
Optimizing Machine Learning Inference �eries with Correlative
Proxy Models

Zhihui Yang∗
Zhejiang Lab, Hangzhou, China
zhyang14@zhejianglab.com

Zuozhi Wang
UC Irvine, CA, USA
zuozhiw@ics.uci.edu

Yicong Huang
UC Irvine, CA, USA
yicongh1@ics.uci.edu

Yao Lu
Microsoft Research, WA, USA

luyao@microsoft.com

Chen Li
UC Irvine, CA, USA
chenli@ics.uci.edu

X. Sean Wang
Fudan University, Shanghai, China

xywangcs@fudan.edu.cn

ABSTRACT
We consider accelerating machine learning (ML) inference queries
on unstructured datasets. Expensive operators such as feature
extractors and classi�ers are deployed as user-de�ned functions
(UDFs), which are not penetrable with classic query optimiza-
tion techniques such as predicate push-down. Recent optimization
schemes (e.g., Probabilistic Predicates or PP) assume independence
among the query predicates, build a proxy model for each predicate
o�ine, and rewrite a new query by injecting these cheap proxy
models in the front of the expensive ML UDFs. In such a manner,
unlikely inputs that do not satisfy query predicates are �ltered early
to bypass the ML UDFs. We show that enforcing the independence
assumption in this context may result in sub-optimal plans. In this
paper, we propose CORE, a query optimizer that better exploits the
predicate correlations and accelerates ML inference queries. Our so-
lution builds the proxy models online for a new query and leverages
a branch-and-bound search process to reduce the building costs.
Results on three real-world text, image and video datasets show
that CORE improves the query throughput by up to 63% compared
to PP and up to 80% compared to running the queries as it is.

PVLDB Reference Format:
Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean
Wang. Optimizing Machine Learning Inference Queries with Correlative
Proxy Models. PVLDB, 15(10): 2032 - 2044, 2022.
doi:10.14778/3547305.3547310

1 INTRODUCTION
Modern DBMS systems apply machine learning (ML) inference
as user-de�ned functions (UDFs) for complex analytics over un-
structured texts, images, and videos [3, 11, 22, 24]. Example models
include those extracting user sentiments from product reviews
for market analysis [39] and those estimating vehicle counts from
surveillance videos for tra�c planning [13]. Consider the following
query, where input tweets are processed by two ML UDFs, namely
a geographic tagger (F1) and a sentiment analyzer (F2), to generate

∗Part of the work was done at Fudan University and during a visit to UC Irvine.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547310

Input
ℱ!:

Geotagger
ℱ":

Sentiment Output
#!:

state=‘CA’
#":

sentiment
=positive

Input ℱ! Output#! #"
#$!:

state=‘CA’
#$":

sentiment
= positive

proxy model proxy model

ℱ"

(a)

(b)

Figure 1: (a) An example query plan for tweet analysis. (b) An opti-
mized query plan with proxy models.

the predicate columns. These queries enable downstream visualiza-
tion and statistics, such as word cloud that shows most frequent
tokens, and users can accept approximate but fast results.

SELECT F1(t) AS state, F2(t) AS sentiment
FROM Tweets AS t
WHERE state = ‘CA’ ^ sentiment = positive;

Figure 1(a) demonstrates the plan of the above query, where
f1 and f2 are the predicates state = ‘CA’ and sentiment =
positive, respectively. ML queries are costly due to the expensive
ML UDFs; improving the e�ciency for ML inference has been a
recent research focus [3, 11, 17, 21, 30] to provide an additional
trade-o� between accuracy and e�ciency [9, 17, 30]. In our ex-
ample, classic query optimization techniques such as predicate
push-down cannot help much because f1 and f2 are stuck behind
their corresponding ML UDFs regardless of their selectivity.

To optimize such ML inference queries, recent works [17, 30]
propose to rewrite the query and insert a set of light-weight �lters
in front of the expensive ML UDFs, thus forming a proxy model [38].
Figure 1(b) demonstrates an example plan with two proxy models
f̂1 and f̂2; they quickly discard input records that are unlikely to
satisfy the predicates and thus improve the query performance.

In [30], a proxy model (i.e., “Probabilistic Predicate” or “PP”) is
speci�c to a predicate cqv, where c is a predicate column, q is a
comparison (e.g., > or =), and v is a constant value. An indepen-
dence assumption is made to train �lters among di�erent predicates
directly using the raw input, regardless of the fact that each may
have a di�erent input relation. When ad-hoc queries with multiple
predicates arrive, a query optimizer (QO) rewrites and accelerates
the query by assembling individual �lters and using them also in
an independent manner. In many applications, query predicates are
often correlated. In our example, sentiments may vary in di�erent
states – the sentiment in California can be di�erent from that in
Texas. As Section 2.2 will show, the QO in [30] overestimates the

����

reduction when building the �lters on the raw input and thus yields
sub-optimal plans for a new query with correlated predicates.

Inspired by [17, 30] to optimizeML inference using proxymodels,
we intend to relax the independence assumption among di�erent
predicates. A proxy model hence is speci�c not only to a predicate
but also to its input relation, i.e., pre�x f’s and f̂’s, as well as pa-
rameter choices of pre�x f̂ ’s. In Figure 1(b), f̂2 learns upon �ltering
the raw input by f̂1^f11. Unlike [30] that builds a small number of
independent �lters, it is easy to see that relaxing the independence
assumption may result in an untenable number of �lters to build
by enumerating their order and parameter choices.

We propose an optimizer called “CORE” that better exploits pred-
icate correlations in ML inference. Given an ad-hoc query, CORE
builds the proxy models online to avoid exhaustive o�ine �lter con-
struction. We describe a novel technique to accelerate such process
at a small overhead (e.g., a few percent of the query processing) and
a user-speci�ed accuracy target. Extensive experiments for queries
over datasets of tweets, images, and videos indicate that CORE
improves the ML inference execution costs by up to 63% compared
to [30] and up to 80% compared to running the workload as it is.
Various downstream applications, such as interactive data explo-
ration, can bene�t from CORE due to a better resource utilization
and a faster decision making.

To summarize, our key contributions are as follows:
• We show that correlations in predicates may harm the

performance of a prior optimization scheme for ML in-
ference [30].

• We propose CORE to accelerate ML inference and relax the
independence assumption enforced by prior work. Our QO
scheme prunes the space of candidate �lters to build and
incurs only a small computing overhead.

• Experiments on real-world ML-inference workloads and
datasets show that CORE can achieve signi�cant query-
throughput improvements.

1.1 Related Work
Operator reordering in database optimization. [6, 10] studied
the problem of reordering select-project-join operators in data-
base systems. [2] studied how to order correlated predicates in
streaming systems. It used a greedy algorithm for selection order-
ing and collected samples at runtime to estimate selectivity. Our
query optimization algorithm gives an optimal solution and uses
a branch-and-bound search to quickly prune plans in the space of
proxy models. [34] studied various optimization techniques of com-
plex user-de�ned functions on map-reduce-style big data systems,
such as predicate simpli�cation and UDF semantic inference. These
techniques were orthogonal to our solution. Sampling-based ap-
proximate query processing techniques [5] provided approximate
answers to queries by running queries on a small sampling subset
of data. Our approach provides approximate answers by exploiting
the accuracy of ML inference predicates.
Proxy models (a.k.a. cascaded �lters) in machine learning.
One of the �rst proxy models [38] cascaded a sequence of light-
weight classi�ers to discard background regions of an image to
accelerate object detection. Later, proxy models were studied to
1F1 is a row processor and does not �lter as f1 and f̂1 do.

improve the performance of classi�cation [32], detection [4, 26],
semantic image segmentation [27], and pose estimation [36]. Di�er-
ent from [4, 26, 27, 38] that used a cascade of classi�ers to quickly
reject sub-regions of an image, our CORE uses proxy models to re-
duce the size of records to be processed by ML UDFs. Unlike [32, 36]
that integrated proxy models into DNN models to improve the per-
formance during the training phase, our CORE uses proxy models
as separate operators to accelerate ML inference.
Proxy models in databases. Recently proxy models have been ap-
plied in big-data systems to accelerate ML inference-based analysis
tasks [12, 16–19, 23, 30, 40]. NoScope [17] �rstly cascaded a cheap
specialized model before expensive DNNs to accelerate selection
video queries. After it, certain classes of video queries including
selection without guarantees [12], selection with statistical guar-
antees [18], aggregation [16] and limit queries [16] was optimized
using proxy models. A general index solution in [19] was proposed
to accelerate these video queries over the schema induced by the
target DNN. Probabilistic predicates (PP’s) [30] optimized various
domain queries by inserting multiple o�ine-built proxy models
before expensive ML UDFs with an assumption of independence
between predicates. Di�erent from [12, 16–18, 23, 40], PP and our
proposed CORE cascade general proxy models, which are applica-
ble to a variety of domains. CORE follows this line of work and
further relaxes the independence assumption of the predicates.

2 PROXY MODELS
We brie�y review the background of proxy models and then study
the impact of correlations to proxy models.

