(𝒖𝑡

𝐴, 𝜽𝟏) + 𝑔2(𝑥𝑡
𝐼𝐶 , 𝜽𝟐)) − 𝑑 (𝑔1(𝑢𝑡

𝐼𝐶 , 𝜽𝟏) + 𝑔2(𝑥𝑡
𝐼𝐶 , 𝜽𝟐))‖𝑝 

+𝜆1‖𝑓(𝒖𝑡
𝐼𝐶) − 𝑓(𝒖𝑡

𝐴)‖
𝑝
+ 𝜆2𝐶(𝒖𝑡

𝐴) + 𝜆3‖𝑝(𝒖𝑡
𝐴)‖

𝑝
                                    (3) 

where 𝜆1, 𝜆2 and 𝜆3 denote the Lagrange multipliers that correspond to the constraints (2b), (2c) and 

(2d), respectively. 

The global minimum of the original constrained optimization problem (Equation 2) corresponds to a 

saddle point in the Lagrangian function (Equation 3), provided that the necessary regularity conditions 

of stationarity, primal feasibility, dual feasibility, and complementary slackness are satisfied. For a more 

detailed explanation of this widely used approach, interested readers are referred to (Ben-Tal et al. 

2001). We note that for nonconvex optimization problems, the Lagrange multipliers 𝜆1, 𝜆2 and 𝜆3 may 

not be unique. Therefore, we resort simultaneously solving for the optimal solution and the appropriate 

Lagrange multipliers by utilizing the Branch-and-Reduce framework introduced in Subsection 3.2.3. 

3.2.3 Solution Procedure 

The SAGE problem formulation is an inherently nonconvex and NP-hard problem. To make the SAGE 

framework applicable to a wide range of general nonconvex functions, the Branch-And-Reduce 

Optimization Navigator (BARON) algorithm is utilized to solve the nonconvex formulation to global 

optimum (Liu et al. 2019).   

The output dimension of the nonconvex constraint functions is denoted by 𝑚1, 𝑚2 and 𝑚3, respectively, 

and 𝑿 denotes a set of constraints for the search space. For example, 𝑿 could denote the 6𝜎 limits of 

the attacked control variables, because any attack outside of those limits can very easily be detected. 

The standard Lagrangian subproblem of Equation 2 is given in Equation 3. However, for the dual 
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approach to yield any computational advantage, the so-called Lagrangian subproblem must be much 

easier to solve than the primal problem.  

For simplicity of the problem presented in the remaining paper, we use the following notations to 

replace the related terms in Equation 2: 

𝒙 = 𝒖𝑡
𝐴 ∈ ℝ𝑛,   

𝑜1(𝒙) = −‖𝑑 (𝑔1(𝒖𝑡
𝐴, 𝜽𝟏) + 𝑔2(𝑥𝑡

𝐼𝐶 , 𝜽𝟐)) − 𝑑 (𝑔1(𝑢𝑡
𝐼𝐶 , 𝜽𝟏) + 𝑔2(𝑥𝑡

𝐼𝐶 , 𝜽𝟐))‖
𝑝
: ℝ𝑛 → ℝ,  

𝑜2(𝒙) = ‖𝑓(𝒖𝑡
𝐼𝐶) − 𝑓(𝒖𝑡

𝐴)‖
𝑝

≤ 𝜀1: ℝ
𝑛 → ℝ𝑚1 , 

𝑜3(𝒙) = 𝐶(𝒖𝑡
𝐴) ≤ 𝜀2: ℝ

𝑛 → ℝ𝑚2 , 

𝑜4(𝒙) = ‖𝑝ℎ(𝒖𝑡
𝐴)‖

𝑝
≤ 𝜀3: ℝ

𝑛 → ℝ𝑚3  

Then, Equation 2 can be defined as the Lagrangian subproblem: 

inf
𝒙∈𝑿

 𝑙′(𝒙, (𝜆0, 𝜆1, 𝜆2, 𝜆3)) = inf
𝑥∈𝑋

{−𝜆0𝑜1(𝒙) − 𝜆1𝑜2(𝒙) − 𝜆2𝑜3(𝒙) − 𝜆3𝑜4(𝒙)},          (4) 

where (𝜆0, 𝜆1, 𝜆2, 𝜆3) ≤ 0. The additional dual variable 𝜆0 homogenizes the problem and allows us to 

reformulate the SAGE attack into a unified BARON range-reduction problem. The constraints 

𝜀1, 𝜀2 and   𝜀3 enter the Lagrangian subproblem as 𝜆1𝜀1, 𝜆2𝜀2, and 𝜆3𝜀3, respectively. Therefore, they 

are constants that do not alter the optimal solution and only need to be considered in the Lagrangian 

master problem (Equation 3). Assume that 𝑏0 is an upper bound on the optimal objective function value 

of Equation 2 and consider the following range-reduction problem: 

ℎ∗ = inf
𝒙,𝑢0,𝑢1,𝑢2,𝑢3

{ℎ(𝑢𝑜, 𝑢1, 𝑢2, 𝑢3)|𝑜1(𝒙) ≤ 𝑢0 ≤ 𝑏0, 

𝑜2(𝒙) ≤ 𝑢1 ≤ 𝜀1, 𝑜3(𝒙) ≤ 𝑢2 ≤ 𝜀2, 𝑜4(𝒙) ≤ 𝑢3 ≤ 𝜀3, 

                                              𝒙 ∈ 𝑿},                                                  (5) 

where ℎ is assumed to be some semi-continuous functions.  Then, Equation 5 can be restated as  

 

ℎ∗ = inf
𝒙 ,𝑢0,𝑢1,𝑢2,𝑢3

ℎ(𝑢0, 𝑢1, 𝑢2, 𝑢3) 

𝑠. 𝑡. 

