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Abstract—The multi-armed bandit (MAB) problem is one of
the most well-known active learning frameworks. The aim is to
select the best among a set of actions by sequentially observing
rewards that come from an unknown distribution. Recently, a
number of distributed bandit applications have become popular
over wireless networks, where agents geographically separated
from a learner collect and communicate the observed rewards. In
this paper we propose a compression scheme, that compresses the
rewards collected by the distributed agents. By providing nearly
matching upper and lower bounds, we tightly characterize the
number of bits needed per reward for the learner to accurately
learn without suffering additional regret. In particular, we estab-
lish a generic reward quantization algorithm, QuBan, that can
be applied on top of any (no-regret) MAB algorithm to form a
new communication-efficient counterpart. QuBan requires only
a few (converging to as low as 3 bits as the number of itera-
tions increases) bits to be sent per reward while preserving the
same regret bound as uncompressed rewards. Our lower bound is
established via constructing hard instances from a subGaussian
distribution. Our theory is further corroborated by numerical
experiments.

Index Terms—Distributed multi-armed bandits, contextual
bandits, compression, communication constraints.

I. INTRODUCTION

MULTI-ARMED bandit (MAB) is an active learning
framework that finds application in diverse domains,

such as recommendation systems, clinical trials, and adaptive
routing [2]. MAB systems in areas such as mobile health-
care, social decision-making and spectrum allocation have also
already been implemented in a distributed manner, using lim-
ited bandwidth wireless links and simple sensors with low
computational power [3], [4], [5], [6], [7], [8]. Motivated from
such communication constrained environments, in this paper
we explore compression schemes tailored to distributed MAB
applications.

In the classical MAB problem formulation, a learner inter-
acts with an environment by pulling an arm from a set of arms,
each of which, if played, gives a scalar reward, sampled from
an unknown but fixed distribution. The goal of the learner is to
find the arm with the highest mean reward using the minimum
number of pulls. The performance of a learner is measured in
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Fig. 1. A central learner collects rewards from a set of agents. The agents
can join and leave at any time and hence can be different and unaware of the
historical rewards, (i.e., they are memoryless).

terms of regret, that captures the expected difference between
the observed rewards and rewards drawn from the best arm.
Work on MAB algorithms and their applications span sev-
eral decades, cultivating a rich literature that considers a
variety of models and algorithmic approaches [9]. MAB algo-
rithms include explore-then-commit [10], [11], ε-greedy [12],
Thomson sampling [13], and the upper confidence bound
(UCB) [12], [14], to name a few. Under some assumptions
on the reward distribution, the explore-then-commit and ε-
greedy algorithms achieve a regret bound ∝ O(

√
n), where

n is number of steps the learner plays, for the worst-case
but known minimum reward gap,1 while Thomson sampling
and UCB achieve a regret bound ∝ O(

√
n log(n)) without

knowledge of the minimum means gap.2 However, all these
works assume that the rewards can be communicated to the
learner at full precision which can be costly in communication-
constrained setups. In this paper we ask: is it possible to
perform efficient and effective bandit learning with only a few
bits communicated per reward?

In particular, in this paper we consider reward compression
for the setup illustrated in Fig. 1, where a central learner can
directly communicate with a set of agents. We assume that
agents can observe and communicate rewards - but do not
keep memory of past rewards. There are several use cases
where this setup can apply: the agent may be mobile (e.g.,
the central learner is a “traffic policeman” that directs passing
by small drones to perform manoeuvres and searches for best
current policies); they may be low complexity sensors (e.g.,
swarms of tiny robots such as RoboBees and RoboFlies [17],
wearable -inside and outside the body- sensors, backscatterer
and RFID networks, IoT and embedded systems); or they may

1The reward gap is defined to be the difference between the reward means
of the best and second best arm.

2Variants of the UCB [15], [16] can achieve regret ∝ O(
√

n), but can be
worse than UCB in some regimes [9].
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simply be willing to report a few rewards but not to perform
more involved cooperative operations.

Our main contribution is a set of upper and lower bounds
on the required number of bits to achieve the same (as in
unquantized communication) regret bound up to a small con-
stant factor. In particular, our lower bound states that it is
necessary to send at least 1.9 bits per reward to achieve a
regret bound within a factor of 1.5 from the regret bound of
unquantized algorithms. Our upper bounds state that, on aver-
age, 3.4 bits are sufficient to maintain a regret bound within
a factor of 1.5 from the unquantized regret bound.

The upper bounds are proved constructively using a novel
quantization scheme, that we term QuBan, that is tailored to
compressing MAB rewards, and can be applied on top of exist-
ing MAB algorithms. QuBan only cares to maintain what
matters to the MAB algorithm operation, namely the abil-
ity to decide which is the best arm. At a high level, QuBan
maps rewards to quantization levels chosen to be dense around
an estimate of the arm’s mean values and sparse otherwise.
QuBan employs a stochastic correction term that enables to
convey an unbiased estimate of the rewards with a small
variance. It also introduces a simple novel rounding trick to
guarantee that the quantization error is conditionally indepen-
dent of the history given the current pulled arm index. This
maintains the Markov property which is crucial in the analy-
sis of bandit algorithms and enables reusing the same analysis
methods as for unquantized rewards to bound the regret after
quantization. Finally, QuBan encodes the reward values that
occur more frequently with shorter representations, in order to
reduce the number of bits communicated. Numerical results
corroborate that QuBan, applied on top of MAB algorithms
such as UCB and ε-greedy, uses a few bits (as small as 3) to
achieve the same regret as unquantized communication.

Related Work: To the best of our knowledge, for the
distributed dynamic model we consider, no scheme in the lit-
erature can be used to solve the problem of maintaining a
regret bound that matches the unquantized regret bound, up
to a small constant factor, while using a few bits of commu-
nication. In the following, we distinguish our work from a
representative sample of existing literature.

MAB algorithms: There is a long line of research in the
literature about MAB algorithms. For instance, explore-then-
commit [10], [11], ε-greedy [12], Thomson sampling [13], the
upper confidence bound [12], [14] and its variant for contex-
tual bandits [18], [19]. Under the assumption that the reward
distributions are 1-subGaussian, these algorithms provide a
worst-case regret bound that is almost O(

√
n). The explore-

then-commit regret is upper bounded by C
√

n for bandits with
2 arms and known minimum means gap, while the regret
of ε-greedy is upper bounded by C′√kn for k-armed ban-
dits with knowledge of the minimum means gap, where C, C′

are constants that do not depend on k, n [9]. Thomson sam-
pling and UCB achieve a regret with upper bound C

√
kn log(n)

for k-armed bandits, where C is a constant that does not
depend on k, n [12], [20], [21], [22], [23], [24]. For contex-
tual linear bandits, the best known (frequentist) regret upper
bound is Õ(d

√
n), where d is the dimension of an unknown

system parameter, achieved by LinUCB [9], [18]. This matches

a lower bound (for any algorithm) provided in [25] up to
log factors. If focusing on Contextual Thompson sampling
algorithm, the best known frequentist regret upper bound is
Õ(d3/2√n) [26], [27], and the best known Bayesian regret
upper bound is Õ(d

√
n) [20]. These algorithms assume access

to a full precision reward at each iteration. Our goal is not to
replace the existing MAB algorithms to deal with quantized
rewards; instead, we are interested in a general quantization
framework that can be applied on top of any existing (or
future) MAB algorithm.

Compression for ML and distributed optimization: There
is a number of research results targeting reducing the com-
munication cost of learning systems using compression. For
instance, compression is applied on gradient updates [28], [29],
[30], [31]. Recent work has also looked at compression for
classification tasks [32]. However, compression schemes tai-
lored to active learning, such as MAB problems, have not
been explored. Our quantization scheme can be understood
as a reward compression scheme that reduces the communi-
cation complexity for MABs. The main difference between
the quantization for MABs and for distributed learning is that
the later targets reducing the dependency of the number of
bits and performance on the dimensionality of bounded train-
ing data, which can be in the order of tens of millions. In
contrast, the rewards of MABs are scalars. The main chal-
lenge of our setting is to deal with a reward distribution that
is either unbounded or the upper bound on the reward is much
larger than the noise variance, which are typical in many MAB
applications. This can be done by exploiting the fact that the
rewards are more likely to be picked from the arm that appear
to be best. Such a property is not applicable in the general
distributed optimization setup and comes with new challenges
as will discussed later.

Sample complexity: Compression is related to sample com-
plexity [33], [34]: indeed, sending a small number of samples,
reduces the overall communication load. However, the ques-
tion we ask is different (and complementary): sample com-
plexity asks how many (full precision) samples from each
distribution do we need to draw; we are asking, how many
bits of each sample do we really need to transmit, when we
only care to decide the best arm and not to reconstruct the
samples.

Distributed multi-agent MAB: Researchers have explored
the distributed multi-agent MAB problem with a single [35]
or multiple [36] decision makers; in these settings, distributed
agents pick arms under some constraints (all agents pick
the same arm [36], at most one agent can pick the same
arm at a time otherwise no reward is given [3] and other
constraints [37]). The agents cooperate to aggregate their
observed rewards so as to jointly make a more informed
decision on the best arm. Most of the works do not take
into account communication constraints, and rather focus
on cooperation/coordination schemes. Our setup is different:
we have a single learner (central server) and simple agents
who do not learn (do not keep memory) but simply observe
and transmit rewards, one at a time. Our scheme can be
potentially applied to these settings to reduce communication
cost.
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Within this previous framework, some work considers
“batched” rewards, where agents keep their observed rewards
in memory and communicate them infrequently, potentially
summarizing their findings and thus reducing the communica-
tion load [38], [39], [40]. Such schemes require agents to be
present for the whole duration of learning, and can also not
be implemented by memory/computation limited agents.