2.1 Background
Proxy models have been studied for decades to accelerate ML
inference. Jones et al. [38] cascade weak classi�ers as proxy models
to speed-up face detection in images. Recently, techniques of using
cheaper but less accurate ML models to accelerate ML models in [4,
26, 27, 32, 36, 38] attracted attention in big data systems. We brie�y
review two related solutions [17, 30] and refer the readers to their
papers for more details.
NoScope (NS) [17] aims to process video queries such as “�nding
video frames with vehicles” and “�nding video frames with pedes-
trians” using an object-detector UDF. It builds and applies a proxy
model, i.e., a cheaper object detector using shallowNeural Networks
(NNs), which has the same semantics as the object-detector UDF.
NoScope has to train for each query predicate and thus has large
building costs when the query predicates are ad-hoc or complex.
Probabilistic Predicate (PP) [30], as mentioned earlier, is another
form of proxy models. Each PP is a cheap classi�er to predict the
likelihood of an input record matching a predicate clause. Easy
inputs with a small likelihood will be discarded immediately, while
hard inputs will be processed further by subsequent ML UDFs.
For ad-hoc queries with complex predicates, a query optimizer as-
sembles multiple PPs built o�ine, and a dynamic programming
algorithm is leveraged to achieve a maximum reduction, under
the independence assumption in queries. However, this assump-
tion made in PP limits its use to broader applications. Dependency
between columns is the rule, rather than the exception, in the real

����

world [14]. In the following, we conduct a controlled experiment
to study the impact of correlations to proxy models.

2.2 Impact of Correlations
To better understand the impact of correlations in processing ML
inference queries, we leverage the correlation score provided by
CORDS [14]. Speci�cally, let 31 and 32 be the distinct counts in a
pair of columns. The correlation score is computed by a chi-squared
test upon a sample of =-rows:

ˆ̂2 =
1

=(min(31,32) � 1)

31’
8=1

32’
9=1

(=8 9 � =8 ·= · 9)2
=8 ·= · 9

,

where =8 9 is the frequency of distinct tuple 8, 9 , and =8 · , = · 9 are the
marginal frequency. A larger ˆ̂2 value indicates a stronger correla-
tion between the columns. For example, we can follow CORDS to
use a sample of 10K rows and normalize the correlations scores by
the maximum number in all the predicate pairs. All other algorith-
mic details follow the CORDS paper [14].
Why correlationmatters for PP?We explain the reason using the
Twitter dataset and two queries, @ and @0, each with two predicates
of di�erent kinds of correlation. We illustrate these two queries in
Appendix A.1 in the technical report [42].The correlation between
the @ predicates is stronger (2.5 ⇥) than that of the @0 predicates.
The PP �lters are trained o�ine for each predicate without consid-
ering the context in which the predicate is applied. We collect the
estimated accuracy-reduction curves for the second PP in @ and @0
during the training phase and illustrate them in Figures 2a and 2b,
respectively. Two proxy models f̂1 and f̂2 are connected for the
predicate f1 ^ f2.

(a) Strongly correlated query @. (b) Weakly correlated query @0.

Figure 2: The estimated and empirical accuracy-reduction curves of
the second PP �lters in a strongly correlated query @ and a weakly
correlated query @0. Correlation results in overestimated reductions
o�line in PP.

Whenf1 andf2 are correlated and f̂1 discards a row thatmatches
f1, the discarded row is also likely to match f2 because of the cor-
relation. In general, the empirical reduction produced by f̂2 is less
than the estimated reduction as shown in Figure 2, because there are
fewer input rows for f2 after f̂1. When there is a strong correlation,
the reductions can be overestimated. For example, as shown by @
with a strong correlation in Figure 2a, when the accuracy is 95%,
the estimated data reduction is 40%, and the empirical value is 15%.
At the same accuracy, the di�erence of the reduction ratio for @0 in
Figure 2b with a weak correlation is at most 2%. As a result, with
strong correlations, PP unnecessarily routes more inputs to the

expensive ML UDFs and thus yields a lower performance speedup.
This example shows that the optimizer in previous work overesti-
mates the reduction of the proxy models built o�ine, thus yielding
suboptimal query plans and less performance improvement for a
new query with correlated predicates; this limits the use of PPs to
broader applications.

3 CORE OVERVIEW
In this section we give an overview of CORE and formally de�ne
its optimization problem.

3.1 System Architecture
In Figure 3, the input of CORE is a query that includes multiple ML
inference UDFs. These UDFs, as seen in the previous section, depict
row manipulators; they produce one output row per input row. ML
UDFs wrap operations such as feature extraction or classi�cation.
CORE optimizes the input query by building proxy models online
and generates a more e�cient plan @⇤. We build proxy models for
predicates of the form cqv. Meanwhile, a query can have one or
more predicate clauses in conjunction:

”
cqv. A small portion of

the input data (e.g., :%) is used to build proxy models, and the
remaining data is processed by the optimized plan @⇤. We follow
the scope of previous papers such as NoScope [17] and PP [30] to
focus on approximate selection queries.

ℱ! → #! → ℱ" → #" CORE
Input query plan $

#%" → ℱ" → #" → #%! → ℱ! → #!
Modified query plan $∗

Input data&% 1 − &%

Output data

Figure 3: Given a query plan @, CORE generates an optimized plan
@⇤ by applying proxy models. Part of the input data (:%) is used for
building proxy models, and the remaining data is processed by @⇤.

D��������� 1. A proxy model f̂ is characterized by a tuple

{3,f,", !,'},
where 3 is an input relation (i.e., applying a sequence of pre�x
�lters on the raw input), and f is a target predicate that f̂ aims to
improve;" is a regression model used by f̂ to produce a scoring
function for each input record; ! is a labeled sample from the input
relation 3 to build" ; and ' is a mapping from an accuracy U to a
reduction A . For the example in Figure 1(b), f̂1 is built for the input
relation 31 = ú (raw input) and the predicate f1 : state=‘CA’,
while f̂2 is built for 32 = (f̂1,f1) and f2 : sentiment=positive.
The mapping ' will be explained shortly.
Building proxy models online consists of collecting ! and then
training " . We leverage the initial stream of the input data for !
(e.g., a few thousand rows). The labeled sample ! is obtained by
applying the �lters speci�ed in 3 upon the raw input and then
labeling by predicate f . The label is +1 if f is satis�ed, and -1
otherwise. Next, we use light-weight regression models such as
linear SVMs [15] or shallow NNs [25] to train" .

Given an input record x, a proxymodel predicts a score" (x). For
example, for linear SVM," (x) = w) x + 1, where w is a weighted

����

M(#) →

0

1

& = 0.3

5/18=28%

10/10=100%
8/18=44%

9/10=90%

& = 0.4

Accuracy , Reduction -

+1-1

Figure 4: Relationship between an accuracy U and a reduction ratio A
in a proxymodel. Records are ranked in ascending order according to
their" (G) scores along the G-axis. White and dark circles represent
records with -1 and +1 labels, respectively.

matrix and 1 is a bias term. Record x will be discarded if" (x) < \
(for a threshold \), and in this case the record is called a negative ex-
ample. As in [30], the accuracy is the percentage of positive records
being passed by a proxy model relative to all positive records. The
data reduction is the percentage of records being discarded relative
to all input records. In Figure 4, setting \ = 0.3 results in all positive
records being passed (i.e., the accuracy is 100%), and 5 out of 18
total records being discarded (i.e., the reduction is 28%). Setting
\ = 0.4 results in 9 records of 10 total positive records being passed
(i.e., the accuracy is 90%), and 8 out of 18 records being discarded
(i.e., the reduction is 44%). It is clear that a higher \ yields a lower
accuracy and a higher data reduction. Such early �ltering is a trade-
o� between accuracy and data reduction. Note that the mapping
between U and A given \ can be evaluated using a validation set.
In the rest of the paper we denote such a relationship as '. We
can compute it by evaluating f̂ on a validation set from the initial
stream of the input records.

Then, our developed query optimizer injects f̂ into the query
plan right before the corresponding ML UDF that generates the f
predicate column (Figure 1(b)) for the remaining input records.
Query optimization by applying proxy models. We borrow
the AQP-style query interface in [30]. Speci�cally, the user issues a
query and speci�es a global target accuracy A that depicts the level
of false negatives of the proxy models in addition to those caused
by the UDF. Note that the UDFs themselves produce false positives
and negatives and we do not intend to break the black boxes to
improve their accuracy and performance. A is the percentage of
the output of an original query @ kept by its optimized query @⇤

(Figure 3). It is a value between 0 and 1. It sets the trade-o� goals
between additional errors and query-processing speedups. Our QO
builds the proxy models, considers their combinations, allocates
their accuracy parameters, and injects them into the modi�ed query
plan @⇤. To reduce the computing overhead and latency of building
the proxy models before the input query can be accelerated, the
QO reuses intermediate results during the �lter construction and
prunes candidate plans using a branch-and-bound search.

3.2 Formulation of Optimization Problem
Given anML query @ with UDFsF1, . . . ,F= , predicate �lters f1, . . . ,
f= , and a query-level target accuracy A, we aim to build proxy
models f̂1, . . . , f̂= with their accuracy parameters U1, . . . ,U= so that
A is met. Let the execution costs of applying f̂8 and the ML UDF
F8 be 2̂8 and 28 , respectively. For a pair of a proxy model f̂8 and
its corresponding ML UDF F8 (i.e., f̂8 ^F8), its input cardinality is

Table 1: Notations used in this paper.

