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ABSTRACT
We will demonstrate a prototype query-processing engine, which
utilizes correlations among predicates to accelerate machine learn-
ing (ML) inference queries on unstructured data. Expensive op-
erators such as feature extractors and classi�ers are deployed as
user-de�ned functions (UDFs), which are not penetrable by classic
query optimization techniques such as predicate push-down. Re-
cent optimization schemes (e.g., Probabilistic Predicates or PP) build
a cheap proxy model for each predicate o�ine, and inject proxy
models in the front of expensive ML UDFs under the independence
assumption in queries. Input records that do not satisfy query pred-
icates are �ltered early by proxy models to bypass ML UDFs. But
enforcing the independence assumption may result in sub-optimal
plans. We use correlative proxy models to better exploit predicate
correlations and accelerate ML queries. We will demonstrate our
query optimizer called CORE, which builds proxy models online,
allocates parameters to each model, and reorders them. We will also
show end-to-end query processing with or without proxy models.
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1 INTRODUCTION
Consider an example work�ow illustrated in Figure 1, where in-
put tweets are processed by a machine learning (ML) user-de�ned
function (UDF) Geotagger (F1) followed by a predicate state
= ‘CA’ (f1), and another ML UDF Sentiment (F2) followed by a
predicate sentiment = positive (f2). It enables downstream vi-
sualization and statistics, such as word cloud. ML queries are costly
due to the expensive ML UDFs; improving the e�ciency for ML
inference has been a recent research focus. In our example, classic
query optimization techniques such as predicate push-down cannot
help much because f1 and f2 are stuck behind their corresponding
ML UDFs regardless of their selectivity.

Recent works [5, 8] propose to rewrite the query and insert
light-weight �lters before the expensive ML UDFs, thus forming a
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Figure 1: An example work�ow for tweet analysis.

proxy model [11]. Figure 2 demonstrates an example plan with two
proxy models f̂1 and f̂2; they quickly discard input records that
are unlikely to satisfy the predicates and thus improve the query
performance with an acceptable accuracy. In [8], an independence
assumption is made to train �lters and assemble these �lters. But,
query predicates are often correlated in many applications. In our
example, sentiments may vary in di�erent states – the sentiment
in California can be di�erent from that in Texas. The query opti-
mization (QO) in [8] overestimates the reduction when building
the �lters and thus yields sub-optimal plans.

In our recent work [13], we proposed an optimizer called “CORE”
that better exploits predicate correlations. By relaxing the indepen-
dence assumption among di�erent predicates, a proxy model is
speci�c not only to a predicate but also its input relation, i.e., pre�x
f’s and f̂’s, as well as parameter choices of pre�x f̂’s. In Figure 2,
f̂2 learns upon �ltering the raw input by f̂1 ^ f1. Note that F1 is a
row processor and does not �lter as f1 and f̂1 do. Enumerating and
building proxy models with di�erent orders and parameter choices
o�ine result in infeasible building and storage costs. CORE builds
proxy models online to avoid exhaustive o�ine �lter construction.

This demonstration will show an online query processing engine
on top of CORE, which builds proxy models using a small portion
of the input data, and executes the optimized plan on the remaining
data. Users will be able to interact with the system in various ways,
including submitting new queries and comparing performance with
or without proxy models. We will also show a correlation score for
a new query, and show end-to-end execution of a new query. We
can observe performance improvements by up to 63% compared
to [8] and by up to 80% compared to running the work�ow as it is.
In addition, CORE builds proxy models online for a new query and
leverages a branch-and-bound search process to reduce the building
costs. We will demonstrate CORE including building proxy models,
allocating accuracy parameters to proxy models, and reordering
with proxy models. Users will be able to interact with the query
optimizer by specifying an order or deciding accuracy parameters
for proxy models without waiting for the optimizer to �nish to
accelerate the QO phase.
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Figure 2: An optimized query plan with proxy models.

