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ABSTRACT

We consider accelerating machine learning (ML) inference queries
on unstructured datasets. Expensive operators such as feature
extractors and classifiers are deployed as user-defined functions
(UDFs), which are not penetrable with classic query optimiza-
tion techniques such as predicate push-down. Recent optimization
schemes (e.g., Probabilistic Predicates or PP) assume independence
among the query predicates, build a proxy model for each predicate
offline, and rewrite a new query by injecting these cheap proxy
models in the front of the expensive ML UDFs. In such a manner,
unlikely inputs that do not satisfy query predicates are filtered early
to bypass the ML UDFs. We show that enforcing the independence
assumption in this context may result in sub-optimal plans. In this
paper, we propose CORE, a query optimizer that better exploits the
predicate correlations and accelerates ML inference queries. Our so-
lution builds the proxy models online for a new query and leverages
a branch-and-bound search process to reduce the building costs.
Results on three real-world text, image and video datasets show
that CORE improves the query throughput by up to 63% compared
to PP and up to 80% compared to running the queries as it is.
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1 INTRODUCTION

Modern DBMS systems apply machine learning (ML) inference
as user-defined functions (UDFs) for complex analytics over un-
structured texts, images, and videos [3, 11, 22, 24]. Example models
include those extracting user sentiments from product reviews
for market analysis [39] and those estimating vehicle counts from
surveillance videos for traffic planning [13]. Consider the following
query, where input tweets are processed by two ML UDFs, namely
a geographic tagger (¥1) and a sentiment analyzer (%), to generate
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Figure 1: (a) An example query plan for tweet analysis. (b) An opti-
mized query plan with proxy models.

the predicate columns. These queries enable downstream visualiza-
tion and statistics, such as word cloud that shows most frequent
tokens, and users can accept approximate but fast results.

SELECT %1(t) AS state, F,(t) AS sentiment
FROM Tweets AS t
WHERE state = ‘CA’ A sentiment = positive;

Figure 1(a) demonstrates the plan of the above query, where
o1 and o3 are the predicates state = ‘CA’ and sentiment =
positive, respectively. ML queries are costly due to the expensive
ML UDFs; improving the efficiency for ML inference has been a
recent research focus [3, 11, 17, 21, 30] to provide an additional
trade-off between accuracy and efficiency [9, 17, 30]. In our ex-
ample, classic query optimization techniques such as predicate
push-down cannot help much because o7 and o are stuck behind
their corresponding ML UDFs regardless of their selectivity.

To optimize such ML inference queries, recent works [17, 30]
propose to rewrite the query and insert a set of light-weight filters
in front of the expensive ML UDFs, thus forming a proxy model [38].
Figure 1(b) demonstrates an example plan with two proxy models
61 and &9; they quickly discard input records that are unlikely to
satisfy the predicates and thus improve the query performance.

In [30], a proxy model (i.e., “Probabilistic Predicate” or “PP”) is
specific to a predicate cgv, where c is a predicate column, ¢ is a
comparison (e.g., > or =), and Vv is a constant value. An indepen-
dence assumption is made to train filters among different predicates
directly using the raw input, regardless of the fact that each may
have a different input relation. When ad-hoc queries with multiple
predicates arrive, a query optimizer (QO) rewrites and accelerates
the query by assembling individual filters and using them also in
an independent manner. In many applications, query predicates are
often correlated. In our example, sentiments may vary in different
states — the sentiment in California can be different from that in
Texas. As Section 2.2 will show, the QO in [30] overestimates the



reduction when building the filters on the raw input and thus yields
sub-optimal plans for a new query with correlated predicates.

Inspired by [17, 30] to optimize ML inference using proxy models,
we intend to relax the independence assumption among different
predicates. A proxy model hence is specific not only to a predicate
but also to its input relation, i.e., prefix ¢’s and 6’s, as well as pa-
rameter choices of prefix ¢’s. In Figure 1(b), 62 learns upon filtering
the raw input by &1 A o1 . Unlike [30] that builds a small number of
independent filters, it is easy to see that relaxing the independence
assumption may result in an untenable number of filters to build
by enumerating their order and parameter choices.

We propose an optimizer called “CORE” that better exploits pred-
icate correlations in ML inference. Given an ad-hoc query, CORE
builds the proxy models online to avoid exhaustive offline filter con-
struction. We describe a novel technique to accelerate such process
at a small overhead (e.g., a few percent of the query processing) and
a user-specified accuracy target. Extensive experiments for queries
over datasets of tweets, images, and videos indicate that CORE
improves the ML inference execution costs by up to 63% compared
to [30] and up to 80% compared to running the workload as it is.
Various downstream applications, such as interactive data explo-
ration, can benefit from CORE due to a better resource utilization
and a faster decision making.

To summarize, our key contributions are as follows:

o We show that correlations in predicates may harm the
performance of a prior optimization scheme for ML in-
ference [30].

o We propose CORE to accelerate ML inference and relax the
independence assumption enforced by prior work. Our QO
scheme prunes the space of candidate filters to build and
incurs only a small computing overhead.

e Experiments on real-world ML-inference workloads and
datasets show that CORE can achieve significant query-
throughput improvements.

1.1 Related Work

Operator reordering in database optimization. [6, 10] studied
the problem of reordering select-project-join operators in data-
base systems. [2] studied how to order correlated predicates in
streaming systems. It used a greedy algorithm for selection order-
ing and collected samples at runtime to estimate selectivity. Our
query optimization algorithm gives an optimal solution and uses
a branch-and-bound search to quickly prune plans in the space of
proxy models. [34] studied various optimization techniques of com-
plex user-defined functions on map-reduce-style big data systems,
such as predicate simplification and UDF semantic inference. These
techniques were orthogonal to our solution. Sampling-based ap-
proximate query processing techniques [5] provided approximate
answers to queries by running queries on a small sampling subset
of data. Our approach provides approximate answers by exploiting
the accuracy of ML inference predicates.

Proxy models (a.k.a. cascaded filters) in machine learning,.
One of the first proxy models [38] cascaded a sequence of light-
weight classifiers to discard background regions of an image to
accelerate object detection. Later, proxy models were studied to

1F, is a row processor and does not filter as o7 and 67 do.
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improve the performance of classification [32], detection [4, 26],
semantic image segmentation [27], and pose estimation [36]. Differ-
ent from [4, 26, 27, 38] that used a cascade of classifiers to quickly
reject sub-regions of an image, our CORE uses proxy models to re-
duce the size of records to be processed by ML UDFs. Unlike [32, 36]
that integrated proxy models into DNN models to improve the per-
formance during the training phase, our CORE uses proxy models
as separate operators to accelerate ML inference.

Proxy models in databases. Recently proxy models have been ap-
plied in big-data systems to accelerate ML inference-based analysis
tasks [12, 16-19, 23, 30, 40]. NoScope [17] firstly cascaded a cheap
specialized model before expensive DNNs to accelerate selection
video queries. After it, certain classes of video queries including
selection without guarantees [12], selection with statistical guar-
antees [18], aggregation [16] and limit queries [16] was optimized
using proxy models. A general index solution in [19] was proposed
to accelerate these video queries over the schema induced by the
target DNN. Probabilistic predicates (PP’s) [30] optimized various
domain queries by inserting multiple offline-built proxy models
before expensive ML UDFs with an assumption of independence
between predicates. Different from [12, 16-18, 23, 40], PP and our
proposed CORE cascade general proxy models, which are applica-
ble to a variety of domains. CORE follows this line of work and
further relaxes the independence assumption of the predicates.