Notation Meaning
f A �lter predicate after an ML UDF.
f̂ A cheap proxy model that has the same semantics as f .
3 The input relation of a proxy model f̂ .

!," , ' The labeled sample, trained classi�er, and accuracy-reduction curve
for a proxy model, respectively.

U, A A proxy model’s accuracy and the achieved reduction ratio.
@,A A query and a query-level target accuracy speci�ed by a user.
B8 The selectivity of f8 on the condition of pre�x f̂1, . . . , f̂8�1 and f1,

. . . ,f8�1 , i.e., f8 | (f̂1, . . . , f̂8�1,f1, . . . ,f8�1) .
2̂8 , 2 The execution cost for f̂ and an ML UDF F.
c An order of proxy models.

⇠;
8 ,⇠

D
8 Lower and upper bounds of execution cost for a pair (f̂8 , F8).Œ8�1

9=1 B 9 · U 9 . The execution cost of the pair is

⇠ (f̂8 ,U8) = (
8�1÷
9=1

B 9 · U 9) · (2̂8 + (1 � A8) · 28), (3.1)

where U8 is the accuracy of f̂8 , A8 is the reduction of f̂8 , and B8 is the
conditional selectivity of predicate f8 with prior �lters f̂1, . . . , f̂8�1,
f1, . . . ,f8�1.

In an original query @, let B̄8 be the conditional selectivity of f8
with prior f1, . . . ,f8�1. In an optimized query @⇤, let B̂8 be the con-
ditional selectivity of f̂8 ^ f8 with prior f̂1, . . . , f̂8�1,f1, . . . , f8�1.
According to the accuracy de�nition in [30], the accuracy of f̂8 can
be computed as:

U8 = B̂8/B8 , (3.2)
which is the percentage of the output by f8 kept by f̂8 ^ f8 . The
output selectivity of the original query @ is

Œ=
8=1 B̄8 , and the output

selectivity of an optimized plan @⇤ is
Œ=

8=1 B̂8 . The query accuracyA
can be computed as A=

Œ=
8=1 (B̂8/B̄8). When building proxy models,

their accuracy parameters and A satisfy÷
8

U8 · X8 = A,

where X8 = B8/B̄8 . X8 is at most 1/(Œ8�1
9=1 (U 9 · X 9)) and its value is

always smaller than 1/A. The detailed derivation of a lower bound
and an upper bound of X8 is in Appendix A.2 in [42]. For simplicity,
we use U8 to refer U8 · X8 in the following sections.
Example. We demonstrate the number of passing records by each
�lter for the example query in Figure 5. In Figure 5(a), X2 = B2/B̄2,
where B̄2 = 60/100 is the conditional selectivity of the predicate
sentiment=positive with a prior conditional predicate state=
“CA" (i.e., f1); B2 = 56/96 is the conditional selectivity of the same
predicate with a prior condition f̂1 ^ f1 in Figure 5(b). Hence, X2 =
B2/B̄2 = (56/96)/(60/100) = 0.972, which measures the changes of
the input of f2 after adding its pre�x proxy model f̂1. This proxy
model changes the input data size of f2 from 100 to 96 because f̂1
discards 4 tweets satisfying state=“CA". Similarly, X1 = B1/B̄1 =
(100/200)/(100/200) = 1, since f1 is the �rst �lter and there is no
pre�x proxy model changing the input of f1.

To this end, the target accuracy A is calculated as A= 54/60 =
0.9, which is the percentage of the output of the original query in
Figure 5(a) (i.e., 60 tweets) kept by its optimized plan in Figure 5(c)
(i.e., 54 tweets). For each proxy model f̂8 , U8 is the percentage of
the output by f8 kept by f̂8 ^ f8 . In Figure 5(b), U1 = 96/100 = 0.96,
as f̂1 ^ f1 keeps 96 tweets in Figure 5(b) and f1 keeps 100 tweets
in Figure 5(a). Similarly, U2 = 54/56 = 0.964. As mentioned before,

����

Selectivity ("̅!) = 100/200 Selectivity ("̅") = 60/100

Input
ℱ!:

Geotagger
ℱ":

Sentiment
#!:

state=‘CA’ Output
#":

sentiment
=positive

60200 100

Selectivity ("") = 56/96

Input
ℱ!:

Geotagger
ℱ":	

Sentiment Output
#!:

state=‘CA’
#":

sentiment
= positive

#%!:
state=‘CA’

56200 120 96

Accuracy (-!) = 96/100Reduction (.!) = (200 − 120)/200

Input
ℱ!:

Geotagger
ℱ":

Sentiment Output
#!:

state=‘CA’
#":

sentiment
= positive

#%!:
state=‘CA’

#%":
sentiment
= positive

54200 120

Reduction (.") = (96−66)/96

96 66

Accuracy (-") = 54/56

(a)

(b)

(c)

Figure 5: Step-by-step demonstration of inserting two proxy models to optimize a query. (a) An original query plan; (b) A query plan with f̂1
inserted; (c) A query plan with f̂1 and f̂2 inserted. Each edge depicts the number of passing tweets. Selectivity (i.e., B̄8 , B8), reduction (i.e., A8), and
accuracy (i.e., U8) values are illustrated. The overall query accuracy is A= 54/60.

X1 = 1 and X2 = 0.972. Both of them measure the input relation
changes for f1 and f2 respectively when applying proxy models.
Finally, we have U1 · X1 · U2 · X2 = 0.9 = A. In general, relaxing the
independence assumption among predicates results in introducing
a input relation change factor X caused by its pre�x proxy model.
Problem Statement. Let c be an order of the ML UDFs and pred-
icate �lters. Let f̂c8 denote the c8 -th proxy model. Our QO �nds
the following optimal query plan in the order space c 2 H and the
accuracy space A:

arg min
c 2H,U 2A

’
8

⇠ (f̂c8 ,Uc8), B .C .
÷
8

Uc8 = A. (3.3)

Finding an optimal order c of f̂ and allocating their parameter
U , simultaneously, is NP-hard, as shown in Theorem 1 in [42].Since
both A and B depend on 3 and the input relation of f̂ (i.e., pre�x f , f̂ ,
and U choices), building f̂ o�ine by enumerating possible 3 incurs
large computing costs. We seek a solution such that each f̂ is built
on-the-�y on a materialized sample ! of its input relation 3 . A main
challenge is that, given the accuracy target, how to e�ciently build
f̂ with a small computing overhead with taking its input relation
into account. We describe our solution to �nd an optimal set of
accuracy parameters U 2 A given an order c in Section 4, and study
how to �nd an optimal order c 2 H in Section 5. Both sub-problems
exhibit unique structures that can be leveraged for acceleration.
Table 1 summarizes the notations used in the paper.

4 CORE: ACCURACY ALLOCATION
In this section, we present an e�cient algorithm in CORE for de-
riving an optimal accuracy allocation Uc1 , . . . ,Uc= among di�erent
f̂c8 for a given order c to achieve a minimum cost

Õ
8 ⇠ (f̂c8 ,Uc8).

4.1 A Basic Approach and its Challenge
One approach to allocating the accuracy is as follows. We �rst
discretize A with a �xed step size. For each candidate Uc8 satisfyingŒ

8 Uc8 � A, we build a proxy model in the order of c . We obtain a
labeled sample given its input relation, train a classi�er, and derive
reduction as mentioned in Section 3. After building f̂c8 , we compute
its cost using Equation 3.1, and �nd an optimal U for a minimal
cost. A main challenge is that building proxy models online is time-
consuming for two reasons. (i) There are an exponential number

of candidates f̂c8 ’s. (ii) For each proxy model, generating a labeled
sample and training a classi�er can be computationally costly.

To solve this problem, we present Algorithm 1, which accelerates
the construction given input relations speci�ed in c by reusing
previously materialized samples and trained models. Next we will
present the details of the algorithm.

Algorithm 1: Accuracy allocation

1: procedure A�������_A���������(c,A)
2: !0c0 raw input;
3: for U = hUc1 , . . . ,Uc= i in discretized A, s.t.

Œ
8 Uc8 = A:

4: for 8 2 {1, . . . ,=}:
5: if !0c8 is not materialized:
6: !0c8 Apply fc8 on !0c8�1 ;
7: !c8 Apply f̂c1 , . . . , f̂c8�1 on !0c8 with U ;
8: Reuse f̂⇤c8 if n-approx on !c8 else retrain;
9: Compute⇠ (f̂c8 ,Uc8) ;
10: Compute cost

Õ
8 ⇠ (f̂c8 ,Uc8) ;

11: Pick U⇤ in A with a minimum cost;
12: Retrain f̂c1 , . . . , f̂c= with U⇤;
13: return f̂c1 , . . . , f̂c= and U⇤c1 , . . . ,U

⇤
c= .

4.2 Search Framework
As shown in the following example, the objective function (the costÕ
8 ⇠ (f̂c8 ,Uc8) subject toU) is non-convex, whichmeans there could

be multiple locally optimal solutions. In order to �nd a globally
optimal solution, we use an exhaustive search framework in the
algorithm (lines 3 ⇠ 4). If a locally optimal solution is acceptable
by the user, the algorithm can be easily extended to other search
frameworks, such as hill climbing, by replacing lines 3 ⇠ 4.