2 THE DEMONSTRATION SYSTEM
We build a prototype on top of Texera [10], an open source system to
support cloud-based collaborative data analytics using work�ows.
We implement a library of ML operators by deploying them as
UDFs, and utilize Texera to support Java and Python functions.
Table 1 shows a partial list of operators provided in the system.
These operators depict row manipulators; they produce one output
row per input row. Using these operators, developers are able to
construct a work�ow using a Web UI. They can also interact with
the system by choosing to execute the work�ow as it is, using PPs,
or using CORE.

Table 1: A partial list of ML modules provided in the system.

Module Name Description

Entity Recognition Label sequences of words such as person or
company names.

Sentiment Analysis Predict the sentiment of the text (i.e., positive
or negative).

Pos Tagger Assign parts of speech to each word (e.g., a
noun or a verb).

Object Detection Identify objects in an image or video (e.g., a
dog or a cup).

Activity Recognition Predict the activity of a person (e.g., applying
lipstick).

ℱ! → #! → ℱ" → #" CORE
Input query plan $

#%" → ℱ" → #" → #%! → ℱ! → #!
Modified query plan $∗
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Output data

Figure 3: Given a query plan @, CORE generates an optimized plan
@⇤ by applying proxy models. Part of the input data (:%) is used for
building proxy models, and the remaining data is processed by @⇤.

Figure 3 shows the architecture of the CORE system. Its input is
a work�ow that includes multiple ML UDFs, such as the example in
Figure 1. We follow the setup of the prior work, such as NoScope [5]
and PP [8], and leverage the query interface in [8]. Users are able
to specify a global target accuracy A, which sets a trade-o� goal
between an acceptable accuracy and query-processing speedup. In
Figure 1, A= 90%. CORE optimizes the input work�ow by building
proxy models online. A proxy model is speci�c to a predicate cqv,
where c is a predicate column, q is a comparison (e.g., > or =), and
v is a constant value. A work�ow can have one or more predicate
clauses in conjunction:

”
cqv. CORE builds a proxy model for each

predicate online, considers proxy models’ combinations, allocates
their accuracy parameters, and injects them into the modi�ed query
plan @⇤ (Figure 2). A small portion of the input data (e.g., :%) is
used to build proxy models, and the remaining data is processed by
the optimized plan @⇤.

Key technical challenges: We build the demonstration system to
answer the following technical questions to reduce the overhead of
building proxy models online. More details can be found in [13].

• Building proxy models online. Enumerating and building proxy
models o�ine result in infeasible building and storage costs. To
build f̂ online, the demonstration system generates its labeled
sample ! by pulling initial records from the input, �ltering these
records by its input relation 3 , and labeling ! using its predicate
f . Sample ! is divided into the training set, the testing set, and
the validation set. We re-sample the training data to ensure
a label balance. The classi�er" is trained on the training set
using light-weight classi�cation algorithms, such as a linear
SVM and a shallow NN. During training, we leverage a grid-
search cross-validation on the F1-score to decide the best hyper-
parameters. We derive the accuracy versus reduction curve '
using the validation set.

• Allocating parameters for proxy models. The system leverages a
hill-climbing search to �nd an optimal accuracy allocation for
proxymodels. Themain challenge is that building proxymodels
online is time-consuming because (i) there are an exponential
number of candidates f̂’s, and (ii) generating a labeled sample
and training a classi�er are computationally costly. The system
reuses previously materialized samples and trained classi�ers
to reduce labeling costs and training costs, respectively.

• Reordering proxy models. Building all proxy models for di�erent
orders can be computationally expensive. We leverage a branch-
and-bound search to prune candidate plans. Speci�cally, we
compute a lower bound and an upper bound of costs

Õ
⇠ for a

speci�c order of proxy models. During the search, we tighten
the lower and upper bounds of

Õ
⇠ as we collect more infor-

mation, such as selectivity and reduction, and prune candidate
plans to reduce the optimization overhead. Additionally, we
adopt a �ne-grained search tree to improve the search process
further.