Independently and in parallel to ours, the work in [41]
also considered MAB learning with reduced number of bits,
restricted in their case to UCB policies. Their main result
shows that for rewards supported on [0, 1], one bit of com-
munication is sufficient; our work recovers this result using
a much simpler approach as a special case of Section III.
Additionally, our work applies on top of any MAB algorithm,
and for unbounded rewards.

Paper Organization: Section II presents our model and nota-
tion; Section III looks at a special case; Section IV describes
QuBan; Section V presents our main theorems and Section VI
provides numerical evaluation.

II. MODEL AND NOTATION

MAB Framework: We consider a multi-armed bandit (MAB)
problem over a horizon of size n [10]. At each iteration
t = 1, . . . , n, a learner chooses an arm (action) At from a set of
arms At and receives a random reward rt distributed according
to an unknown reward distribution with mean µAt . The reward
distributions are assumed to be σ 2-subGaussian [42]. The arm
selected at time t depends on the previously selected arms and
observed rewards A1, A1, r1, . . . ,At−1, At−1, rt−1,At. The
learner is interested in minimizing the expected regret Rn =
E[R′

n], where R′
n is the regret defined as

R′
n = #n

t=1
(
µ∗

t − rt
)
, (1)

where µ∗
t = maxA∈At µA. The expected regret captures the

difference between the expected total reward collected by the
learner over n iterations and the reward if we would collect if
we play the arm with the maximum mean (optimal arm).

Notation: When the set of arms At is finite and does not
depend on t: we denote the number of arms by k = |At|, the
best arm mean by µ∗, and the gap between the best arm and
the arm-i mean by $i := µ∗−µi. If X, Y are random variables,
we refer to the expectation of X, variance of X, conditional
expectation of X given Y , and conditional variance of X given
Y as E[X], σ 2(X), E[X|Y], and σ 2(X|Y) respectively.

Popular MAB algorithms for the case where the set of
actions is fixed over time, A = At, and A is finite include
explore-then-commit [10], [11], ε-greedy [12], Thomson sam-
pling [13], and UCB [12], [14]. In addition to this case we
also consider an important class of bandit problems, con-
textual bandits [26], [43]. In this case, before picking an
action, the learner observes a side information, the context.
Specifically we consider the widely used stochastic linear ban-
dits model [44], where the contexts are modeled by changing
the action set At across time. In this model, at iteration t, the
learner chooses an action At from a given set At ⊆ Rd and
gets a reward

rt = 〈θ∗, At〉 + ηt, (2)

where θ∗ ∈ Rd is an unknown parameter, and ηt is a noise.
Conditioned on A1, A1, r1, . . . ,At, At, rt, At+1, At+1, the
noise ηt+1 is assumed to be zero mean and σ 2-subGaussian.
Popular algorithms for this case include LinUCB [18],
explore-then-commit strategy [45], and contextual Thomson
sampling [26].

System Setup: We are interested in a distributed setting,
where a learner asks at each time a potentially different agent
to play the arm At; the agent observes the reward rt and
conveys it to the learner over a communication constrained
channel, as depicted in Fig. 1. In our setup, each agent needs
to immediately communicate the observed reward (with no
memory), using a quantization scheme to reduce the commu-
nication cost. As learning progresses, the learner is allowed to
refine the quantization scheme by broadcasting parameters to
the agents they may need. We do not count these broadcast
(downlink) transmissions in the communication cost since the
learner has no restrictions in its power. We stress again that
the agents cannot store information of the reward history since
they may join and leave the system at any time. We thus opt
to use a setting where the agents have no memory. This setting
allows to support applications with simple agents (e.g., RFID
applications and embedded systems).

Quantization: A quantizer consists of an encoder E : R → S
that maps R to a countable set S , and a decoder D : S → R.
At each time t, the agent that observes the reward rt trans-
mits a finite length binary sequence representing E(rt) to the
learner which in turn decodes it using the decoder D to obtain
the quantized reward r̂t = D(E(rt)). The range of a decoder is
referred to as the set of quantization levels; the encoding and
decoding operation of a quantizer maps the reward to a quan-
tization level. We next describe a specific quantization module
that we will use.

Stochastic Quantization (SQ): A stochastic quantizer that
uses quantization levels in a set L, which is a form of
dithering [29], [46], consists of a randomized encoder EL
and decoder DL modules that can be described as follow-
ing. The encoder EL, that uses the set of quantization levels
L = {'i}2B

i=1, takes as input a value x in ['1, '2B ]; it maps
x to a level index described by B bits. The decoder, that
uses the set of quantization levels L = {'i}2B

i=1, takes as input
an index in {1, . . . , 2B}, and outputs the corresponding level
value. Precisely,

i(x) = max
{
j|'j ≤ x and j < 2B},

EL(x) =
{

i(x) with probability 'i(x)+1−x
'i(x)+1−'i(x)

i(x) + 1 with probability x−'i(x)
'i(x)+1−'i(x)

,

DL(j) = 'j, j ∈
{
1, . . . , 2B}. (3)

That is, if x is such that 'i ≤ x < 'i+1, then the index i is
transmitted with probability 'i+1−x

'i+1−'i
(and x is decoded to be 'i)

while the index i + 1 is transmitted with probability x−'i
'i+1−'i

(and x is decoded to be 'i+1).
The analysis of bandit algorithms leverages the fact that

conditioned on At, the communicated reward rt is an unbiased
estimate of the mean µAt . It is not difficult to see that SQ
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preserves this property, namely conditioned on At, it conveys
to the learner an unbiased estimate of µAt .

Performance Metric Bn, B̄(n): Among the schemes that
achieve a regret matching the unquantized regret, up to a fixed
small constant factor, our performance metrics are the instan-
taneous and average number of communication bits per reward
Bn, and B̄(n) respectively. Let Bt be the number of bits used
to transmit r̂t, and define the average number of bits after
n iterations of the algorithm as B̄(n) =

∑n
t=1 Bt
n . Our goal is

to design quantization schemes that achieve expected regret
matching the expected regret of unquantized communication
(up to a small constant factor) while using a small number of
bits Bn, and B̄(n).

III. A CASE WHERE 1 BIT IS SUFFICIENT

In this section we show that there exist some “easy” cases
where we can use just one bit per reward and a very simple
quantization scheme. Note that one bit is a trivial lower bound
on the instantaneous number of bits communicated Bn, since
each agent needs to respond to the learner for each observed
reward. We also note that by definition of the average number
of bits B̄n as the average of B1, . . . , Bn, one bit is also a lower
bound on the average number of bits. Consider the case where
the rewards are supported on [0, 1] and all reward distributions
have the same variance σ (but different means). Since rt ∈
[0, 1], its variance is upper bounded by 1

4 ; we will here assume
this worst case variance σ 2(rt|At) ≈ 1/4.3 We will use 1-
bit Stochastic Quantization (SQ), as in (3). The stochastic 1
bit quantizer takes rt as input and interprets it as probability:
outputs 1 with probability rt and 0 with probability 1− rt. Let
r̂t be the (binary) quantized reward, we then have that

E
[
r̂t|At

]
= E

[
E
[
r̂t|rt, At

]
|At
]

= E[rt|At] = µAt . (4)

Recall that for bandit algorithms the expected regret scales
linearly with the variance. For example, the UCB algo-
rithm (c.f., [9]) with unquantized rewards, achieves Rn ≤
Cσ
√

nk log(n) for a constant C that does not depend on k, n.
Proposition 1: UCB with rt ∈ [0, 1] that uses 1-bit SQ

achieves a regret Rn ≤ C
√

nk log(n).
Proof: The proof follows directly from the case of reward

distributions that are supported on [0, 1] in [12]. It fol-
lows a standard analysis based on confidence intervals by
bounding the regret conditioning on the good event G =
{|
∑t

i=1 ri1{Ai=At}∑t
i=1 1{Ai=At} − µAt | ≤ Clog(n)√∑t

i=1 1{Ai=At}
∀t = 1, . . . , n} which

is shown to hold with probability at least 1 − 1
n . Assuming G,

it can be shown that the total number of pulls for an arm with
gap $i, according to the UCB rule, is O(

log(n)

$2
i

) resulting in a
regret that is bounded as

Rn ≤ E
[
R′

n|G
]
+ E

[
R′

n|GC
]
P
[
GC
]

≤ n$ +
∑

i:$i>$

Clog(n)

$i
+ n

1
n

≤ n$ + Ck log(n)

$
+ 1. (5)

3A similar analysis extends, showing that UCB with 1-bit SQ achieves a
regret within a small constant factor from the unquantized regret, when the
variances differ but they are all close to 1

4 .

The result follow by maximizing over $.
Simulation results, in this section and Section VI, ver-

ify that, for rt ∈ [0, 1], 1-bit SQ performs very close to
unquantized rewards.