To illustrate that the objective function is non-convex, we con-
struct an examplewith= = 2. The cost of applying each proxymodel
before its correspondingML UDF could be any non-decreasing func-
tion over its accuracy. This is because the reduction decreases with
the increase of accuracy [30]. Two example costs are the following:

⇠ (f̂1,U1) = 1 � (U1 � 1)2,U1 2 [0, 1] .

⇠ (f̂2,U2) = 4�(2A/U2�1)3 ,U2 2 [0, 1] .

����

Both ⇠ (f̂1,U1) and ⇠ (f̂2,U2) increase monotonically when U1 2
[0, 1] and U2 2 [0, 1]. The cost function 5 =

Õ
⇠ is

4�(2G�1)
3 + 1 � (G � 1)2, G 2 [0, 1] .

If the function 5 is convex on an interval [0, 1], by de�nition [8],
for any two points G1 and G2 in [0, 1] and any _ where 0 < _ < 1,

5 (_G1 + (1 � _)G2)  _5 (G1) + (1 � _) 5 (G2) .
However, when G1 = 0.1, G2 = 0.5 and _ = 1/2, 5 (G1+G22) =

1.17; 5 (G1)+5 (G2)2 = 1.12. So 5 does not satisfy 5 (_G1 + (1� _)G2) 
_5 (G1) + (1 � _) 5 (G2). Thus 5 is not convex.

4.3 Reusing Samples to Reduce Labeling Costs
We �rst give a theorem about the proxy models, then show how
the algorithm leverages the theorem to reuse samples.

4.3.1 Commutative proxy models. We note that the order of pre�x
�lters is interchangeable as shown in Theorem 2 in in Appendix
A.4 in the technical report [42]. In Figure 5(b), the 96 output tweets
after f̂1 ^ f1 with U1 = 0.96 are the same as the output tweets of
applying f̂1 with U1 = 0.96 on the 100 output tweets after f1 in
Figure 5(a). That is, with U1 = 0.96, applying f1 ^ f̂1 and applying
f̂1 ^ f1 have the same results. To prove the theorem, we introduce
Lemma 1 to prove a base case that a pair of f̂ ^ f are commutative,
and Lemma 4 (in [42]) to prove an inductive case that two pairs of
f̂ ^f are still commutative with the same pre�x �lter and the same
su�x �lter, respectively.

L���� 1. Given a list of records !, a �lter f , and a proxy model f̂
with a parameter U , f and f̂ with U are commutative, i.e., the results
after applying f̂ ^ f are the same as those after applying f ^ f̂ . We
denote f̂ ^ f = f ^ f̂ .

P����. We �rst prove that f̂ with a speci�c U parameter is a
selection predicate, and f̂ predicts the same output for a record G1
independent of di�erent orders of G1 (G1, G2 or G2, G1) and di�erent
orders of f̂ (f̂^f or f^f̂). According to De�nition 1, a proxy model
f̂ is built based on its input relation 3 and a target predicate. After
building f̂ and allocating an accuracy U , f̂ is a selection predicate
with �xed values of U , A , and" . When applying f̂ , any input record
cannot change f̂ . Consider two records G1 and G2, where f̂ passes
G1 and discards G2. The output of f̂ with di�erent input orders
(G1, G2 and G2, G1) is the same record G1. For f ^ f̂ , an unseen record
G for f̂ is the one passed by f . If f̂ passes G , then G is in the output
of f ^ f̂ and also in the output of f̂ ^ f . Otherwise, G is not in their
outputs. For f̂ ^ f , f̂ takes more input records, compared to f ^ f̂ .
There is no unseen record for f̂ .

As selection predicates are commutative in general, f and f̂ with
U are commutative. ⇤

4.3.2 Reusing samples. The algorithm improves the performance
by reusing early samples (lines 5 to 7). !c8 is the sampled input to
build f̂c8 by applying predicate fc8 on the input relation 3c8 . In
Figure 5(b), the labeled sample !2 for f̂2 has 96 tweets, which are
�ltered by f̂1^f1 on the raw input and then labeled using the predi-
cate sentiment=positive. It is easy to see that !c8 changes when
accuracies assigned to its pre�x proxy models (i.e., Uc1 , . . . ,Uc8�1)
change. For example, in Figure 5(b), !2 changes from 97 tweets to

96 tweets when the accuracy parameter of its pre�x f̂1 changes
from U1 = 0.97 to U1 = 0.96.

By leveraging Theorem 2, we can improve the performance by
materializing samples !0 after f , and applying f̂ on !0 during the
search, since common !0 can be shared for di�erent U choices. !c8
can be obtained by applying f̂c1 , . . . , f̂c8�1 on a pre-computed sam-
ple !0c8 that is computed by applying fc1 , . . . ,fc8�1 on the raw input.
Lines 5 to 7 illustrate this process of quickly deriving ! for each U
search. For the proxy model f̂2, we materialize its corresponding
sample !02 containing 100 tweets �ltered by f1 in Figure 5(a) to be
reused. When U1 = 0.97, the labeled sample !2 can be obtained by
applying pre�x f̂1 with U1 = 0.97 on the 100 materialized tweets
and producing 97 tweets. Similarly, when U1 changes to 0.96 in Fig-
ure 5(b), the labeled sample !2 can be obtained by applying f̂1 with
U1 = 0.96 on the already materialized sample !02 of 100 tweets and
producing 96 tweets. This solution is simple but e�ective, since ap-
plying f̂ is cheap and doing so allows us to evaluate each expensive
Fand f only once.

4.4 Reusing Classi�ers to Reduce Training
Costs

The algorithm adopts a classi�er-reusing scheme (line 8) to avoid
repeated training classi�ers when the pre�x proxy models change
their accuracy assignments. Speci�cally, let f̂⇤ trained on !⇤ with U
from a previous iteration (line 3) be n-approximate [1] to f̂ trained
on !. That is:

(1 � n)q⇤ (!⇤)  q⇤!  (1 + n)q⇤!⇤, (4.1)

where q is the objective function of the regressor model used by the
proxy model. q can be computed using a scoring function, such as
F1 score or coreset [1]. Take the F1 scoring function as an example.
We e�ciently compute q by evaluating f̂⇤ from a previous iteration
and measuring its F1 score on its labeled sample !⇤ and current
! [1]. f̂⇤ can be reused if it is n-approximate under the current
accuracy setting. In Figure 5(b), suppose we want to build the proxy
model f̂2 for the predicate sentiment=positive on its 96 labeled
tweets with pre�x U1 = 0.96. If there is a proxy model f̂⇤2 trained
on 97 tweets with pre�x U1 = 0.97 satisfying Equation 4.1, we reuse
the classi�er in f̂⇤2 (i.e.,"⇤2) without training a new classi�er on the
96 tweets. In Equation 4.1, we compute q⇤ (!⇤) by evaluating the
F1 score of"⇤2 on the 97 tweets, while q⇤ (!) is on the 96 tweets.

We next discuss how to compute ⇠ (f̂8 ,U8) (line 9). The per-
row cost 2̂ for f̂ and 2 for Fcan be pro�led during training or by
counting the FLOPS of the ML model, while A can be obtained from
', and B can bemeasured by applying the pre�x �lters on a sample of
the raw input. Since applying the proxy models is computationally
cheap,⇠ can be computed e�ciently. In Figure 5, the cost of the ML
UDF Geotagger is 20ms per tweet in our experiments, while that
of the proxy model f̂1 is 0.01ms per tweet. The proxy model f̂1 with
U1 = 0.96 pays the cost of processing 200 tweets and saves the cost
of the 80 discarded tweets, which no longer need to be processed by
the ML UDF Geotagger. Therefore, using Equation 3.1, we have
⇠ (f̂1,U1) = 2̂1 + (1 � A1) · 21 = 0.01 + (1 � 80/200) · 20 = 12.01.

����

5 CORE: REORDERING PROXY MODELS
In this section we study how to reorder proxy models to �nd an
optimal order c 2 H to minimize the cost

Õ
⇠ . For di�erent or-

ders, proxy models built on input relations and predicates are dif-
ferent and they have di�erent costs. For instance, in Figure 5(c),
for the order state = “CA”^sentiment = positive, the proxy
model for predicate state = “CA” is built on the original input
data. For the order sentiment = positive^state = “CA”, the
proxy model for the same predicate is built on records satisfying the
predicate sentiment = positive. Because di�erent orderings af-
fect the input data to the proxy model, these two proxy models
have di�erent execution costs for the same ML UDF Geotagger.

The number of query plans in H is exponential in terms of the
number of UDFs and �lters. We construct a search tree to represent
them by merging common pre�xes of query plans. For example,
let - , . , and / be three ML UDFs. There are six potential plans
in H (e.g., -./ and -/.). Figure 6 shows a snippet of the search
tree starting from node - , where each tree node represents an ML
UDF Fand its corresponding f̂ and f . In general, building all proxy
models for the plans can be computationally prohibitive. To �nd an
optimal order c e�ciently, we propose a search algorithm based
on branch-and-bound [20, 29] to prune candidate plans.