−𝜆0(𝑜1(𝒙) − 𝑢0) − 𝜆1(𝑜2(𝒙) − 𝑢1) − 𝜆2(𝑜3(𝒙) − 𝑢2) − 𝜆3(𝑜4(𝒙) − 𝑢3) ≤ 0 

(𝜆0, 𝜆1, 𝜆2, 𝜆3) ≤ 0 

                                     (𝑢0, 𝑢1, 𝑢2, 𝑢3) ≤ (𝑏0, 𝜀1, 𝜀2, 𝜀3) 

                                                     𝒙 ∈ 𝑿                                                        (6) 

However, the computational complexity of Equation 6 is the same as Equation 4. Therefore, we lower 

bound ℎ∗ with the optimal value of the following problem.  
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ℎ𝐿 = inf
𝒙 ,𝑢0,𝑢1,𝑢2,𝑢3

ℎ(𝑢0, 𝑢1, 𝑢2, 𝑢3) 

𝑠. 𝑡. 

𝜆0𝑢0 + 𝜆1𝑢1 + 𝜆2𝑢2 + 𝜆3𝑢3 

+ inf
𝑥∈𝑋 

{−𝜆0𝑜1(𝒙) − 𝜆1𝑜2(𝒙) − 𝜆2𝑜3(𝒙) − 𝜆3𝑜4(𝒙)} ≤ 0 

(𝜆0, 𝜆1, 𝜆2, 𝜆3) ≤ 0 

  (𝑢0, 𝑢1, 𝑢2, 𝑢3) ≤ (𝑏0, 𝜀1, 𝜀2, 𝜀3)                        (7)             

This domain reduction problem can be leveraged for efficiently solving the SAGE attack by restricting 

ℎ(𝑢0, 𝑢1, 𝑢2, 𝑢3) to 𝑎0𝑢0 + 𝑎1𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3, where (𝑎0, 𝑎1, 𝑎2, 𝑎3) ≥ 0 and (𝑎0, 𝑎1, 𝑎2, 𝑎3) ≠ 0. 

Using Fenchel-Rockafellar duality, the BARON algorithm derived in (Tawarmalani 2001) can be 

applied to iteratively obtain lower and upper bounds on the range-reduction problem of the SAGE attack 

formulation. 

Branch- and Reduce (BARON) algorithm to solve the SAGE attack 

While not converged: 

(0) Initialize: Set 𝐾 = 0, 𝑢0
0 = 𝑎0, 𝑢1

0 = 𝜀1, 𝑢2
0 = 𝜀2, 𝑢3

0 = 𝜀3   

(1) Solve the relaxed dual of Equation 5: 

     ℎ𝑈
𝐾 =  max

𝑢0,𝑢1,𝑢2,𝑢3

( 𝜆0 + 𝑎0)𝑏0 + (𝜆1 + 𝑎1)𝜀1 + (𝜆2 + 𝑎2)𝜀2 + (𝜆3 + 𝑎3)𝜀3 − 𝑧 

            𝑠. 𝑡.          𝑧 ≥ 𝜆0𝑢0
𝑘 + 𝜆1𝑢1

𝑘 + 𝜆2𝑢2
𝑘 + 𝜆2𝑢2

𝑘 , 𝑘 = 0, … , 𝐾 − 1 

                                  (𝜆0, 𝜆1, 𝜆2, 𝜆3) ≤ −(𝑎0, 𝑎1, 𝑎2, 𝑎3) 

       Let the solution be (𝜆0
𝐾 , 𝜆1

𝐾 , 𝜆2
𝐾 , 𝜆3

𝐾) 

(2) Solve the Lagrangian subproblem: 

inf
𝒙 ,𝑢0,𝑢1,𝑢2,𝑢3

𝑙′(𝒙, (𝜆0
𝐾 , 𝜆1

𝐾 , 𝜆2
𝐾 , 𝜆3

𝐾)) = −max
𝒙,𝑢0,𝑢1,𝑢2,𝑢3

𝜆0
𝐾𝑢0 + 𝜆1

𝐾𝑢1+𝜆2
𝐾𝑢2 + 𝜆3

𝐾𝑢3 

𝑠. 𝑡.       𝑜1(𝒙) ≤ 𝑢0 

𝑜2(𝒙) ≤ 𝑢1 

𝑜3(𝒙) ≤ 𝑢2 

𝑜4(𝒙) ≤ 𝑢3 

𝒙 ∈ 𝑿 

       Let the solution be (𝒙𝐾 , 𝑢0
𝐾 , 𝑢1

𝐾 , 𝑢2
𝐾 , 𝑢3

𝐾). 