To motivate our general quantization scheme, we consider a
case where 1-bit SQ results in a potentially large performance
loss. Assume that the variance, σ , is much smaller than the
range of rt : rt ∈ [−λ, λ] and σ = 1, where λ / 1 is a param-
eter known to the learner. The 1-bit SQ maps rt to either λ or
−λ; it is not difficult to see that we still have E[r̂t|At] = µAt ,
but Rn ≤ Cλ

√
kn log(n), where C is a constant that does not

depend on n, k [12].4 This can be seen by observing that the
expected regret can be written as Rn = ∑n

t=1 E(µ∗
t − rt) =

∑n
t=1 E(µ∗

t − r̂t) = 2λ
∑n

t=1 E(
(µ∗

t + 1
2 )−(r̂t+ 1

2 )

2λ ), which trans-
forms the problem to one with reward distributions supported
on [0, 1]. Thus the expected regret bound grows linearly with
λ, which can be arbitrarily large. In contrast, without quantiza-
tion UCB achieves C′√kn log(n), where C′ is another constant
of the same order of C.

Simulation results verify that the convergence to the unquan-
tized case can be slow. Fig. 2 shows the regret of unquantized
and 1-bit SQ with the UCB algorithm for the setup described
in Section III with σ = 1 and clipped reward distributions that
have support only on an interval [−λ, λ], for λ = 1 and 100
respectively. As discussed, we observe a regret penalty when
λ / σ .

We take away the following observations:
• If the range λ is of the same order as the variance σ , 1-

bit SQ is sufficient to preserve the regret bound up to a small
constant factor.

• If the range λ is much larger than σ , 1-bit SQ leads to
a regret penalty proportional to λ

σ ; thus we may want to only
perform stochastic quantization within intervals of size similar
to σ .

• In our discussion up to now we assumed that the rewards
rt are bounded almost surely. This is not true in general; we
would like an algorithm that uses a small average number of
bits even when the reward distributions are unbounded.

In the next section we introduce QuBan, that achieves a
small average number of bits in all of the above cases.

IV. QuBan: A GENERAL QUANTIZER FOR BANDIT

REWARDS

In this section, we propose QuBan, an adaptive quantization
scheme that can be applied on top of any MAB algorithm.
Our scheme maintains attractive properties (in particular, the
Markov property, unbiasedness, and bounded variance) for the
quantized rewards that enable to retain the same regret bound
as unquantized communication for the vast majority of MAB
algorithms, while using a few bits for communication (simu-
lation results show convergence to ∼ 3 bits per iteration for n
that is sufficiently large, see Section VI).

QuBan uses ideas that include: (i) centering the quantiza-
tion scheme around a value that is believed to be close to the

4We note that this bound cannot be improved using techniques in [12],
since it is possible that σ 2(r̂t|At) = λ2 (e.g., if rt = 0 almost surely).
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Fig. 2. Regret versus number of iterations. We use σ = 1.

picked arm mean in the majority of iterations; (ii) maintain-
ing a quantization error that is conditionally independent on
previously observed rewards given the arm selection, which is
achieved by choosing the quantization center to be an integer
value (illustrated in more detail in the proof of Theorem 2);
(iii) assigning shorter codes to the values near the quantiza-
tion center and otherwise longer codes to maintain a finite
expected number of bits even if the reward distribution has infi-
nite support; and (iv) using stochastic quantization to convey
an unbiased estimate of the reward. We next describe QuBan
in more detail.

A. QuBan Centers the Quantization Around a Value µ̂(t)

Recall that at time t the learner selects an action At and
needs to convey the observed reward rt. As we expect rt to
be close to the mean µAt , we would like to use quantization
levels that are dense around µAt and sparse in other areas.
Since µAt is unknown, we estimate it using some function of
the observed rewards that we term µ̂(t); we can think of µ̂(t)
as specifying a “point” on the real line around which we want
to provide denser quantization.

Choices for µ̂(t): In this work, we analyze the following
three choices for µ̂(t), the first two applying to MAB with a
finite fixed set of arms, while the third to linear bandits.

• Average arm point (Avg-arm-pt): µ̂(t) = µ̂At(t − 1). We
use µ̂At(t − 1), the average of the samples picked from arm
At up to time t − 1, as an estimate of µAt .

• Average point (Avg-pt): µ̂(t) = 1
t−1

∑t−1
j=1 r̂j (the average

over all observed rewards). Here we can think of 1
t−1

∑t−1
j=1 r̂j

as an estimate of the mean of the best arm. Indeed, the average
reward of a well behaved algorithm will converge to the best
mean reward.

These two choices of µ̂(t) give us flexibility to fit differ-
ent regimes of MAB systems. In particular, we expect the
avg-arm-pt to be a better choice for a small number of arms
k and MAB algorithms that achieve good estimates of µAt

(explore all arms sufficiently so that µ̂At(t − 1) approaches
µAt). However, since the first time an arm is pulled we do
not have an estimate of its mean, this results in possibly

larger number of bits for the first pull; this penalty increases
with the number of arms k. As our analysis also shows (see
Section V), if k is large, acquiring good estimates for all arms
may be costly and not what good algorithms necessarily pur-
sue; instead, the avg-pt has a simpler implementation, as it
only requires to keep track of a single number, and still enables
to distinguish well in the neighborhood of the best arm (con-
necting the number of bits to the regret), which is essentially
what we mostly want.

• Contextual bandit choice: µ̂(t) = 〈θt, At〉. Consider the
widely used stochastic linear bandits model in Section II.
We observe that linear bandit algorithms, such as contex-
tual Thomson sampling and LinUCB, choose a parameter θt
believed to be close to the unknown parameter θ∗, and pick
an action based on θt. For example, LinUCB [18] chooses a
confidence set Ct with center θt believed to contain θ∗ and
picks an action At = arg maxa∈At maxθ∈Ct 〈θ, a〉. Accordingly,
we propose to use µ̂(t) = 〈θt, At〉. We note that our intuition
for the avg-pt choice does not work for contextual bandits as it
relies on that maxa∈At 〈θ∗, a〉 is the same for all t, which might
not hold in general. Likewise, the avg-arm-pt choice will not
work as the set of actions At can be infinite or change with
time.

We underline that the estimator µ̂(t) is only maintained at
the learner’s side and is broadcasted to the agents. As dis-
cussed before, this downlink communication is not counted as
communication cost.

B. QuBan Components

As discussed, at iteration t, QuBan centers its quantization
around the value µ̂(t). It then quantizes the normalized reward
r̄t = rt/Mt−1µ̂(t)/Mt2 to one of the two values 1r̄t2, 3r̄t4, where
Mt = εσXt,5 ε is a parameter to control the regret vs number
of bits trade-off as will be illustrated later in this section,
and {Xt}n

i=1 are independent samples from a 1
4 -subGaussian

distribution satisfying |Xt| ≥ 1 almost surely, e.g., we can use

5The case where σ is unknown is discussed in Section V.
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Algorithm 1 Learner Operation With Input MAB
Algorithm )

1: Initialize: µ̂(1) = 0
2: for t = 1, . . . , n do
3: Choose an action At based on the bandit
4: algorithm ) and ask the next agent to play it
5: Send Mt

8, µ̂(t) to an agent
6: Receive the encoded reward (bt, It, ELt(et)) (see
7: Algorithm 2)
8: Decode r̂t:
9: if length(bt)≤ 3 then

10: r̂t can be decoded using a lookup table
11: else
12: Decode the sign, st, of ˆ̄rt from bt
13: Set 't to be the It-th element in the set
14: {0, 20, ...}
15: Set Lt = {'t, 't + 1, . . . , max{2't, 't + 1}}
16: Define e(q)

t = DLt(ELt(et))

17: r̂t = (st(e
(q)
t + 't + 3.5st + 0.5) + 1µ̂(t)/Mt2)Mt

18: Calculate µ̂(t + 1) (using one of the discussed
19: choices)
20: Update the parameters required by )

Xt = 1 almost surely.6 If Xt is allowed to take larger values
with some probability, it will result in coarser quantization with
some probability, and a smaller number of bits. This introduces
an error in estimating r̄t that is bounded by 1, which results
in error of at most Mt in estimating rt = Mt(r̄t + 1µ̂(t)/Mt2).
This quantization is done in a randomized way to convey an
unbiased estimate of rt. The encoding of r̂t is a composition
of: sign of r̄t, a unary encoding of the least power of 2 below
|r̄t| (denoted by 2It), and SQ for |r̄t|−2It .7 The unary encoding
of It consists of It zeros followed by 1 one. Both the unary
encoding and the SQ use O(log(r̄t)) bits. We recall that µ̂(t)

Mt
is

believed to be close to rt
σ in the majority of iterations resulting

in small values for log(r̄t).
The precise learner and agent operations used for QuBan are

presented in pseudo-code in Algorithms 1 and 2 (see Fig. 3
for an example), respectively. The learner at each iteration
broadcasts µ̂(t) and asks one of the agents available at time
t to play an action At. Initially, since we have no knowledge
about µi, the learner assumes that µ̂(0) = 0. The agent that
plays the action uses the observed rt together with µ̂(t) it has
received to transmit three values we term (bt, It, et), to the
learner, as described in Algorithm 2 using O(log(|r̄t|)) bits.

Rounding of µ̂(t)/Mt: the reason for choosing the quanti-
zation to be centered around 1µ̂(t)/Mt2 instead of µ̂(t)/Mt
is to guarantee that the distance between rt and the two
closest quantization levels is independent of µ̂(t)9 (which is

6For our proofs we set Xt = 1 for simplicity; more sophisticated choices
can further improve the upper bounds such as Xt picked from a Gaussian
distribution.