3 DEMONSTRATION SCENARIOS
3.1 Correlated Work�ows
In the demonstration, we provide three datasets with text, images,
and videos, an operator library as illustrated in Table 1, and several
pre-constructed work�ows over the datasets with di�erent correla-
tion among the query predicates. These work�ows retrieve texts,
images, and videos that match given �lter conditions, which are
conjunctions of multiple clauses. Each �lter is an equality condi-
tion on an ML-generated label column. Users will also be able to
construct a work�ow using the operator library.
Twitter text dataset. It contains 2M tweets from January 2017 to
September 2017 in the United States. Each tweet is a string with
a maximum of 140 characters. We demonstrate several work�ows
with various NLP modules such as entity recognition and sentiment
analysis to analyze tweets.

����



Figure 4: A �ne-grained tree generated by CORE demonstrating runtime metrics of �ve nodes and the selected order Geotagger ! Sentiment.

COCO image dataset. COCO is a public dataset with 123K images
and 80 object classes such as “person,” “bicycle,” and “dog.” Each
image is labeled with multiple objects for their class labels and
bounding box positions. We demonstrate work�ows with di�erent
levels of correlation among the query predicates.
UCF101 video dataset. UCF101 contains 13K videos collected from
YouTube. Each video is labeled with one of 101 action categories
such as “applying lipstick” and “baby crawling.” We demonstrate
several work�ows with object detection and activity recognition
models to retrieve videos with speci�c labels.
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Figure 5: A paused work�ow demonstrating its correlation score and
the runtime metrics of the �rst three operators.

We show the correlation score of the query predicates on the
interface. We compute the correlation score using its formulation
provided by CORDS [4]. When users start running the work�ow,
the system collects and shows each operator’s runtimemetrics, such
as the number of processed records, cost, and selectivity. Users may
pause the work�ow, observe each operator’s runtime metrics, and
resume the work�ow to gain valuable insights [12]. In Figure 5, the
user paused the work�ow and observed the �rst three operators’
runtime metrics. The cost of the Geotagger is 20ms per record,
and the selectivity of the state = ‘CA’ �lter is 0.52.

3.2 Visualizing Query Optimization with CORE
In this scenario, we use pre-constructed work�ows over the Twit-
ter dataset to demonstrate the CORE query optimizer including
building proxy models online, allocating accuracy to each proxy
model, and reordering with proxy models. We show the optimiza-
tion overhead of the work�ow and how users can interact with the
query optimizer.

Given a work�ow, CORE converts candidate query plans in the
space H to a �ne-grained tree. Figure 4 shows the �ne-grained tree

for the work�ow in Figure 1. There are two types of tree nodes. (i)
An !-node represents a pair of ML UDF and its �lter, and it is to
generate labeled samples. (ii) An"-node is to train its correspond-
ing classi�ers and derive an accuracy-versus-reduction relationship
'. The root of the tree is the CSV File Scan operator in the work-
�ow, which reads initial records from the input. Leaf nodes are
View Results operators, which store results of the work�ow.

The problem of �nding an optimal order of proxy models and
allocating their accuracy parameters simultaneously is NP-hard.
CORE searches over the tree using a branch-and-bound algorithm
to prune candidate plans. Our demo shows each node’s runtime
metrics during the search process. For an !-node, we show the
number of records in the labeled sample, the number of processed
records, cost, and selectivity. For an"-node, we show the training
cost and the accuracy-versus-reduction curve. CORE tightens the
lower and upper bounds for di�erent query plans as we collect
information, such as selectivity and reduction. The demo shows
each candidate’s lower and upper bounds of

Õ
⇠ .