2 PROXY MODELS

We briefly review the background of proxy models and then study
the impact of correlations to proxy models.

2.1 Background

Proxy models have been studied for decades to accelerate ML
inference. Jones et al. [38] cascade weak classifiers as proxy models
to speed-up face detection in images. Recently, techniques of using
cheaper but less accurate ML models to accelerate ML models in [4,
26, 27, 32, 36, 38] attracted attention in big data systems. We briefly
review two related solutions [17, 30] and refer the readers to their
papers for more details.

NoScope (NS) [17] aims to process video queries such as “finding
video frames with vehicles” and “finding video frames with pedes-
trians” using an object-detector UDF. It builds and applies a proxy
model, i.e., a cheaper object detector using shallow Neural Networks
(NN5s), which has the same semantics as the object-detector UDF.
NoScope has to train for each query predicate and thus has large
building costs when the query predicates are ad-hoc or complex.
Probabilistic Predicate (PP) [30], as mentioned earlier, is another
form of proxy models. Each PP is a cheap classifier to predict the
likelihood of an input record matching a predicate clause. Easy
inputs with a small likelihood will be discarded immediately, while
hard inputs will be processed further by subsequent ML UDFs.
For ad-hoc queries with complex predicates, a query optimizer as-
sembles multiple PPs built offline, and a dynamic programming
algorithm is leveraged to achieve a maximum reduction, under
the independence assumption in queries. However, this assump-
tion made in PP limits its use to broader applications. Dependency
between columns is the rule, rather than the exception, in the real



world [14]. In the following, we conduct a controlled experiment
to study the impact of correlations to proxy models.

2.2 Impact of Correlations
To better understand the impact of correlations in processing ML
inference queries, we leverage the correlation score provided by
CORDS [14]. Specifically, let d; and dz be the distinct counts in a
pair of columns. The correlation score is computed by a chi-squared
test upon a sample of n-rows:

dy dy

~2 1 (I’lij - ni.n.j)z
© T (min(dy, d2) — 1) 22 nng

i=1 j=1

where n;; is the frequency of distinct tuple i, j, and n;., n.; are the
marginal frequency. A larger #? value indicates a stronger correla-
tion between the columns. For example, we can follow CORDS to
use a sample of 10K rows and normalize the correlations scores by
the maximum number in all the predicate pairs. All other algorith-
mic details follow the CORDS paper [14].

Why correlation matters for PP? We explain the reason using the
Twitter dataset and two queries, q and ¢, each with two predicates
of different kinds of correlation. We illustrate these two queries in
Appendix A.1 in the technical report [42]. The correlation between
the q predicates is stronger (2.5 X) than that of the ¢’ predicates.
The PP filters are trained offline for each predicate without consid-
ering the context in which the predicate is applied. We collect the
estimated accuracy-reduction curves for the second PP in q and g’
during the training phase and illustrate them in Figures 2a and 2b,
respectively. Two proxy models 61 and 67 are connected for the
predicate o1 A o3.
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(a) Strongly correlated query q. (b) Weakly correlated query ¢'.

Figure 2: The estimated and empirical accuracy-reduction curves of
the second PP filters in a strongly correlated query g and a weakly
correlated query ¢’. Correlation results in overestimated reductions
offline in PP.

When o1 and o3, are correlated and 67 discards a row that matches
01, the discarded row is also likely to match o3 because of the cor-
relation. In general, the empirical reduction produced by 62 is less
than the estimated reduction as shown in Figure 2, because there are
fewer input rows for o3 after &1. When there is a strong correlation,
the reductions can be overestimated. For example, as shown by ¢
with a strong correlation in Figure 2a, when the accuracy is 95%,
the estimated data reduction is 40%, and the empirical value is 15%.
At the same accuracy, the difference of the reduction ratio for ¢’ in
Figure 2b with a weak correlation is at most 2%. As a result, with
strong correlations, PP unnecessarily routes more inputs to the
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expensive ML UDFs and thus yields a lower performance speedup.
This example shows that the optimizer in previous work overesti-
mates the reduction of the proxy models built offline, thus yielding
suboptimal query plans and less performance improvement for a
new query with correlated predicates; this limits the use of PPs to
broader applications.

3 CORE OVERVIEW

In this section we give an overview of CORE and formally define
its optimization problem.

3.1 System Architecture

In Figure 3, the input of CORE is a query that includes multiple ML
inference UDFs. These UDFs, as seen in the previous section, depict
row manipulators; they produce one output row per input row. ML
UDFs wrap operations such as feature extraction or classification.
CORE optimizes the input query by building proxy models online
and generates a more efficient plan g*. We build proxy models for
predicates of the form c¢v. Meanwhile, a query can have one or
more predicate clauses in conjunction: A c¢v. A small portion of
the input data (e.g., k%) is used to build proxy models, and the
remaining data is processed by the optimized plan ¢*. We follow
the scope of previous papers such as NoScope [17] and PP [30] to
focus on approximate selection queries.

- = *% _ Jinput datg - - =K%

v v
Input query plan g Modified query plan q*
|T1—>01—’7:z—>|02—'| COREl—-|&7—>T7—>67—>&1 —>T14->cr1
1 1

Figure 3: Given a query plan g, CORE generates an optimized plan
q"* by applying proxy models. Part of the input data (k%) is used for
building proxy models, and the remaining data is processed by g*.

DEFINITION 1. A proxy model & is characterized by a tuple
{d, 0, M, L, R},

where d is an input relation (i.e., applying a sequence of prefix
filters on the raw input), and o is a target predicate that 6 aims to
improve; M is a regression model used by & to produce a scoring
function for each input record; L is a labeled sample from the input
relation d to build M; and R is a mapping from an accuracy a to a
reduction r. For the example in Figure 1(b), 6; is built for the input
relation di = @ (raw input) and the predicate o7 : state=‘CA’,
while &3 is built for d; = (61, 01) and 07 : sentiment=positive.
The mapping R will be explained shortly.
Building proxy models online consists of collecting L and then
training M. We leverage the initial stream of the input data for L
(e.g., a few thousand rows). The labeled sample L is obtained by
applying the filters specified in d upon the raw input and then
labeling by predicate o. The label is +1 if ¢ is satisfied, and -1
otherwise. Next, we use light-weight regression models such as
linear SVMs [15] or shallow NNs [25] to train M.

Given an input record x, a proxy model predicts a score M(x). For
example, for linear SVM, M(x) = w! x + b, where w is a weighted
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Figure 4: Relationship between an accuracy « and a reduction ratio r
in a proxy model. Records are ranked in ascending order according to
their M(x) scores along the x-axis. White and dark circles represent
records with -1 and +1 labels, respectively.

matrix and b is a bias term. Record x will be discarded if M(x) < 6
(for a threshold ), and in this case the record is called a negative ex-
ample. As in [30], the accuracy is the percentage of positive records
being passed by a proxy model relative to all positive records. The
data reduction is the percentage of records being discarded relative
to all input records. In Figure 4, setting 6 = 0.3 results in all positive
records being passed (i.e., the accuracy is 100%), and 5 out of 18
total records being discarded (i.e., the reduction is 28%). Setting
0 = 0.4 results in 9 records of 10 total positive records being passed
(i.e., the accuracy is 90%), and 8 out of 18 records being discarded
(i.e., the reduction is 44%). It is clear that a higher 0 yields a lower
accuracy and a higher data reduction. Such early filtering is a trade-
off between accuracy and data reduction. Note that the mapping
between a and r given 0 can be evaluated using a validation set.
In the rest of the paper we denote such a relationship as R. We
can compute it by evaluating & on a validation set from the initial
stream of the input records.