(3) Augment and solve the relaxed primal problem: 

ℎ𝐿
𝐾 = min

 𝑢0,𝑢1,𝑢2,𝑢3

𝑎0𝑢0 + 𝑎1𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3 

𝑠. 𝑡.    𝜆0
𝑘𝑢0 + 𝜆1

𝑘𝑢1 + 𝜆2
𝑘𝑢2 + 𝜆3

𝑘𝑢3 

+ inf
𝒙∈𝑿 

𝑙′(𝒙, (𝜆0
𝑘 , 𝜆1

𝑘  , 𝜆2
𝑘 , 𝜆3

𝑘)) ≤ 0, 𝑘 = 1,… , 𝐾 

                                                 (𝑢0, 𝑢1, 𝑢2, 𝑢3) ≤ (𝑏0, 𝜀1, 𝜀2, 𝜀3)     

4) Termination check:  

      If ℎ𝑈
𝐾 − ℎ𝐿

𝐾 ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒                   

 

In step 2 of the algorithm, (𝜆0, 𝜆1, 𝜆2, 𝜆3) ≤ 0 implies that 𝑢0
𝐾 = 𝑓(𝒙𝐾), 𝑢1

𝐾 = 𝑔1(𝒙
𝐾), 𝑢2

𝐾 = 𝑔2(𝒙
𝐾), 

and 𝑢3
𝐾 = 𝑔3(𝒙

𝐾). Furthermore, the relaxations of the BARON framework enjoy quadratic 

convergence properties and are an efficient procedure for obtaining global optima to nonlinear programs 

(Tawarmalani et al. 2004). In particular, the theorem for optimality-based range reduction 

(Tawarmalani 2001) applies to the derived BARON algorithm for solving the SAGE attack: 



15 

 

Theorem 1 (Tawarmalani 2001). Suppose the Lagrangian subproblem in Equation 5 is solved for 

certain dual multipliers (𝜆0, 𝜆1, 𝜆2, 𝜆3) ≤ 0. Then, for each 𝑖 such that (𝜆0
𝑖 , 𝜆1

𝑖 , 𝜆2
𝑖 , 𝜆3

𝑖 ) ≠ 0, the cuts 

𝑔𝑝
𝑖 (𝒙) ≥ (𝑏0 − inf

𝒙
𝑙(𝒙, 𝜆0, 𝜆1, 𝜆2, 𝜆3)/𝜆𝑝

𝑖 , 𝑝 = 0,1,2,3) do not chop off any optimal solution of the 

initial Equation 4. 

This theorem implies that the solution will eventually converge to a global optimum due to the quadratic 

convergence of the BARON algorithm. For a detailed discussion, related proofs, and generalizations 

we refer interested readers to (Tawarmalani 2001).  

The BARON algorithm to solve the SAGE formulation is also available as commercial software 

(Sahinidis 1996). For readers interested in generating a SAGE attack with no in-depth optimization 

knowledge or no commercial nonlinear solver licenses, we recommend solving the SAGE formulation 

using efficient and widely used algorithms such as stochastic gradient descent (SGD). In the literature, 

several convergence guarantees are provided for SGD algorithms in the nonconvex setting (Nguyen et 

al. 2018). When using SGD on common software platforms, a few best practices should be considered. 

The attacks should be initialized with historic, in-control data. This will lead to much faster 

convergence. Furthermore, choosing upper and lower bounds within the physical limits of the data (e.g., 

image pixel values from 0 to 255, control variables within 6𝜎 limits) will reduce the probability of 

detection and drastically reduce the solution space of the problem. The choice of Lagrange multipliers 

of the SAGE formulation is crucial to the efficacy of the attack. Binary search can be adapted to find 

the optimal set of parameters for any arbitrary choice of algorithm. The binary search should consider 

the three main objectives of the attacker and tune the hyperparameters 𝜆𝑙 , 𝑙 = 1,2,3 until the Attack 

Effectivity (AE), Average Perturbation (AP), and Attack Cost (AC) are within prescribed limits. The 

attack effectivity can either be computed by the first SAGE term or by an attack-specific metric 

considering the attacked system model. Similarly, the average perturbation can be derived from terms 

(2b) and (2d) or the defender’s monitoring algorithm.  The attack cost is directly calculated from the 

third SAGE term.  

4. Case Studies  

In this section, we use three case studies to illustrate and validate the SAGE methodology proposed in 

Section 3. Those case studies are intended as modeling guidelines for the application to other CPS. We 



16 

 

will demonstrate how to use the proposed framework for two data modalities: functional curve and 

image data. All the case studies follow the same SAGE framework proposed in Equation 2. However, 

the formulations need to be adapted to the specific case. To summarize the procedure, we provide a 

pseudo-code with the respective inputs and outputs of each case study. The case studies are intended to 

serve as guiding examples for the generation of stealthy attacks in a wide range of systems.  

Pseudo-Code SAGE Attack procedure 

Inputs:  

• Historic data of normal (in-control) control actions: Section 4.1: 𝑢𝑡
𝐼𝐶; Section 4.2: 𝑦𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
, Section 4.3: 𝜃𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
, 𝜉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 

• System model (𝑔1 and 𝑔2  with parameters 𝜃1 and 𝜃2 in Eq. 2): Section 4.1: 𝐵0, 𝛽𝑗; Section 4.2: 𝜃𝛼
𝑆𝑆𝐷; Section 4.3: 𝜃𝐶𝑁𝑁, 𝜉𝐿𝐼𝑀𝐸 

• Detection function or statistic (𝑓 in Eq. 2): Section 4.1: Multivariate EWMA statistic, Section 4.2 and 4.3: Identity function 

• Cost function: 𝐶 in Eq. 2 and Section 4.1-4.3 

• Damage function (𝑑 in Eq. 2): Sections 4.1-4.3: Identity function  

• Physical constraint function (𝑝ℎ in Eq. 2): Section 4.1: Temporal consistency 𝑢𝑡
𝐴 − 𝑢𝑡−1

𝐴 ; Section 4.2: Temporal consistency 

𝑦𝑡−1
𝐴 − 𝑦𝑡

𝐴; Section 4.3: Spatial-temporal consistency  vec(𝑦𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝑦𝑖
𝐴)  ∙ 𝒟 ∙ vec(𝑦𝑖