Figure 4 illustrates the runtime metrics of �ve nodes, including
three !-nodes and two"-nodes. For the runtime metrics of node
1, the Geotagger processed 3.85K records but only kept the �rst
2K records in its labeled sample. The lower and upper bounds ofÕ
⇠ for the order Geotagger ! Sentiment became 6 and 829 after

collecting the cost and selectivity of the Geotagger. Based on the
runtime metrics of"-node 8, the accuracy-versus-reduction curve
is shown. The lower and upper bounds of Geotagger ! Sentiment
became 37 and 352, respectively, after collecting the 0.46 reduction.
We also demonstrate pruned candidate plans. Their corresponding
nodes in the �ne-grained tree are gray, such as nodes 3, 5, and 6.

The user may interact with CORE by specifying an order or
deciding an accuracy parameter for a proxy model without waiting
for the optimizer to reduce the QO overhead. Speci�cally, the user
can select a query plan from candidates to build proxy models. In
Figure 4, the user clicks the Priority button and node 4 to select
the order Geotagger! Sentiment. After observing the accuracy-
versus-reduction curve from an "-node, the user can specify an
accuracy parameter for a node’s proxy model by choosing an accu-
racy value on the curve. For node 8 in Figure 4, the choice is at a
0.46 reduction.
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3.3 End-to-End Query Processing
We use the pre-constructed work�ows over the Twitter dataset
to demonstrate the system. A user is able to submit a new work-
�ow and specify a query accuracy A. The demonstration system
supports two other modes to run a work�ow besides using CORE.
(i) ORIG runs the original work�ow as it is, and (ii) PP builds a
light-weight proxy model for each predicate, and injects them early
in a plan. PP decides the accuracy parameter for each proxy model
using a dynamic programming algorithm with an independence
assumption of predicates. Users are able to run and compare the
work�ow using ORIG, PP, and CORE.

The demonstration system uses a small portion of the input
data to generate an optimal plan, and processes the remaining
data using the optimal plan. The demo shows the percentage of
the initial input data used to build proxy models, the total time of
running the work�ow including the optimization overhead, the
QO cost percentage (i.e., the percentage of the QO time over the
total processing time), and the execution cost. Users may compare
the performance of running the work�ow with di�erent modes. In
general, both PP and CORE improve the performance of work�ows,
and CORE achieves more improvement on correlated work�ows
than PP.

4 RELATEDWORK
Operator reordering in database optimization. [1] studies how
to order correlated predicates in streaming systems. It uses a greedy
algorithm for selection ordering and collects samples at runtime
to estimate selectivity. Our QO gives an optimal solution and uses
a branch-and-bound search to quickly prune plans in the space of
proxy models. [9] studies various optimization techniques of com-
plex user-de�ned functions on map-reduce-style big data systems,
such as predicate simpli�cation and UDF semantic inference. These
techniques are orthogonal to our solution. [2] provides approximate
answers to queries by running queries on a small sampling subset
of data. Our approach provides approximate answers by exploiting
the accuracy of ML inference predicates.
OptimizationwithProxymodels (a.k.a. cascaded�lters). Proxy
models have been studied for decades to accelerate ML inference.
Jones et al. [11] cascade weak classi�ers as proxy models to speed-
up face detection in images. Recently proxy models have been ap-
plied in big-data systems to accelerate ML inference-based analysis
tasks [3, 5, 6, 8]. NoScope [5] inserts a cheap specialized model be-
fore expensive DNNs to accelerate selection video queries. Certain
classes of video queries [7] including selection without guaran-
tees [3] and selection with statistical guarantees [6] are optimized
using proxy models. Probabilistic predicates (PPs) [8] optimize var-
ious workloads by inserting multiple o�ine-built proxy models
before expensive ML UDFs with an assumption of independence

between predicates. Unlike [3, 5, 6], PP and our proposed CORE
leverage general proxymodels for variousworkloads.CORE follows
this line of work and further relaxes the independence assumption.

5 CONCLUSIONS
This paper demonstrates a novel query optimizer, CORE, to acceler-
ate ML inference queries. It improves state-of-the-art techniques by
relaxing the independence assumption among di�erent predicates.
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