Then, our developed query optimizer injects 6 into the query
plan right before the corresponding ML UDF that generates the o
predicate column (Figure 1(b)) for the remaining input records.

Query optimization by applying proxy models. We borrow
the AQP-style query interface in [30]. Specifically, the user issues a
query and specifies a global target accuracy o that depicts the level
of false negatives of the proxy models in addition to those caused
by the UDF. Note that the UDFs themselves produce false positives
and negatives and we do not intend to break the black boxes to
improve their accuracy and performance. o is the percentage of
the output of an original query g kept by its optimized query g*
(Figure 3). It is a value between 0 and 1. It sets the trade-off goals
between additional errors and query-processing speedups. Our QO
builds the proxy models, considers their combinations, allocates
their accuracy parameters, and injects them into the modified query
plan g*. To reduce the computing overhead and latency of building
the proxy models before the input query can be accelerated, the
QO reuses intermediate results during the filter construction and
prunes candidate plans using a branch-and-bound search.

3.2 Formulation of Optimization Problem

Given an ML query g with UDFs &, . . ., %y, predicate filters o7, . . .,
on, and a query-level target accuracy 9, we aim to build proxy
models 61, . . ., 6, with their accuracy parameters a1, . . ., a, so that
ol is met. Let the execution costs of applying 6; and the ML UDF
F; be ¢; and c;, respectively. For a pair of a proxy model §; and
its corresponding ML UDF %; (i.e., 6; A F;), its input cardinality is
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Table 1: Notations used in this paper.

Notation | Meaning

o A filter predicate after an ML UDF.
& A cheap proxy model that has the same semantics as o.
d The input relation of a proxy model &.
L, M,R The labeled sample, trained classifier, and accuracy-reduction curve
for a proxy model, respectively.
a,r A proxy model’s accuracy and the achieved reduction ratio.
q, 9 A query and a query-level target accuracy specified by a user.
si The selectivity of o; on the condition of prefix &1, . . ., 6;—1 and o7,
...,0i-1,ie,0(61,...,61-1,01,...,0i-1).
¢i, ¢ The execution cost for & and an ML UDF %.
3 An order of proxy models.
Cf, ct Lower and upper bounds of execution cost for a pair (6;, F;).

]_[j.;ll sj - aj. The execution cost of the pair is

i-1

C(61, ) = (]—[ sj-aj) - (G+(1=rp) e, (3.1)
Jj=1

where ¢; is the accuracy of 63, r; is the reduction of 6;, and s; is the

conditional selectivity of predicate o; with prior filters 67, . . ., 6i—1,

01, .-, 0i-1.

In an original query g, let §; be the conditional selectivity of o;
with prior o7, ..., 0j—1. In an optimized query q*, let §; be the con-
ditional selectivity of &; A o; with prior 61,...,6i-1,01,..., Oi-1.
According to the accuracy definition in [30], the accuracy of 6; can
be computed as:

ai =3$i/si, (3.2)
which is the percentage of the output by o; kept by 6; A 0;. The
output selectivity of the original query ¢ is [}, 5;, and the output
selectivity of an optimized plan ¢* is [17, $;. The query accuracy o
can be computed as of = []}-, (3;/5;). When building proxy models,
their accuracy parameters and o satisfy

nai-éizsﬁ,
i

where §; = s;/5;. §; is at most 1/(Hj.;11(aj - 8;)) and its value is
always smaller than 1/d. The detailed derivation of a lower bound
and an upper bound of §; is in Appendix A.2 in [42]. For simplicity,
we use ; to refer @; - §; in the following sections.

Example. We demonstrate the number of passing records by each
filter for the example query in Figure 5. In Figure 5(a), 82 = s2/52,
where 5, = 60/100 is the conditional selectivity of the predicate
sentiment=positive with a prior conditional predicate state=
“CA" (i.e., 01); s2 = 56/96 is the conditional selectivity of the same
predicate with a prior condition &; A o7 in Figure 5(b). Hence, 82 =
s2/52 = (56/96)/(60/100) = 0.972, which measures the changes of
the input of oy after adding its prefix proxy model 61. This proxy
model changes the input data size of o3 from 100 to 96 because &1
discards 4 tweets satisfying state=“CA". Similarly, §; = s1/51 =
(100/200)/(100/200) = 1, since o7 is the first filter and there is no
prefix proxy model changing the input of ;.

To this end, the target accuracy o is calculated as o = 54/60 =
0.9, which is the percentage of the output of the original query in
Figure 5(a) (i.e., 60 tweets) kept by its optimized plan in Figure 5(c)
(i.e., 54 tweets). For each proxy model 6;, ; is the percentage of
the output by a; kept by &; A o;. In Figure 5(b), a1 = 96/100 = 0.96,
as 61 A o1 keeps 96 tweets in Figure 5(b) and o7 keeps 100 tweets
in Figure 5(a). Similarly, oz = 54/56 = 0.964. As mentioned before,
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Figure 5: Step-by-step demonstration of inserting two proxy models to optimize a query. (a) An original query plan; (b) A query plan with 6;
inserted; (c) A query plan with &; and & inserted. Each edge depicts the number of passing tweets. Selectivity (i.e., §;, s;), reduction (i.e., r;), and
accuracy (i.e., ;) values are illustrated. The overall query accuracy is o = 54/60.

61 = 1 and 82 = 0.972. Both of them measure the input relation
changes for 01 and oy respectively when applying proxy models.
Finally, we have a; - 81 - a2 - 62 = 0.9 = dl. In general, relaxing the
independence assumption among predicates results in introducing
a input relation change factor § caused by its prefix proxy model.

Problem Statement. Let 7 be an order of the ML UDFs and pred-
icate filters. Let 6, denote the 7;-th proxy model. Our QO finds
the following optimal query plan in the order space = € H and the
accuracy space A:

arg min C(6y., . ), S.L. ar, = d. 33
gneH,aeAZi: ( i :r,) U i (3.3)

Finding an optimal order 7 of ¢ and allocating their parameter
@, simultaneously, is NP-hard, as shown in Theorem 1 in [42].Since
both r and s depend on d and the input relation of 6 (i.e., prefix o, 6,
and « choices), building ¢ offline by enumerating possible d incurs
large computing costs. We seek a solution such that each ¢ is built
on-the-fly on a materialized sample L of its input relation d. A main
challenge is that, given the accuracy target, how to efficiently build
¢ with a small computing overhead with taking its input relation
into account. We describe our solution to find an optimal set of
accuracy parameters a € A given an order 7 in Section 4, and study
how to find an optimal order 7 € H in Section 5. Both sub-problems
exhibit unique structures that can be leveraged for acceleration.
Table 1 summarizes the notations used in the paper.

4 CORE: ACCURACY ALLOCATION

In this section, we present an efficient algorithm in CORE for de-
riving an optimal accuracy allocation oy, . . ., @z, among different
Gy, for a given order 7 to achieve a minimum cost }.; C(6x;, ax; ).