7Note that 0 ≤ |r̄t| − 2It ≤ 2It .
8If Xt is chosen to be 1, then sending Mt is not required.
9As will be shown in Appendix A, centering the quantization around

any integer value implies that the two closest quantization levels to rt
Mt

are
1 rt

Mt
2, 3 rt

Mt
4.

Algorithm 2 Distributed Agent Operation
1: Inputs: rt, µ̂(t) and Mt
2: Set L = {1r̄t2, 3r̄t4}, ˆ̄rt = DL(EL(r̄t)), where r̄t = rt/Mt −

1µ̂(t)/Mt2.
3: Set bt with three bits to distinguish between the 8 cases:

ˆ̄rt < −2, ˆ̄rt > 3, ˆ̄rt = i, i ∈ {−2,−1, 0, 1, 2, 3}. This
implicitly encodes the sign of ˆ̄rt, which we denote st.

4: if |ˆ̄rt| > |a| and ˆ̄rta > 0, a ∈ {−2, 3} then
5: Augment bt with an extra one bit to indicate if |ˆ̄rt| =

|a| + 1 or |ˆ̄rt| > |a| + 1.
6: if |ˆ̄rt| > |a| + 1 then
7: Let L′ = {0, 20, . . .}
8: Set 't = max{j ∈ L′|j ≤ |r̄t| − (|a| + 1)}
9: Encode 't by It −1 zeros followed by a one (unary

coding), where It is the index of
10: 't in the set L′.
11: Let et = |r̄t| − (|a| + 1) − 't
12: Set Lt = {'t, 't + 1, . . . , max{2't, 't + 1}}
13: Encode et using SQ to get ELt(et)

14: Transmit (bt, It, ELt(et))

Fig. 3. Illustration of QuBan. In the shown example, rt is mapped to a value
of the red dot (conveyed with the index It = 4), and stochastically to one of
the two nearest quantization levels depicted on the red line.

dependent on r̂1, . . . , r̂t−1). As we discuss in the following
section, this preserves the Markov property (given At, the
quantized reward r̂t is conditionally independent on the history
A1, r̂1, . . . , At−1, r̂t−1), a property that is exploited in the anal-
ysis of bandit algorithms to guarantee that |∑n

t=1 r̂t − µAt/n|
approaches zero in some probabilistic sense as n increases.

Sending the least power of 2 below r̄t: For simplicity we
consider the case where r̄t ≥ 0. We note that since it is
possible for the decoded reward to take any value in the set
{1 µ̂

Mt
2, 1 µ̂

Mt
2+1, 1 µ̂

Mt
2+2 · · · } (to guarantee the uniform upper

bound on |ˆ̄rt − r̄t|), every value in that set needs to be encoded.
A good encoding strategy assigns shorter codes to the levels
that are close to 1 µ̂

Mt
2 as they are expected to occur more

often. Hence, the best we can hope for is to encode rt using
O(log( rt

Mt
− 1 µ̂

Mt
2) bits as it is quantized to either 1 rt

Mt
2 or

3 rt
Mt

4 and the quantization level at 1 rt
Mt

2 is encoded using the

largest number of bits among the levels in the set {1 µ̂
Mt

2, 1 µ̂
Mt

2+
1, 1 µ̂

Mt
2+2, . . . , 1 rt

Mt
2}. As can be seen in Appendix B, sending

the greatest power of 2 below r̄t then quantizing the difference
using SQ gives that rt is encoded using O(log( rt

Mt
− 1 µ̂

Mt
2)

bits. This is achieved since It is O(log( rt
Mt

− 1 µ̂
Mt

2) and the
SQ uses 2It + 1 quantization levels. An alternative way to
encode It is using integer compression, or recursively applying
our scheme by using unary coding to transmit the largest I(2)

t

with 2I(2)
t ≤ It and then encode the difference It − 2I(2)

t using
log(1 + 2I(2)

t ) bits noting that It − 2I(2)
t ≤ 2I(2)

t . This results in
using O(log(log( rt

σ −1 µ̂
σ 2)) bits to encode It. We keep the unary
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coding for It for simplicity and since it does not dominate the
average number of bits.

Preserving regret bounds: The main reasons QuBan pre-
serves existing regret bounds is that it does not destroy the
Markov property (as we prove in Appendix B) and it pro-
vides that |ˆ̄rt − r̄t| is uniformly upper bounded. The later
property implies that if given At, rt is conditionally integrable,
sub-exponential, sub-Gaussian, or almost surely bounded, then
Mt can be chosen such that given At, r̂t is conditionally
integrable, sub-exponential, sub-Gaussian, or almost surely
bounded respectively. A widely used assumption is that given
At, rt is conditionally sub-Gaussian.

We observe that all the operations in QuBan can be
performed in a constant time except steps 9, 13 in
Algorithm 2 which require O(Bt) running time. As shown in
Sections V, VI, Bt is only a few bits on average resulting
in a linear amortized running time.

V. UPPER AND LOWER BOUNDS

In this section we present an upper bound on the number of
bits used by QuBan and show that it provides properties for the
quantized reward that result in a regret within a small constant
factor from the unquantized regret. We also present a lower
bound, within 1.5 bits from the upper bound, on the number
of bits needed to satisfy the required properties. Before stating
the results, we state our assumptions.

Assumption 1: We assume that we are given:
(i) a MAB instance with σ 2-subGaussian10 rewards where

the Markov property holds: conditioned on the action at time t,
the current reward is conditionally independent on the history
(past actions and rewards).

(ii) a MAB algorithm ) such that for any instance with
σ 2-subGaussian rewards, and time horizon n, the algorithm’s
expected regret (with unquantized rewards) is upper-bounded
by RU

n .
We note that assumption (i) is standard for the analysis

of MAB algorithms, while assumption (ii) essentially only
introduces notation.

A. Upper Bounds

The following proposition gives an upper bound on the
regret after quantization, and shows that for ε = 1, the regret
is within a factor of 1.5 from the regret of the unquantized
case. The proof is provided in Appendix A.

Proposition 2: Suppose Assumption 1 holds. Then, when
we apply QuBan, the following hold:

1) Conditioned on At, the quantized reward r̂t is ((1 +
ε
2 )σ )2-subGaussian, conditionally independent on the his-
tory A1, r̂1, . . . , At−1, r̂t−1 (Markov property), and satisfies
E[r̂t|At] = µAt , |r̂t − rt| ≤ Mt almost surely (t = 1, . . . , n).

2) The expected regret Rn is bounded as Rn ≤ (1 + ε
2 )RU

n ,
where ε is a parameter to control the regret vs number of bits
trade-off.

In the following we provide an upper bound on the expected
average number of bits. We also provide a high-probability

10This is a standard assumption used for simplicity but is not required for
our main results.

upper bound on the instantaneous number of bits. For sim-
plicity we only consider the case where ε = 1 and discuss the
other case in Appendix B. The proof is given in Appendix B.
At a high level, to upper bound the regret after quantization
we show that QuBan maintains a number of desirable prop-
erties for the quantized rewards, namely, unbiasedness, and
the fact that the quantized rewards are (1.5σ )2-subGaussian
and satisfy the Markov property. To upper bound the expected
number of bits we use the fact that QuBan assigns short rep-
resentations for the rewards around an estimate of the mean,
which we expect to see more frequently.

Theorem 1: Suppose Assumption 1 holds. Let ε = 1. There
is a universal constant C such that:

1) For QuBan with µ̂(t) = µ̂At(t − 1) (avg-arm-pt), the
average number of bits communicated satisfies that E[B̄(n)] ≤
3.4 + (C/n)

∑k
i=1 log(1 + |µi|/σ ) + C/

√
n.

2) For QuBan with µ̂(t) = 1
t−1

∑t−1
j=1 r̂j (avg-pt), the aver-

age number of bits communicated satisfies E[B̄(n)] ≤ 3.4 +
C
n (1 + log(1 + |µ∗|

σ ) + Rn
σ +∑n−1

t=1
Rt

(σ t) ) + C/
√

n.
3) For QuBan with µ̂(t) = 〈θt, At〉 (stochastic linear ban-

dit), the average number of bits communicated satisfies that
E[B̄](n) ≤ 3.4 + CE[

∑n
t=1 |〈θt − θ∗, At〉|]/(σn).

In Appendix B we also provide almost surely bounds
on the asymptotic average number of bits, namely,
limn→∞(1/n)

∑n
t=1 Bt≤3.4 almost surely.

In the following we provide a high probability bound on the
number of bits that QuBan uses in each iteration. We analyze
the performance for avg-arm-pt only; the other choices for
µ̂(t) can be handled similarly.

Theorem 2: For a MAB instance with σ 2-subGaussian
rewards, QuBan with ε = 1, µ̂(t) = µ̂At(t − 1) (avg-arm-pt),
satisfies that for t with Tt(At) > 0, where Tt(i) is the number
of pulls for arm i prior to iteration t, with probability at least
1 − 1

n it holds that ∀t ≤ n:

Bt ≤ 4 + 3log(4 log(n))4 + 3log log(4 log(n))4. (6)

The proof is provided in Appendix C.
Remark 1: Using the previous lemma we can modify

QuBan to have that (6) is satisfied almost surely, by sending
a random 1 bit when (6) is not satisfied. This will only add at
most n

∑k
i=1 $i regret with probability at most 1

n . Hence, the
expected regret is increased by at most a factor of 2.