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝑦𝑖

𝐴)
𝑇
 

• Reference value or historic data of system output (: Section 4.1: 𝑌𝑡
𝑟𝑒𝑓

; Section 4.2: 𝜃𝛼; Section 4.3: 𝑦𝑡
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 

• Threshold values: Detection threshold 𝜀1, Attack cost limit 𝜀2, Physical limit 𝜀3 

Outputs: Attackers control actions (𝑢𝑡
𝐴 in Eq. 2): Section 4.1: 𝑢𝑡

𝐴; Section 4.2: 𝑦𝑡
𝐴; Section 4.3: 𝑦𝑡

𝐴 

SAGE Attack procedure: 

1. Specify the objective function in the format of Eq. 2  

2. Solve for the attacker’s control action utilizing the Branch-and-Reduce framework introduced in Section 3.2.3 

3. Deploy the attacker’s control actions to the cyber-physical system   

  

 

4.1 Case Study with Functional Curve Data – Hot Steel Rolling Process 

To show the vulnerability of common CPS to stealthy attacks, a MATLAB Simulink testbed 

(MathWorks 2022) for one-stage plate rolling is used to illustrate the devasting effect of small but 

worst-case perturbations on functional curves in CPS. The testbed models a two-axis rolling mill. In a 

rolling process, steel rollers are used to press sheet metal to a specific thickness and add strength via 

strain hardening to improve surface finish. The four control inputs to this system are the roller gap and 

roller force in 𝑥-direction and 𝑦-direction, respectively. The testbed uses a Multiple Input Multiple 

Output (MIMO) LQG regulator to control the horizontal and vertical thickness of a steel plate in a hot 

steel rolling mill. For further details on the testbed setup, interested readers are referred to the 

corresponding Simulink documentation (MathWorks 2022). The only modification to the testbed is the 

addition of four “import” blocks to link the attacker’s control signals generated from the SAGE 

formulation to the simulated CPS as shown in Figure 2. The import blocks allow us to verify the 

accuracy of the system model. We will report the actual output signal obtained from the simulation after 

injecting the attackers' control actions. This is more accurate and realistic than simply plugging the 
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attacker’s control actions back into a data-driven system model, which is only an approximation of the 

true system dynamics.  

Figure 2: SAGE attack to a hot rolling process 

The monitoring of multivariate signals via multi-variate control charts is a standard practice in the 

industry and also in some recent research papers. Therefore, we use the first case study to illustrate the 

potential of SAGE to deceive a very popular detection model based on a multivariate exponentially 

weighted moving average (MEWMA) control chart.  

4.1.1 Attack on Multivariate-EWMA Chart 

A multivariate exponentially weighted moving average (MEWMA) control chart is commonly used to 

monitor CPS. We first calculate 𝑍𝑖 = Λ𝑋𝑖 + (1 − Λ)Zi−1, where 𝑍𝑡 is the 𝑖-th observation vector,  𝑍0 

is the vector of variable values from historic data, Λ is the 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … 𝜆𝑝), which is a diagonal matrix 

with 𝜆1, 𝜆2, … 𝜆𝑝 ∈ (0,1] on the main diagonal, and 𝑝 is the number of control variables. Then the test 

statistics of the MEWMA is given by 𝑇𝑖
2 = 𝑍𝑖

𝑇 ∑ 𝑍𝑖
−1
𝑍𝑖

. The alarm will be triggered whenever 𝑇𝑖
2 is 

above the 1-𝛼=95% quantile of its empirical distribution under normal conditions, and 𝛼 is the desired 

Type-I error rate. We incorporate this test statics directly into the framework by minimizing the 

monitoring static on the attacker’s control to avoid detection. 

min
𝒖𝑡

𝐴
−‖𝒀𝑡

𝑟𝑒𝑓
− 𝑩0 − ∑ 𝛽𝑗𝑢𝑗,𝑡

𝐴4
𝑗=1 ‖

2

2
+ 𝜆1‖𝑇𝑡

2(𝒖𝑡
𝐴)‖

2

2
 +𝜆2‖𝒖𝑡

𝐴 − 𝒖𝑡−1
𝐴 ‖ + 𝜆3𝐶(𝒖𝑡

𝐴),           (9) 

where 𝒀𝑡
𝑟𝑒𝑓

= [𝑌𝑥 , 𝑌𝑦] denotes the engineering specification of quality response and is a constant value 

in this case. The four control variables are denoted by 𝒖 = [xforce, xgap, yforce, ygap].   In this setting, 

𝑑(𝑔1(𝒖𝑡) + 𝑔2(𝒙𝑡)) = 𝑑(𝑔1(𝒖𝑡) + 𝑩0) = 𝒀𝑡
𝑟𝑒𝑓

 and 𝑑(∙) reduces to the identity function (i.e., 𝑑(∙) =

𝐼𝑑(∙)). Since the system response, in this case, is measured in terms of x- and y-axis thickness variation, 

the goal would be to have no variation so 𝒀𝑡
𝑟𝑒𝑓

= 0⃗ . In this case, 𝒖𝑡
𝐼𝐶  is chosen as historic data of the 
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same length as the attack to mimic a replay attack. Furthermore, the cost function is chosen as 

𝐶(𝑢𝑗,𝑡
𝐴 )={

0,  𝑓𝑜𝑟 𝑗 = 1,3 
2, 𝑓𝑜𝑟 𝑗 = 2,4

. This represents the fact that the roll gap (𝑗 = 1,3) is easy to attack while the 

roller force (𝑗 = 2,4) requires more effort because they are protected through different security 

protocols. The monitoring statistic 𝑓(∙) is set to the MEWMA monitoring statistic 𝑇𝑡
2. 