5.1 Bounded Cost
For a speci�c order of proxy models, we can compute a lower
bound and an upper bound of the cost

Õ
⇠ . Intuitively, an initial

lower bound corresponds to the case when all proxy models discard
everything. An initial upper bound corresponds to the case when
all proxy models discard nothing. For example, for the order -./
in Figure 6, the cost function reaches a lower bound when the �rst
proxy model f̂- discards all its input records. It reaches an upper
bound when all proxy models f̂- , f̂. , and f̂/ discard nothing.

Let ⇠; and ⇠D be the lower and upper bounds of the cost for a
node, respectively. As shown in Equation 3.1, the cost ⇠ of a proxy
model f̂ is bounded by accuracy U , reduction A , and selectivity B ,
where (i) U 2 [A, 1], (ii) B 2 [0, 1] and (iii) A 2 [0, 1]. ⇠ increases
when B and U increase and A decreases. To calculate a lower bound
of node C at depth 8 assuming the depth of the root is 0, we use the
minimal value of the accuracy U;8 = A, the minimal value of the
selectivity B;8 = 0, and the maximum value of the reduction AD8 = 1.
Similarly, to compute an upper bound of C , we use the maximum
value of the accuracy UD8 = 1, the maximum value of the selectivity
BD8 = 1, and the minimal value of the reduction A ;8 = 0. Based on the
analysis, we present a lower bound and an upper bound of the cost
⇠ of a node C in Lemma 2. Additionally, a lower bound of the cost
for a plan is the sum of the lower bound of the cost for each node
in the plan, and an upper bound for a plan is the sum of the upper
bound for each node in the plan. That is, the bounds of

Õ
⇠ for a

plan are
Õ
⇠; and

Õ
⇠D , respectively.

L���� 2. For a node C of depth 8 , a lower bound of its cost ⇠C is

(
8�1÷
9=1

B;9 · U;9) ·
�
2̂8 + (1 � AD8) · 28

�
. (5.1)

Algorithm 2: QO by branch-and-bound pruning

1: procedure ��_�������(@, A)
2: Construct a search tree based on H from @;
3: & = {@c |8c 2 H}; visited=ú;
4: for each node C in the search tree:
5: ⇠; ,⇠D initialize(C);
6: while |& | > 1:
7: C pop_unvisited(& , visited);
8: f̂⇤,U⇤ accuracy_allocation(C,A);
9: update_node(C, f̂⇤,U⇤);
10: visited = visited [{C };
11: sort_and_prune(&,

Õ
⇠; ,

Õ
⇠D);

12: return (c,U) that minimizes
Õ
⇠ .

An upper bound is

(
8�1÷
9=1

BD9 · UD9) ·
�
2̂8 + (1 � A ;8) · 28

�
. (5.2)

Example. In Figure 6, the lower bound of node 1 is the cost of
applying a proxymodel.⇠;

- = 2̂- using Expression 5.1withU;- = A,
B;- = 0, and AD- = 1. The upper bound ⇠D

- is the cost of a proxy
model 2̂- plus that of the ML UDF 2- with UD- = 1, BD- = 1, and
A ;- = 0. For the plan -./ in Figure 6, the lower bound of the plan
is ⇠;

- +⇠;
. +⇠;

/ , and the upper bound is ⇠D
- +⇠D

. +⇠D
/ .

5.2 Branch-and-bound Search
We present a general pruning framework in Algorithm 2. Its main
idea is that the upper and lower bounds can be improved as we col-
lect information during the search process, such as selectivity and
reduction. The search builds necessary proxy models and prunes
the search tree to reduce the optimization overhead. For each node
C , according to Lemma 2, we initialize the lower and upper bounds
of f̂ using ⇠; and ⇠D , respectively (lines 4⇠ 5). We then progres-
sively build proxy models (lines 6⇠11). For each search step, we
�nd optimal U parameters for C and pre�x nodes using Algorithm 1.
We compute the cost

Õ
⇠ of these nodes after using Algorithm 1,

and tighten the bounds of costs for C ’s leaf nodes. The search yields
an order c that minimizes the overall cost

Õ
8 ⇠ (f̂c8 ,Uc8). We next

explain several speci�c functions used in the algorithm.

X !!" = !!# = 0.92

Y Z

YZ

!$" = !$# = 0.98

!%" = 1.0, !%# = 0.9

1

2

4

3

5

X !!" = !!# = 0.92

Y Z

YZ

!$" = !$# = 0.93

!%" = !%# = 0.95

1

2

4

3

5

Order XYZ:
∑- ∈ [6, 8]

Order XZY:
∑- ∈ [2, 8]

Visited Current

Order XYZ:
∑- ∈ [6, 8]

Order XZY:
∑- ∈ [5, 5]

✄

(a) The 2&' iteration. (b) The 2 + 1(& iteration.

Pruned

Figure 6: Two iterations in branch-and-bound search on a tree start-
ing from node 1 with A= 0.9. The blue text is updated information
such as accuracies, lower bounds, and upper bounds after calling the
function update_node().

����

Initialization (line 5): We initialize the lower and upper bounds
for each node according to Lemma 2. The query accuracy

Œ
U in

Equation 3.3 is within [A=, 1]. For example, for the plan -./ in
Figure 6, we initialize the lower and upper bounds for each node
with U; = A, B; = 0, AD = 1 and UD = 1, BD = 1, A ; = 0, respectively.
The query accuracy

Œ
U is within [0.93, 1] initially, where 0.9 is

the query target accuracy A.
Choosing the next candidate node. (line 7): We �nd the �rst
unvisited tree node C from c that is in the front of the queue. In Fig-
ure 6(a), c = -/. is in the front of the queue& according to sort_-
and_prune(), which will be explained later. pop_unvisited()
yields c = -/. and node 3, since node 1 has been visited. Similarly,
pop_unvisited() yields c = -/. and node 5 in Figure 6(b). If
all the nodes for the head plan in the queue have been visited, we
look for the next c 2 & .
Tightening cost bounds. (line 8⇠line 9): We �rst call accuracy_-
allocation() to build an optimal proxy models f̂⇤ with an opti-
mal U⇤ from the root till the current node C at depth 8 . The update_-
node() function updates U; = UD = U⇤ for nodes from the root till
C . Similarly, B; = BD = B⇤, and A ; = AD = A⇤. This process improves
the bounds of

Õ
⇠ for plans under node C (with untrained f̂s) and in

turn tightens the query accuracy
Œ

U to [A=�8+1,A]. In Figure 6(a),
for node 3, we call accuracy_allocation() for the sub-query
-/ and �nd the optimal U;- = UD- = 0.92 and U;/ = UD/ = 0.98 for
node 1 and node 3, respectively. The update_node() tightens the
query accuracy

Œ
U for the plan -/. from [0.93, 1] to [0.92, 0.9],

and tightens the lower and upper bounds of
Õ
⇠ to [2, 8].

Pruning plans. (line 11): After the bounds are updated, we sort
and prune c 2 & . The following rules are used to determine the
sort order of c as well as to prune unnecessary plans.

• When [Õ⇠; ,
Õ
⇠D] for two c ’s have overlap, the one with

a lower mean cost
Õ
⇠;+Õ⇠D

2 has a higher priority and is
likely to yield more gains. Such a plan should be explored
�rst. In Figure 6(a), the mean cost for the plan -/. is 5,
which is less than that of the plan -./ . Therefore, the plan
-/. has a higher priority than the plan -./ .

• When [Õ⇠; ,
Õ
⇠D] for two c ’s have no overlap, we prune

the one with a higher value range from the search tree,
since it provides greater cost. In Figure 6(b), [Õ⇠; ,

Õ
⇠D]

for the plan -/. is lower than that of the plan -./ , and
they have no overlap. Then the plan -./ is removed from
& , i.e., the edge connecting node 2 and node 4 is deleted.

The above comparisons are done for each pair of c ’s until & is
fully sorted. The lower bound and upper bound are equal to the
exact cost once f̂ is built. Pruned c ’s are removed from & .

5.3 Improvement Using a Fine-grained Tree
The branch-and-bound search discussed above involves generating
labeled samples !, followed by training classi�ers" and deriving
⇠ for each node in H. To further speedup the search, we split one
node into two: an !-node to generate labeled samples, and an"-
node to train classi�ers " and derive ' and ⇠ . An !-node has to
be placed before its corresponding"-node, i.e., labeling happens
before training. For instance, the node - in Figure 7(a) is split into
an !- node to generate the labeled sample for f̂- and an"- node

to train the classi�er for f̂- in Figure 7(b). We call this new tree a
�ne-grained search tree H+.

Compared to the original search tree discussed in the previous
section, H+ provides more opportunities to tighten the cost bounds.
For example, we can prune the search tree at an !-node without
executing its corresponding"-node. The search algorithm is similar
to Algorithm 2, except a new update_node() function. Its update
scheme now depends on the type of node C , discussed below.

X !!

Y

Z

"! !" !#

"! !#

1

2

3

1

2 3 4

5 6… …

(a) (b)

!# 7

Figure 7: (a) A snippet of the search tree in Figure 6; (b) A�ne-grained
tree of (a).