Remark 2: Throughout the paper, we assume a known
upper bound on the noise variance. However, it is not dif-
ficult to see that a variance estimate within a constant factor
would suffice. Running QuBan with an estimate σ ′ that is pos-
sibly different from the true σ results in a degradation in the
regret by a factor of max{1, σ ′

σ } and increase in the commu-
nication by 2 log( σ

σ ′ ) bits. An optimistic estimate of the noise
σ ′ < σ results in finer quantization, hence, no degradation
in the regret at the cost of increasing the communication by
2 log( σ

σ ′ ) bits.

B. Lower Bound

In this subsection we provide a lower bound showing that
an average number of 1.9 bits per iteration are required to
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maintain a sublinear regret and a (σ
2 )2-subGaussian quantiza-

tion error, r̂t − rt. We also show that the instantaneous number
of bits cannot be almost surely bounded by a constant. In our
lower bound, we focus on prefix free codes [47]; a similar
analysis can be performed for non-singular codes leading to
different constants. We also note that our achievable scheme
(Algorithms 1, 2) provides a prefix-free code. We first state
the following lemma which shows that for the quantizer to
preserve the sublinear regret of the bandit algorithm, Q needs
to satisfy that E[Q(rt)|rt] = c1rt + c2, where c1, c2 are con-
stants. Hence, by a proper shifting and scaling, the quantizer
Q can be made unbiased, i.e., satisfying E[Q(rt)|rt] = rt.

Lemma 1: Let ALG be any algorithm for multi-arm ban-
dits with sublinear regret and Q be (a possibly randomized)
quantizer. Let Rn be the worst-case expected regret of ALG
when using rewards Q(r1), . . . , Q(rt). If Rn is sublinear in n,
then Q satisfies

E[Q(rt)|rt] = c1rt + c2,

where c1, c2 are constants.
By the previous lemma, it suffices to only consider unbiased

quantizers. We next state our lower bound theorem.
Theorem 3: Any (possibly randomized) quantizer Q that

uses prefix-free encoding and satisfies:
1) (Unbiased Property) E[Q(rt)|rt] = rt,
2) (SubGaussian Property) Conditioned on rt, Q(rt) − rt

is (σ
2 )2-subGaussian (t = 1, . . . , n),

we have that there exist (4σ )2-subGaussian reward distri-
butions for which:

1) (∀b ∈ N) (∃t, δ > 0) such that P[Bt > b] > δ.
2) (∀t > 0) (∃n > t) such that E[B̄(n)] ≥ 1.9 bits.
The proofs are given in Appendix D.

C. Application to UCB, ε-Greedy, and LinUCB

We here leverage Theorem 1 to derive bounds for three
widely used MAB algorithms. We highlight that although the
regret bounds hide constant factors, these constants are within
1.5 of the unquantized constants according to Theorem 1.
The proofs are in Appendix E for Corollaries 1 and 2 and
in Appendix F for Lemma 3.

Corollary 1: Assume we use QuBan with avg-pt on top
of UCB [12] with σ 2-subGaussian reward distributions. Then
there is a constant C that does not depend on n and k such
that Rn ≤ Cσ

√
nk log(n), E[B̄(n)] ≤ 3.4 + C

√
k log(n)/n.

Corollary 2: Assume we use QuBan with avg-pt on top of
ε-greedy [12] with σ 2-subGaussian reward distributions and
constant gaps $i ∀i. Let εt = min{1, Ck/(t$2

min)}, where
$min = mini{$i|$i > 0} and C > 0 is a sufficiently
large universal constant. Then there exists a constant C′ that
does not depend on n and k such that Rn ≤ C′σk log(1 +
n/k),E[B̄(n)] ≤ 3.4 + C′(k log2(n)/n + 1/

√
n).

To simplify the expressions, we include the dependency on
µ∗ and $i in the constant C for Corollary 1 and respectively
C′ for Corollary 2.

Corollary 3: Assume we use QuBan on top of
LinUCB [18], then there is a constant C that does not

depend on n and d such that Rn ≤ Cd
√

n log(n), E[B̄(n)] ≤
3.4 + C d log(n)√

n .

VI. NUMERICAL EVALUATION

We here present our numerical results.
Quantization Schemes: We compare QuBan against the

baseline schemes described next.
Unquantized: Rewards are conveyed using the standard

32 bits representation.
r-bit SQ: We implement r-bit stochastic quantization, by

using the quantizer described in Section II, with 2r levels
uniformly dividing a range [−λ, λ].

QuBan: We implement QuBan with ε = Xt = 1.
MAB Algorithms: We use quantization on top of:
(i) the UCB implementation in [9, ch. 8]. The UCB explo-

ration constant is chosen to be σq, an estimate of the standard
deviation of the quantized reward distribution.

(ii) the ε-greedy algorithm in [9, ch. 6], where εt is set to
be εt = min{1,

Cσqk
t$2

min
}.

(iii) the LinUCB algorithm for stochastic linear bandits
in [9, ch. 19].

Synthetic Dataset:
MAB Setup: We simulate three cases. In each case we aver-

age over 10 runs of each experiment. The parameters σq, C
are determined by the underlying MAB algorithm we use. In
our simulations, we set σq to the variance of the quantized
rewards (or best known upper bound), while C is chosen to
be the value resulting in best regret among {0, λ/100, . . . , λ}.

• Setup 1 (Figs. 4-6(a)): We use k = 100, λ = 100, C = 10,
the arms’ means are picked from a Gaussian distribution with
mean 0 and standard deviation 10 and the reward distribu-
tions are conditionally Gaussian given the actions At with
variance 0.1. The parameter σq is set to be 0.1 for QuBan
and 200/2r − 1 for the r-bit SQ.

• Setup 2 (Figs. 4-6(b)): This differs from the previous only
in that the means are picked from a Gaussian distribution with
mean 95 and standard deviation 1 (leading to smaller $i).

• Setup 3 (Figs. 4-6(c)): This is our contextual bandit setup.
We use d = 20 dimensions, θ∗ picked uniformly at random
from the surface of a radius 1 ball centered at the origin, and
the noise ηt is picked from a Gaussian distribution with zero
mean and 0.1 variance. At each time t we construct the actions
set At by sampling 5 actions uniformly at random from the
surface of a radius 0.5 ball centered at the origin independently
of the previously sampled actions. We evaluate the regret and
the average number of bits used by QuBan as well as the 3
and 1 bit stochastic quantizers in the interval [−10, 10] (the
interval in which we observe the majority of rewards). These
quantization schemes are used on top of the LinUCB algo-
rithm. The LinUCB exploration constant is chosen to be σq,
where σq is set to be 0.1 for QuBan and 20

2r−1 for the r-bit SQ.
Results: Fig. 4 plots the regret R′

n in (1) vs. the number of
iterations, Fig. 5 plots R̂n

n , the regret per iteration, vs. the total
number of bits communicated, Fig. 6 plots the regret versus
number of iterations, and Fig. 7 plots the average number of
bits versus iterations. We find that:
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Fig. 4. Regret versus number of iterations.

Fig. 5. Total number of bits versus regret per iteration.

Fig. 6. Regret versus number of iterations.

• QuBan in all three setups offers minimal or no regret
increase compared to the unquantized rewards regret and
achieves savings of tens of thousands of bits as compared to
unquantized communication.

• 1-bit SQ significantly diverges in most cases; 3-bit and
5-bit SQ show better performance yet still not matching
QuBan with a performance gap that increases when the arms
means are closer ($i smaller), and hence, more difficult to
distinguish.

• QuBan allows for more than 10x saving in the number of
bits over the unquantized case to achieve the same regret. In
all three setups QuBan achieves E[B̄(n)] ≈ 3 (see Fig. 7).

• Both QuBan avg-pt and avg-arm-pt achieve the same
regret (they are not distinguishable in Fig. 4 and thus we use
a common legend), yet avg-arm-pt uses a smaller number of
bits when the means of the arms tend to be well separated
(Fig. 5(a)) while avg-pt uses a smaller number of bits when

they tend to be closer together (Fig. 5(b)). We also observe
that the avg-pt tends to perform better for a well-behaved ban-
dit scheme, while the avg-arm-pt performs better when the
algorithm picks sub-optimal arms for many iterations (e.g.,
ε-greedy in Fig. 7(b)).

Cryptocurrency Returns Dataset:
MAB Setup: In this part we compare the performance of our

scheme against 3-bit SQ using multiple cryptocurrencies prices
from binance.com in October 2021, where the reward is the
investment return. The action represents which cryptocurrency,
among {Bitcoin, Ethereum, Dogecoin, and Litecoin}, to buy
then sell on the next day. The return for each currency is
samples uniformly at random from the daily returns in the
month of October 2021.

Results: In Fig. 8 we plot the regret (daily return - optimal
average return) versus the number of iterations for the UCB
algorithm using our quantization scheme and 3-bit SQ. We
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Fig. 7. Average number of bits versus iterations.

Fig. 8. Regret versus number of iterations for the cryptocurrency prices
dataset.

observe that the performance of QuBan almost matches the
unquantized performance (using ≈ 3 bits) while the regret of
3-bit SQ is linear for the used number of iterations.

VII. CONCLUSION AND FUTURE WORK

In this paper we provide a generic framework, QuBan, to
quantize rewards for MAB problems. This framework can
be used on top of nearly all the existing and future MAB
algorithms, making them attractive for distributed learning
applications where communication can become a bottleneck.
We have demonstrated that, both in theory and by numeri-
cal experiments, QuBan can provide very significant savings
in terms of communication and barely affects the learning
performance.