The optimization problem was solved using the proposed BARON algorithm for the SAGE formulation 

in Section 3.3.2. For better visualization, only 150-time steps of the attack are visualized in the 

following figures. The attack avoids detection by the MEWMA chart as visualized in Figure 3.  

 

Figure 3: Attackers’ control actions (red) and in-control data (black) are both within the control limits 

of the MEWMA chart 

On the other hand, the attack leads to maximal damage to the system response, which is far away 

from the normal system response (Figure 4). 

 

Figure 4: System response after an attack (red) and in-control system response (black) 

4.1.2 SAGE attack performance evaluation and comparison with other methods 

To show that small perturbations of the control variables can lead to a large change in the system 

response, the Attack Effectivity (AE) and Average Perturbation (AP) are computed as follows.  



19 

 

• Attack effectivity 𝐴𝐸 =
∑ (∑ ‖𝑢𝑗,𝑡

𝐼𝐶−𝑢𝑗,𝑡
𝐴 ‖𝑛

𝑡=1 𝑛⁄ )4
𝑗=1

(∑ 𝜎4
𝑗=1 𝑢𝑗

𝐼𝐶)

 

• Average Perturbation 𝐴𝑃 =
∑ ‖𝒀𝑡

𝑟𝑒𝑓
−𝒀𝑡

𝐴‖/𝑛𝑛
𝑡=1

𝝈𝑌
, 

where 𝑛 denotes the length of the attack, 𝜎𝑢𝑗
𝐼𝐶  is the in-control standard deviation of control variable 𝑗, 

 𝝈𝑌 is the in-control standard deviation of the system responses, and 𝒀𝑡
𝐴 is the resulting system response 

to the attack. Those metrics essentially measure the absolute distance between in-control and attack in 

terms of the number of in-control standard deviations. The results are summarized in Table 2 showing 

the small perturbation levels of the attacks while achieving very effective attacks.  

Table 2: Attack Effectivity and Average Perturbation of SAGE attacks 

 AE AP 

MEWMA Attack 11.024 0.123 

 

To further evaluate the effectiveness of the proposed SAGE attack, seven machine learning techniques 

commonly used in literature for cyber-attack detection algorithms in CPS are evaluated for their 

effectiveness to detect stealthy attacks (Table 5). The hyperparameters of the respective methods were 

tuned via grid search to achieve the best possible detection results. In particular, a Support Vector 

Machine (SVM), k Nearest Neighbor (kNN), Random Forest (RF), Bagging, Gradient Boosting 

Machine (GBM), Decision Tree (DT), and a Deep Neural Network (DNN) were used to classify the 

presence of an attack. The labels for those supervised machine learning methods are obtained as follows: 

The normal operating conditions are labeled as no attack, and the generated attack signals obtained via 

our SAGE framework are labeled as an attack. This shows the potential of our method: using our 

stealthy attack framework, sophisticated attacks can be generated, which can be utilized for supervised 

learning approaches. 

We note that the proposed SAGE attacks were not aware of those detection algorithms when we 

formalized the SAGE optimization problem. In particular, those detection functions were not 

considered as a detection function 𝑓(∙) during the optimization of the attack. We simply enforce the 

MEWMA, which will incapacitate most of the detection methods. Note that not even distributional 

distances such as Kullback-Leibler or Wasserstein distances had to be utilized to fool those detection 

methods.  
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The results in Table 3 show that if the SAGE attack considers the MEWMA statistic, which ensures 

that the attack and in-control data are similar in terms of their first two distribution moments (mean and 

(co)variance), none of those six methods can achieve satisfactory detection performance. While the 

DNN performs the best, its detection accuracy of 54.79% is not sufficient for reliable and fast attack 

detection. Note that a random coin flip (i.e., attack, no attack) at each time point would result in a 50% 

accuracy.  

Table 3: Detection results of different machine learning methods (bold marks best-performing)  

 

 

 

 

 

This example shows how flexible the SAGE formulation can be adjusted to make the existing detection 

algorithms not effective even if the detection algorithm such as the machine learning classifiers are not 

known a priori.  

4.2 Case Study with Image Data 

In this subsection, we will provide a generalization of the SAGE attack to learning-enabled CPS 

utilizing two state-of-the-art anomaly detection algorithms. Another goal of this case study is to 

illustrate the potential of the SAGE framework on other data formats, in particular image data. We 

provide a case for the severe consequences of small but intentional perturbations to control variables 

on image responses in CPS. Therefore, we will attack both the smooth spare decomposition (SSD) 

method (Yan et al. 2017), which is a benchmark image denoising and anomaly detection algorithm in 

the field of manufacturing, and a Convolutional Neural Network in combination with Local 

Interpretable Model-Agnostic Explanations (Ribeiro et al. 2016), which is a state-of-the-art method in 

the field of classification and object detection.   

The dataset used for both attacks is the Northeastern University (NEU) surface defect database (Song 

et al. 2013), which contains six typical surface defects of hot-rolled steel strips. The dataset includes 

1,800 grayscale images, with 300 samples of each of the six different surface defects (i.e., rolled-in 

Method MEWMA Attack 

Accuracy Precision Recall F1-Score 

SVM 48.28% 50.50% 47.64% 49.03% 

kNN 47.89% 49.75% 46.89% 48.28% 

RF 48.58% 49.53% 48.61% 49.07% 

Bagging 48.49% 51.04% 46.89% 48.88% 

GBM 51.84% 52.11% 51.83% 51.97% 

DT 52.08% 52.36% 51.81% 52.08% 

DNN 54.79% 54.05% 55.56% 54.79% 
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scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In) and scratches (Sc)). 