4.1 A Basic Approach and its Challenge

One approach to allocating the accuracy is as follows. We first
discretize A with a fixed step size. For each candidate a; satisfying
[1; ax, > o, we build a proxy model in the order of 7. We obtain a
labeled sample given its input relation, train a classifier, and derive
reduction as mentioned in Section 3. After building 6,7,, we compute
its cost using Equation 3.1, and find an optimal & for a minimal
cost. A main challenge is that building proxy models online is time-
consuming for two reasons. (i) There are an exponential number

of candidates 6,’s. (ii) For each proxy model, generating a labeled
sample and training a classifier can be computationally costly.

To solve this problem, we present Algorithm 1, which accelerates
the construction given input relations specified in 7 by reusing
previously materialized samples and trained models. Next we will
present the details of the algorithm.

Algorithm 1: Accuracy allocation

1: procedure ACCURACY_ALLOCATION(7, A)
2 L;ro « raw input;
3 for a = (ax,,..., a,,n) in discretized A, s.t. []; a,; = o:
4 forie{1,...,n}
5: if L7 is not materialized:
6 L’ o, < Apply o7, on L7 s
7 Ly « Apply Gryseees Ony_y on Ly with o
8 Reuse 67, if e-approx on Ly; else retram
9 Compute C(6;,0n;);
10: Compute cost 3; C(6n;, ;)3
11: Pick " in A with a minimum cost;
12: Retrain 6y, . .., 6,, with a*;
13: return 6y, ..., 6y, andanl,...,a;‘rn.

4.2 Search Framework

As shown in the following example, the objective function (the cost
2. C(6x;, ay;) subject to ) is non-convex, which means there could
be multiple locally optimal solutions. In order to find a globally
optimal solution, we use an exhaustive search framework in the
algorithm (lines 3 ~ 4). If a locally optimal solution is acceptable
by the user, the algorithm can be easily extended to other search
frameworks, such as hill climbing, by replacing lines 3 ~ 4.

To illustrate that the objective function is non-convex, we con-
struct an example with n = 2. The cost of applying each proxy model
before its corresponding ML UDF could be any non-decreasing func-
tion over its accuracy. This is because the reduction decreases with
the increase of accuracy [30]. Two example costs are the following:

C(61,a1) =1— (a1 — 1% a1 € [0,1].

C(69, ap) = e~ @@= gy ¢ [0,1].
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Both C(61, 1) and C(62, a2) increase monotonically when a; €
[0,1] and a3 € [0, 1]. The cost function f = Y} Cis
D' L1 (x—1)2x e [0,1].

If the function f is convex on an interval [0, 1], by definition [8],
for any two points x; and x3 in [0, 1] and any A where 0 < A < 1,

F(Ax1+ (1= VDx2) < Af(x1) + (1= ) f(x2).
However, when x; = 0.1,x2 = 0.5and A = 1/2, f(%)

1.17; M = 1.12. So f does not satisfy f(Ax; + (1 —2A)x2)
Af(x1) + (1 = A) f(x2). Thus f is not convex.

A

4.3 Reusing Samples to Reduce Labeling Costs

We first give a theorem about the proxy models, then show how
the algorithm leverages the theorem to reuse samples.

4.3.1 Commutative proxy models. We note that the order of prefix
filters is interchangeable as shown in Theorem 2 in in Appendix
A4 in the technical report [42]. In Figure 5(b), the 96 output tweets
after 61 A o1 with a1 = 0.96 are the same as the output tweets of
applying 61 with a1 = 0.96 on the 100 output tweets after o7 in
Figure 5(a). That is, with a1 = 0.96, applying o1 A 61 and applying
61 A o1 have the same results. To prove the theorem, we introduce
Lemma 1 to prove a base case that a pair of 6 A ¢ are commutative,
and Lemma 4 (in [42]) to prove an inductive case that two pairs of
6 A o are still commutative with the same prefix filter and the same
suffix filter, respectively.

LEmMMA 1. Given a list of records L, a filter o, and a proxy model &
with a parameter a, o and & with a are commultative, i.e., the results
after applying & A o are the same as those after applying o A 6. We
denote6 No =0 A 6.

Proor. We first prove that 6 with a specific & parameter is a
selection predicate, and & predicts the same output for a record x;
independent of different orders of x; (x1, x2 or x2, x1) and different
orders of 6 (6 Ao or 0 A6). According to Definition 1, a proxy model
& is built based on its input relation d and a target predicate. After
building 6 and allocating an accuracy a, ¢ is a selection predicate
with fixed values of @, r, and M. When applying &, any input record
cannot change . Consider two records x; and x2, where & passes
x1 and discards x2. The output of 6 with different input orders
(x1, x2 and x7, x1) is the same record x1. For o A &, an unseen record
x for 6 is the one passed by o. If 6 passes x, then x is in the output
of o A 6 and also in the output of & A 0. Otherwise, x is not in their
outputs. For 6 A o, 6 takes more input records, compared to o A 6.
There is no unseen record for 6.

As selection predicates are commutative in general, o and 6 with
a are commutative. o

4.3.2  Reusing samples. The algorithm improves the performance
by reusing early samples (lines 5 to 7). Ly, is the sampled input to
build &5, by applying predicate o, on the input relation dy;. In
Figure 5(b), the labeled sample Ly for 67 has 96 tweets, which are
filtered by 61 A o1 on the raw input and then labeled using the predi-
cate sentiment=positive.Itis easy to see that L, changes when
accuracies assigned to its prefix proxy models (i.e., az,, ..., ar,_,)
change. For example, in Figure 5(b), L, changes from 97 tweets to
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96 tweets when the accuracy parameter of its prefix 61 changes
from a1 = 0.97 to a1 = 0.96.

By leveraging Theorem 2, we can improve the performance by
materializing samples L’ after o, and applying 6 on L’ during the
search, since common L’ can be shared for different & choices. Ly,

can be obtained by applying 65, ..., 6,,_, on a pre-computed sam-
ple Ly, that is computed by applying oy, . . ., 0r,_, on the raw input.

Lines 5 to 7 illustrate this process of quickly deriving L for each o
search. For the proxy model 63, we materialize its corresponding
sample L; containing 100 tweets filtered by oy in Figure 5(a) to be
reused. When a1 = 0.97, the labeled sample L can be obtained by
applying prefix 61 with a3 = 0.97 on the 100 materialized tweets
and producing 97 tweets. Similarly, when a; changes to 0.96 in Fig-
ure 5(b), the labeled sample Ly can be obtained by applying 61 with
a1 = 0.96 on the already materialized sample L, of 100 tweets and
producing 96 tweets. This solution is simple but effective, since ap-
plying 6 is cheap and doing so allows us to evaluate each expensive
F and o only once.