We identify several future research directions: (1) How to
exploit memory? In the setup we consider, the remote agents
are changing over time, and thus they are essentially memory-
less, i.e., a new agent does not know the history information
of previous agents. (2) How to deal with heavy tailed noise?
(3) How to convey contexts in the contextual bandit setting
if these are not implicitly conveyed? Resolving such ques-
tions can offer additional benefits for communication-sensitive
bandit learning setups.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We start by proving that r̂t is an unbiased estimate
of µAt . If −3 ≤ rt ≤ −4, we have that r̂t takes the value 3rt4

with probability rt − 1rt2, and the value 1rt2 with probability
3rt4− rt. Hence, E[r̂t|rt] = rt. For all the other cases we have
that

E
[
r̂t|rt

]
= E

[
Mt

(
st

(
e(q)

t + 't + 3.5st + 0.5
)

+
⌊

µ̂(t)
Mt

⌋)
|rt

]

= E
[

MtE
[

st

(
e(q)

t + 't + 3.5st + 0.5
)

+
⌊

µ̂(t)
Mt

⌋

+st't|rt, µ̂(t), Mt

]
|rt

]

(i)= E
[

Mt

(
rt

Mt
−
⌊

µ̂(t)
Mt

⌋
+ st(−[3.5st + 0.5 + 't]

+ st't + 3.5st + 0.5) +
⌊

µ̂(t)
Mt

⌋)
|rt

]

= rt, (7)

where (i) follows from the fact that the stochastic quantization
(SQ) that we use gives an unbiased estimate of the input. We
note that from Algorithm 2, et encodes |r̄t| − (|a| + 1) − 't,
where |a|+1 = 3 when st = −1, and |a|+1 = 4 when st = 1,
i.e., |a| + 1 = 3.5st + 0.5. Hence, in all cases we have that

E
[
r̂t|At

]
= E

[
E
[
r̂t|rt, At

]
|At
]

= E
[
E
[
r̂t|rt

]
|At
]

= E[rt|At] = µAt (8)

The bound on |rt − r̂t| follows from the fact that the dis-
tance between the quantization levels for which we use the
randomized quantization is 1, hence, in all cases we have that

1 ≥ |ste
(q)
t −

(
rt

Mt
−
⌊

µ̂(t)
Mt

⌋
− st't

)
| = |r̂t − rt|

Mt
. (9)

We note that this implies

E
[
|r̂t − µAt |2|At

]
= E

[
|r̂t − rt + rt − µAt |2|At

]

= E
[
|r̂t − rt|2|At

]
+ E

[
|rt − µAt |2|At

]

+ 2E
[(

rt − µAt

)(
r̂t − rt

)
|At
]

≤
(

1 + ε2
)
σ 2

+ 2E
[(

rt − µAt

)
E
[(

r̂t − rt
)
|At, rt

]
|At
]

=
(

1 + ε2
)
σ 2. (10)

To see that conditioned on At, r̂t is conditionally indepen-
dent on the history A1, r̂1, . . . , At−1, r̂t−1, we notice that since
we replace µ̂(t)

Mt
by an integer, 1 µ̂(t)

Mt
2 and since the distance
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between the quantization levels is 1, we have that the two
nearest quantization levels to rt

Mt
are at 1 rt

Mt
2, 3 rt

Mt
4. Hence,

conditioned on Mt, r̂t takes the value Mt3 rt
Mt

4 with probability
rt
Mt

−1 rt
Mt

2, and the value Mt1 rt
Mt

2 with probability 3 rt
Mt

4− rt
Mt

.
This shows that despite the fact that the encoding of r̂t is
a function of r1, . . . , rt, the value of r̂t is a function of rt
only, since Mt is generated independently of the history. As a
result, given At, r̂t is conditionally independent on the history
A1, r̂1, . . . , At−1, r̂t−1.

The fact that r̂t is subGaussian can be proven by Cauchy-
Schwartz

E
[
eλ(r̂t−µAt)|At

]
= E

[
eλ(r̂t−rt+rt−µAt)|At

]

≤ E
[
epλ(r̂t−rt)|At

] 1
p

E
[
e(1−p)λ(rt−µAt)|At

] 1
1−p

≤ eλ2 σ2(1+ ε
2 )

2

2 , (11)

where p = 1 + 2
ε . To bound the expected regret after

quantization we observe that Rn = ∑n
t=1 E(µ∗

t − rt) =∑n
t=1 E(µ∗

t −r̂t) = (1+ ε
2 )
∑n

t=1 E(
µ∗

t −r̂t
1+ ε

2
). We have that r̂t

(1+ ε
2 )

is σ 2-subGaussian. Applying the bandit algorithm using r̂t
(1+ ε

2 )

results in
∑n

t=1 E(
µ∗

t −r̂t
(1+ ε

2 )
) ≤ RU

n ({$i/(1 + ε
2 )}), hence

Rn ≤
(

1 + ε

2

)
RU

n

({
$i/

(
1 + ε

2

)})
. (12)

APPENDIX B
PROOF OF THEOREM 1

Proof: We have that Bt can be bounded as

Bt ≤ 3 + 1
[

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
> 3

]
+ 1

[⌊
µ̂(t)
Mt

⌋
− rt

Mt
> 2

]

+ 2
(

1
[

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
> 4

]⌈
log
(

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
− 3

)⌉)

+ 2
(

1
[⌊

µ̂(t)
Mt

⌋
− rt

Mt
> 3

]⌈
log
(⌊

µ̂(t)
Mt

⌋
− rt

Mt
− 2

)⌉)

≤ 3 + 1
[
| rt

Mt
− µ̂(t)

Mt
| > 2

]
+ 2

(
1
[
| rt

Mt
− µ̂(t)

Mt
| > 3

])

+ 2
(

1
[
| rt

Mt
− µ̂(t)

Mt
| > 3

]
log
(

| rt

Mt
− µ̂(t)

Mt
| − 2

))
. (13)

Hence for each δ > 0, we have

Bt ≤ 3 + 1
[
| rt − µAt

σ
| > 2(1 − δ)

]
+ 1

[
|µAt − µ̂(t)

σ
| > 2δ

]

+ 2
(

1
[
| rt − µAt

σ
| > 3(1 − δ)

]
+ 1

[
|µAt − µ̂(t)

σ
| > 3δ

])

+ 2
(

1
[
| rt − µAt

σ
| > 3

])
log
(

| rt − µ̂(t)
σ

| − 2
)

. (14)

Taking the expectation of both sides, we get that

E[Bt] ≤ 3 + P
[
| rt − µAt

σ
| > 2(1 − δ)

]

+ P
[
|µAt − µ̂(t)

σ
| > 2δ

]

+ 2
(
P
[
| rt − µAt

σ
| > 3(1 − δ)

]

+ P
[
|µAt − µ̂(t)

σ
| > 3δ

])

+ 2E
[(

1
[
| rt − µAt

σ
| > 3

])
log
(

| rt − µ̂(t)
σ

| − 2
)]

.

(15)

Hence, there are universal constants C, C′ such that

E[Bt] ≤ 3.32 + C′E
[
|µAt − µ̂(t)

σ
|
]

+ 2E
[

1
[
| rt

Mt
− µ̂(t)

Mt
| > 3

](
| rt

Mt
− µ̂(t)

Mt
| − 3

)]

≤ 3.32 + C′E
[
|µAt − µ̂(t)

σ
|
]

+ 2E
[

1
[
| rt − µAt

σ
| > 3(1 − δ)

]
|| rt − µAt

σ
| − 3|

]

+ 2E
[

1
[
|µAt − µ̂(t)

σ
| > 3δ

]
|| rt − µAt

σ
| − 3|

]

+ 2E
[
|µAt − µ̂(t)

σ
|
]

≤ 3.32 +
(
C′ + 2

)
E
[
|µAt − µ̂(t)

σ
|
]

+ 2
∞∑

i=3

|i(1 − δ) − 3|P
[
|µAt − µ̂(t)

σ
| > i(1 − δ)

]

+ 2E
[

1
[
|µAt − µ̂(t)

σ
| > 3δ

]]
E
[
|| rt − µAt

σ
| − 3|

]

+ 2E
[
|µAt − µ̂(t)

σ
|
]

≤ 3.4 + CE
[
|µAt − µ̂(t)

σ
|
]

(16)

From (14), E[|rt − µAt |2|At] ≤ σ 2, Markov property and
the strong law of large numbers for martingales, we also have
that there is a universal constant C such that

lim
n→∞

1
n

n∑

t=1

Bt ≤ 3.4 + lim
n→∞

C
n

∑n
t=1 |µAt −µ̂(t)

σ | almost surely.

(17)

It then remains to analyze |µAt − µ̂(t)| for the three proposed
choices of µ̂(t).

• avg-pt (µ̂(t) = 1
t−1

∑t−1
j=1 r̂j):

We have that for t > 1

|µAt − µ̂(t)|
σ

≤ |µAt − µ∗|
σ

+ |µ∗ − µ̂(t)|
σ

= $At

σ
+ |

∑t−1
j=1 µ∗ − µAj + µAj − r̂j

(t − 1)σ
|

≤ $At

σ
+ |

∑t−1
j=1 µ∗ − µAj

(t − 1)σ
|

+ |
∑t−1

j=1 µAj − r̂j

(t − 1)σ
|

= $At

σ
+
∑k

i=1 $iTi(t − 1)

(t − 1)σ

+ |
∑t−1

j=1 µAj − r̂j

(t − 1)σ
|. (18)
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For t = 1 we have

|µAt − µ̂(t)|
σ

≤ |µAt − µ∗|
σ

+ |µ∗ − µ̂(t)|
σ

= $A1

σ
+ |µ∗|

σ
. (19)

We then have that

1
n

n∑

t=1

log
(

1 + |µAt − µ̂(t)
σ

|
)

≤
log
(

1 + |µ∗|
σ

)

nσ

+ 1
n

n∑

t=1

log
(

1 + $At

σ

)

+ 1
n

n∑

t=2

log

(

1 +
∑k

i=1 $iTi(t − 1)

(t − 1)σ

)

+ log

(

1 + |
∑t−1

j=1 µAj − r̂j

(t − 1)σ
|
)

≤
log
(

1 + |µ∗|
σ

)

nσ
+ 1

n

(∑k
i=1 $iTi(n)

σ

+
n−1∑

t=1

∑k
i=1 $iTi(t)

tσ
+ |

∑t
j=1 µAj − r̂j

tσ
|
)

. (20)

We have that since E[|rt − µAt |2|At] ≤ σ 2, and Markov prop-
erty, then by the strong law of large numbers for martingales

limt→∞
∑t−1

j=1 µAj−r̂j

(t−1)σ = 0 almost surely. We then have that if the
limit of average regret is 0 almost surely (or in probability),
then from (17) and (20) we get that

lim
n→∞

1
n

n∑

t=1

Bt≤3.4 almost surely (or in probability). (21)

By observing that we can generate a long sequence of rewards
from each arm before the process starts and since E[|rt −
µAt |2|At] ≤ σ 2, then by the triangle inequality we have that

1
n

n∑

t=1

E
[

|
∑t−1

j=1 µAj − r̂j

(t − 1)σ
|
]

(i)
≤ 2

n

n∑

t=1

1√
t

= 2
n

n∑

t=1

1√
t

≤ 2
n

(
1 +

∫ n

t=1

1√
t
dt
)

≤ 4√
n
, (22)

where (i) follows from the fact that µAj − r̂j, µAi − r̂i are
uncorrelated for all i < j since

E
[(

µAj − r̂j
)(

µAi − r̂i
)]

= E
[
E
[(

µAj − r̂j
)(

µAi − r̂i
)
|Aj, Ai, r̂i

]]
= 0. (23)

We conclude that there is a universal constant C such that

B̂(n) ≤ 3.4 + (C/n)

(

1 + log
(
1 + |µ∗|/σ

)

+ Rn/σ +
n−1∑

t=1

Rt/(σ t)

)

+ C/
√

n (24)

• avg-arm-pt (µ̂(t) = µ̂At(t − 1)):
We have that for TAt(t − 1) > 0

|µAt − µ̂(t)|
σ

=
∣∣∣∣∣

∑t−1
j=1
(
µAt − r̂j

)
1
(
Aj = At

)

TAt(t − 1)σ

∣∣∣∣∣. (25)

For TAt(t − 1) = 0, we have that µ̂(t) = 0. Then

1
n

n∑

t=1

E
[

log
(

1 + |µAt − µ̂(t)|
σ

)]

(i)
≤ 1

n

k∑

i=1

log
(

1 + |µi|
σ

)
+ 2

n

n∑

t=1

1√
t

(ii)
≤ 1

n

k∑

i=1

log
(

1 + |µi|
σ

)
+ 4√

n
(26)

where (ii) is as in (22), and (i) can be seen by observing that
we can generate a long sequence of rewards from each arm
before the process starts, from the fact that r̂j − µAj , r̂i − µAi

are uncorrelated for all i 8= j and since E[|rt −µAt |2|At] ≤ σ 2.
We conclude that there is a universal constant C such that

B̂(n) ≤ 3.4 + C
n

k∑

i=1

log
(

1 + |µi|
σ

)
+ C√

n
. (27)

The fact that limn→∞ 1
n

∑n
t=1 Bt≤3.4 almost surely, can be

seen using the strong law of large numbers by observing that
we can generate a long sequence of rewards from each arm
before the process starts, the number of arms is finite, and
if limn→∞ Ti(n) < ∞ then the contribution of arm i in the
number of bits decays to zero almost surely as n → ∞.

• stochastic linear bandits (µ̂(t) = 〈θt, At〉):
The results follow directly from (14), (16), (17) and choice

of µ̂(t).
For the case where ε 8= 1, it is easy to see that for small val-

ues of ε, the number of transmitted bits increases by 2 log( 1
ε )

bits. This can be further decreased to log( 1
ε )+ log(log( 1

ε )) bits
using the encoding in Section IV.

APPENDIX C
PROOF OF THE HIGH PROBABILITY BOUND

From Section IV, we have that

Bt ≤ 3 + 1
[

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
> 3

]
+ 1

[⌊
µ̂(t)
Mt

⌋
− rt

Mt
> 2

]

+ 1
[

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
> 4

](⌈
log
(

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
− 3

)⌉

+
⌈

log
(

log
(

rt

Mt
−
⌊

µ̂(t)
Mt

⌋
− 3

))⌉)

+ 1
[⌊

µ̂(t)
Mt

⌋
− rt

Mt
> 3

](⌈
log
(⌊

µ̂(t)
Mt

⌋
− rt

Mt
− 2

)⌉

+
⌈

log
(

log
(⌊

µ̂(t)
Mt

⌋
− rt

Mt
− 2

))⌉)

≤ 4 + log
(

µ̂(t)
σ

− rt

σ
− 2

)
+ log

(
log
(

µ̂(t)
σ

− rt

σ
− 2

))
.

(28)
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Let the event G be that ∀t ∈ {1, . . . , n} : |rt − µAt | ≤
σ
√

4 log(n). From the subGaussian assumption and applying
the union bound we have that

P[G] > 1 −
n∑

t=1

e−2 log(n). (29)

We have that if G holds then for t with Tt(At) > 0, we have
that |µ̂(t)−µAt | ≤ σ, |rt −µAt | ≤ σ . Hence, |µ̂(t)− rt| ≤ 2σ .
Substituting in (28), we get the desired result.

APPENDIX D
PROOF OF LOWER BOUND (LEMMA 1 AND THEOREM 3)

A. Proof of Lemma 1

Proof: To simplify notation, we omit the time index t and
only mention it when it is necessary.

Let P, P′ denote reward distributions with means µ1 and µ2,
respectively. We have that, for any given quantizer Q, either:

Case 1: ∀ P, P′ with µ1 8= µ2, we have that EP[Q(r)] 8=
EP′ [Q(r)]; or

Case 2: ∃ P, P′ with µ1 8= µ2, and EP[Q(r)] = EP′ [Q(r)].
We will first show that any quantizer Q satisfying Case 1

must saisfy E[Q(r)|r] = c1r + c2 for some constants c1, c2.
To do so, we first construct distributions P and P′ as follows.
Let {xi, pi, p′

i}3
i=1 be real values such that x1 8= x2,

∑3
i=1 pi =∑3

i=1 p′
i = 1 and pi, p′

i ≥ 0, ∀ i ∈ {1, 2, 3}. We design P to
be the distribution of a random variable that takes the value
xi with probability pi, and P′ be the distribution of a random
variable that takes the value xi with probability p′

i for i =
1, 2, 3.

For Case 1, it is necessary that EP[Q(r)] = EP′ [Q(r)] only
if
∑3

i=1 pixi = ∑3
i=1 p′

ixi. Or equivalently,

3∑

i=1

(
pi − p′

i
)
E[Q(r)|r = xi] = 0 only if

3∑

i=1

(
pi − p′

i
)
xi = 0.

(30)

This implies that the right null space of the matrix

E =
[
E[Q(r)|r = x1] E[Q(r)|r = x2] E[Q(r)|r = x3]

1 1 1

]

is subset of the right null space of the matrix

X =
[

x1 x2 x3
1 1 1

]

(note that
∑

i(pi−p′
i) = 0). This is because for any vector a in

the nullspace of E, there exist vectors p, p′ such that p, p′ ≥ 0,
19p = 19p′ = 1, and a = c(p − p′) for some constant c; in
particular, p = a+

19a+ , p′ = |a−|
19|a−| , where a+ is the same as a

with the negative entries replaced by zeros, while in a− the
positive entries of a are replaced by zeros. Note that 19a+ =
1T |a−| since a is in the right null space of E, hence, 19a = 0.
Thus, by (30), the same vector a also belongs in the nullspace
of X.

We also observe that since x1 8= x2 and E[Q(r)|r = x1] 8=
E[Q(r)|r = x2] (as we assumed in Case 1); hence the ranks
of E and X equal to 2. Therefore the dimension of the right
null space of each of the matrices E, X is exactly one. This,

together with the fact that the right null space of E is a subset
of the right null space of X, imply that the right null spaces of
these two matrices are exactly the same (and one-dimensional).
We note that the right null space of X includes the vector

a =




x3+x2
x1−x2
x3+x1
x2−x1

1



.

Hence, we have that Ea = 0 which implies that (from the first
row of Ea = 0)

E[Q(r)|r = x3] =
(
E[Q(r)|r = x1] − E[Q(r)|r = x2]

x2 − x1

)
x3

+ x2E[Q(r)|r = x1] − x1E[Q(r)|r = x2]
x2 − x1

As x3 was arbitrary, we have that, for all x ∈ R

E[Q(r)|r = x] = c1x + c2,

where c1 = E[Q(r)|r=x1]−E[Q(r)|r=x2]
x1−x2

, c2 =
x2E[Q(r)|r=x1]−x1E[Q(r)|r=x2]

x1−x2
. This completes the proof for

Case 1.
For Case 2, if we consider a MAB instance with two arms

with distributions P, P′ that witness the property in Case 2,
then even if we have infinite samples from the quantiza-
tion scheme we cannot achieve better than O(|µ1 − µ2|n)

regret.

B. Proof of Theorem 3

Proof: To simplify notation, we omit the time index t and
only mention it when it is necessary. Normalizing the rewards
by σ , it suffices to consider the case where σ = 1.

We first show that it suffices to consider schemes with deter-
ministic quantization levels. Let us consider a quantizer Q with
encoder E : R → N and decoder D : N → R, where E, D can
both be random. We note that as D is allowed to be random,
the set of quantization levels is now random. Let us consider
a new decoder D′ defined as

D′(i) = E[D(i)]. (31)

We now consider the quantizer Q′ defined by E, D′ as an
encoder-decoder pair. We note that the decoder D′ is a
deterministic function, hence, the set of quantization levels
for the quantizer Q′ is deterministic. We will show that:
(a) E[Q(rt)|rt] = E[Q′(rt)|rt] and (b) if Q results in sub-
Gaussian quantized rewards conditioned on rt, then Q′ also
results in sub-Gaussian quantized rewards conditioned on rt
with the same sub-Gaussian parameter as Q. Properties (a) and
(b) will allow us to switch D with D′ in the rest of our
proofs without affecting the encoder E (hence without affect-
ing the number of bits). To show E[Q(rt)|rt] = E[Q′(rt)|rt],
we observe that

E[Q(rt)|rt] = E[D(E(rt))|rt] = E[E[D(i)|rt, E(rt) = i]|rt]

= E
[
D′(E(rt))|rt

]
= E

[
Q′(rt)|rt

]
. (32)
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Fig. 9. Illustration of reward distribution.

To show the second property we observe that

E
[
exp (λ(Q(rt) − E[Q(rt)|rt]))|rt, E(rt)

]

(i)= E
[
exp

(
λ
(
Q′(rt) − E[Q(rt)|rt]

))
|rt, E(rt)

]

E
[
exp

(
λ
(
Q(rt) − Q′(rt)

))
|rt, E(rt)

]

(ii)
≥ E

[
exp

(
λ
(
Q′(rt) − E[Q(rt)|rt]

))
|rt, E(rt)

]

exp
(
λE
[(

Q(rt) − Q′(rt)
)
|rt, E(rt)

])

= E
[
exp

(
λ
(
Q′(rt) − E[Q(rt)|rt]

))
|rt, E(rt)

]

exp
(
λE
[(

D(E(rt)) − D′(E(rt))
)
|rt, E(rt)

])

(iii)= E
[
exp

(
λ
(
Q′(rt) − E[Q(rt)|rt]

))
|rt, E(rt)

]

(iv)= E
[
exp

(
λ
(
Q′(rt) − E

[
Q′(rt)|rt

]))
|rt, E(rt)

]
(33)

where (i) follows by the fact that Q′(rt) = D′(E(rt)) is a deter-
ministic function of E(rt), (ii) follows by Jensen’s inequality
and non-negativity of the exp function, (iii) follows by def-
inition of D′, and (iv) follows from (32). By taking the
conditional expectation given rt of both sides in (33) we get
that

E
[
exp (λ(Q(rt) − E[Q(rt)|rt]))|rt

]

≥ E
[
exp

(
λ
(
Q′(rt) − E

[
Q′(rt)|rt

]))
|rt
]
. (34)

a) Proof of Statetment 1 & 2 in Theorem 3: To prove 1,
2, we consider the following distribution that takes values on
2z∀z ∈ Z with

P[rt = 2z] =






P
[
N
(
0, (4σ )2) ∈ [2z, 2(z + 1)]

]
if z > 0

P
[
N
(
0, (4σ )2) ∈ [2(z − 1), 2z]

]
if z < 0

P
[
N
(
0, (4σ )2) ∈ [−2, 2]

]
if z = 0,

(35)

where N (0, (4σ )2) is a random variable with Gaussian dis-
tribution with zero mean and standard deviation 4σ . An
illustration of the distribution is depicted in Fig. 9.

By construction of the distribution, we have that rt is (4σ )2-
subGaussian, since every value in the Gaussian distribution is
mapped to one that is closer to the mean in the distribution
of rt. We next prove 1. Suppose towards a contradiction that
∃b, t such that P[Bn ≤ b] = 1∀n > t. Pick n arbitrary large,
we have that b can describe at most 2b quantization levels.
We note that the maximum distance between any consecutive
quantization levels cannot exceed 4, lest there is a reward r,
that is in the middle of the two quantization levels, mapped to r̂
with |r̂−r| ≥ 2 almost surely which violates the fact that P[|r̂−
r| ≥ 2|r = z] ≤ exp(− 22

2(σ/2)2 ) < 1 for some z given by the
subGaussian concentration of assumption (ii). Hence, either
the interval (−∞,−4(2b + 1)] or the interval [4(2b + 1),∞)

will have no quantization levels. We assume without loss of

generality that the interval [4(2b + 1),∞) has no quantization
levels. Hence, all the values in that interval will be mapped to
values in (−∞, 4(2b + 1)). We notice that for the described
reward, the interval (−∞, 4(2b +1)) has non-zero probability.
This contradicts assumption (i) (unbiasedness).

We next prove 2. Let Gt be the event that |Q(rt) − rt| ≤ 1.
We observe that by assumption (ii), since r̂t − rt is (σ

2 )2-
subGaussian, we have that P[Gt|rt] ≥ 1 − 2e−2 ≥ 0.729. Let
us consider the intervals of the form [2i − 1, 2i + 1]∀i ∈ Z.
As we proved above, it is sufficient to consider quantization
schemes with deterministic quantization levels. Let 'i(t) be
the minimum length of a quantization level in the interval
[2i − 1, 2i + 1]. We have that

E[Bt] =
∑

i∈Z
P[rt = 2i]E[Bt|rt = 2i]

≥
∑

i∈Z
P[rt = 2i]P[Gt|rt = 2i]E[Bt|rt = 2i, Gt]

≥
∑

i∈Z
P[rt = 2i]P[Gt|rt = 2i]'i

≥
∑

|i|≤4,i∈Z
P[rt = i]P[Gt|rt = 2i]'i

≥ 0.729 min
{'i}

∑

|i|≤4,i∈Z
P[rt = 2i]'i. (36)

We also notice that as the code is prefix free, then if we
restrict the code over a subset of quantization levels, it is
still prefix free. It follows that the lengths 'i need to sat-
isfy the tree inequality [47], namely,

∑
|i|≤4,i∈Z 2−'i ≤ 1.

Hence, we have that the code that minimizes (36) is Huffman
code [47]. Performing Huffman code with the weights in (36)
gives the following code lengths for '−4, . . . , '4 respectively:
6, 5, 4, 3, 1, 3, 4, 4, 6. Substituting in (36) gives E[Bt] ≥
0.729 min{'i}

∑
|i|≤4,i∈Z P[rt = i]'i ≥ 1.9.

APPENDIX E
PROOFS OF COROLLARIES 1 AND 2

The expected regret bounds follow directly from Theorem 1.
To bound the average number of bits used for the avg-pt, we
only need to bound the decay rate of 1

n

∑n−1
t=1

Rt
σ t .

Corollary 1: From Theorem 1 and [12], we have that for
QuBan with UCB, there is a constant C such that Rn ≤
Cσ
√

kn log(n). Then,

1
n

n−1∑

t=1

Rt

σ t
≤ C

1
n

n∑

t=1

√
kt log(t)

t

≤ C
√

k log(n)

n

n∑

t=1

1√
t

≤ C
√

k log(n)

n

(
1 +

∫ n

t=1

1√
t

)

≤ C
√

k log(n)n. (37)

Corollary 2: From Theorem 1 and [12], we have that for
QuBan with ε-greedy, there is a constant C such that Rn ≤
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Cσk log(1 + n
k ). Then,

1
n

n−1∑

t=1

Rt

σ t
≤ Ck

n

n−1∑

t=1

log(1 + t)
t

≤ Ck log(1 + n)

n

n−1∑

t=1

1
t

≤ Ck log(1 + n)

n

(

1 +
∫ n−1

1

1
t

)

≤ Ck(log(1 + n))2

n
. (38)

APPENDIX F
PROOF OF COROLLARY 3

We observe that the LinUCB parameters, βt, can be chosen
such that maxt∈{1,...,n} supa∈At

〈θt − θ∗, a〉 ≤ √
βn. Hence, by

Cauchy–Schwarz we have that

n∑

t=1

|〈θt − θ∗, At〉| ≤

√√√√n
n∑

t=1

|〈θt − θ∗, At〉|2

≤

√√√√n
n∑

t=1

min
{
βn, 〈θt − θ∗, At〉2}. (39)

The proof of the expected regret and average number of bits
bounds then follows as in [9, Th. 19.2] using Theorem 1.
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