4.2.1 SAGE Attack on Smooth-Sparse-Decomposition 

Firstly, we attack the SSD method (Yan et al. 2017), which decomposes an image into three 

components: A smooth image background, sparse anomalous regions, and random noise, as illustrated 

in Figure 5.  

Figure 5: Decomposition of the image into the background, anomaly, and noise (Yan et al. 2017) 

The goal of the attack is to add small perturbations to the image, which are indistinguishable from the 

original image for the human eye. To make this perceived image loss more objective, we measure the 

distance between normal and attacked images in terms of a 𝐿2-norm perturbation, which is a standard 

procedure in computer vision. 

However, those perturbed attack images should lead to a bad system response. In this case, the system 

response is the anomaly region. We want to change the anomaly region as much as possible. When 

decomposing the image into background, anomaly, and noise via SSD, we want to detect the anomalies 

in different regions than where they actually are. This means, when the operators try to fix the problem, 

they will draw a wrong conclusion regarding the root cause of the anomalies and make the damage even 

worse by taking the wrong actions. In this circumstance, the SAGE attack formulation reduces to the 

following optimization problem. 

    min
𝒚𝑡
𝐴

− ‖𝜽𝛼 − 𝜽𝛼
𝑆𝑆𝐷(𝒚𝑡

𝐴)‖
𝐹

2
+ 𝜆1‖𝒚𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝒚𝑡

𝐴‖
2
 +𝜆2‖𝒚𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝒚𝑡

𝐴‖
1
+𝜆3‖𝒚𝑡−1

𝐴 − 𝒚𝑡
𝐴‖

2

2
    (11) 

where 𝒚𝑡
𝐴 denotes the image that the attacker will inject into the system at time 𝑡, 𝜽𝛼 denotes the fixed 

and known anomaly region of the normal image, 𝜽𝛼
𝑆𝑆𝐷 is a function of 𝒚𝑡

𝐴 and denotes the extracted 

anomaly region from the attacker’s image via the SSD method. The goal of the attacker is to maximize 

the damage by letting 𝜽𝛼
𝑆𝑆𝐷 be as far away as possible from the ground truth anomaly 𝜽𝛼. Furthermore, 

to avoid being detected, the attackers’ image 𝒚𝑡
𝐴 should be close to the original image before the attack 

𝒚𝑡
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 in terms of a 𝐿2-norm perturbation. The computational cost increases with the number of 

pixels attacked in an image. Therefore, the cost function is chosen as the 𝑙1-norm to induce sparsity and 
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attack as few pixels as possible. Since the monitoring of a process usually consists of streaming data 

from each time step t, the added perturbations in consecutive time steps should not be too different since 

this might be physically impossible. Furthermore, extreme changes over time might alert appropriate 

detection algorithms and lead to detection. This behavior is enforced by the 3rd and the last terms in the 

formulation (Equation 11).  

The SAGE attack on SSD (Equation 11) was solved using the BARON framework introduced in Section 

3.2.3. As shown in Figure 6, the image before and after the attack is almost indistinguishable to the 

human eye. 

Figure 6: Images before and after the attack of exemplary steel surface defect 

On the other hand, the outputs of the SSD algorithm before and after the attack are significantly different 

(Figure 7). After the attack, the false alarm rate has increased significantly since many regions are now 

identified incorrectly as surface defects. This effect cannot be achieved by simply adding random noise 

to the images since the SSD method inherently decomposes the pictures in a smooth, sparse, and noise 

component.        

Figure 7:  Exemplary recovered anomaly using SSD from the original and the attacked images 

To show the generality of the SAGE formulation in attacking multiple classes of anomalies, the entire 

data set of 1,800 images is selected and the following metrics are defined corresponding to the 

objectives of the attacker. 

• Attack effectivity: 𝐴𝐸 =
∑𝟏>0(|𝜽𝛼

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
−𝜽𝛼

𝐴|)

𝟏>0(𝜽𝛼
𝐴)
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• Average Pixel Perturbation: 𝐴𝑃𝑃 =
∑ ∑ |𝑌𝑘𝑙

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
−𝑌𝑘𝑙

𝐴|𝑚
𝑙=1

𝑛
𝑘=1

𝑛∙𝑚∙255
,  

 

where n and m denote the height and width of the image, respectively. In this case study, the images 

have the size 𝑛 = 𝑚 = 200. The larger the attack effectivity (AE), the more damage the attacker can 

do to the anomaly region; and the smaller the average pixel perturbation (APP), the closer the attacked 

image will be to the original image. Note that the APP is scaled by 255 to account for the range of the 

pixel intensity values from 0 to 255. The averaged results of those metrics for the 1,800 images are 

shown in Table 4. 

Table 4: Attack effectivity and Average Pixel Perturbation of SAGE attack applied to SSD 

 AEE APP 

SAGE Attack 40.534% 0.0482 

 

As we can see from the results of the surface defects, after applying small but intentional perturbations 

via the SAGE framework, the SSD algorithm can be fooled by falsely adding and/or deleting anomaly 

regions, while generating an attack image that is virtually indistinguishable for the human eye.  This 

case study shows the generality of the SAGE framework when applied to image data even for 

sophisticated anomaly detection algorithms like SSD, which utilizes advanced optimization techniques. 