4.4 Reusing Classifiers to Reduce Training
Costs

The algorithm adopts a classifier-reusing scheme (line 8) to avoid
repeated training classifiers when the prefix proxy models change
their accuracy assignments. Specifically, let 6* trained on L* with
from a previous iteration (line 3) be e-approximate [1] to 6 trained
on L. That is:

(1-e)p* (L") < ¢*L < (1+¢€)¢p"L", (4.1)

where ¢ is the objective function of the regressor model used by the
proxy model. ¢ can be computed using a scoring function, such as
F1 score or coreset [1]. Take the F1 scoring function as an example.
We efficiently compute ¢ by evaluating 6* from a previous iteration
and measuring its F1 score on its labeled sample L* and current
L [1]. 6* can be reused if it is e-approximate under the current
accuracy setting. In Figure 5(b), suppose we want to build the proxy
model 63 for the predicate sentiment=positive on its 96 labeled
tweets with prefix a; = 0.96. If there is a proxy model 6} trained
on 97 tweets with prefix a1 = 0.97 satisfying Equation 4.1, we reuse
the classifier in 6} (i.e., M;) without training a new classifier on the
96 tweets. In Equation 4.1, we compute ¢*(L*) by evaluating the
F1 score of M; on the 97 tweets, while ¢*(L) is on the 96 tweets.
We next discuss how to compute C(6;, @;) (line 9). The per-
row cost ¢ for 6 and c for F can be profiled during training or by
counting the FLOPS of the ML model, while r can be obtained from
R, and s can be measured by applying the prefix filters on a sample of
the raw input. Since applying the proxy models is computationally
cheap, C can be computed efficiently. In Figure 5, the cost of the ML
UDF Geotagger is 20ms per tweet in our experiments, while that
of the proxy model 67 is 0.01ms per tweet. The proxy model 61 with
ai = 0.96 pays the cost of processing 200 tweets and saves the cost
of the 80 discarded tweets, which no longer need to be processed by
the ML UDF Geotagger. Therefore, using Equation 3.1, we have
C(61,a1) =¢1+(1=r1) - c1 =0.01+ (1—280/200) - 20 = 12.01.



5 CORE: REORDERING PROXY MODELS

In this section we study how to reorder proxy models to find an
optimal order 7 € H to minimize the cost ) C. For different or-
ders, proxy models built on input relations and predicates are dif-
ferent and they have different costs. For instance, in Figure 5(c),
for the order state = “CA”Asentiment = positive, the proxy
model for predicate state = “CA” is built on the original input
data. For the order sentiment = positiveAstate = “CA”, the
proxy model for the same predicate is built on records satisfying the
predicate sentiment = positive.Because different orderings af-
fect the input data to the proxy model, these two proxy models
have different execution costs for the same ML UDF Geotagger.

The number of query plans in H is exponential in terms of the
number of UDFs and filters. We construct a search tree to represent
them by merging common prefixes of query plans. For example,
let X, Y, and Z be three ML UDFs. There are six potential plans
in H (e.g., XYZ and XZY). Figure 6 shows a snippet of the search
tree starting from node X, where each tree node represents an ML
UDF & and its corresponding 6 and o. In general, building all proxy
models for the plans can be computationally prohibitive. To find an
optimal order 7 efficiently, we propose a search algorithm based
on branch-and-bound [20, 29] to prune candidate plans.

5.1 Bounded Cost

For a specific order of proxy models, we can compute a lower
bound and an upper bound of the cost }, C. Intuitively, an initial
lower bound corresponds to the case when all proxy models discard
everything. An initial upper bound corresponds to the case when
all proxy models discard nothing. For example, for the order XYZ
in Figure 6, the cost function reaches a lower bound when the first
proxy model &x discards all its input records. It reaches an upper
bound when all proxy models 6x, 6y, and 6 discard nothing.

Let C! and C* be the lower and upper bounds of the cost for a
node, respectively. As shown in Equation 3.1, the cost C of a proxy
model ¢ is bounded by accuracy a, reduction r, and selectivity s,
where (i) « € [d, 1], (ii) s € [0, 1] and (iii) r € [0, 1]. C increases
when s and a increase and r decreases. To calculate a lower bound
of node t at depth i assuming the depth of the root is 0, we use the
minimal value of the accuracy all. = o, the minimal value of the
selectivity sf = 0, and the maximum value of the reduction rl?‘ =1.
Similarly, to compute an upper bound of ¢, we use the maximum
value of the accuracy a = 1, the maximum value of the selectivity
s;.‘ = 1, and the minimal value of the reduction rf = 0. Based on the
analysis, we present a lower bound and an upper bound of the cost
C of anode t in Lemma 2. Additionally, a lower bound of the cost
for a plan is the sum of the lower bound of the cost for each node
in the plan, and an upper bound for a plan is the sum of the upper
bound for each node in the plan. That is, the bounds of ) C for a
plan are }; Cland 3 C¥, respectively.

LEMMA 2. For a node t of depth i, a lower bound of its cost C; is

i-1
1—[35. . zxj.) G+ -rh) ).

Jj=1

( (5.1)
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Algorithm 2: QO by branch-and-bound pruning

procedure BB_PRUNING(q, o)
Construct a search tree based on H from g;
Q={qr|Vr € H}; visited=2;
for each node ¢ in the search tree:
cl,c* —initialize(t);
while |Q| > 1:
t « pop_unvisited(Q, visited);
6%, a* « accuracy_allocation(t, A);
update_node(t, 6%, a*);
visited = visited U{t};
sort_and_prune(Q, ), cl, > CYy;
return (s, @) that minimizes ), C.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

An upper bound is

i-1
(I_[ s}‘ . a}‘) e+ (1- rll) < ci).

J=1

(5.2)

Example. In Figure 6, the lower bound of node 1 is the cost of
applying a proxy model. C§< = Cx using Expression 5.1 with aé( =d,
sé( = 0, and ry = 1. The upper bound C¥ is the cost of a proxy
model éx plus that of the ML UDF cx with a} = 1, s} = 1, and
r§( = 0. For the plan XYZ in Figure 6, the lower bound of the plan
is Cé( + Cé + CIZ, and the upper bound is Cy +Cy + C3,.

5.2 Branch-and-bound Search

We present a general pruning framework in Algorithm 2. Its main
idea is that the upper and lower bounds can be improved as we col-
lect information during the search process, such as selectivity and
reduction. The search builds necessary proxy models and prunes
the search tree to reduce the optimization overhead. For each node
t, according to Lemma 2, we initialize the lower and upper bounds
of 6 using C! and C¥, respectively (lines 4~ 5). We then progres-
sively build proxy models (lines 6~11). For each search step, we
find optimal a parameters for t and prefix nodes using Algorithm 1.
We compute the cost }, C of these nodes after using Algorithm 1,
and tighten the bounds of costs for #’s leaf nodes. The search yields
an order s that minimizes the overall cost }}; C(6y;, @r;). We next
explain several specific functions used in the algorithm.

| Visited C})urrent {'""Pruned |
1/x ak = a¥ = 092 1(x ay = af =092
2(Y ) 3(Z h=ap =098 | 2(Y)3Z @h=a}=093
40z 5(Y Wb =10at =09 4 Z 5(Y b = af =095
Order XYZ: ‘Order XZV: Order XYZ: | Order XZY:
YCe[68] 'YCe[28] YCe[68 XCEe[5S5]

(a) The it" iteration. (b) The i + 15t iteration.

Figure 6: Two iterations in branch-and-bound search on a tree start-
ing from node 1 with gl = 0.9. The blue text is updated information
such as accuracies, lower bounds, and upper bounds after calling the
function update_node().



Initialization (line 5): We initialize the lower and upper bounds
for each node according to Lemma 2. The query accuracy [] « in
Equation 3.3 is within [s4", 1]. For example, for the plan XYZ in
Figure 6, we initialize the lower and upper bounds for each node
witha! =d,s! =0, r* =1anda* =1,s% =1, rl = 0, respectively.
The query accuracy [] « is within [0.93, 1] initially, where 0.9 is
the query target accuracy d.

Choosing the next candidate node. (line 7): We find the first
unvisited tree node ¢ from s that is in the front of the queue. In Fig-
ure 6(a), £ = XZY is in the front of the queue Q according to sort_-
and_prune (), which will be explained later. pop_unvisited()
yields 7 = XZY and node 3, since node 1 has been visited. Similarly,
pop_unvisited() yields # = XZY and node 5 in Figure 6(b). If
all the nodes for the head plan in the queue have been visited, we
look for the next = € Q.

Tightening cost bounds. (line 8~line 9): We first call accuracy_-
allocation() to build an optimal proxy models 6* with an opti-
mal ¢* from the root till the current node t at depth i. The update_-
node () function updates a! = a = * for nodes from the root till
t. Similarly, s = s = s*, and r! = r = r*. This process improves
the bounds of }; C for plans under node ¢t (with untrained 6s) and in
turn tightens the query accuracy [ & to [4"~**1, of]. In Figure 6(a),
for node 3, we call accuracy_allocation() for the sub-query
XZ and find the optimal aé( =al =0.92 and alZ = a} =0.98 for
node 1 and node 3, respectively. The update_node () tightens the
query accuracy [] « for the plan XZY from [0.93,1] to [0.92,0.9],
and tightens the lower and upper bounds of }, C to [2, 8].
Pruning plans. (line 11): After the bounds are updated, we sort
and prune 7 € Q. The following rules are used to determine the
sort order of 7 as well as to prune unnecessary plans.

e When [} c, >, CY] for two n’s have overlap, the one with

a lower mean cost w has a higher priority and is
likely to yield more gains. Such a plan should be explored
first. In Figure 6(a), the mean cost for the plan XZY is 5,
which is less than that of the plan XYZ. Therefore, the plan
XZY has a higher priority than the plan XYZ.

e When [} ct , >, C¥] for two 7’s have no overlap, we prune
the one with a higher value range from the search tree,
since it provides greater cost. In Figure 6(b), [} cl, > CY]
for the plan XZY is lower than that of the plan XYZ, and
they have no overlap. Then the plan XYZ is removed from
Q, i.e., the edge connecting node 2 and node 4 is deleted.

The above comparisons are done for each pair of 7’s until Q is
fully sorted. The lower bound and upper bound are equal to the
exact cost once & is built. Pruned n’s are removed from Q.

5.3 Improvement Using a Fine-grained Tree

The branch-and-bound search discussed above involves generating
labeled samples L, followed by training classifiers M and deriving
C for each node in H. To further speedup the search, we split one
node into two: an L-node to generate labeled samples, and an M-
node to train classifiers M and derive R and C. An L-node has to
be placed before its corresponding M-node, i.e., labeling happens
before training. For instance, the node X in Figure 7(a) is split into
an Ly node to generate the labeled sample for 6x and an My node
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to train the classifier for 6x in Figure 7(b). We call this new tree a
fine-grained search tree H*.

Compared to the original search tree discussed in the previous
section, H* provides more opportunities to tighten the cost bounds.
For example, we can prune the search tree at an L-node without
executing its corresponding M-node. The search algorithm is similar
to Algorithm 2, except a new update_node () function. Its update
scheme now depends on the type of node ¢, discussed below.

(a)

Figure 7: (a) A snippet of the search tree in Figure 6; (b) A fine-grained
tree of (a).

L-node. We update the lower and upper bounds of selectivity s
because we generate labeled samples and compute s at L-node.
For an L-node ¢, a proxy model & is called available for t if its
corresponding M-node is an ancestor of t; otherwise, ¢ is called
unavailable for t. We compute lower and upper bounds of s; by
applying all available prefix 6 and o on the raw input to obtain a
labeled sample L}, and its selectivity is denoted as sy. In Figure 7(b),
Gx is available for node 5 because we build 6x at node 2, which is
an ancestor of node 5, while it is unavailable for node 3 because
My is not an ancestor of node 3. The labeled sample Lj, for node
3 is labeled by oy after ox on the raw input without applying 6.
Let the selectivity on Ly, be sj,. We compute Ci and C{ as follows:

e Alower bound Ci can be computed when its unavailable
proxy models have o' = d and discard records that sat-
isfy o; from L. In this case, the selectivity s becomes
(s;—(1- a)k) /si*, where k is the number of unavailable

prefix proxy models. This selectivity is used to estimate Cé
using Expression 5.1. For node 3 in Figure 7(b), we compute
Cé using si, = (sy — (1 - o))/sd when the unavailable 6x
with & = o discards records satisfying oy from L.

e An upper bound C¥ can be computed when unavailable
proxy models do not discard any records in Lj (i.e., a = 1.0).
Its selectivity is s} in this case. We compute C} using s} = s}
in Expression 5.2. In Figure 7(b), at node 3, when 6 is
unavailable and we use @ = 1.0, the selectivity sy = s, is
used to estimate CY.

M-node. As in Section 5.2, we call Algorithm 1 to compute o, train
6, and estimate C. We also update the bounds for all its ancestor
nodes. In Figure 7(b), after we train 6x for node 5, we update the
selectivity of node 3 by applying Er§< on its labeled sample L3,.

The above search on the fine-grained tree is efficient, as illus-
trated in our experiments. For a query on the Twitter dataset, the
search algorithm prunes 37% of the nodes on the original search
tree, and 85% of the nodes on the fine-grained tree.



6 EXPERIMENTS
6.1 Setup

Datasets. We used three datasets with text, images, and videos.
Twitter text dataset. It contained 2M tweets from January 2017 to
September 2017 in the United States randomly sampled using the
Twitter sampled stream API [37]. Each tweet was a string with
a maximum of 140 characters. This dataset supported text analy-
sis and retrieval by utilizing various NLP modules such as entity
recognition, sentiment analysis, and part-of-speech (PoS) tagger.
COCO image dataset. COCO [28] was a public dataset collected
online. It contained 123K images and 80 object classes such as
“person”, “bicycle”, and “dog”. Each image was labeled with multiple
objects for their class labels and bounding box positions. The dataset
was used for retrieving images that contained one or more object
classes specified in user queries.

UCF101 video dataset. The UCF101 activity recognition dataset [35]
contained 13K videos collected from YouTube. Each video was la-
beled with one of 101 action categories such as “applying lipstick”
and “baby crawling”. It supported video retrieval using labels gen-
erated by object detection and action recognition models.
Workloads. To our best knowledge, there is no off-the-shelf bench-
mark for ML inference with comprehensive ML operators and predi-
cates. To solve the problem, we generated 10 queries for each dataset
in the experiments. Table 2 illustrates some of them, and Figure 8
shows a sample workflow. The workloads retrieved texts, images,
and videos that matched given query predicates, which were con-
junctions of multiple clauses with different selectivity values. Each
predicate clause was an equality condition on an ML-generated
label column. We refer the readers to a full list of the queries as
well as snapshots of the datasets in [41]. Each query also specified
a target query accuracy 9, indicating how much accuracy loss the
user was willing to pay relatively to the original query.

Table 2: Some of ML queries used in the experiments.

Dataset[ Q#‘ Query semantics [ Selectivity[ Correlation

Sentiment(’negative’ or ‘neutral’) & PoS Tag-

Twitter| 9| ger(VBD’ or "'WRB’ or 'IN’) 049 055
Sentiment('negative’ or ‘neutral’) & PoS Tag-

%| ger(PRP) 035 0.41

Object detection (person) & (car or chair or 013 0.99

coco |% cuportvorbedor...)

Activity Recognition (archery or balance beam
or biking or . ..) & Object detection (chair or [0.17 1.00
sports ball or bird or . ..)

UCF101| %2

Input —{Sentiment

sentiment=

. s PoS tagger =

(n‘egatlve, or Tagger (VBD'or ‘IN) Output
neutral’)

Figure 8: A sample ML workflow on the Twitter dataset.

Metrics. We measured (1) the end-to-end total processing time that
included the query optimization, training of necessary models, and
processing the query given an optimized plan; (2) the accuracy of
our query processing relatively to the original ML inference queries;
(3) the query execution cost (milliseconds per record); and (4) the
decomposition of the optimization costs (minutes).
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CORE. We implemented a query execution engine and the CORE
optimizer in Python that enabled ML inference queries on various
unstructured texts, images, and videos. We also implemented sev-
eral ML UDFs using the Stanford NLP [31] and spaCy packages for
text analysis, YOLOv3 [33] for object detection in images, and an
activity recognition model [7] for recognizing activities in videos.
To build a proxy model, we generated the labeled sample L for
¢ by pulling initial records from the input, filtering these records
by its condition d, and then labeling L using its predicate o. L was
divided into a training set, a testing set, and a validation set. We
re-sampled the training data to ensure a label balance. The classifier
M for 6 was trained on the training set and the testing set using
light-weight classification algorithms, such as a linear SVM [15]
and a shallow NN [25]. During training, we leveraged a grid-search
on the F1-score to decide the best hyper-parameters and a cross-
validation to train a classifier using the set of hyper-parameters.
After training M, we derived its accuracy vs. reduction curve R
using the validation set.
Baselines. We compared CORE against the following baseline
approaches. (i) ORIG was a baseline that ran the original query as it
is. (ii) NS was a baseline based on NoScope [17]. It trained a single
light-weight model and inserted it early in a plan to quickly filter
input records that did not match the query predicate so that the
entire query could be accelerated. (iii) PP (short for Probabilistic
Predicates [30]) built a light-weight filter for each predicate offline
and injected them early in a plan with an independence assumption
of predicates, given an ad-hoc query. The experiments were run on
a c5.4xlarge AWS instance with 280GB SSD storage, 16 vCPUs, and
32GB memory, running a Ubuntu Linux 16.04.

6.2 Effect of Predicate Correlation

To understand the effect of correlations of UDFs in a query, we used
the three datasets and 20 test queries with two or three predicates
for each dataset. These queries were divided by their correlation
score k2 at a cutoff score of 0.2 on the Twitter dataset, 0.9 on the
COCO dataset, and 0.5 on the UCF101 dataset. As a result, each
query was classified as weakly or strongly correlated among the
predicates. Table 3 shows the correlation score.

We collected the execution costs of these weakly and strongly
correlated queries with a query accuracy f = 90%. We ran these
queries using ORIG, NS, PP, and CORE to generate optimal plans,
and tested the execution cost of an optimal plan by executing the
plan on a sample of data. Figure 9 shows the execution costs. From
Figure 9, we can see that (i) NS, PP, and CORE reduced the execu-
tion cost compared to ORIG, and (ii) compared to PP, CORE reduced
the execution cost more on strongly correlated queries than weakly
correlated queries. In general, NS improved over ORIG using cheap
filters to quickly discard irrelevant inputs, and PP further boosted
the performance by decomposing the filters according to the pred-
icate clauses. There was still room for improvements for queries
with more correlations and CORE filled this gap as expected.

6.3 Time Reduction of CORE

To study the performance improvements of CORE over existing
solutions, we tested the total times of strongly correlated queries
with o = 90% on the three datasets. For query optimization to
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Figure 9: Average execution costs over strongly correlated queries and weakly correlated queries on the three datasets, respectively.

Table 3: The correlation scores for 10 strongly correlated queries
g1 ~ qio (marked as “Strong”) and 10 weakly correlated queries
q; ~ q,, (marked as “Weak”) on the three datasets.

(a) Weakly correlated queries.

Dataset| ¢} | ¢ | g3 | a3 |95 |9 |97 |95 | 95 | o
Twitter| 0.15| 0.15| 0.15| 0.15| 0.16| 0.16| 0.16| 0.16 | 0.16 | 0.16
COCO | 0.87| 0.88| 0.87| 0.87| 0.86| 0.88| 0.87| 0.87 | 0.88| 0.88
UCF101] 0.40| 0.40| 0.40| 0.40| 0.41| 0.41| 0.41| 0.41| 0.41| 0.41

(b) Strongly correlated queries.

Dataset| q1 | g2 | g3 | 94 | 95 | 96 | 97 | 98 | @9 | quo
Twitter| 0.55| 0.41| 0.55| 0.42| 0.41| 1.00| 0.80| 0.96 | 0.80| 0.93
COCO | 0.99] 0.98| 0.98| 0.98| 0.98| 0.99| 0.99| 0.99| 0.99| 0.99
UCF101] 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00 | 0.82| 0.82

generate an optimal query plan, we used 0.34% of the input data on
the Twitter dataset, 0.84% of the input data on the COCO dataset,
and 14.86% of the input on the UCF101 dataset (due to its smaller
size). After generating the optimal plan, we ran it on the rest of the
input. The total time included the optimization time and the time
of processing all the records. We used the same setting for NS and
PP, which built proxy models online.

Figures 10a, 10c and 10e show the total times of ten queries
in each dataset, and Figures 10b, 10d and 10f show the average
total-time reductions for the ten queries using NS, PP, and CORE
compared to ORIG. We also presented the total time of each indi-
vidual query in the Twitter dataset in Figure 11. These results show
that CORE had a better performance than the baseline approaches
in general. Specifically, CORE achieved up to a 61% reduction on
the Twitter dataset compared to ORIG. For NS and PP, the reduc-
tions were about 44% and 50%, respectively. We observe similar
reductions on other datasets as well. For example, on the COCO
dataset, CORE had a reduction of up to 73% compared to ORIG,
while NS and PP achieved a reduction of 35% and 44%, respectively.
As discussed in Section 2.2, CORE achieved more gains over PP
when the queries had predicates with a stronger correlation.

6.4 Optimization Cost of CORE

To better understand the detailed optimization cost of CORE, we
collected the time to generate labeled samples, the time to train
classifiers, and the time of search frameworks for each query. The
optimizer CORE used multiple threads to label training samples.
Each ML model processing unstructured texts used ten threads in
parallel. The YOLOv3 model and the image feature model used two
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Figure 10: The total time over ten queries for each dataset using
CORE and baseline approaches. o = 90%. For (a), (c), and (e), we show
the 15¢ and 99" percentiles on the bars and 1°¢ quartile, median, and
374 quartile on the boxes. For (b), (d) and (f), we present the average
total time reductions relative to ORIG.

processes in parallel, and the activity recognition model used six
processes in parallel. During the phase of building proxy models, the
size of labeled sample L was empirically set to 2, 000. The training
set, testing set, and validation set were split in a 6:2:2 ratio. We
used scikit-learn to train a linear SVM classifier M on the labeled
sample for text analytic queries, and used keras to train a shallow
NN classifier for analytic queries on images and videos.

Table 4 shows the results of the ten queries over each dataset,
including the time reduction compared to ORIG. On the Twitter
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Figure 11: The total time of each query in the Twitter dataset using ORIG, NS, PP, and CORE.

dataset, the optimization time was 0.70% of the total time, and the
total time reduction was 49.87% on the average. On the COCO
dataset, the optimization time was 5.67% of the total time, and the
total time reduction was 66.07% on the average. UCF101 was rela-
tively smaller, and 14.86% of the data was used for optimization. The
optimization time was 21.80% of the total time, and the total time
reduction was 49.49% on the average. Overall, the query optimiza-
tion cost of CORE was a small portion of the total processing time,
and it achieved significant performance improvement compared
to ORIG. When the dataset was small (e.g., the UDF101 dataset) or
queries had many ML operators and predicates (e.g., gg and q10 on
the Twitter dataset), the query optimization costs were larger.