!-node. We update the lower and upper bounds of selectivity B
because we generate labeled samples and compute B at !-node.
For an !-node C , a proxy model f̂ is called available for C if its
corresponding "-node is an ancestor of C ; otherwise, f̂ is called
unavailable for C . We compute lower and upper bounds of BC by
applying all available pre�x f̂ and f on the raw input to obtain a
labeled sample !⇤C , and its selectivity is denoted as B

⇤
C . In Figure 7(b),

f̂- is available for node 5 because we build f̂- at node 2, which is
an ancestor of node 5, while it is unavailable for node 3 because
"- is not an ancestor of node 3. The labeled sample !⇤. for node
3 is labeled by f. after f- on the raw input without applying f̂- .
Let the selectivity on !⇤. be B⇤. . We compute ⇠;

C and ⇠
D
C as follows:

• A lower bound ⇠;
C can be computed when its unavailable

proxy models have U; = A and discard records that sat-
isfy fC from !⇤C . In this case, the selectivity B becomes
(B⇤C � (1 �A):) /A: , where : is the number of unavailable
pre�x proxy models. This selectivity is used to estimate ⇠;

C
using Expression 5.1. For node 3 in Figure 7(b), we compute
⇠;
. using B;. = (B⇤. � (1 �A))/Awhen the unavailable f̂-

with U = Adiscards records satisfying f. from !⇤. .
• An upper bound ⇠D

C can be computed when unavailable
proxy models do not discard any records in !⇤C (i.e., U = 1.0).
Its selectivity is B⇤C in this case.We compute⇠D

C using BDC = B⇤C
in Expression 5.2. In Figure 7(b), at node 3, when f̂- is
unavailable and we use U = 1.0, the selectivity BD. = B⇤. is
used to estimate ⇠D

. .
"-node. As in Section 5.2, we call Algorithm 1 to compute U⇤, train
f̂ , and estimate ⇠ . We also update the bounds for all its ancestor
nodes. In Figure 7(b), after we train f̂- for node 5, we update the
selectivity of node 3 by applying f̂;- on its labeled sample !0. .

The above search on the �ne-grained tree is e�cient, as illus-
trated in our experiments. For a query on the Twitter dataset, the
search algorithm prunes 37% of the nodes on the original search
tree, and 85% of the nodes on the �ne-grained tree.

����

6 EXPERIMENTS
6.1 Setup
Datasets. We used three datasets with text, images, and videos.
Twitter text dataset. It contained 2M tweets from January 2017 to
September 2017 in the United States randomly sampled using the
Twitter sampled stream API [37]. Each tweet was a string with
a maximum of 140 characters. This dataset supported text analy-
sis and retrieval by utilizing various NLP modules such as entity
recognition, sentiment analysis, and part-of-speech (PoS) tagger.
COCO image dataset. COCO [28] was a public dataset collected
online. It contained 123K images and 80 object classes such as
“person”, “bicycle”, and “dog”. Each image was labeled with multiple
objects for their class labels and bounding box positions. The dataset
was used for retrieving images that contained one or more object
classes speci�ed in user queries.
UCF101 video dataset. The UCF101 activity recognition dataset [35]
contained 13K videos collected from YouTube. Each video was la-
beled with one of 101 action categories such as “applying lipstick”
and “baby crawling”. It supported video retrieval using labels gen-
erated by object detection and action recognition models.
Workloads. To our best knowledge, there is no o�-the-shelf bench-
mark for ML inference with comprehensive ML operators and predi-
cates. To solve the problem, we generated 10 queries for each dataset
in the experiments. Table 2 illustrates some of them, and Figure 8
shows a sample work�ow. The workloads retrieved texts, images,
and videos that matched given query predicates, which were con-
junctions of multiple clauses with di�erent selectivity values. Each
predicate clause was an equality condition on an ML-generated
label column. We refer the readers to a full list of the queries as
well as snapshots of the datasets in [41]. Each query also speci�ed
a target query accuracy A, indicating how much accuracy loss the
user was willing to pay relatively to the original query.

Table 2: Some of ML queries used in the experiments.

Dataset Q# Query semantics Selectivity Correlation

Twitter q1
Sentiment(’negative’ or ’neutral’) & PoS Tag-
ger(’VBD’ or ’WRB’ or ’IN’) 0.49 0.55

q2
Sentiment(’negative’ or ’neutral’) & PoS Tag-
ger(’PRP’) 0.35 0.41

COCO q6
Object detection (person) & (car or chair or
cup or tv or bed or . . .) 0.13 0.99

UCF101 q2
Activity Recognition (archery or balance beam
or biking or . . .) & Object detection (chair or
sports ball or bird or . . .)

0.17 1.00

Input Sentiment PoS
Tagger Output

sentiment=
(‘negative’ or

‘neutral’)

tagger =
(‘VBD’or ‘IN’)

Figure 8: A sample ML work�ow on the Twitter dataset.

Metrics.Wemeasured (1) the end-to-end total processing time that
included the query optimization, training of necessary models, and
processing the query given an optimized plan; (2) the accuracy of
our query processing relatively to the original ML inference queries;
(3) the query execution cost (milliseconds per record); and (4) the
decomposition of the optimization costs (minutes).

CORE. We implemented a query execution engine and the CORE
optimizer in Python that enabled ML inference queries on various
unstructured texts, images, and videos. We also implemented sev-
eral ML UDFs using the Stanford NLP [31] and spaCy packages for
text analysis, YOLOv3 [33] for object detection in images, and an
activity recognition model [7] for recognizing activities in videos.

To build a proxy model, we generated the labeled sample ! for
f̂ by pulling initial records from the input, �ltering these records
by its condition 3 , and then labeling ! using its predicate f . ! was
divided into a training set, a testing set, and a validation set. We
re-sampled the training data to ensure a label balance. The classi�er
" for f̂ was trained on the training set and the testing set using
light-weight classi�cation algorithms, such as a linear SVM [15]
and a shallow NN [25]. During training, we leveraged a grid-search
on the F1-score to decide the best hyper-parameters and a cross-
validation to train a classi�er using the set of hyper-parameters.
After training " , we derived its accuracy vs. reduction curve '
using the validation set.
Baselines. We compared CORE against the following baseline
approaches. (i)ORIGwas a baseline that ran the original query as it
is. (ii) NS was a baseline based on NoScope [17]. It trained a single
light-weight model and inserted it early in a plan to quickly �lter
input records that did not match the query predicate so that the
entire query could be accelerated. (iii) PP (short for Probabilistic
Predicates [30]) built a light-weight �lter for each predicate o�ine
and injected them early in a plan with an independence assumption
of predicates, given an ad-hoc query. The experiments were run on
a c5.4xlarge AWS instance with 280GB SSD storage, 16 vCPUs, and
32GB memory, running a Ubuntu Linux 16.04.

6.2 E�ect of Predicate Correlation
To understand the e�ect of correlations of UDFs in a query, we used
the three datasets and 20 test queries with two or three predicates
for each dataset. These queries were divided by their correlation
score ˆ̂2 at a cuto� score of 0.2 on the Twitter dataset, 0.9 on the
COCO dataset, and 0.5 on the UCF101 dataset. As a result, each
query was classi�ed as weakly or strongly correlated among the
predicates. Table 3 shows the correlation score.

We collected the execution costs of these weakly and strongly
correlated queries with a query accuracy A = 90%. We ran these
queries using ORIG, NS, PP, and CORE to generate optimal plans,
and tested the execution cost of an optimal plan by executing the
plan on a sample of data. Figure 9 shows the execution costs. From
Figure 9, we can see that (i) NS, PP, and CORE reduced the execu-
tion cost compared toORIG, and (ii) compared to PP,CORE reduced
the execution cost more on strongly correlated queries than weakly
correlated queries. In general, NS improved over ORIG using cheap
�lters to quickly discard irrelevant inputs, and PP further boosted
the performance by decomposing the �lters according to the pred-
icate clauses. There was still room for improvements for queries
with more correlations and CORE �lled this gap as expected.

6.3 Time Reduction of CORE
To study the performance improvements of CORE over existing
solutions, we tested the total times of strongly correlated queries
with A = 90% on the three datasets. For query optimization to

����

(a) Twitter. (b) COCO. (c) UCF101.

Figure 9: Average execution costs over strongly correlated queries and weakly correlated queries on the three datasets, respectively.

Table 3: The correlation scores for 10 strongly correlated queries
@1 ⇠ @10 (marked as “Strong”) and 10 weakly correlated queries
@01 ⇠ @010 (marked as “Weak”) on the three datasets.

(a) Weakly correlated queries.

Dataset @01 @02 @03 @04 @05 @06 @07 @08 @09 @010
Twitter 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16
COCO 0.87 0.88 0.87 0.87 0.86 0.88 0.87 0.87 0.88 0.88
UCF101 0.40 0.40 0.40 0.40 0.41 0.41 0.41 0.41 0.41 0.41

(b) Strongly correlated queries.

Dataset @1 @2 @3 @4 @5 @6 @7 @8 @9 @10
Twitter 0.55 0.41 0.55 0.42 0.41 1.00 0.80 0.96 0.80 0.93
COCO 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99
UCF101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.82

generate an optimal query plan, we used 0.34% of the input data on
the Twitter dataset, 0.84% of the input data on the COCO dataset,
and 14.86% of the input on the UCF101 dataset (due to its smaller
size). After generating the optimal plan, we ran it on the rest of the
input. The total time included the optimization time and the time
of processing all the records. We used the same setting for NS and
PP, which built proxy models online.