Therefore, our proposed framework can easily be adapted for other image anomaly detection methods 

as long as the parameters of the detection algorithms are explicitly known or at least predictions from 

the detection algorithm can be accessed in a black box manner. 

4.2.2 SAGE Attack on CNN-LIME 

This case study will use the SAGE strategy to attack a CNN-LIME (Ribeiro et al. 2016). Local 

Interpretable Model-Agnostic Explanations (LIME) explain the prediction of any classifier by treating 

it as a black box model and learning an interpretable model locally around the prediction.  LIME finds 

the region of an image that leads to the classification of that image to a particular class. Given this fact, 

it is related to object detection algorithms that locate objects of interest in an image by predicting a 

boundary around the object. Based on previous research, object detection algorithms are much more 

difficult to attack (Xie et al. 2017). Therefore, attacking CNN-LIME will demonstrate the immense 

capabilities of the proposed SAGE formulation in attacking a wide range of algorithms.    



24 

 

 

4.2.2.1 Development of a CNN-LIME model based on the NEU surface detection datasets 

In the modeling efforts, transfer learning with weights from the MobileNet is utilized to obtain a good 

classification model. A 99.9% model accuracy is achieved by initializing the CNN architecture with 

those weights and fine-tuning it on the NEU surface detection dataset. These accuracy results utilizing 

transfer learning outperform recently published results from (He et al. 2019) on a ResNet50 trained 

from scratch on the dataset (99.67% accuracy). Therefore, the results can be considered state-of-the-art 

performance on the NEU dataset.  Afterward, the LIME algorithm is utilized to explain the predictions 

of the CNN model and identify the anomaly regions in the images. Let the CNN model be denoted by 

𝑓: ℝ𝑑 → ℝ, where 𝑓(𝑦) is the probability that an image 𝑦 belongs to a certain class. Furthermore, Π𝑦(𝑧) 

denotes the proximity measure or locality between an image 𝑧 to 𝑦. Lastly, ℒ(𝑓, 𝑔, Π𝑦) measures how 

unfaithful 𝑔 is in approximating 𝑓 in the locality defined by Π𝑦. To ensure both interpretability and 

local fidelity, the explanation produced by LIME is obtained by balancing ℒ(𝑓, 𝑔, Π𝑦) and Ω(𝑔), which 

is a measure of complexity (as opposed to interpretability) of the explanation 𝑔 via the following 

optimization problem. 

           𝝃(𝒚) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔ℒ(𝑓, 𝑔, Π𝑦) + Ω(𝑔)    (12) 

LIME has achieved state-of-the-art explanatory performance of CNN classification results on critical 

applications such as tumor classification. Interested readers are referred to the results in (Ribeiro et al. 

2016) for further details and links to the corresponding code repository.  

4.2.2.2 SAGE attack on the CNN-LIME 

The SAGE attack for the CNN-LIME is formalized as the following: 

min
𝒚𝑡
𝐴

− ‖𝜽𝑡
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝜽𝐶𝑁𝑁(𝒚𝑡
𝐴)‖

𝐹

2
−𝜆0‖𝝃

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝝃𝐿𝐼𝑀𝐸(𝒚𝑡
𝐴)‖

𝐹

2
+ 𝜆1,1‖𝒚𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝒚𝑡

𝐴‖
2
 

+𝜆1,2 ‖vec(𝒚𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝒚𝑖
𝐴)  ∙ 𝒟 ∙ vec(𝒚𝑖

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝒚𝑖

𝐴)
𝑇
‖

𝐹

2

+𝜆2‖𝒚𝑡
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝒚𝑡
𝐴‖

1
          (13) 

where 𝜽 denotes the predicted class probabilities and 𝝃 is the explanation produced by LIME for the 

class predictions. “Maximizing damage” in this setting consists of two parts: firstly, the attacker aims 

to misclassify the anomaly images, and secondly the attacker aims to change the explanatory region 

away from the original one to make the attacker's malicious class prediction seems legitimate. To avoid 

detection, we minimize the 𝐿2-norm perturbation between the original and the attacker’s image  𝒚𝑡
𝐴. 
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Furthermore, the changes in the image should be smooth to preserve the spatial dependencies to avoid 

detection. Therefore, the smoothness penalty 𝜆1,2 ‖vec(𝒚𝑡
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝒚𝑡
𝐴)  ∙ 𝓓 ∙ vec(𝒚𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
−

𝒚𝑡
𝐴)

𝑇
‖

𝐹

2
 is applied, where 𝓓 is the second-order smoother that applies to the vectorized difference 

between the original and the attacker’s image. Additionally, the increase in computational cost with 

each attacked pixel is penalized via a 𝐿1-norm sparsity constraint. Similar to the image attack on the 

SSD algorithm, the attacker’s image can hardly be distinguished from the original one as shown in 

Figure 8. 

Figure 8: Original image (left), added perturbations (middle), and attackers’ image (right) of 

exemplary surface defect 

In this attack formulation, the goal is to misclassify a given true process anomaly class as any of the 

remaining five class labels. From the results in Table 7, we can see that the correct class patches (Pa) 

are identified with very high confidence (99.6%) before the attack. After the attack, the probability of 

the correct class reduces to 0.8%, and the class inclusion (In) was chosen with the highest confidence 

(69.5%).  It can also be observed that the exemplary classification result changes significantly among 

different faulty patterns in the NEU data sets as shown in Table 5. 

Table 5: Exemplary Classification Results before and after the attack (highest-class probability bold) 

Class Label RS PS Cr Pa In Sc 

Before Attack 0.001 0.000 0.002 0.996 0.001 0.001 

After Attack 0.041 0.107 0.021 0.0836 0.6954 0.052 

Any other process anomaly class can be attacked similarly as summarized for the 1,800 images in the 

dataset in Table 8. If the attacker not only wants to misclassify the anomalies but also assigns the picture 

to a specific prescribed class, the first penalty term in Equation 12 can be adjusted accordingly.  
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The second term of the 1st objective of the attack (i.e., maximize damage) was to change the explanatory 

region derived via LIME as far as possible from the original one to avoid any suspicion and justify the 

differently classified anomaly after the SAGE attack on the image. Figure 9 shows an example of the 

severe change in the explanatory region after the attack.   

Figure 9: Original explanatory region computed via LIME (left) and attacked explanatory region 

(right) of exemplary surface defect 

The small pixels around the identified regions after the attack coincided with the inclusion anomaly, 

which has the highest-class probability after the attack. This will avoid detection by the defender while 

leading to wrong conclusions about the underlying process anomaly.  

The SAGE attack on CNN-LIME was applied to the entire dataset of 1,800 images. The evaluation 

metrics for those attacks are as follows: 

The change of classification is denoted as the Ratio of Attacked to Clean correct class Accuracy 

(RACA) as follows: 𝑅𝐴𝐶𝐴 =
1

𝑛

∑ 𝐿(𝒚𝑖
𝐴|𝒀𝑖)𝑖∈𝐴𝑡𝑡𝑎𝑐𝑘

∑ 𝐿(𝒚𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑖∈𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 |𝒀𝑖)
 , where 𝐿() denotes the accuracy loss of a single 

picture 𝒚𝑖 with true class 𝒀𝑖 and n is the number of image samples. Note, a smaller score (RACA) 

indicates a better attack. The change in the LIME explanatory region is denoted by the attack effectivity 

(AE) as defined earlier. The attacker’s perturbation to the input image is denoted by the average pixel 

perturbation (APP) as defined earlier. The averaged results for the entire dataset are reported in Table 

6. 

Table 6: Average Attack Metrics of the SAGE Attack applied to CNN-LIME 

 RACA for CNN AE for LIME APP 

SAGE Attack 22.495% 69.534% 0.0716 

 

The results show the significant effectiveness of the general SAGE attack on a large number of image 

classification results computed via CNN-LIME. We note that the SSD algorithm is much more 
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vulnerable to perturbations than CNN-LIME. The SSD attacks exploit very few weak spots in the image 

and change the pixel value significantly to destroy the smoothness of the background. The CNN-LIME 

attack has a slightly higher APP of 0.0716. To both change, the classification result and explanatory 

region, a much larger number of pixels need to be attacked. However, the SAGE formulation can exploit 

the weaknesses of both SSD and CNN-LIME very effectively. Because of this fact, the SAGE attack 

provides an effective generalization for existing adversarial example generation schemes in the setting 

of a black-box attack. 

Even in the case of black-box attacks, where the detection algorithm is not known to the attacker, the 

proposed SAGE framework can cause severe damage to a system while staying undetected by 

commonly used machine-learning classifiers. This provides a strong case for the generality and 

effectiveness of the proposed framework. SAGE can not only exploit weaknesses of particular 

algorithms through its flexible formulation but also make replay non-essential for effective attacks by 

mimicking normal operating conditions. 

 

5. Conclusion 

We have introduced SAGE as a holistic framework for attack generation in CPS, which incorporates 

the three main objectives of an attacker (maximize damage, avoid detection, and minimize the attack 

cost) and the physical constraints of the CPS. This research is intended as a stepping stone for 

researchers to develop new research methodologies for cyber-physical attack detection.  

The results of this paper make a case that by solving the proposed optimization problem, SAGE attacks 

can have devastating effects on CPS while staying undetected by system monitoring algorithms. This 

directly highlights the urgent need for further research in the detection methodology that studies the 

stealthy and adversarial behavior of cyber-physical attacks. By proposing an efficient algorithm with 

convergence guarantees for solving this nonconvex optimization problem, we provide a comprehensive 

modeling platform for stealthy attacks on CPS. We compare our SAGE framework with several main-

streams attack detection techniques, which did not utilize stealthy attacks as their input data. We show 

that the performance deteriorates significantly under worst-case, stealthy attacks.  

The SAGE framework can also be used to evaluate newly developed detection algorithms: By plugging 
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the detection function back into the second objective of the attacker (avoid detection), the robustness of 

cyber-physical attack detection algorithms can be evaluated: If the detection performance degrades 

below a certain threshold (e.g., 50% corresponding to a random guess), it is an indication that the 

proposed algorithm is not robust towards stealthy attacks. As an intermediate sanity check, we suggest 

black-box attacks for a given system as illustrated in the hot-steel rolling case study: In this setting, we 

did not directly specify the detection algorithm during the SAGE attack generation. The attack data was 

just regularized to mimic the normal operating conditions in terms of the EWMA statistic. Newly 

developed detection schemes should have state-of-the-art performance on such types of benchmark 

attacks. 

The limitations of the proposed framework are settings, in which a large number of detection methods 

are used to monitor the systems: In this setting, it becomes hard to find a globally optimal solution, that 

maximizes damage, avoids detection, keeps the attack cost low and stays within the physical limits of 

the system. However, in this setting, the false-alarm rate also might be inflated under normal operating 

conditions. Furthermore, SAGE currently is not able to dynamically adjust to changes in the detection 

method. Our future work will address those two limitations.  
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