Table 4: Optimization costs and the total processing time for ten
queries over each dataset using CORE with o = 90%. The “labeling
time” is the time to generate labeled samples. The “training time”
is the time to train classifiers. The “searching time” is the elapsed
time for the search framework. The “QO time” is the total time of
the labeling, training and searching times. The “QO Time pct.” is the
percentage of the QO time over the total processing time. Total Time
Reduction = (ORIG-CORE)/ORIG.

Labeling | Training [Searching| QO | QO |Total | Total Time

Dataset| ID |#preds| Time Time Time |Time| Time |Time | Reduction
(min) (min) (min) |(min)| pct. |(min) (%)
Twitter | qq 2 0.93 0.10 0.17 1.20 | 0.16% | 763 45.56
Twitter | q2 2 1.22 0.09 0.14 1.46 | 0.25% | 581 60.99
Twitter | qg 3 1.53 0.75 3.28 5.58 | 0.73% | 764 44.77
Twitter | qq0 3 1.76 0.75 2.93 5.47 | 0.77% | 712 48.26
Twitter |Avg.| 2.5 1.84 0.44 2.61 4.91 | 0.70% | 700 49.87
COCO |Avg. 2 6.00 2.06 0.24 8.30 | 5.67% | 173 66.07
UCF101|Avg. 2 23.40 0.08 0.20 23.68(21.80%| 110 49.49

6.5 Effectiveness of CORE Components

CORE searched an optimal query plan in both the accuracy space
A and the order space H. We evaluated the effectiveness of different
components in CORE using two variants, namely CORE-a and
CORE-h. CORE-a represented the setting with the reordering step
disabled during optimization and constrained the search space to
solely A (Section 4). It used the input-query order and derived an
optimal set of accuracy values in A using Algorithm 1. CORE-h
applied Algorithm 1, and exhaustively searched an optimal order
in H instead of performing the pruning in Algorithm 2.

We ran ten queries for each dataset using CORE-a, CORE-h,
and CORE with o = 90%, and collected the execution costs for
optimized plans and the average optimization costs to generate
optimal plans. Figure 12 shows the results. We can see that CORE-a
had the worse execution cost compared to CORE because CORE-a
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Figure 12: The execution costs and average optimization costs for
queries over three datasets using CORE, CORE-a and CORE-h.

Table 5: Optimization costs of CORE variants on the Twitter dataset.

Labeling | Training | Searching | QO QO

Time Time Time Time Time

(min) (min) (min) (min) pct.(%)
CORE-a | 1.37 0.15 1.78 3.30 0.38
CORE-h | 6.51 0.57 4.69 11.78 1.74
CORE 1.84 0.44 2.61 491 0.70

did not use the optimal order. CORE had similar execution costs to
CORE-h, but CORE-h had much larger query optimization costs.



Table 5, shows the average optimization cost including labeling,
training, and searching using CORE-a, CORE-h, and CORE. We
can see that CORE reduced the labeling, training and searching
times compared to CORE-h. This result indicated that the branch-
and-bound search algorithm in CORE successfully pruned some
nodes in the tree and reduced the optimization overhead. In gen-
eral, the branch-and-bound search algorithm found the optimal
order. Therefore, both the Algorithm 1 for A and Algorithm 2 for
H successfully accelerated the ML inference process.

6.6 Scalability

We evaluated the scalability of CORE by increasing the number of
records in the Twitter dataset. We started with 0.2 million tweets
and gradually increased the data size to 2 million tweets. We ran
the ten queries with o/ = 90% using ORIG, NS, PP, and CORE,
and collected the total processing times at different data sizes. Fig-
ure 13 shows the average total processing time using ORIG, NS,
PP, and CORE. We also presented the total times for two example
queries using CORE at different data sizes. The results show that
CORE scaled up well, and outperformed the other three baseline
approaches at all data sizes.
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Figure 13: (Left) The average total processing time (including opti-
mization cost) using CORE, ORIG, NS, and PP on ten queries over the
Twitter dataset with different input sizes. (Right) The total times of
two sample queries: q; and g, with different input sizes.

6.7 Effect of Target Query Accuracy

We evaluated the impact of the target accuracy 9 on CORE by
increasing 9. We started from s = 90%, and linearly increased it to
A = 98%. We collected the execution costs of optimized plans for
the ten queries over the Twitter dataset using ORIG, NS, PP, and
CORE with different target accuracy values. Figure 14 left shows
the average execution costs for the ten queries using ORIG, NS,
PP, and CORE. We also presented the execution costs for three
example queries using CORE with different target accuracy values
in Figure 14 right. The results indicated that CORE outperformed
ORIG, NS, and PP in different accuracy settings. Moreover, the
execution costs increased for all the baselines when the target
accuracy increased. In addition, Table 6 shows the percentage of
the query optimization time relative to the total processing time
in the same setting. Similar to the observations in Section 6.3, the
query optimization in CORE with different accuracy targets still
had a smaller overhead relative to the total processing time.
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Figure 14: (Left) The average execution costs of optimized plans for
ten queries over the Twitter dataset with different o values. (Right)
The execution costs of three sample queries: g2, g4, and gg, with
different target accuracies.

Table 6: The optimization costs for q; and g with different of values.
Each cell contains the QO costs and the QO percentage relative to
the total query-processing cost.

QO cost | 900, | st =92% | st =94% | s =96% | i =98%
(min) / pct

% 150/0.11%| 1.54/0.11%| 1.50/0.11%| 1.48/0.11% 1.48/0.11%
s 4.73/0.35%] 5.28/0.39%| 8.31/0.61%| 6.03/0.45%| 3.83/0.28%
avg. 4.57/0.36%| 4.83/0.38%| 5.07/0.40%| 4.30/0.34%| 3.24/0.25%

6.8 Effect of Sample Size Used in Training

To better understand the effect of the labeled sample size on CORE,
we varied the sample size from 1K to 5K. Table 7 shows the execu-
tion costs for two example queries and the average execution costs
(in milliseconds per tuple) over the 10 queries with different sample
sizes on the Twitter dataset with of = 90%. The results showed
that the execution costs decreased and the query optimization time
percentage increased when the labeled sample size increased. When
we set the sample size to 500, the query accuracy s = 90% could
no longer be guaranteed and decreased to 82% on average.

Table 7: Execution costs of ¢, and g3 with different sample sizes.
Each cell contains an execution cost and percentage of the QO cost.

SOSO Sample Sample Sample Sample Sample
pet size=1K size=2K size=3K size=4K size=5K
q2 16.8/0.1% | 15.8/0.1% | 16.3/0.2% | 16.7/0.3% | 15.9/0.4%
q3 21.9/0.1% | 21.5/0.1% | 21.5/0.2% | 21.0/0.3% | 19.6/0.5%
avg. 20.0/0.2% | 19.3/0.4% | 19.2/0.9% 19.4/1.0% 19.0/1.4%

7 CONCLUSIONS

We proposed a novel query optimizer, CORE, to accelerate ML
inference queries. It improved state-of-the-art techniques by relax-
ing the independence assumption among query predicates. CORE
incurs only a small overhead by leveraging a branch-and-bound
search algorithm to prune the space of candidate filters and reusing
intermediate results. A thorough experimental evaluation showed
that CORE significantly reduced the ML inference execution cost.
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