Figures 10a, 10c and 10e show the total times of ten queries
in each dataset, and Figures 10b, 10d and 10f show the average
total-time reductions for the ten queries using NS, PP, and CORE
compared to ORIG. We also presented the total time of each indi-
vidual query in the Twitter dataset in Figure 11. These results show
that CORE had a better performance than the baseline approaches
in general. Speci�cally, CORE achieved up to a 61% reduction on
the Twitter dataset compared to ORIG. For NS and PP, the reduc-
tions were about 44% and 50%, respectively. We observe similar
reductions on other datasets as well. For example, on the COCO
dataset, CORE had a reduction of up to 73% compared to ORIG,
while NS and PP achieved a reduction of 35% and 44%, respectively.
As discussed in Section 2.2, CORE achieved more gains over PP
when the queries had predicates with a stronger correlation.

6.4 Optimization Cost of CORE
To better understand the detailed optimization cost of CORE, we
collected the time to generate labeled samples, the time to train
classi�ers, and the time of search frameworks for each query. The
optimizer CORE used multiple threads to label training samples.
Each ML model processing unstructured texts used ten threads in
parallel. The YOLOv3 model and the image feature model used two

(a) Total time (Twitter). (b) Time reduction (Twitter).

(c) Total time (COCO). (d) Time reduction (COCO).

(e) Total time (UCF101). (f) Time reduction (UCF101).

Figure 10: The total time over ten queries for each dataset using
CORE and baseline approaches. A= 90%. For (a), (c), and (e), we show
the 1BC and 99C⌘ percentiles on the bars and 1BC quartile, median, and
3A3 quartile on the boxes. For (b), (d) and (f), we present the average
total time reductions relative to ORIG.

processes in parallel, and the activity recognition model used six
processes in parallel. During the phase of building proxymodels, the
size of labeled sample ! was empirically set to 2, 000. The training
set, testing set, and validation set were split in a 6:2:2 ratio. We
used scikit-learn to train a linear SVM classi�er" on the labeled
sample for text analytic queries, and used keras to train a shallow
NN classi�er for analytic queries on images and videos.

Table 4 shows the results of the ten queries over each dataset,
including the time reduction compared to ORIG. On the Twitter

����

Figure 11: The total time of each query in the Twitter dataset using ORIG, NS, PP, and CORE.

dataset, the optimization time was 0.70% of the total time, and the
total time reduction was 49.87% on the average. On the COCO
dataset, the optimization time was 5.67% of the total time, and the
total time reduction was 66.07% on the average. UCF101 was rela-
tively smaller, and 14.86% of the data was used for optimization. The
optimization time was 21.80% of the total time, and the total time
reduction was 49.49% on the average. Overall, the query optimiza-
tion cost of CORE was a small portion of the total processing time,
and it achieved signi�cant performance improvement compared
to ORIG. When the dataset was small (e.g., the UDF101 dataset) or
queries had many ML operators and predicates (e.g., @8 and @10 on
the Twitter dataset), the query optimization costs were larger.

Table 4: Optimization costs and the total processing time for ten
queries over each dataset using CORE with A= 90%. The “labeling
time” is the time to generate labeled samples. The “training time”
is the time to train classi�ers. The “searching time” is the elapsed
time for the search framework. The “QO time” is the total time of
the labeling, training and searching times. The “QO Time pct.” is the
percentage of the QO time over the total processing time. Total Time
Reduction = (ORIG-CORE)/ORIG.

Labeling Training Searching QO QO Total Total Time
Dataset ID #preds Time Time Time Time Time Time Reduction

(min) (min) (min) (min) pct. (min) (%)
Twitter q1 2 0.93 0.10 0.17 1.20 0.16% 763 45.56
Twitter q2 2 1.22 0.09 0.14 1.46 0.25% 581 60.99
Twitter q8 3 1.53 0.75 3.28 5.58 0.73% 764 44.77
Twitter q10 3 1.76 0.75 2.93 5.47 0.77% 712 48.26
Twitter Avg. 2.5 1.84 0.44 2.61 4.91 0.70% 700 49.87
COCO Avg. 2 6.00 2.06 0.24 8.30 5.67% 173 66.07
UCF101 Avg. 2 23.40 0.08 0.20 23.68 21.80% 110 49.49

6.5 E�ectiveness of CORE Components
CORE searched an optimal query plan in both the accuracy space
A and the order spaceH. We evaluated the e�ectiveness of di�erent
components in CORE using two variants, namely CORE-a and
CORE-h. CORE-a represented the setting with the reordering step
disabled during optimization and constrained the search space to
solely A (Section 4). It used the input-query order and derived an
optimal set of accuracy values in A using Algorithm 1. CORE-h
applied Algorithm 1, and exhaustively searched an optimal order
in H instead of performing the pruning in Algorithm 2.

We ran ten queries for each dataset using CORE-a, CORE-h,
and CORE with A = 90%, and collected the execution costs for
optimized plans and the average optimization costs to generate
optimal plans. Figure 12 shows the results. We can see that CORE-a
had the worse execution cost compared to CORE because CORE-a

(a) Execution cost (Twitter). (b) Optimization cost (Twitter).

(c) Execution cost (COCO). (d) Optimization cost (COCO).

(e) Execution cost (UCF101). (f) Optimization cost (UCF101).

Figure 12: The execution costs and average optimization costs for
queries over three datasets using CORE, CORE-a and CORE-h.

Table 5: Optimization costs of CORE variants on the Twitter dataset.

Labeling
Time
(min)

Training
Time
(min)

Searching
Time
(min)

QO
Time
(min)

QO
Time
pct.(%)

CORE-a 1.37 0.15 1.78 3.30 0.38
CORE-h 6.51 0.57 4.69 11.78 1.74
CORE 1.84 0.44 2.61 4.91 0.70

did not use the optimal order. CORE had similar execution costs to
CORE-h, but CORE-h had much larger query optimization costs.

����

Table 5, shows the average optimization cost including labeling,
training, and searching using CORE-a, CORE-h, and CORE. We
can see that CORE reduced the labeling, training and searching
times compared to CORE-h. This result indicated that the branch-
and-bound search algorithm in CORE successfully pruned some
nodes in the tree and reduced the optimization overhead. In gen-
eral, the branch-and-bound search algorithm found the optimal
order. Therefore, both the Algorithm 1 for A and Algorithm 2 for
H successfully accelerated the ML inference process.

6.6 Scalability
We evaluated the scalability of CORE by increasing the number of
records in the Twitter dataset. We started with 0.2 million tweets
and gradually increased the data size to 2 million tweets. We ran
the ten queries with A = 90% using ORIG, NS, PP, and CORE,
and collected the total processing times at di�erent data sizes. Fig-
ure 13 shows the average total processing time using ORIG, NS,
PP, and CORE. We also presented the total times for two example
queries using CORE at di�erent data sizes. The results show that
CORE scaled up well, and outperformed the other three baseline
approaches at all data sizes.

Figure 13: (Left) The average total processing time (including opti-
mization cost) using CORE, ORIG, NS, and PP on ten queries over the
Twitter dataset with di�erent input sizes. (Right) The total times of
two sample queries: @1 and @2, with di�erent input sizes.

6.7 E�ect of Target Query Accuracy
We evaluated the impact of the target accuracy A on CORE by
increasing A. We started from A= 90%, and linearly increased it to
A= 98%. We collected the execution costs of optimized plans for
the ten queries over the Twitter dataset using ORIG, NS, PP, and
CORE with di�erent target accuracy values. Figure 14 left shows
the average execution costs for the ten queries using ORIG, NS,
PP, and CORE. We also presented the execution costs for three
example queries using CORE with di�erent target accuracy values
in Figure 14 right. The results indicated that CORE outperformed
ORIG, NS, and PP in di�erent accuracy settings. Moreover, the
execution costs increased for all the baselines when the target
accuracy increased. In addition, Table 6 shows the percentage of
the query optimization time relative to the total processing time
in the same setting. Similar to the observations in Section 6.3, the
query optimization in CORE with di�erent accuracy targets still
had a smaller overhead relative to the total processing time.

Figure 14: (Left) The average execution costs of optimized plans for
ten queries over the Twitter dataset with di�erent Avalues. (Right)
The execution costs of three sample queries: @2, @4, and @6, with
di�erent target accuracies.

Table 6: The optimization costs for @2 and @6 with di�erent Avalues.
Each cell contains the QO costs and the QO percentage relative to
the total query-processing cost.

QO cost
(min) / pct A= 90% A= 92% A= 94% A= 96% A= 98%

@2 1.50/0.11% 1.54/0.11% 1.50/0.11% 1.48/0.11% 1.48/0.11%
@6 4.73/0.35% 5.28/0.39% 8.31/0.61% 6.03/0.45% 3.83/0.28%
avg. 4.57/0.36% 4.83/0.38% 5.07/0.40% 4.30/0.34% 3.24/0.25%

6.8 E�ect of Sample Size Used in Training
To better understand the e�ect of the labeled sample size on CORE,
we varied the sample size from 1K to 5K. Table 7 shows the execu-
tion costs for two example queries and the average execution costs
(in milliseconds per tuple) over the 10 queries with di�erent sample
sizes on the Twitter dataset with A = 90%. The results showed
that the execution costs decreased and the query optimization time
percentage increased when the labeled sample size increased. When
we set the sample size to 500, the query accuracy A= 90% could
no longer be guaranteed and decreased to 82% on average.

Table 7: Execution costs of @2 and @3 with di�erent sample sizes.
Each cell contains an execution cost and percentage of the QO cost.

Cost
/ QO
pct

Sample
size=1K

Sample
size=2K

Sample
size=3K

Sample
size=4K

Sample
size=5K

@2 16.8/0.1% 15.8/0.1% 16.3/0.2% 16.7/0.3% 15.9/0.4%
@3 21.9/0.1% 21.5/0.1% 21.5/0.2% 21.0/0.3% 19.6/0.5%
avg. 20.0/0.2% 19.3/0.4% 19.2/0.9% 19.4/1.0% 19.0/1.4%

7 CONCLUSIONS
We proposed a novel query optimizer, CORE, to accelerate ML
inference queries. It improved state-of-the-art techniques by relax-
ing the independence assumption among query predicates. CORE
incurs only a small overhead by leveraging a branch-and-bound
search algorithm to prune the space of candidate �lters and reusing
intermediate results. A thorough experimental evaluation showed
that CORE signi�cantly reduced the ML inference execution cost.

ACKNOWLEDGMENTS
This work was partially supported by the National Key R&D Pro-
gram of China (No. 2020AAA0103903), the NSFC (No. 61732004),
the USA NSF award IIS-2107150, and the CSC studentship.

����

REFERENCES
[1] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. 2005. Geometric

approximation via coresets. Combinatorial and computational geometry 52 (2005),
1–30.

[2] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jen-
nifer Widom. 2004. Adaptive Ordering of Pipelined Stream Filters. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, June 13-18,
2004. ACM, Paris, France, 407–418.

[3] Shaofeng Cai, Gang Chen, Beng Chin Ooi, and Jinyang Gao. 2019. Model slic-
ing for supporting complex analytics with elastic inference cost and resource
constraints. Proceedings of the VLDB Endowment 13, 2 (2019), 86–99.

[4] Zhaowei Cai, Mohammad J. Saberian, and Nuno Vasconcelos. 2015. Learning
Complexity-Aware Cascades for Deep Pedestrian Detection. In 2015 IEEE Inter-
national Conference on Computer Vision, ICCV 2015, December 7-13, 2015. IEEE
Computer Society, Santiago, Chile, 3361–3369.

[5] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query
Processing: No Silver Bullet. In Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, May 14-19, 2017. ACM,
Chicago, IL, USA, 511–519.

[6] Surajit Chaudhuri and Kyuseok Shim. 1999. Optimization of Queries with User-
De�ned Predicates. ACM Trans. Database Syst. 24, 2 (1999), 177–228.

[7] Xianshun Chen. 2020. Activity Recognition. https://github.com/chen0040/keras-
video-classi�er. last accessed: 2020-01-22.

[8] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. 2014. Table of
integrals, series, and products. Academic press, Cambridge, MA.

[9] Sona Hasani, Saravanan Thirumuruganathan, Abolfazl Asudeh, Nick Koudas,
and Gautam Das. 2018. E�cient construction of approximate ad-hoc ML models
through materialization and reuse. Proceedings of the VLDB Endowment 11, 11
(2018), 1468–1481.

[10] Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate Migration:
Optimizing Queries with Expensive Predicates. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, May 26-28, 1993. ACM
Press, Washington, DC, USA, 267–276.

[11] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.

[12] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. 2018.
Focus: Querying Large Video Datasets with Low Latency and Low Cost. In 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,
October 8-10, 2018. USENIX Association, Carlsbad, CA, USA, 269–286.

[13] Nacim Ihaddadene and Chabane Djeraba. 2008. Real-time crowd motion analysis.
In 19th International Conference on Pattern Recognition (ICPR 2008), December
8-11, 2008. IEEE Computer Society, Tampa, Florida, USA, 1–4.

[14] Ihab F. Ilyas, VolkerMarkl, Peter J. Haas, Paul Brown, andAshraf Aboulnaga. 2004.
CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, June 13-18, 2004. ACM, Paris, France, 647–658.

[15] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, August 20-23, 2006. ACM, Philadelphia, PA, USA, 217–226.

[16] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-
tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.
Proc. VLDB Endow. 13, 4 (2019), 533–546.

[17] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.
PVLDB 10, 11 (2017), 1586–1597.

[18] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.
2020. Approximate Selection with Guarantees using Proxies. Proc. VLDB Endow.
13, 11 (2020), 1990–2003.

[19] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.
2020. Task-agnostic Indexes for Deep Learning-based Queries over Unstructured
Data. CoRR abs/2009.04540 (2020).

[20] Walter H Kohler and Kenneth Steiglitz. 1974. Characterization and theoretical
comparison of branch-and-bound algorithms for permutation problems. Journal
of the ACM (JACM) 21, 1 (1974), 140–156.

[21] Sanjay Krishnan, Adam Dziedzic, and Aaron J. Elmore. 2019. DeepLens: To-
wards a Visual Data Management System. In 9th Biennial Conference on Innova-
tive Data Systems Research, CIDR 2019, January 13-16, 2019, Online Proceedings.
www.cidrdb.org, Asilomar, CA, USA.

[22] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß,
Tilmann Rabl, and Volker Markl. 2019. An intermediate representation for
optimizing machine learning pipelines. Proceedings of the VLDB Endowment 12,
11 (2019), 1553–1567.

[23] Iosif Lazaridis and Sharad Mehrotra. 2007. Optimization of multi-version expen-
sive predicates. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, June 12-14, 2007. ACM, Beijing, China, 797–808.

[24] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[25] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Handwritten Digit
Recognitionwith a Back-PropagationNetwork. InAdvances in Neural Information
Processing Systems 2, [NIPS Conference, November 27-30, 1989]. Morgan Kaufmann,
Denver, Colorado, USA, 396–404.

[26] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. 2015. A
convolutional neural network cascade for face detection. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, June 7-12, 2015. IEEE
Computer Society, Boston, MA, USA, 5325–5334.

[27] Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2017. Not
All Pixels Are Equal: Di�culty-Aware Semantic Segmentation via Deep Layer
Cascade. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, July 21-26, 2017. IEEE Computer Society, Honolulu, HI, USA, 6459–
6468.

[28] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
September 6-12, 2014, Proceedings, Part V (Lecture Notes in Computer Science),
Vol. 8693. Springer, Zurich, Switzerland, 740–755.

[29] John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. 1963. An
algorithm for the traveling salesman problem. Operations research 11, 6 (1963),
972–989.

[30] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating Machine Learning Inference with Probabilistic Predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, June 10-15, 2018. ACM, Houston, TX, USA, 1493–1508.

[31] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, June 22-27, 2014, System Demonstrations.
The Association for Computer Linguistics, Baltimore, MD, USA, 55–60.

[32] Venkatesh N. Murthy, Vivek Singh, Terrence Chen, R. Manmatha, and Dorin
Comaniciu. 2016. Deep Decision Network for Multi-class Image Classi�cation.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
June 27-30, 2016. IEEE Computer Society, Las Vegas, NV, USA, 2240–2248.

[33] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
CoRR abs/1804.02767 (2018).

[34] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. 2017. Optimization of Complex
Data�ows with User-De�ned Functions. ACM Comput. Surv. 50, 3 (2017), 38:1–
38:39.

[35] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101:
A Dataset of 101 Human Actions Classes From Videos in The Wild. CoRR
abs/1212.0402 (2012).

[36] Alexander Toshev and Christian Szegedy. 2014. DeepPose: Human Pose Esti-
mation via Deep Neural Networks. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2014, June 23-28, 2014. IEEE Computer Society,
Columbus, OH, USA, 1653–1660.

[37] Twitter API 2019. Twitter API. https://developer.twitter.com/en/docs/twitter-api.
last accessed: 2019-01-01.

[38] Paul A. Viola and Michael J. Jones. 2001. Rapid Object Detection using a Boosted
Cascade of Simple Features. In 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2001), with CD-ROM, 8-14 December
2001. IEEE Computer Society, Kauai, HI, USA, 511–518.

[39] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim
Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Ra�ki: machine learning as
an analytics service system. Proceedings of the VLDB Endowment 12, 2 (2018),
128–140.

[40] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and
Joseph E. Gonzalez. 2018. IDK Cascades: Fast Deep Learning by Learning not to
Overthink. In Proceedings of the Thirty-Fourth Conference on Uncertainty in Arti-
�cial Intelligence, UAI 2018, August 6-10, 2018. AUAI Press, Monterey, California,
USA, 580–590.

[41] Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean Wang.
2022. Correlative Proxy Models. https://github.com/ZhihuiYangCS/CorrProxies/
wiki/Queries-and-Datasets. last accessed: 2022-02-22.

[42] Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean
Wang. 2022. Optimizing Machine Learning Inference Queries with Correla-
tive Proxy Models (Technical Report). http://texera.ics.uci.edu/pdf/proxymodel/
proxymodel-tech-report.pdf. last accessed: 2022-06-09.

����

